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One of the most challenging aspects of doing research in the mathematical modeling genre has
been finding an appropriate characterization for the complex interaction of knowledge and
cognitive acts that result in coordination of situational referents and mathematical inscriptions.
To this end, we introduce the modeling space and illustrate its descriptive and analytic utility.
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To date, the most common characterization of modeling is a “translation” from the real world
to the mathematical world. Typically, the “translation” is envisioned as leveraging a one-to-one
correspondence between words (or real-world objects) with mathematical counterparts. This
characterization is not only empirically inaccurate, but consequently impedes progress in
theorizing the teaching and learning of modeling. First, translation between natural languages is
typically unbalanced; it is rare that an individual is equally knowledgeable in her first and
subsequent languages. Second, the characterization is reductionist since “reliance on translation
cues...is more characteristic of students who possess only algorithmic knowledge of the target
task and who circumvent the interpretive process of mathematical modeling” (Martin & Bassok,
2005, p. 479). We do not imply that language translation is trivial work, only that referring to
mathematization of a real-world situation into a mathematical problem as translation ignores the
complexity of modeling which has, in turn, limited the field’s ability to systematically
investigate it as an idiosyncratic activity. Presently, the field lacks a methodologically cogent
approach to studying modeling that reflects the full range of mathematical or real-world
meanings individuals might ascribe to a single representation. It also faces an abundance of
partially explanatory theories focusing on just one aspect of modeling (e.g., translation). The
field is thus ill-equipped to account for how those meanings shift during the process of modeling
or to develop means for studying how instructors may impact the process. The broader goal of
the research project is a theoretically and methodologically coherent way to trace the evolution
of a student’s mathematical model, including the representations she produces and her meanings
for these representations. Our contribution is twofold: a theoretical construct robust enough to
account for students’ idiosyncratic and shifting meanings during mathematical modeling and an
accompanying descriptive mathematical model capable of tracing the evolving student model.

Relevant Theoretical Constructs

To address the larger question of how to document model evolution, we first acknowledge
that the extant theories of mathematical modeling collectively posit both internal (mental) and
external (representational) aspects of a mathematical model which must both be accounted for.
To date, no one theory does so comprehensively. When multiple theories each offer partial
explanations for a phenomenon, such as model evolution, The Networking Theories Group
(2014) advocates strategies for coordinating those theories. We adopted the strategies they
recommended such as combining and coordinating in order to generate “deeper insights into an
empirical phenomenon” (p. 120). We first focused on the aspects of relevant theories that
foregrounded conventional mathematical representations (Czocher & Hardison, 2019). However,
tracing only the evolution of representations was insufficient for capturing the breadth of ways
that a mathematical model could change could change. We next sought to incorporate the theory



of quantitative reasoning (Thompson, 2011) by considering the quantities students projected into
a situation to be modeled and the interplay between quantities and representations (Czocher &
Hardison, under review).

Modeling can be seen as a process of unification among a sign, a referent (the object the sign
stands for), and an interpretant (Kehle & Lester, 2003). In mathematics, a sign can be part of an
inscription in mathematical notation. In our view, the referent could stand for a real-world object,
for a quantity, or for another conceptual entity. Then the interpretant can be characterized as the
mathematical conception of how that quantity relates to other quantities. Sherin's (2001) theory
of symbolic forms provides one interpretation for how meaning can be read into equations,
which are composed of signs. A symbolic form consists of a template and a conceptual meaning
(the idea to be expressed in the equation). For example, + = expresses a “parts-of-a-whole”
relationship. The blanks can be filled with a single symbol or a group of symbols representing
quantities or combinations of quantities (perhaps related via other symbolic forms). Familiarity
with symbolic forms helps individuals “know” to use certain operators (e.g., + or X) or
relationships and to know where to place the symbols of quantities in an equation. Symbolic
forms are building blocks of equation generation.

Mathematizing a situationinvolves generating mathematical representations and assigning
semantic meanings compatible with the modeler’s conception of the situation at hand. That is,
the modeler must identify relevant quantities and describe how they vary together. Thompson's
(2011) theory of quantitative reasoning offers relevant insights. First, Thompson takes the strong
position that quantities are mental constructs, not characteristics of objects in the world. It
immediately follows that a quantification process is carried out by an individual in order to
conceive of quantities. Quantification is “the process of conceptualizing an object and an
attribute of it so that the attribute has a unit of measure, and the attribute’s measure entails a
proportional relationship (linear, bilinear, or multi-linear) with its unit” (p. 37). One can conceive
of various instantiations of the object, with each instantiation manifesting different extents of the
relevant attribute, and coordinate these instantiations with a value. We operationalize
quantification as the set the of operations an individual can enact on a particular attribute
(Hardison, 2019). Observing a phenomenon and conceptualizing that there are quantities and that
they can vary (or may be constant) is foundational to formulating a meaningful mathematical
model. For example, quantities like distance and velocity may be more readily available for high
school students than torque, electrical current, or GDP.

Quantitative reasoning more generally entails conceiving of quantities and relationships
among quantities. It involves conceiving of relationships among quantities whose values may
vary independently. These constructs allow modeling to viewed as conceiving and representing
relationships among the quantities involved. Coordinating quantities and attending to
relationships among quantities is covariational reasoning (Carlson, et al., 2002). It involves
identifying ways to combine quantities through operations and trace their changes, rates of
changes, and intensities of changes whether they are directly measurable or not (e.g., Johnson,
2015). Relationships can be identified through observation, a priori reasoning, or through
knowledge of principles rooted in physical theory.

When quantities and relationships being modeled are expressed externally in mathematical
notation, they become the mathematical representation of a physical model. The mathematical
representation is intended to convey an individual’s mathematical model (mathematical
concepts, objects, and structures) and the relationships among the constituent inscriptions’
situational quantitative referents. In this way, the theory of covariation of quantities elaborates an



important aspect of how the conceptual counterparts to mathematical models are formalized into
mathematical representations and expressed in symbolic forms. In the next section, we introduce
the modeling space, a theoretical construct we use to communicate the quantities present in a
student’s mathematical model, to document changes in this model over time, and to provide
some predictive utility for modifications a student might or might not make to her model.

The Modeling Space: Construct and Representational Tool

We preface our discussion of the modeling space by noting that we distinguish between the
quantities an individual projects onto a situation, operations (quantitative or numerical) enacted
on quantities or their values, and the representations (inscriptions as well as utterances) she uses.
We refer to the set of mathematical models a student might generate within a given modeling
task as the modeling space. We intentionally draw an analogy to a Cartesian product space. Each
quantity corresponds to a dimension of the product space. We view the modeling space as the set
of mathematical relationships that act via composition on the situationally relevant quantities
available to the student. In this section we build to a mathematical description of an individual’s
modeling space. For example, suppose that in the course of addressing a modeling task about a
falling body under the influence of gravity only, we are able to infer that Janet has introduced the
quantities initial height above ground, time elapsed, current height above ground, mass of the
object, and initial velocity. We represent her available quantities, organized by type, as the
sequence (TIME, HT;, HT, MASS, V;). Her modeling space would be all of the meaningful (to her)
mathematical combinations of those quantities. For example, one element in the modeling space
Janet may represent is current height above ground, h = hy — v, - t (Eqn 1), where the symbol
names correspond to experts’ conventions.

We can formalize the modeling space by structuring it with a descriptive mathematical
model. Suppose during modeling, a student projects a set of N quantities, Q = {q4, g3, ---qn}
onto the referent situation. At interview time 7, we assign one of three values from the set S =
{—,0,1} to each quantity (— means the potential quantity q; has not yet been projected by the
individual, 0 means q; has been projected by the individual at some t < 7 but is not referred
during a time period of analytic interest, 1 means there is evidence that g; is referred during the
vignette). The set S has a natural order —< 0 < 1. We can impose a commutative binary
operation, the tropical addition defined by a * b = max(a, b). S is then a monoid' under * with
identity —. We then form a Cartesian product from the set S over the N dimensions supplied by

Q:

N
M= S, ={=,0,1} x {—,0,1} x - x {—,0,1}

i=1

N times
The product M is again a commutative monoid under the operation +, coordinate-wise addition

using the operation *.

Elements of M, written as (sq, S5, ..., Sy) are assigned to a vignette of student work on a
modeling task according to whether during that vignette each quantity g; is used during the
vignette (value 1), has been projected prior to the vignette but is not used during the vignette
(value 0), or has not yet been projected onto the situation (value —). The individual’s
mathematical model evolves over time and is captured by changing values of s, for each g.
Thus, we model the start of the interview with M as expressed as (—, —, -+, —) . As quantities are

! A monoid is a set that is closed under an associative binary operation and contains an identity. It is different
from a group because its elements lack inverses.



introduced, the -*s are replaced with 0's and 1's. For example, if N = 4, the notation (—,0,1,1,0)
would indicate that the individual has available four quantities and is using quantities g, and qs,
but not g; and q4. The quantity g; has not yet been projected. At the end of the interview, M is
expressed as a sequence of 0's and 1's. We can use elements of M to represent the accumulated
modeling space (all quantities we infer a student has projected up to at a given moment during
the interview) or, by acknowledging that g; is a function of time and treating elements of M as
finite states, we could trace change over designated periods of interview time. It is beyond the
scope of this paper to fully explore the distinctions; instead we wish to exemplify the construct
and its utility to support further theorizing by treating accumulated quantities.

Suppose Janet considered gravity, but she has not yet explicitly introduced it as a quantity,
but does later. We can represent her mathematical model as my; = (1,1,1,0,1, —), where —
indicates that gravity has yet to be introduced. Note, the symbol 1 denotes only that the quantity
is “active” for the individual. The symbol does not signify which value, unit, or mathematical
symbol the individual associates with the quantity at that moment. Because a given attribute of
an object can be measured in different ways, expressing gravitational acceleration in feet per
second squared or object-lengths per second per second would map to the same coordinate value.
In this way, the sequence m; = (1,1,1,0,1, —) could represent any number of mathematical
inscriptions whose elements are associated with quantitative referents (e.g., a graph and an
equation), mathematical relationships among the quantities, or quantitative operations among the
quantities. Said differently, elements of M are an equivalence class of mathematical models that
compose quantities in Q. The collection of possible mathematical compositions and expressions
of those compositions that can be mapped to m € M we refer to as the modeling space of m and
indicate as 7. The collection of all possible models she might conceive using the quantities
available to her during the interview would be her modeling space, M .

Constructing Merik’s Modeling Space

Data were collected as part of a larger study of the characteristics of tasks and facilitator
interventions that could elicit specific mathematical modeling competencies among
undergraduate STEM majors. Pursuant to this goal, we conducted a series of think-aloud task-
based interviews. Participants addressed a variety of modeling and applications tasks requiring
participants to make simplifying assumptions about the contextual situation. Tasks included
opportunities to use arithmetic, algebra, calculus, and differential equations. In this analysis, we
present the work of Merik, an engineering student who had completed linear algebra and
calculus 3, because he was especially articulate in describing his mathematical thinking and
regularly exhibited a variety of modeling competencies as he engaged in modeling tasks. One
problem he addressed was the Monkey Problem: A wildlife veterinarian is trying to hit a monkey
in a tree with a tranquilizing dart. The monkey and the veterinarian can change their positions.
Create scenarios where the veterinarian aims the tranquilizing dart to shoot the monkey.

We chose Merik’s work on the Monkey Problem because he introduced many different
inscriptions, quantities, and mathematical representations indicating that it would be possible to
closely examine changes in his mathematical and contextual knowledge about the situation.
Merik interpreted the prompt as an invitation to find a model representing the situation. He was
given unlimited time and was assured that his responses were not being judged for “correctness.”
We provisionally accepted all of his work without actively teaching, leading, or removing
ambiguity (Goldin, 2000). A key aspect of the interview protocol and subsequent analysis was to
assume Merik’s interpretations of his own work differed from our own. Follow-up questions and



interventions were intended to either clarify his thinking or to test any conjectures the
interviewer had about his thinking in the moment. The audio/video recorded interview session
lasted 46 minutes and was subsequently transcribed.

We followed the procedure outlined in Czocher and Hardison (2019, under review), which
had three stages to analysis: (1a) identify and catalog all mathematical representations by
examining the spatial and temporal organization of inscriptions on Merik’s paper (1b) determine
whether the representations or their meanings may have changed, (2) identify quantities Merik
projected onto the Monkey Problem context, and (3) document whether there was sufficient
evidence to infer whether the quantitative situational referent of a given inscription changed
during the interview. We elaborate on (2) and then show how the modeling space construct
enabled (3).

According to our theoretical frame, a quantity is an individual’s conception of a measurable
attribute of an object in a situation. We analyzed the interview and identified situational
attributes to which Merik attended in the Monkey Problem. By situational attributes, we mean
we were able to infer a referent within the Monkey context with a quality that Merik might have
quantified (e.g., the tree’s height). Instances in which Merik mentioned generic attributes—those
for which we were unable to infer situational referents (e.g., distance)—were not considered
situational attributes. Additionally, we searched for evidence that suggested Merik might have
quantified these situational attributes. In particular, we sought evidence of Merik engaging in
mental operations necessary for, or suggestive of, a conceived measurement process for each
situational attribute. Through iterative cycles of analysis, we stabilized a set of 8 criteria that we
took as evidence of quantification during mathematical modeling. Three independent coders
systematically applied those criteria to the video and transcript; disagreements were resolved
through consensus seeking. A quantity was included as a potential quantity for Merik if it met at
least one inclusion criteria (see Table 1). We recorded the times at which we could infer that
situational referents actively served as counterparts to inscriptions and symbols within the

representations (or not).
Table 1 Potential quantities projected onto the Monkey Problem context, chronological order

Quantity Type Time  Description

ANGgr Angle 2:08 Measure of angle gun is aimed relative to the horizontal, for straight path
DISTvermee ~ Length — 2:09 Horizontal distance from vet to the tree/under the monkey.
HTwxy/cun Length  2:10 Height of the monkey relative to the vet’s gun.

VVELpagr-i Rate 2:47 Initial vertical velocity of the dart
ACCDART Rate 3:20 (Vertical) acceleration of dart
HTun/cro 3:35 Height of gun (or vet) relative to ground.

HT1ree/cro Length  4:13 Height of the tree
DISTvermky ~ Length — 4:36 Length of the straight path from the vet’s gun to the monkey.

ANGpar Angle 6:04 Measure of angle gun is aimed relative to the horizontal, for parabolic path
IVELpagr Rate 11:37  Initial linear velocity of the dart.

HTparr Length  15:35  Height of the dart

TIME Time 16:08 Elapsed time

ANGvEr3D Angle 24:38  Measure of the plane angle formed by a designated axis and the line through
the tree & veterinarian in 3-space.
HVELpagra Rate 25.42  Initial horizontal velocity of the dart

In total, we identified 14 potential quantities that Merik cumulatively introduced to structure
the Monkey Problem. Thus Q =({D15Tﬂ, HTwmky, HTcun, DISTver, HTrree HTppgt, },

TREE GUN GRD MKY GRD



{ANGgrg, ANGpar, ANGyer,3p }» , {VVELpaRT, IVELpART, HVELpART, ACCpART }, {TIME})
At interview time T, we represent the active equivalence class within his modeling space via the
tuple Q with appropriate substitutions from S made for each quantity.

Ilustrations

Merik initially imposed a right triangle and considered the angle to fire the dart such that the
hypotenuse would pass through the vet and the monkey. However, after introducing AcCparr,
Merik stated that he was seeking a quadratic equation because “that is the path the bullet is going
to follow.” At this moment, there were no inscriptions resembling a quadratic equation, so we
interpreted his stated goal to produce an equation as indicating an implicit symbolic form
relevant to him. To elicit the form from Merik as well as to gain insight into the situationally
specific meanings Merik might have for it, the interviewer asked, “What variables and
parameters would be present in your equation?”” Merik immediately inscribed f(x) = Ax? +
Bx + C. At this point we were unable to infer that Merik had projected meanings specific to the
task at hand. Moments later, Merik explained, “I know that my A is negative 10,” which
indicated he was attending to gravity based on his earlier activities. As Merik continued, he
indicated that B “would be whatever the initial velocity is, which I don’t have.” Merik went on to
explain, “the image of 30 feet which is, in this particular case, 40 feet.” He also explained that
the “image of 0 is 0.” These specific values were references to Merik’s earlier simplification of
the task wherein he considered a specific scenario: the vet was 30 feet from the tree and the
monkey was 40 feet high. Although Merik substituted 0 for C, we were unable to infer whether
Merik had any situationally specific quantitative referent for C at this point in the interview. For
this portion of the interview (roughly 9:30-11:40), the equivalence class for models he could

lengths angles rates  time
generate was (1,1,0,0,0,0,0,1,—,0,1,—,1, =), which corresponds to his quadratic.

One of Merik’s chief difficulties in constructing a model to his satisfaction lay in the fact that
there were competing meanings attached to the quadratic template (] =[] - (12 + [0 - [ + [.
At times the symbol x represented the horizontal position of the dart (implicitly at a given
moment in time), while at others it implicitly represented time elapsed in the situation. The three
meanings in play were f(x) as predicting vertical position in terms of elapsed time, f(x) as
predicting the vertical position in terms of horizontal position, and f(x) as an alternative
representation of the mathematical object parabola. The shift itself was not consciously realized
by Merik. Indeed, he abandoned the representation at 11:45, as he referred a previously
identified quantity, the angle the veterinarian should fire at ANGppg prompting a new inscription.

Based on the quantities we could infer were active for Merik from 9:30-15:40 The equivalence
lengths angles rates

time

class for models he could generate was: (1,1,0,0,1,1,1,1,—,0,1,—,1, =) He did not resolve the
competing schema until 15:16, when in response to an interviewer prompt to provide explicit
meanings for the symbols Merik realized that plugging in 30 for x and 40 for y (distances) was
not compatible with the parabola which recycled the symbol x for time. Thus, it was not until
after 16 minutes into his work on the problem that Merik referenced time in a way that we could

infer he had projected the quantity onto the situation. The representation for quantities available
lengths angles  rates time)

to Merik for composition became (1,1,0,0,1, =,11,-,01,-11

Due to space constraints, we provide one more example from later in the interview. At this
point, Merik’s stated goal was to find ANGpar and we symbolize the active equivalence class



lengths  angles  rates time

within his modeling space as (1,1,0,0,0,0, 110,01,01 T ) The interviewer intended to direct

Merik’s attention to the angle between the straight-line path and the angle that would produce the
parabolic path, asking “How do you anticipate the two angles will compare?” Merik responded
that ANGpar would be “larger not by a wide margin but I think that because the way that it’s
traveling more like [[draws arc’ed curve between the veterinarian and the monkey]] then you
have to aim up more to increase the angle.” Thus, Merik was able to consider variation in
ANGp,R in relation to ANGgrr. However, this was not sufficient for quantifying the difference
between the two angles, even after the interviewer prompted him to think about finding an angle

measure between two curves and he responded that he could use tangent lines to do so. He
cosf

introduced the signs u and v and the inscriptionu - v = Tallel We lacked observable evidence to
support the claim that 8 corresponded to a situational referent. We suggest that Merik did not (in
that moment) apply his formula because, for him, the angle between u and v was not salient as a
quantity. His reasonable, sensible options for modeling the situation were constrained by the

quantities that he had available. This perspective explains not only why the prompt or his further
mathematical conceptual work did not help him to make progress, but also why it could not help

him — without a quantity, the formula had no situational meaning.

Value and Future Work

Our theoretical and methodological considerations have resulted in an examination of
Merik’s mathematical modeling activity as a process of composition of quantities via
mathematical operations. Our approach separated the acts of quantification from the acts of
introducing variables from the acts of generating inscriptions from the acts of ascribing meaning
to mathematical inscriptions. We found evidence that each of these acts can be carried out
independently or to varying degrees of alignment. These aspects are overlooked when viewing
modeling as translation. The modeling space enables a precise description of this finding. As a
theoretical tool, (1) it predicts at any given moment, a student’s modeling process will be
constrained by the elements in her modeling space at that time and (2) we can trace how the
modeling space expands and supports (or excludes) formation of mathematical relations over
time. The modeling space (at least partially) predicts, and simultaneously constrains, the
mathematical models the student might produce. Ultimately, the research community’s goal is to
articulate opportunities for effective pedagogical intervention. In contrast to the majority of
research in the modeling genre, which tends to be representations-forward, our theoretical and
methodological approach put quantities in the fore. Because the modeling space is focused on
documenting and tracing meanings as well as inscriptions, it may be able to support models of
pedagogy as well. Our analyses offered explanations for two key moments for pedagogical
intervention: one successful intervention (asking the student to be explicit about his meanings for
symbols) and one failed intervention (introducing a strategy based in quantities Merik had not
projected) and the outcomes of the interviewers’ moves are reflected as amendments to the
modeling space. As a representational tool, the modeling space approach affords overviews of an
individual’s work as a time series, could facilitate comparison of individuals’ productions, be
used to evaluate potential task prompts and indicate potential sites for interventions as well as
predict whether those interventions are likely to be taken up by the student. Finally, the
methodology moves the field one step closer to being able to trace changes in a mathematical
model: how they are precipitated, ways they change, and how students respond to interventions.
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