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One of the most challenging aspects of doing research in the mathematical modeling genre has 
been finding an appropriate characterization for the complex interaction of knowledge and 
cognitive acts that result in coordination of situational referents and mathematical inscriptions. 
To this end, we introduce the modeling space and illustrate its descriptive and analytic utility.  
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To date, the most common characterization of modeling is a “translation” from the real world 
to the mathematical world. Typically, the “translation” is envisioned as leveraging a one-to-one 
correspondence between words (or real-world objects) with mathematical counterparts. This 
characterization is not only empirically inaccurate, but consequently impedes progress in 
theorizing the teaching and learning of modeling. First, translation between natural languages is 
typically unbalanced; it is rare that an individual is equally knowledgeable in her first and 
subsequent languages. Second, the characterization is reductionist since “reliance on translation 
cues…is more characteristic of students who possess only algorithmic knowledge of the target 
task and who circumvent the interpretive process of mathematical modeling” (Martin & Bassok, 
2005, p. 479). We do not imply that language translation is trivial work, only that referring to 
mathematization of a real-world situation into a mathematical problem as translation ignores the 
complexity of modeling which has, in turn, limited the field’s ability to systematically 
investigate it as an idiosyncratic activity. Presently, the field lacks a methodologically cogent 
approach to studying modeling that reflects the full range of mathematical or real-world 
meanings individuals might ascribe to a single representation. It also faces an abundance of 
partially explanatory theories focusing on just one aspect of modeling (e.g., translation). The 
field is thus ill-equipped to account for how those meanings shift during the process of modeling 
or to develop means for studying how instructors may impact the process. The broader goal of 
the research project is a theoretically and methodologically coherent way to trace the evolution 
of a student’s mathematical model, including the representations she produces and her meanings 
for these representations. Our contribution is twofold: a theoretical construct robust enough to 
account for students’ idiosyncratic and shifting meanings during mathematical modeling and an 
accompanying descriptive mathematical model capable of tracing the evolving student model. 

Relevant Theoretical Constructs 
To address the larger question of how to document model evolution, we first acknowledge 

that the extant theories of mathematical modeling collectively posit both internal (mental) and 
external (representational) aspects of a mathematical model which must both be accounted for. 
To date, no one theory does so comprehensively. When multiple theories each offer partial 
explanations for a phenomenon, such as model evolution, The Networking Theories Group 
(2014) advocates strategies for coordinating those theories. We adopted the strategies they 
recommended such as combining and coordinating in order to generate “deeper insights into an 
empirical phenomenon” (p. 120). We first focused on the aspects of relevant theories that 
foregrounded conventional mathematical representations (Czocher & Hardison, 2019). However, 
tracing only the evolution of representations was insufficient for capturing the breadth of ways 
that a mathematical model could change could change. We next sought to incorporate the theory 



of quantitative reasoning (Thompson, 2011) by considering the quantities students projected into 
a situation to be modeled and the interplay between quantities and representations (Czocher & 
Hardison, under review).  

Modeling can be seen as a process of unification among a sign, a referent (the object the sign 
stands for), and an interpretant (Kehle & Lester, 2003). In mathematics, a sign can be part of an 
inscription in mathematical notation. In our view, the referent could stand for a real-world object, 
for a quantity, or for another conceptual entity. Then the interpretant can be characterized as the 
mathematical conception of how that quantity relates to other quantities. Sherin's (2001) theory 
of symbolic forms provides one interpretation for how meaning can be read into equations, 
which are composed of signs. A symbolic form consists of a template and a conceptual meaning 
(the idea to be expressed in the equation). For example,  _ + _ = _ expresses a “parts-of-a-whole” 
relationship. The blanks can be filled with a single symbol or a group of symbols representing 
quantities or combinations of quantities (perhaps related via other symbolic forms). Familiarity 
with symbolic forms helps individuals “know” to use certain operators (e.g., + or ×) or 
relationships and to know where to place the symbols of quantities in an equation. Symbolic 
forms are building blocks of equation generation. 

Mathematizing a situationinvolves generating mathematical representations and assigning 
semantic meanings compatible with the modeler’s conception of the situation at hand. That is, 
the modeler must identify relevant quantities and describe how they vary together. Thompson's 
(2011) theory of quantitative reasoning offers relevant insights. First, Thompson takes the strong 
position that quantities are mental constructs, not characteristics of objects in the world. It 
immediately follows that a quantification process is carried out by an individual in order to 
conceive of quantities. Quantification is “the process of conceptualizing an object and an 
attribute of it so that the attribute has a unit of measure, and the attribute’s measure entails a 
proportional relationship (linear, bilinear, or multi-linear) with its unit” (p. 37). One can conceive 
of various instantiations of the object, with each instantiation manifesting different extents of the 
relevant attribute, and coordinate these instantiations with a value. We operationalize 
quantification as the set the of operations an individual can enact on a particular attribute 
(Hardison, 2019). Observing a phenomenon and conceptualizing that there are quantities and that 
they can vary (or may be constant) is foundational to formulating a meaningful mathematical 
model. For example, quantities like distance and velocity may be more readily available for high 
school students than torque, electrical current, or GDP.   

Quantitative reasoning more generally entails conceiving of quantities and relationships 
among quantities. It involves conceiving of relationships among quantities whose values may 
vary independently. These constructs allow modeling to viewed as conceiving and representing 
relationships among the quantities involved. Coordinating quantities and attending to 
relationships among quantities is covariational reasoning  (Carlson, et al., 2002). It involves 
identifying ways to combine quantities through operations and trace their changes, rates of 
changes, and intensities of changes whether they are directly measurable or not (e.g., Johnson, 
2015). Relationships can be identified through observation, a priori reasoning, or through 
knowledge of principles rooted in physical theory. 

When quantities and relationships being modeled are expressed externally in mathematical 
notation, they become the mathematical representation of a physical model. The mathematical 
representation is intended to convey an individual’s mathematical model (mathematical 
concepts, objects, and structures) and the relationships among the constituent inscriptions’ 
situational quantitative referents. In this way, the theory of covariation of quantities elaborates an 



important aspect of how the conceptual counterparts to mathematical models are formalized into 
mathematical representations and expressed in symbolic forms. In the next section, we introduce 
the modeling space, a theoretical construct we use to communicate the quantities present in a 
student’s mathematical model, to document changes in this model over time, and to provide 
some predictive utility for modifications a student might or might not make to her model.   

The Modeling Space: Construct and Representational Tool 
We preface our discussion of the modeling space by noting that we distinguish between the 

quantities an individual projects onto a situation, operations (quantitative or numerical) enacted 
on quantities or their values, and the representations (inscriptions as well as utterances) she uses. 
We refer to the set of mathematical models a student might generate within a given modeling 
task as the modeling space. We intentionally draw an analogy to a Cartesian product space. Each 
quantity corresponds to a dimension of the product space. We view the modeling space as the set 
of mathematical relationships that act via composition on the situationally relevant quantities 
available to the student. In this section we build to a mathematical description of an individual’s 
modeling space. For example, suppose that in the course of addressing a modeling task about a 
falling body under the influence of gravity only, we are able to infer that Janet has introduced the 
quantities initial height above ground, time elapsed, current height above ground, mass of the 
object, and initial velocity. We represent her available quantities, organized by type, as the 
sequence (TIME, HTI, HT, MASS, VI). Her modeling space would be all of the meaningful (to her) 
mathematical combinations of those quantities. For example, one element in the modeling space 
Janet may represent is current height above ground, ℎ = ℎ0 − 𝑣𝑣0 ⋅ 𝑡𝑡 (Eqn 1), where the symbol 
names correspond to experts’ conventions.  

We can formalize the modeling space by structuring it with a descriptive mathematical 
model. Suppose during modeling, a student projects a set of N quantities, 𝑄𝑄 = {𝑞𝑞1, 𝑞𝑞2, … 𝑞𝑞𝑁𝑁} 
onto the referent situation. At interview time 𝜏𝜏, we assign one of three values from the set 𝑆𝑆 =
{−,0,1} to each quantity (– means the potential quantity 𝑞𝑞𝑖𝑖 has not yet been projected by the 
individual, 0 means 𝑞𝑞𝑖𝑖 has been projected by the individual at some 𝑡𝑡 < 𝜏𝜏 but is not referred 
during a time period of analytic interest, 1 means there is evidence that 𝑞𝑞𝑖𝑖 is referred during the 
vignette).  The set 𝑆𝑆 has a natural order −< 0 < 1. We can impose a commutative binary 
operation, the tropical addition defined by 𝑎𝑎 ∗ 𝑏𝑏 = max (𝑎𝑎, 𝑏𝑏). 𝑆𝑆 is then a monoid1 under ∗ with 
identity −. We then form a Cartesian product from the set  𝑆𝑆 over the 𝑁𝑁 dimensions supplied by 
𝑄𝑄:  

𝑀𝑀 = � 𝑆𝑆𝑖𝑖
𝑁𝑁

𝑖𝑖=1
= {−,0,1} × {−,0,1} × ⋯× {−,0,1}���������������������

𝑁𝑁 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 

The product 𝑀𝑀 is again a commutative monoid under the operation +, coordinate-wise addition 
using the operation ∗.  

Elements of 𝑀𝑀, written as (𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑁𝑁) are assigned to a vignette of student work on a 
modeling task according to whether during that vignette each quantity 𝑞𝑞𝑖𝑖 is used during the 
vignette (value 1), has been projected prior to the vignette but is not used during the vignette 
(value 0), or has not yet been projected onto the situation (value −). The individual’s 
mathematical model evolves over time and is captured by changing values of 𝑠𝑠𝑘𝑘 for each 𝑞𝑞𝑘𝑘. 
Thus, we model the start of the interview with M as expressed as (−,−,⋯ ,−) . As quantities are 

                                                 
1 A monoid is a set that is closed under an associative binary operation and contains an identity. It is different 

from a group because its elements lack inverses. 



introduced, the –‘s are replaced with 0′s and 1′s. For example, if 𝑁𝑁 = 4, the notation (−,0,1,1,0) 
would indicate that the individual has available four quantities and is using quantities 𝑞𝑞2 and 𝑞𝑞3, 
but not 𝑞𝑞1 and 𝑞𝑞4. The quantity 𝑞𝑞1 has not yet been projected. At the end of the interview, 𝑀𝑀 is 
expressed as a sequence of 0′𝑠𝑠 and 1′𝑠𝑠. We can use elements of 𝑀𝑀 to represent the accumulated 
modeling space (all quantities we infer a student has projected up to at a given moment during 
the interview) or, by acknowledging that 𝑞𝑞𝑖𝑖 is a function of time and treating elements of M as 
finite states, we could trace change over designated periods of interview time. It is beyond the 
scope of this paper to fully explore the distinctions; instead we wish to exemplify the construct 
and its utility to support further theorizing by treating accumulated quantities. 

Suppose Janet considered gravity, but she has not yet explicitly introduced it as a quantity, 
but does later. We can represent her mathematical model as 𝑚𝑚1 = (1,1,1,0,1,−), where – 
indicates that gravity has yet to be introduced. Note, the symbol 1 denotes only that the quantity 
is “active” for the individual. The symbol does not signify which value, unit, or mathematical 
symbol the individual associates with the quantity at that moment. Because a given attribute of 
an object can be measured in different ways, expressing gravitational acceleration in feet per 
second squared or object-lengths per second per second would map to the same coordinate value. 
In this way, the sequence 𝑚𝑚1 = (1,1,1,0,1,−) could represent any number of mathematical 
inscriptions whose elements are associated with quantitative referents (e.g., a graph and an 
equation), mathematical relationships among the quantities, or quantitative operations among the 
quantities. Said differently, elements of 𝑀𝑀 are an equivalence class of mathematical models that 
compose quantities in 𝑄𝑄. The collection of possible mathematical compositions and expressions 
of those compositions that can be mapped to 𝑚𝑚 ∈ 𝑀𝑀 we refer to as the modeling space of m and 
indicate as 𝑚𝑚� . The collection of all possible models she might conceive using the quantities 
available to her during the interview would be her modeling space, 𝑀𝑀�  .  

Constructing Merik’s Modeling Space 
Data were collected as part of a larger study of the characteristics of tasks and facilitator 

interventions that could elicit specific mathematical modeling competencies among 
undergraduate STEM majors. Pursuant to this goal, we conducted a series of think-aloud task-
based interviews. Participants addressed a variety of modeling and applications tasks requiring 
participants to make simplifying assumptions about the contextual situation. Tasks included 
opportunities to use arithmetic, algebra, calculus, and differential equations. In this analysis, we 
present the work of Merik, an engineering student who had completed linear algebra and 
calculus 3, because he was especially articulate in describing his mathematical thinking and 
regularly exhibited a variety of modeling competencies as he engaged in modeling tasks. One 
problem he addressed was the Monkey Problem: A wildlife veterinarian is trying to hit a monkey 
in a tree with a tranquilizing dart. The monkey and the veterinarian can change their positions. 
Create scenarios where the veterinarian aims the tranquilizing dart to shoot the monkey.  

We chose Merik’s work on the Monkey Problem because he introduced many different 
inscriptions, quantities, and mathematical representations indicating that it would be possible to 
closely examine changes in his mathematical and contextual knowledge about the situation. 
Merik interpreted the prompt as an invitation to find a model representing the situation. He was 
given unlimited time and was assured that his responses were not being judged for “correctness.” 
We provisionally accepted all of his work without actively teaching, leading, or removing 
ambiguity (Goldin, 2000). A key aspect of the interview protocol and subsequent analysis was to 
assume Merik’s interpretations of his own work differed from our own. Follow-up questions and 



interventions were intended to either clarify his thinking or to test any conjectures the 
interviewer had about his thinking in the moment. The audio/video recorded interview session 
lasted 46 minutes and was subsequently transcribed.  

We followed the procedure outlined in Czocher and Hardison (2019, under review), which 
had three stages to analysis: (1a) identify and catalog all mathematical representations by 
examining the spatial and temporal organization of inscriptions on Merik’s paper (1b) determine 
whether the representations or their meanings may have changed, (2) identify quantities Merik 
projected onto the Monkey Problem context, and (3) document whether there was sufficient 
evidence to infer whether the quantitative situational referent of a given inscription changed 
during the interview. We elaborate on (2) and then show how the modeling space construct 
enabled (3). 

According to our theoretical frame, a quantity is an individual’s conception of a measurable 
attribute of an object in a situation. We analyzed the interview and identified situational 
attributes to which Merik attended in the Monkey Problem. By situational attributes, we mean 
we were able to infer a referent within the Monkey context with a quality that Merik might have 
quantified (e.g., the tree’s height). Instances in which Merik mentioned generic attributes—those 
for which we were unable to infer situational referents (e.g., distance)—were not considered 
situational attributes. Additionally, we searched for evidence that suggested Merik might have 
quantified these situational attributes. In particular, we sought evidence of Merik engaging in 
mental operations necessary for, or suggestive of, a conceived measurement process for each 
situational attribute. Through iterative cycles of analysis, we stabilized a set of 8 criteria that we 
took as evidence of quantification during mathematical modeling. Three independent coders 
systematically applied those criteria to the video and transcript; disagreements were resolved 
through consensus seeking. A quantity was included as a potential quantity for Merik if it met at 
least one inclusion criteria (see Table 1). We recorded the times at which we could infer that 
situational referents actively served as counterparts to inscriptions and symbols within the 
representations (or not).  
Table 1 Potential quantities projected onto the Monkey Problem context, chronological order 

Quantity Type Time  Description 
ANGSTR Angle 2:08 Measure of angle gun is aimed relative to the horizontal, for straight path 
DISTVET/TREE  Length 2:09 Horizontal distance from vet to the tree/under the monkey. 
HTMKY/GUN    Length 2:10 Height of the monkey relative to the vet’s gun.   
VVELDART-I Rate 2:47 Initial vertical velocity of the dart 
ACCDART  Rate 3:20 (Vertical) acceleration of dart 
HTGUN/GRD  3:35 Height of gun (or vet) relative to ground.  
HTTREE/GRD   Length 4:13 Height of the tree 
DISTVET/MKY  Length 4:36 Length of the straight path from the vet’s gun to the monkey. 
ANGPAR Angle 6:04 Measure of angle gun is aimed relative to the horizontal, for parabolic path 
IVELDART Rate 11:37 Initial linear velocity of the dart.  
HTDART   Length 15:35 Height of the dart 
TIME Time 16:08 Elapsed  time 
ANGVET/3D Angle 24:38 Measure of the plane angle formed by a designated axis and the line through 

the tree & veterinarian in 3-space. 
HVELDART-I Rate 25.42 Initial horizontal velocity of the dart 

In total, we identified 14 potential quantities that Merik cumulatively introduced to structure 
the Monkey Problem. Thus  𝑄𝑄 =(�DISTVET

TREE
, HTMKY

GUN
, HTGUN

GRD
, DISTVET

MKY
, HTTREE

GRD
 HTDART, �, 



�ANGSTR, ANGPAR, ANGVET,3D�, , �VVELDART,I, IVELDART, HVELDART, ACCDART  �, {TIME} ) 
At interview time 𝜏𝜏, we represent the active equivalence class within his modeling space via the 
tuple Q with appropriate substitutions from S made for each quantity.  

Illustrations 
Merik initially imposed a right triangle and considered the angle to fire the dart such that the 

hypotenuse would pass through the vet and the monkey. However, after introducing ACCDART, 
Merik stated that he was seeking a quadratic equation because “that is the path the bullet is going 
to follow.” At this moment, there were no inscriptions resembling a quadratic equation, so we 
interpreted his stated goal to produce an equation as indicating an implicit symbolic form 
relevant to him. To elicit the form from Merik as well as to gain insight into the situationally 
specific meanings Merik might have for it, the interviewer asked, “What variables and 
parameters would be present in your equation?” Merik immediately inscribed 𝑓𝑓(𝑥𝑥) = 𝐴𝐴𝑥𝑥2 +
𝐵𝐵𝐵𝐵 + 𝐶𝐶. At this point we were unable to infer that Merik had projected meanings specific to the 
task at hand. Moments later, Merik explained, “I know that my A is negative 10,” which 
indicated he was attending to gravity based on his earlier activities. As Merik continued, he 
indicated that B “would be whatever the initial velocity is, which I don’t have.” Merik went on to 
explain, “the image of 30 feet which is, in this particular case, 40 feet.” He also explained that 
the “image of 0 is 0.” These specific values were references to Merik’s earlier simplification of 
the task wherein he considered a specific scenario: the vet was 30 feet from the tree and the 
monkey was 40 feet high. Although Merik substituted 0 for C, we were unable to infer whether 
Merik had any situationally specific quantitative referent for C at this point in the interview.  For 
this portion of the interview (roughly 9:30-11:40), the equivalence class for models he could 

generate was ( 1,1,0,0,0,0�������
lengths

, 0,1,−���
angles

, 0,1,−,1�����
rates

,  − �
time

), which corresponds to his quadratic. 
One of Merik’s chief difficulties in constructing a model to his satisfaction lay in the fact that 

there were competing meanings attached to the quadratic template □ = □ ∙ □2 + □ ∙ □ + □. 
At times the symbol 𝑥𝑥 represented the horizontal position of the dart (implicitly at a given 
moment in time), while at others it implicitly represented time elapsed in the situation. The three 
meanings in play were 𝑓𝑓(𝑥𝑥) as predicting vertical position in terms of elapsed time, 𝑓𝑓(𝑥𝑥) as 
predicting the vertical position in terms of horizontal position, and 𝑓𝑓(𝑥𝑥) as an alternative 
representation of the mathematical object parabola. The shift itself was not consciously realized 
by Merik. Indeed, he abandoned the representation at 11:45, as he referred a previously 
identified quantity, the angle the veterinarian should fire at ANGPAR prompting a new inscription. 
Based on the quantities we could infer were active for Merik from 9:30-15:40  The equivalence 

class for models he could generate was: ( 1,1,0,0,1,1�������
lengths

, 1,1,−���
angles

, 0,1,−,1�����
rates

,  − �
time

) He did not resolve the 
competing schema until 15:16, when in response to an interviewer prompt to provide explicit 
meanings for the symbols Merik realized that plugging in 30 for x and 40 for y (distances) was 
not compatible with the parabola which recycled the symbol x for time. Thus, it was not until 
after 16 minutes into his work on the problem that Merik referenced time in a way that we could 
infer he had projected the quantity onto the situation. The representation for quantities available 

to Merik for composition became �1,1,0,0,1,−�������
lengths

, 1,1,−���
angles

, 0,1,−,1�����
rates

 1 �
time

�.  

Due to space constraints, we provide one more example from later in the interview. At this 
point, Merik’s stated goal was to find ANGPAR and we symbolize the active equivalence class 



within his modeling space as �1,1,0,0,0,0�������
lengths

, 1,1,0�
angles

, 0,1,0,1�����
rates

 1 �
time

�. The interviewer intended to direct 

Merik’s attention to the angle between the straight-line path and the angle that would produce the 
parabolic path, asking “How do you anticipate the two angles will compare?” Merik responded 
that ANGPAR would be “larger not by a wide margin but I think that because the way that it’s 
traveling more like [[draws arc’ed curve between the veterinarian and the monkey]] then you 
have to aim up more to increase the angle.” Thus, Merik was able to consider variation in 
ANGPAR in relation to ANGSTR. However, this was not sufficient for quantifying the difference 
between the two angles, even after the interviewer prompted him to think about finding an angle 
measure between two curves and he responded that he could use tangent lines to do so. He 
introduced the signs 𝑢𝑢 and 𝑣𝑣 and the inscription 𝑢𝑢 ⋅  𝑣𝑣 = cosθ

�𝑢𝑢��𝑣𝑣�
. We lacked observable evidence to 

support the claim that 𝜃𝜃 corresponded to a situational referent. We suggest that Merik did not (in 
that moment) apply his formula because, for him, the angle between 𝑢𝑢 and 𝑣𝑣 was not salient as a 
quantity. His reasonable, sensible options for modeling the situation were constrained by the 
quantities that he had available. This perspective explains not only why the prompt or his further 
mathematical conceptual work did not help him to make progress, but also why it could not help 
him – without a quantity, the formula had no situational meaning. 

Value and Future Work 
Our theoretical and methodological considerations have resulted in an examination of 

Merik’s mathematical modeling activity as a process of composition of quantities via 
mathematical operations. Our approach separated the acts of quantification from the acts of 
introducing variables from the acts of generating inscriptions from the acts of ascribing meaning 
to mathematical inscriptions. We found evidence that each of these acts can be carried out 
independently or to varying degrees of alignment. These aspects are overlooked when viewing 
modeling as translation. The modeling space enables a precise description of this finding. As a 
theoretical tool, (1) it predicts at any given moment, a student’s modeling process will be 
constrained by the elements in her modeling space at that time and (2) we can trace how the 
modeling space expands and supports (or excludes) formation of mathematical relations over 
time. The modeling space (at least partially) predicts, and simultaneously constrains, the 
mathematical models the student might produce. Ultimately, the research community’s goal is to 
articulate opportunities for effective pedagogical intervention. In contrast to the majority of 
research in the modeling genre, which tends to be representations-forward, our theoretical and 
methodological approach put quantities in the fore. Because the modeling space is focused on 
documenting and tracing meanings as well as inscriptions, it may be able to support models of 
pedagogy as well. Our analyses offered explanations for two key moments for pedagogical 
intervention: one successful intervention (asking the student to be explicit about his meanings for 
symbols) and one failed intervention (introducing a strategy based in quantities Merik had not 
projected) and the outcomes of the interviewers’ moves are reflected as amendments to the 
modeling space. As a representational tool, the modeling space approach affords overviews of an 
individual’s work as a time series, could facilitate comparison of individuals’ productions, be 
used to evaluate potential task prompts and indicate potential sites for interventions as well as 
predict whether those interventions are likely to be taken up by the student. Finally, the 
methodology moves the field one step closer to being able to trace changes in a mathematical 
model: how they are precipitated, ways they change, and how students respond to interventions. 
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