CHARACTERIZING EVOLUTION OF MATHEMATICAL MODELS

Jennifer A. Czocher Hamilton Hardison
Texas State University Texas State University
Czocher.1@txstate.edu HHardison@txstate.edu

Formulating a mathematical model is a dynamic process, and attending to changes in students’
models as they engage in modeling tasks is critical for informing pedagogical interventions. In
this report, we coordinate constructs from literature on mathematical modeling, quantitative and
covariational reasoning, and semiotics to characterize changes in mathematical models. We
illustrate the application of these constructs using data from an undergraduate solving a
modeling task.
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Mathematical modeling remains an important skill for K-20 students (Bliss et al., 2016;
CCSSM, 2010), and relatively little is known about how to prepare teachers to interact with a
student-modeling task dynamic. This is partly because the field has yet to bridge task-centered
analyses common to research with teacher-centered “tips” on what to notice in students’ work,
because it is not clear what to direct teachers to focus on as students model. A cognitive view of
modeling (Kaiser, 2017) can be leveraged to provide just such a link. A detailed exploration of
how a mathematical model evolves with an eye toward identifying pivotal moments in students’
reasoning that could be used for teacher education and teacher intervention has yet to be
undertaken. In particular, it would be useful to teachers and teacher educators to know when,
how, and with what level of scaffolding to intervene in a student’s modeling process, since the
best results from teaching with a modeling approach are obtained when students work out their
own solutions (Kaiser, 2017). To make progress in this area, it is first necessary to address the
methodological problem of articulating criteria for determining whether, and the extent to which,
a student’s model has changed. In this methodological paper, we will use micro-analytic
techniques to document the changes that a student introduces to his model and network a set of
theoretical constructs for explaining those changes.

Theoretical Perspectives

The target construct in this exploratory work is model evolution, specifically, revisions that a
student might make to his/her model during mathematical modeling. A priori, there are several
related theories and attendant constructs that might serve to articulate and trace changes to a
model (elaborated below) that offer partial explanations of how individuals’ models evolve. The
Networking Theories Group (2014) proposed strategies like combining, coordinating, integrating
locally, and synthesizing, for conducting parallel analysis of empirical phenomenon. Combining
and coordinating involve generating “deeper insights into an empirical phenomenon” (p. 120).
Integrating and synthesizing involve development of new theory by building on a small number
of already-stable theoretical approaches. Here, we foreground our efforts coordinating theories of
symbolic forms, multiple representations, and quantitative reasoning. We use one
undergraduate’s work on a modeling task to facilitate the theory-building. The end result is a
method for using observable indicators to trace the evolution of a model. We then apply the
method to identify and characterize significant conceptual hurdles experienced by the student,
along semiotic and cognitive (Greca & Moreira, 2001) dimensions.
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The mathematical modelling process is often conceptualized as an iterative cycle. One
approach to studying individuals’ modeling activity is to examine what are termed modeling
competencies (Kaiser, 2017; Maal3, 2006). This approach is cognitive in nature and addresses
how students come to understand a real problem and choose mathematical representations for it
as they work on challenging tasks, which encourage accounting for various constraints. These
competencies are not meant to suggest student abilities, but rather describe phases of modeling
in a way that opens the process to observation and analysis. Phases include formulating a
problem to solve (identifying aspects or characteristics that need to be modeled), systematizing
(selecting relevant entities and relationships, identifying variables, making assumptions, or
estimating parameters), mathematizing (representing entities and relationships in mathematical
notation), analyzing (using mathematical techniques to arrive at mathematical conclusions),
validating (evaluating the model and establishing its scope), and communicating (sharing
conclusions obtained from its use) (Blomhoj & Jensen, 2003; Blum & Leif3, 2007). Student
decisions made during each phase contribute to the dynamic evolution of the model. The
systematizing and mathematizing phases can be viewed as model construction whereas
validating and verifying can be viewed as a reflective monitoring process (Czocher, 2018).
Empirically, the phases do not proceed linearly (Czocher, 2016) and the process draws on a
complex interplay of mathematical, nonmathematical, and perhaps even scholastic knowledge
(Stillman, 2000). Throughout these phases, the model can be refined, modified, or entirely
rejected (and replaced) as it evolves to meet the modeler’s problem-solving needs. In the next
sections, we lay out additional relevant theories that offer insight into ways models could change.

Greca and Moreira (2001) argued that comprehension of a topic in physics is tantamount to
being able to predict phenomena without needing to reference mathematical formalism. They
distinguish among physical models, mathematical models, and mental models, while also
maintaining that an integration of all three is necessary for building understanding. In their
elaboration, “a physical theory is a representational system in which two sets of signs coexist: the
mathematical signs and the linguistic ones” (p. 107). Physical theories are not direct
presentations of observations of phenomena or objects; instead, statements of physical theories
are about simplified and idealized physical systems, which they term physical models. The role
of mathematics, then, is to formalize the theory as statements without semantic content. They
characterize the mathematical model as a “deductively articulated axiomatic system, which can
express the statements of the theory in terms of equations” (p. 108), but also acknowledge that
the term may also extend to the mathematical theory the syntactic structure is derived from.
Mental models, then, are internal and idiosyncratic representations of phenomena, which contrast
physical and mathematical models which are socially mediated. Finally, they posit “families” of
distinct mental models that serve as explanations for phenomena. For example, explaining a
physical phenomenon like motion as interactions of forces rather than as a consequence of a
linear, causal agent. Greca and Moreira's (2001) demarcation and explanation of interaction
among mental, physical, and mathematical models is compatible with a competency view of
mathematical modeling, even extending from physics education to modeling other phenomena of
interest. We note some changes in vocabulary. We use mathematical representation to refer to an
outward expression of an individual’s mathematical model (Greca and Moreira's "mathematical
model"). Mathematical model refers to the attendant conceptual system. Empirically, only the
mathematical representations are observable, though changes in these may indicate shifts in
students’ perceptions of the relevant mathematical or physical concepts.
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We take two further positions from mathematics education. First, we hold that mathematical
models can be expressed in other conventional forms, besides equations (e.g., tables, graphs,
words, etc. (Hitt & S., 2014)). Second, the modeling cycles that are common descriptions of
students’ mathematical modeling activity tend to conceptualize the modeling process as deriving
mathematical expressions and variables from the physical problem. In contrast, Greca and
Moreira (2001)asserted that variables in equations have meanings only after the they are
interpreted through a physical model. From our own experience, we suggest that there may not
be a general rule regarding whether the mathematical model or the physical model come first
when addressing the kinds of modeling problems that are found in educational research.
However, the point is tangent to two other useful theories: Sherin's (2001) elaboration of how
individuals use mathematical models as templates to adapt to the problem at hand and
Thompson's (2011) theory of quantitative reasoning.

A priori, mathematizing a situation would involve generating mathematical models and
assigning semantic meanings drawn from physical models of physical theories. Identifying
quantities and describing how they vary is just such a link. Thompson's (2011) theory of
quantitative reasoning offers relevant insights. First, Thompson asserts that quantities are mental
constructs, not characteristics of objects in the world. It immediately follows that a quantification
process is carried out by an individual in order to conceive of quantities and that the process is
non-trivial. Quantification is taken to mean “the process of conceptualizing an object and an
attribute of it so that the attribute has a unit of measure, and the attribute’s measure entails a
proportional relationship (linear, bilinear, or multi-linear) with its unit” (p. 37). One can then also
imagine an object, an attribute, and a measure in such a way that the value of the measure takes
on different values at different moments. Observing a phenomenon and conceptualizing that
there are quantities and that they can vary (or may be constant) is foundational to formulating
physical models and articulating physical theories. These mental acts may become quite familiar
or nearly automatic if one has much experience in the context. For example, quantities like
distance and velocity may be more readily available for high school students than torque,
electrical current, or GDP.

Quantitative reasoning entails conceiving of quantities and relationships among
quantities. Thus, deriving a mathematical model entails quantitative reasoning. However,
conceiving of covarying quantities is a non-trivial mental act. Thompson (2011) explains that
covariational reasoning involves conceiving of invariant relationships among quantities whose
values may vary independently. The difficulty lies in imagining how a situation can change, the
quantities conceived from it can change, but that a relationship among them stays the same. In
deterministic language, mathematical modeling entails discovering the invariant relationships
that govern the quantities involved. Coordinating quantities and attending to relationships among
quantities, variant or invariant, is covariational reasoning (Carlson, et al., 2002). It involves
identifying ways to combine quantities through operations and trace their changes, rates of
changes, and intensities of changes whether they are directly measurable or not (e.g., Johnson,
2015). Relationships can be identified through observation, a priori reasoning, or through
knowledge of principles rooted in physical theory. When these relationships are expressed
externally in mathematical notation, they become the mathematical representation of a physical
model. The mathematical representation brings with it the relevant mathematical model
(mathematical concepts, objects, and structures) and the physical meanings of its constituents
(attributes, measurements, quantities). Thus, the theory of covariation in conjunction with theory
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of quantification elaborates an important aspect of how physical models are formalized into
mathematical models.

At its core, a mathematical model presents a system of signs used to stand in for a physical
system. Naturally, a theory of modeling should attend to semiotic processes that imbue meaning
to the signs and to how (perhaps multiple) systems of signs are coordinated. Following Kehle
and Lester's (2003) application of Piercian semiotics to mathematical modeling, we view as a
process of unification among a sign, a referent (the object the sign stands for), and an
interpretant. The interpretant has a dual role; it is the individual’s reaction to the sign and object
and simultaneously defines the sign/object pairing through the individual’s reaction. Generally,
interpretants can be actions, emotions, thoughts, or ideas. An interpretant is the fundamental unit
of inference between an object and a sign and it is subjective and idiosyncratic.

Sherin's (2001) theory of symbolic forms, which explains how meaning is read from
equations, can be construed an extended example of semiosis. A symbolic form consists of a
template and a conceptual schema (the idea to be expressed in the equation). For example, +
= _expresses a “parts-of-a-whole” relationship. The blanks can be filled with a single symbol or
a group of symbols representing quantities or combinations of quantities (perhaps related via
other symbolic forms). Familiarity with symbolic forms helps individuals “know” to use certain
operators (e.g., + or X) and to know where to place the symbols of quantities in an equation.
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Figure 1 Networking of major theoretical constructs (rectangles), components (circles), and
mental processes (arrows) to hypothesize sites for change in how physical meaning is projected
onto mathematical symbols.

These theories operate at different grain sizes, were developed among different populations, and
have different scopes. They are also asymmetrical in terms robustness. However, each layer of

theory suggests a dimension of evolution and offers nuance to describe changes in a model at
varying grain sizes. The networked theories are shown in Figure 1.We suggest that attending to
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the aforementioned constructs may produce a more comprehensive and nuanced account of how
a student’s mathematical model evolves.

Methods

To illustrate the coordination of constructs outlined above, we draw on data generated from a
larger project examining instances of students’ validating activity as they solved modeling,
application, and word problems. Participants ranged from 6™ grade to undergraduates. Here, we
focus on Merik, an engineering major who had completed Calculus III (vectors) at a large
southern university, and his work on The Monkey Problem. Merik’s work was purposefully
selected to explore the plausibility of the networked theory and articulate criteria for identifying
changes in a model because (a) he was exceptionally verbal, (b) he often explained his own
reasoning without prompting, and (c) he used multiple approaches to solve the problem.

The Monkey Problem: A wildlife veterinarian is trying to hit a monkey on the tree with a
tranquillizing dart. The monkey and the veterinarian can change their positions. Create
scenarios where the veterinarian aims the tranquilizing dart to shoot the monkey. (And later:
create models to represent the situation).

The networked theory predicts that evolution of Merik’s model might proceed along external
(symbolic) or internal (meaning-making) dimensions. Thus we conducted three parallel analyses
that could highlight opportunities to observe the representation or its meaning changing. The first
coded Merik’s work according to a modeling competencies framework (Blum & Leif3, 2007;
Czocher, 2016) to document the phases of modeling, specifically validating activity since it is
hypothesized to precipitate changes to the model. The second documented the various
representations Merik used to capture and express his reasoning mathematically. The third
sought evidence of shifts in meanings of the representations.

To analyze representations, we acknowledged that “what we ultimately observe are the
external components (representations), but these cannot be disengaged from the conceptual
systems” (Lesh & Doerr, 2003, p. 213). We introduce the term inscription to mean writing
without implying anything about the inscription serving as a sign. We use the term
representation to imply that the inscription serves as a sign for Merik. These theoretical
commitments necessitated that methodologically we search for overt changes to inscriptions as
indicators of changes to the model and separately search for evidence of changes to the
cognitively-generated meanings for those inscriptions. To trace changes to representations, we
first documented changes to inscriptions by attending to their spatial and temporal organization
on Merik’s paper. In the first case, we judged his model to have changed if either (1) the system
of signs comprising by the representation changed (i.e., the type of representation changed,
introducing a symbolic equation after working with a graph) or (2) a new inscription was created
in a different location on the page. Each new mathematical representation was called a parent.
We judged Merik’s model to have changed through considering whether Merik’s attention
switched to another parent and whether there were substantive changes to the parent. To identify
substantive changes, we considered (a) whether there was evidence to infer that information or
meaning was distributed to the representation or removed from it, (b) whether Merik modified an
inscription, or (¢) whether Merik modified an inscription in a way suggestive of transporting
meaning to or from another parent. We considered these alterations to a parent representation as
a child. Children amending the same parent were called siblings. We recorded the first time an
inscription was introduced and briefly annotated the nature of the change.

For example, Merik’s first inscription appeared at time 0:51 (Figure 2). We labeled his tree
representation as Parent 1 and this first version as Child 1A. At time 2:10, Merik added



MODEL EVOLUTION 6

inscriptions x, 8, y producing Child 1B. Merik’s talk indicated that these symbols were signs
standing for the quantities distance between veterinarian to the tree, distance from monkey to the
ground, and angle formed by the veterinarian aiming his dart gun at the monkey, respectively.
His talk about 1A yielded evidence of both an implicit physical theory (kinematics) and an
implicit mathematical model (right triangle geometry). The modification of the inscription from
1A to 1B signals introduction of quantities. At 2:38, Merik inscribed a new parent (#2), capturing
his ideas that the dart, due to gravity, would not travel along a linear path but rather a parabolic
one. The change, combined with his talk, and in addition to introducing gravity explicitly as a
quantity, indicated that his mental model and physical model had shifted, necessitating a new
mathematical model and mathematical representation. The symbolic form used in Representation
2A was - . It combined velocity and gravity. Notably absent are an explicit reference to time
as a variable (though implicitly it was present in his talk as a quantity) and dimensional analysis.
At time 4:25, Merik returned to Representation 1C, substituting in specific numbers for x, y, and
h (with & standing for “hypotenuse”). We infer these symbols were parameters for Merik that
could be fixed momentarily and changed from scenario to scenario.

Figure 2 Merik's representations. Clockwise from top left: Representations 1A, 1B, 1C, 2A.

To help us visualize the evolution of Merik’s representations, we plotted the parent and child
representations over time by recording each time it could be inferred that Merik’s attention was
on a given sibling (Figure 3). The parent and sibling tracking system allowed us to resolve
methodological issues distinguishing representations and models from one another. We next
sought shifts in mental, physical, and mathematical models, and quantitative reasoning.

Results

Seventy-four total explicit switches in attention and modifications were identified belonging
to 11 distinct parent representations (comprising 22 temporally distinct siblings). The
introduction of new parent representations signaled either that Merik was refining existing ways
of thinking or to introducing new approaches (see Figure 3 for evolution over time). Of the 31
instances of validating identified using techniques from Czocher (2016), only 10 co-occurred
with a shift in (any aspect of) the model, suggesting that most adjustments were not
consequences of validating. We share three examples of model evolution in detail.
One. At time 9:45, Merik introduced Representation 4A: f(x) = Ax? + Bx + C, a standard
form quadratic equation because he asserted that it would trace the motion of the dart. At his
time, he had already introduced x as distance between the veterinarian and the base of the tree
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holding the monkey. However, he treated the equation as a symbolic form combining quantities
for initial position (C) and gravity (4), evidenced by his substitutions (representation was “=

—10x2 + Bx + 0”). He set f(x) = 0 and solved for B obtaining B = % and finally

representation 4C, f(x) = 93—4x — 10x?2. His attention shifted back to Representation 1 and he

created 1D by inscribing a parabolic arc to connect the veterinarian and the monkey, leaving the
hypotenuse of the triangle in place. Throughout this excerpt we infer that Merik was attempting
to describe a spatial parabola, yet the substitutions in his symbolic form suggested a temporal
component he did not explicitly attend to. By this we mean that his physical model included a
trace of the path of the dart which can be described as a parabola. However, his mental model,
which helped him to interpret the meaning of the symbolic form included a temporal component
to which he did not explicitly attend. Thus, from our perspective, the meanings ascribed to the
representations did not align; however, Merik initially indicated no misalignment due to his
certainty that the situation could be represented with a quadratic form. It was not until 15:34 that
Merik acknowledged that time would play a role in the quadratic equation, noting that “So yeah,
um, x would be time, which means I couldn’t use, yeah plugging in these [gestures to x=30 and
y=40 in representation 1C] did nothing cause this equation is based on time.” This analysis
foregrounds the importance of explicit quantitative referents for variables when symbolic forms

are used to generate mathematical models and that covariational reasoning was largely absent.
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Figure 3 Evolution of Merik's representations
Two. At 16:45, Merik introduced an analogical problem situation. He described trying to swim
across a river with a current. He explained that the situation “applies the same with gravity
because of the flow of the river going this way is just your rate of gravity working downwards,
but your motion is that way.” Introduction of a sketch of the river (Figure 4) is indicative of
abductive reasoning (a type of semiotic inference). The shift leverages a different physical model
to support his mental model of how the motion of the dart could be modeled, but still using
kinematics as a physical theory.
Three. At 27:18, Merik summarized a difficulty that had emerged in treating the path of the dart
as a parabola: he could not use right-triangle trigonometry to determine the launch angle. He
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acknowledged that it shouldn’t matter that the path was curved. The interviewer intervened with
the intention of suggesting an additional mathematical model: angle between tangent vectors.
She asked “Can you think of a way that you might be able to find an angle measure between two
curves? Have you ever studied anything like that?”” She asked him to draw to curves in an xy-
plane. He said, “I guess a straight line can be a curve,” and produced representation 3E (Figure
4). Merik realized, from a mathematical representation that did not overtly have meaning
connected to the monkey problem that he could use tangent lines to curves (via derivatives) to
find the angle subtended by the two curves in question. He concluded, “that’s the direction...at
that exact instant which means that’s where it’s aimed. So if you do it from the point that leaves
the barrel that’s the way...”. Later, at 29:30, he introduced representation 9A, a version of the
law of cosines, to express 6. He also confirmed that 8 would be a function of x, progressively
attaching more information (in the forms of quantities, relations, and dependencies) to his
representation. This analysis demonstrates that a shift in mathematical model co-occurred with a
static physical theory (kinematics) and static mental model (projectile follows an arc).

Our analysis exemplifies the complexity and richness of mathematical modeling when
accounting for the attendant cognitive acts. We have networked theories to hypothesize and then
demonstrated empirically several dimensions along which a model can change, including the
adding or taking away from the inscriptions themselves, shifting attention among
representations, introducing or removing quantities (attributes and how they are measured),
semiotic processes (ascribing or shifting meaning of an inscription), mathematical models
(including concepts, objects, operations, or procedures), physical models, and mental models.
Thus, we demonstrated the plausibility of integrating the networked theory to explain the
evolution of a mathematical model by tying together theories of modeling, quantitative
reasoning, covariational reasoning, and semiotics.

Shifts in the ever-evolving model are important to identify because they co-occur with the
critical competencies of mathematical modeling and are junctures where new ideas can be
introduced and developed. We hold that sensemaking and monitoring are ongoing throughout
mathematical modeling, noting that tracing representations is only partially predictive of shifts in
the model. It will be important to also trace shifts evident in the students’ speech that do not co-
occur with changes in inscriptions. Though the Monkey Problem did not call for it (Merik
worked solely within kinematics), we can easily imagine student-task interactions where a shift
in physical theory is called for. We further identified at least two sites for facilitator intervention:
one that was used successfully (supporting Merik in finding a mathematical model that would
allow him to completely determine an angle) and one that was missed by the interviewer (the
mis-alignment between a spatial and temporal parabola). Finally, we posit that the richness of
structures is created and maintained through quantitative reasoning. We recommend that future
research explore a parallel analysis that would trace quantification as the evolutionary thread
rather than representations.
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