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Formulating a mathematical model is a dynamic process, and attending to changes in students’ 
models as they engage in modeling tasks is critical for informing pedagogical interventions. In 
this report, we coordinate constructs from literature on mathematical modeling, quantitative and 
covariational reasoning, and semiotics to characterize changes in mathematical models. We 
illustrate the application of these constructs using data from an undergraduate solving a 
modeling task.   
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Mathematical modeling remains an important skill for K–20 students (Bliss et al., 2016; 
CCSSM, 2010), and relatively little is known about how to prepare teachers to interact with a 
student-modeling task dynamic. This is partly because the field has yet to bridge task-centered 
analyses common to research with teacher-centered “tips” on what to notice in students’ work,  
because it is not clear what to direct teachers to focus on as students model. A cognitive view of 
modeling (Kaiser, 2017) can be leveraged to provide just such a link. A detailed exploration of 
how a mathematical model evolves with an eye toward identifying pivotal moments in students’ 
reasoning that could be used for teacher education and teacher intervention has yet to be 
undertaken. In particular, it would be useful to teachers and teacher educators to know when, 
how, and with what level of scaffolding to intervene in a student’s modeling process, since the 
best results from teaching with a modeling approach are obtained when students work out their 
own solutions (Kaiser, 2017). To make progress in this area, it is first necessary to address the 
methodological problem of articulating criteria for determining whether, and the extent to which, 
a student’s model has changed. In this methodological paper, we will use micro-analytic 
techniques to document the changes that a student introduces to his model and network a set of 
theoretical constructs for explaining those changes. 

Theoretical Perspectives 
The target construct in this exploratory work is model evolution, specifically, revisions that a 

student might make to his/her model during mathematical modeling. A priori, there are several 
related theories and attendant constructs that might serve to articulate and trace changes to a 
model (elaborated below) that offer partial explanations of how individuals’ models evolve. The 
Networking Theories Group (2014) proposed strategies like combining, coordinating, integrating 
locally, and synthesizing, for conducting parallel analysis of empirical phenomenon.  Combining 
and coordinating involve generating “deeper insights into an empirical phenomenon” (p. 120). 
Integrating and synthesizing involve development of new theory by building on a small number 
of already-stable theoretical approaches. Here, we foreground our efforts coordinating theories of 
symbolic forms, multiple representations, and quantitative reasoning. We use one 
undergraduate’s work on a modeling task to facilitate the theory-building. The end result is a 
method for using observable indicators to trace the evolution of a model. We then apply the 
method to identify and characterize  significant conceptual hurdles experienced by the student, 
along semiotic and cognitive (Greca & Moreira, 2001) dimensions. 
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The mathematical modelling process is often conceptualized as an iterative cycle. One 
approach to studying individuals’ modeling activity is to examine what are termed modeling 
competencies (Kaiser, 2017; Maaß, 2006). This approach is cognitive in nature and addresses 
how students come to understand a real problem and choose mathematical representations for it 
as they work on challenging tasks, which encourage accounting for various constraints. These 
competencies are not meant to suggest student abilities, but rather describe phases of modeling 
in a way that opens the process to observation and analysis. Phases include formulating a 
problem to solve (identifying aspects or characteristics that need to be modeled), systematizing 
(selecting relevant entities and relationships, identifying variables, making assumptions, or 
estimating parameters), mathematizing (representing entities and relationships in mathematical 
notation), analyzing (using mathematical techniques to arrive at mathematical conclusions), 
validating (evaluating the model and establishing its scope), and communicating (sharing 
conclusions obtained from its use) (Blomhöj & Jensen, 2003; Blum & Leiß, 2007). Student 
decisions made during each phase contribute to the dynamic evolution of the model. The 
systematizing and mathematizing phases can be viewed as model construction whereas 
validating and verifying can be viewed as a reflective monitoring process (Czocher, 2018). 
Empirically, the phases do not proceed linearly (Czocher, 2016) and the process draws on a 
complex interplay of mathematical, nonmathematical, and perhaps even scholastic knowledge 
(Stillman, 2000). Throughout these phases, the model can be refined, modified, or entirely 
rejected (and replaced) as it evolves to meet the modeler’s problem-solving needs.  In the next 
sections, we lay out additional relevant theories that offer insight into ways models could change. 

Greca and Moreira (2001) argued that comprehension of a topic in physics is tantamount to 
being able to predict phenomena without needing to reference mathematical formalism. They 
distinguish among physical models, mathematical models, and mental models, while also 
maintaining that an integration of all three is necessary for building understanding. In their 
elaboration, “a physical theory is a representational system in which two sets of signs coexist: the 
mathematical signs and the linguistic ones” (p. 107). Physical theories are not direct 
presentations of observations of phenomena or objects; instead, statements of physical theories 
are about simplified and idealized physical systems, which they term physical models. The role 
of mathematics, then, is to formalize the theory as statements without semantic content. They 
characterize the mathematical model as a “deductively articulated axiomatic system, which can 
express the statements of the theory in terms of equations” (p. 108), but also acknowledge that 
the term may also extend to the mathematical theory the syntactic structure is derived from. 
Mental models, then, are internal and idiosyncratic representations of phenomena, which contrast 
physical and mathematical models which are socially mediated. Finally, they posit “families” of 
distinct mental models that serve as explanations for phenomena. For example, explaining a 
physical phenomenon like motion as interactions of forces rather than as a consequence of a 
linear, causal agent.  Greca and Moreira's (2001) demarcation and explanation of interaction 
among mental, physical, and mathematical models is compatible with a competency view of 
mathematical modeling, even extending from physics education to modeling other phenomena of 
interest. We note some changes in vocabulary. We use mathematical representation to refer to an 
outward expression  of an individual’s mathematical model (Greca and Moreira's "mathematical 
model"). Mathematical model refers to the attendant conceptual system. Empirically, only the 
mathematical representations are observable, though changes in these may indicate shifts in 
students’ perceptions of the relevant mathematical or physical concepts. 
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We take two further positions from mathematics education. First, we hold that mathematical 
models can be expressed in other conventional forms, besides equations (e.g., tables, graphs, 
words, etc. (Hitt & S., 2014)). Second, the modeling cycles that are common descriptions of 
students’ mathematical modeling activity tend to conceptualize the modeling process as deriving 
mathematical expressions and variables from the physical problem.  In contrast, Greca and 
Moreira (2001)asserted that variables in equations have meanings only after the they are 
interpreted through a physical model. From our own experience, we suggest that there may not 
be a general rule regarding whether the mathematical model or the physical model come first 
when addressing the kinds of modeling problems that are found in educational research. 
However, the point is tangent to two other useful theories: Sherin's (2001) elaboration of how 
individuals use mathematical models as templates to adapt to the problem at hand and 
Thompson's (2011) theory of quantitative reasoning. 

A priori, mathematizing a situation would involve generating mathematical models and 
assigning semantic meanings drawn from physical models of physical theories. Identifying 
quantities and describing how they vary is just such a link. Thompson's (2011) theory of 
quantitative reasoning offers relevant insights. First, Thompson asserts that quantities are mental 
constructs, not characteristics of objects in the world. It immediately follows that a quantification 
process is carried out by an individual in order to conceive of quantities and that the process is 
non-trivial. Quantification is taken to mean “the process of conceptualizing an object and an 
attribute of it so that the attribute has a unit of measure, and the attribute’s measure entails a 
proportional relationship (linear, bilinear, or multi-linear) with its unit” (p. 37). One can then also 
imagine an object, an attribute, and a measure in such a way that the value of the measure takes 
on different values at different moments. Observing a phenomenon and conceptualizing that 
there are quantities and that they can vary (or may be constant) is foundational to formulating 
physical models and articulating physical theories. These mental acts may become quite familiar 
or nearly automatic if one has much experience in the context. For example, quantities like 
distance and velocity may be more readily available for high school students than torque, 
electrical current, or GDP. 

 Quantitative reasoning entails conceiving of quantities and relationships among 
quantities. Thus, deriving a mathematical model entails quantitative reasoning. However, 
conceiving of covarying quantities is a non-trivial mental act. Thompson (2011) explains that 
covariational reasoning involves conceiving of invariant relationships among quantities whose 
values may vary independently. The difficulty lies in imagining how a situation can change, the 
quantities conceived from it can change, but that a relationship among them stays the same. In 
deterministic language, mathematical modeling entails discovering the invariant relationships 
that govern the quantities involved. Coordinating quantities and attending to relationships among 
quantities, variant or invariant, is covariational reasoning (Carlson, et al., 2002). It involves 
identifying ways to combine quantities through operations and trace their changes, rates of 
changes, and intensities of changes whether they are directly measurable or not (e.g., Johnson, 
2015). Relationships can be identified through observation, a priori reasoning, or through 
knowledge of principles rooted in physical theory. When these relationships are expressed 
externally in mathematical notation, they become the mathematical representation of a physical 
model. The mathematical representation brings with it the relevant mathematical model 
(mathematical concepts, objects, and structures) and the physical meanings of its constituents 
(attributes, measurements, quantities). Thus, the theory of covariation in conjunction with theory 
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of quantification elaborates an important aspect of how physical models are formalized into 
mathematical models. 

At its core, a mathematical model presents a system of signs used to stand in for a physical 
system. Naturally, a theory of modeling should attend to semiotic processes that imbue meaning 
to the signs and to how (perhaps multiple) systems of signs are coordinated. Following Kehle 
and Lester's (2003) application of Piercian semiotics to mathematical modeling, we view as a 
process of unification among a sign, a referent (the object the sign stands for), and an 
interpretant. The interpretant has a dual role; it is the individual’s reaction to the sign and object 
and simultaneously defines the sign/object pairing through the individual’s reaction. Generally, 
interpretants can be actions, emotions, thoughts, or ideas. An interpretant is the fundamental unit 
of inference between an object and a sign and it is subjective and idiosyncratic. 

Sherin's (2001) theory of symbolic forms, which explains how meaning is read from 
equations, can be construed an extended example of semiosis. A symbolic form consists of a 
template and a conceptual schema (the idea to be expressed in the equation). For example,  _ + _ 
= _ expresses a “parts-of-a-whole” relationship. The blanks can be filled with a single symbol or 
a group of symbols representing quantities or combinations of quantities (perhaps related via 
other symbolic forms). Familiarity with symbolic forms helps individuals “know” to use certain 
operators (e.g., + or ×) and to know where to place the symbols of quantities in an equation.  

These theories operate at different grain sizes, were developed among different populations, and 
have different scopes. They are also asymmetrical in terms robustness. However, each layer of 
theory suggests a dimension of evolution and offers nuance to describe changes in a model at 
varying grain sizes.  The networked theories are shown in Figure 1.We suggest that attending to 

Figure 1 Networking of major theoretical constructs (rectangles), components (circles), and 
mental processes (arrows) to hypothesize sites for change in how physical meaning is projected 

onto mathematical symbols.  
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the aforementioned constructs may produce a more comprehensive and nuanced account of how 
a student’s mathematical model evolves. 

Methods 
To illustrate the coordination of constructs outlined above, we draw on data generated from a 

larger project examining instances of students’ validating activity as they solved modeling, 
application, and word problems. Participants ranged from 6th grade to undergraduates. Here, we 
focus on Merik, an engineering major who had completed Calculus III (vectors) at a large 
southern university, and his work on The Monkey Problem. Merik’s work was purposefully 
selected to explore the plausibility of the networked theory and articulate criteria for identifying 
changes in a model because (a) he was exceptionally verbal, (b) he often explained his own 
reasoning without prompting, and (c) he used multiple approaches to solve the problem.  
The Monkey Problem: A wildlife veterinarian is trying to hit a monkey on the tree with a 
tranquillizing dart. The monkey and the veterinarian can change their positions. Create 
scenarios where the veterinarian aims the tranquilizing dart to shoot the monkey. (And later: 
create models to represent the situation). 

The networked theory predicts that evolution of Merik’s model might proceed along external 
(symbolic) or internal (meaning-making) dimensions. Thus we conducted three parallel analyses 
that could highlight opportunities to observe the representation or its meaning changing. The first 
coded Merik’s work according to a modeling competencies framework (Blum & Leiß, 2007; 
Czocher, 2016) to document the phases of modeling, specifically validating activity since it is 
hypothesized to precipitate changes to the model. The second documented the various 
representations Merik used to capture and express his reasoning mathematically. The third 
sought evidence of shifts in meanings of the representations. 

To analyze representations, we acknowledged that “what we ultimately observe are the 
external components (representations), but these cannot be disengaged from the conceptual 
systems” (Lesh & Doerr, 2003, p. 213). We introduce the term inscription to mean writing 
without implying anything about the inscription serving as a sign. We use the term 
representation to imply that the inscription serves as a sign for Merik. These theoretical 
commitments necessitated that methodologically we search for overt changes to inscriptions as 
indicators of changes to the model and separately search for evidence of changes to the 
cognitively-generated meanings for those inscriptions. To trace changes to representations, we 
first documented changes to inscriptions by attending to their spatial and temporal organization 
on Merik’s paper.   In the first case, we judged his model to have changed if either (1) the system 
of signs comprising by the representation changed (i.e., the type of representation changed, 
introducing a symbolic equation after working with a graph) or (2) a new inscription was created 
in a different location on the page. Each new mathematical representation was called a parent.  
We judged Merik’s model to have changed through considering whether Merik’s attention 
switched to another parent and whether there were substantive changes to the parent. To identify 
substantive changes, we considered (a) whether there was evidence to infer that information or 
meaning was distributed to the representation or removed from it, (b) whether Merik modified an 
inscription, or (c) whether Merik modified an inscription in a way suggestive of transporting 
meaning to or from another parent. We considered these alterations to a parent representation as 
a child. Children amending the same parent were called siblings. We recorded the first time an 
inscription was introduced and briefly annotated the nature of the change.  

For example, Merik’s first inscription appeared at time 0:51 (Figure 2). We labeled his tree 
representation as Parent 1 and this first version as Child 1A. At time 2:10, Merik added 
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inscriptions 𝑥𝑥,𝜃𝜃,𝑦𝑦 producing Child 1B. Merik’s talk indicated that these symbols were signs 
standing for the quantities distance between veterinarian to the tree, distance from monkey to the 
ground, and angle formed by the veterinarian aiming his dart gun at the monkey, respectively. 
His talk about 1A yielded evidence of both an implicit physical theory (kinematics) and an 
implicit mathematical model (right triangle geometry). The modification of the inscription from 
1A to 1B signals introduction of quantities. At 2:38, Merik inscribed a new parent (#2), capturing 
his ideas that the dart, due to gravity, would not travel along a linear path but rather a parabolic 
one. The change, combined with his talk, and in addition to introducing gravity explicitly as a 
quantity, indicated that his mental model and physical model had shifted, necessitating a new 
mathematical model and mathematical representation. The symbolic form used in Representation 
2A was _ - _ . It combined velocity and gravity. Notably absent are an explicit reference to time 
as a variable (though implicitly it was present in his talk as a quantity) and dimensional analysis. 
At time 4:25, Merik returned to Representation 1C, substituting in specific numbers for x, y, and 
h (with h standing for “hypotenuse”). We infer these symbols were parameters for Merik that 
could be fixed momentarily and changed from scenario to scenario.   

 
 

  
Figure 2 Merik's representations. Clockwise from top left: Representations 1A, 1B, 1C, 2A. 

To help us visualize the evolution of Merik’s representations, we plotted the parent and child 
representations over time by recording each time it could be inferred that Merik’s attention was 
on a given sibling (Figure 3). The parent and sibling tracking system allowed us to resolve 
methodological issues distinguishing representations and models from one another. We next 
sought shifts in mental, physical, and mathematical models, and quantitative reasoning. 

Results 
Seventy-four total explicit switches in attention and modifications were identified belonging 

to 11 distinct parent representations (comprising 22 temporally distinct siblings). The 
introduction of new parent representations signaled either that Merik was refining existing ways 
of thinking or to introducing new approaches (see Figure 3 for evolution over time). Of the 31 
instances of validating identified using techniques from Czocher (2016), only 10 co-occurred 
with a shift in (any aspect of) the model, suggesting that most adjustments were not 
consequences of validating. We share three examples of model evolution in detail. 
One. At time 9:45, Merik introduced Representation 4A: 𝑓𝑓(𝑥𝑥) = 𝐴𝐴𝑥𝑥2 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶, a standard 
form quadratic equation because he asserted that it would trace the motion of the dart. At his 
time, he had already introduced 𝑥𝑥 as distance between the veterinarian and the base of the tree 
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holding the monkey. However, he treated the equation as a symbolic form combining quantities 
for initial position (C) and gravity (A), evidenced by his substitutions (representation was “=
−10𝑥𝑥2 + 𝐵𝐵𝐵𝐵 + 0”). He set 𝑓𝑓(𝑥𝑥) = 0 and solved for B obtaining 𝐵𝐵 = 94

3
 and finally 

representation 4C, 𝑓𝑓(𝑥𝑥) = 94
3
𝑥𝑥 − 10𝑥𝑥2. His attention shifted back to Representation 1 and he 

created 1D by inscribing a parabolic arc to connect the veterinarian and the monkey, leaving the 
hypotenuse of the triangle in place. Throughout this excerpt we infer that Merik was attempting 
to describe a spatial parabola, yet the substitutions in his symbolic form suggested a temporal 
component he did not explicitly attend to. By this we mean that his physical model included a 
trace of the path of the dart which can be described as a parabola. However, his mental model, 
which helped him to interpret the meaning of the symbolic form included a temporal component 
to which he did not explicitly attend. Thus, from our perspective, the meanings ascribed to the 
representations did not align; however, Merik initially indicated no misalignment due to his 
certainty that the situation could be represented with a quadratic form. It was not until 15:34 that 
Merik acknowledged that time would play a role in the quadratic equation, noting that “So yeah, 
um, x would be time, which means I couldn’t use, yeah plugging in these [gestures to x=30 and 
y=40 in representation 1C] did nothing cause this equation is based on time.” This analysis 
foregrounds the importance of explicit quantitative referents for variables when symbolic forms 
are used to generate mathematical models and that covariational reasoning was largely absent.  

 
Figure 3 Evolution of Merik's representations 

Two. At 16:45, Merik introduced an analogical problem situation. He described trying to swim 
across a river with a current. He explained that the situation “applies the same with gravity 
because of the flow of the river going this way is just your rate of gravity working downwards, 
but your motion is that way.” Introduction of a sketch of the river (Figure 4) is indicative of  
abductive reasoning (a type of semiotic inference). The shift leverages a different physical model 
to support his mental model of how the motion of the dart could be modeled, but still using 
kinematics as a physical theory.   
Three. At 27:18, Merik summarized a difficulty that had emerged in treating the path of the dart 
as a parabola: he could not use right-triangle trigonometry to determine the launch angle. He 
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acknowledged that it shouldn’t matter that the path was curved. The interviewer intervened with 
the intention of suggesting an additional mathematical model: angle between tangent vectors. 
She asked “Can you think of a way that you might be able to find an angle measure between two 
curves? Have you ever studied anything like that?” She asked him to draw to curves in an xy-
plane. He said, “I guess a straight line can be a curve,” and produced representation 3E (Figure 
4). Merik realized, from a mathematical representation that did not overtly have meaning 
connected to the monkey problem that he could use tangent lines to curves (via derivatives) to 
find the angle subtended by the two curves in question. He concluded, “that’s the direction…at 
that exact instant which means that’s where it’s aimed. So if you do it from the point that leaves 
the barrel that’s the way…”. Later, at 29:30, he introduced representation 9A, a version of the 
law of cosines, to express 𝜃𝜃. He also confirmed that 𝜃𝜃 would be a function of 𝑥𝑥, progressively 
attaching more information (in the forms of quantities, relations, and dependencies) to his 
representation. This analysis demonstrates that a shift in mathematical model co-occurred with a 
static physical theory (kinematics) and static mental model (projectile follows an arc). 

   
Figure 4 Representations 5A (river), 3E (coordinate axes), and 9A (law of cosines) 

Our analysis exemplifies the complexity and richness of mathematical modeling when 
accounting for the attendant cognitive acts. We have networked theories to hypothesize and then 
demonstrated empirically several dimensions along which a model can change, including the 
adding or taking away from the inscriptions themselves, shifting attention among 
representations, introducing or removing quantities (attributes and how they are measured), 
semiotic processes (ascribing or shifting meaning of an inscription), mathematical models 
(including concepts, objects, operations, or procedures), physical models, and mental models. 
Thus, we demonstrated the plausibility of integrating the networked theory to explain the 
evolution of a mathematical model by tying together theories of modeling, quantitative 
reasoning, covariational reasoning, and semiotics.  

Shifts in the ever-evolving model are important to identify because they co-occur with the 
critical competencies of mathematical modeling and are junctures where new ideas can be 
introduced and developed.   We hold that sensemaking and monitoring are ongoing throughout 
mathematical modeling, noting that tracing representations is only partially predictive of shifts in 
the model. It will be important to also trace shifts evident in the students’ speech that do not co-
occur with changes in inscriptions. Though the Monkey Problem did not call for it (Merik 
worked solely within kinematics), we can easily imagine student-task interactions where a shift 
in physical theory is called for. We further identified at least two sites for facilitator intervention: 
one that was used successfully (supporting Merik in finding a mathematical model that would 
allow him to completely determine an angle) and one that was missed by the interviewer (the 
mis-alignment between a spatial and temporal parabola).  Finally, we posit that the richness of 
structures is created and maintained through quantitative reasoning. We recommend that future 
research explore a parallel analysis that would trace quantification as the evolutionary thread 
rather than representations. 
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