DupHunter: Flexible High-Performance Deduplication for Docker Registries

Nannan Zhao!, Hadeel Albahar!, Subil Abraham!, Keren Chen!, Vasily Tarasov?,
Dimitrios Skourtis”, Lukas Rupprecht?, Ali Anwar?, and Ali R. Butt!

Wirginia Tech

Abstract

The rise of containers has led to a broad prolifera-
tion of container images. The associated storage perfor-
mance and capacity requirements place high pressure
on the infrastructure of container registries that store
and serve images. Exploiting the high file redundancy in
real-world container images is a promising approach to
drastically reduce the demanding storage requirements
of the growing registries. However, existing deduplica-
tion techniques significantly degrade the performance of
registries because of the high layer restore overhead.

We propose DupHunter, a new Docker registry archi-
tecture, which not only natively deduplicates layers for
space savings but also reduces layer restore overhead.
DupHunter supports several configurable deduplication
modes, which provide different levels of storage effi-
ciency, durability, and performance, to support a range
of uses. To mitigate the negative impact of deduplication
on the image download times, DupHunter introduces a
two-tier storage hierarchy with a novel layer prefetch/pre-
construct cache algorithm based on user access patterns.
Under real workloads, in the highest data reduction mode,
DupHunter reduces storage space by up to 6.9x com-
pared to the current implementations. In the highest per-
formance mode, DupHunter can reduce the GET layer
latency up to 2.8 x compared to the state of the art.

1 Introduction

Containerization frameworks such as Docker [2] have
seen a remarkable adoption in modern cloud environ-
ments. This is due to their lower overhead compared to
virtual machines [7,38], a rich ecosystem that eases appli-
cation development, deployment, and management [17],
and the growing popularity of microservices [69]. By
now, all major cloud platforms endorse containers as a
core deployment technology [10,28,31,47]. For example,
Datadog reports that in 2018, about 21% of its customers’
monitored hosts ran Docker and that this trend continues
to grow by about 5% annually [19].

Container images are at the core of containerized appli-
cations. An application’s container image includes the ex-

2IBM Research—Almaden

ecutable of the application along with a complete set of its
dependencies—other executables, libraries, and configu-
ration and data files required by the application. Images
are structured in layers. When building an image with
Docker, each executed command, such as apt install,
creates a new layer on top of the previous one [4], which
contains the files that the command has modified or
added. Docker leverages union file systems [64] to effi-
ciently merge layers into a single file system tree when
starting a container. Containers can share identical layers
across different images.

To store and distribute container images, Docker re-
lies on image registries (e.g., Docker Hub [3]). Docker
clients can push images to or pull them from the registries
as needed. On the registry side, each layer is stored as
a compressed tarball and identified by a content-based
address. The Docker registry supports various storage
backends for saving and retrieving layers. For example,
a typical large-scale setup stores each layer as an object
in an object store [32,51].

As the container market continues to expand, Docker
registries have to manage a growing number of images
and layers. Some conservative estimates show that in
spring 2019, Docker Hub alone stored at least 2 million
public images totaling roughly 1 PB in size [59,72]. We
believe that this is just the tip of the iceberg and the
number of private images is significantly higher. Other
popular public registries [9, 27, 35, 46], as well as on-
premises registry deployments in large organizations,
experience a similar surge in the number of images. As a
result, organizations spend an increasing amount of their
storage and networking infrastructure on operating image
registries.

The storage demand for container images is wors-
ened by the large amount of duplicate data in images.
As Docker images must be self-contained by definition,
different images frequently include the same, common
dependencies (e.g., libraries). As a result, different im-
ages are prone to contain a high number of duplicate files
as shared components exist in more than one image.

To reduce this redundancy, Docker employs layer shar-

ing. However, this is insufficient as layers are coarse and
rarely identical because they are built by developers in-
dependently and without coordination. Indeed, a recent
analysis of the Docker Hub image dataset showed that
about 97% of files across layers are duplicates [72]. Reg-
istry storage backends exacerbate the redundancy further
due to the replication they perform to improve image

durability and availability [12].

Deduplication is an effective method to reduce ca-
pacity demands of intrinsically redundant datasets [52].
However, applying deduplication to a Docker registry
is challenging due to two main reasons: 1) layers are
stored in the registry as compressed tarballs that do not
deduplicate well [44]; and 2) decompressing layers first
and storing individual files incurs high reconstruction
overhead and slows down image pulls. The slowdowns
during image pulls are especially harmful because they
contribute directly to the startup times of containers. Our
experiments show that, on average, naive deduplication
increases layer pull latencies by up to 98 x compared to
a registry without deduplication.

In this paper, we propose DupHunter, the first Docker
registry that natively supports deduplication. DupHunter
is designed to increase storage efficiency via layer dedu-
plication while reducing the corresponding layer restor-
ing overhead. It utilizes domain-specific knowledge
about the stored data and the storage system to reduce
the impact of layer deduplication on performance. For
this purpose, DupHunter offers five key contributions:
1. DupHunter exploits existing replication to improve

performance. It keeps a specified number of layer repli-
cas as-is, without decompressing and deduplicating
them. Accesses to these replicas do not experience
layer restoring overhead. Any additional layer repli-
cas needed to guarantee the desired availability are
decompressed and deduplicated.

2. DupHunter deduplicates rarely accessed layers more
aggressively than popular ones to speed up accesses
to popular layers and achieve higher storage savings.

3. DupHunter monitors user access patterns and proac-
tively restores layers before layer download requests
arrive. This allows it to avoid reconstruction latency
during pulls.

4. DupHunter groups files from a single layer in slices
and evenly distributes the slices across the cluster, to
parallelize and speed up layer reconstruction.

5. We use DupHunter to provide the first comprehensive
analysis of the impact of different deduplication levels
(file and block) and redundancy policies (replication
and erasure coding) on registry performance and space
savings.

We evaluate DupHunter on a 6-node cluster using
real-world workloads and layers. In the highest perfor-
mance mode, DupHunter outperforms the state-of-the-art

Docker registry, Bolt [41], by reducing layer pull laten-
cies by up to 2.8x. In the highest deduplication mode,
DupHunter reduces storage consumption by up to 6.9x.
DupHunter also supports other deduplication modes that
support various trade-offs in performance and space sav-
ings.

2 Background and Related Work

We first provide the background on the Docker registry
and then discuss existing deduplication works.

2.1 Docker Registry

The main purpose of a Docker registry is to store and
distribute container images to Docker clients. A reg-
istry provides a REST API for Docker clients to push
images to and pull images from the registry [20, 21].
Docker registries group images into repositories, each
containing versions (tags) of the same image, identified
as <repo-name:tag>. For each tagged image in a repos-
itory, the Docker registry stores a manifest, i.e., a JSON
file that contains the runtime configuration for a con-
tainer image (e.g., environment variables) and the list
of layers that make up the image. A layer is stored as
a compressed archival file and identified using a digest
(SHA-256) computed over the uncompressed contents of
the layer. When pulling an image, a Docker client first
downloads the manifest and then the referenced layers
(that are not already present on the client). When pushing
an image, a Docker client first uploads the layers (if not
already present in the registry) and then the manifest.
The current Docker registry software is a single-node
application with a RESTful API. The registry delegates
storage to a backend storage system through correspond-
ing storage drivers. The backend storage can range from
local file systems to distributed object storage systems
such as Swift [51] or others [1, 5, 32, 51]. To scale
the registry, organizations typically deploy a load bal-
ancer or proxy in front of several independent registry
instances [11]. In this case, client requests are forwarded
to the destination registries through a proxy, then served
by the registries’ backend storage system. To reduce the
communication overhead between the proxy, registry,
and backend storage system, Bolt [41] proposes to use a
consistent hashing function instead of a proxy, distribute
requests to registries, and utilize the local file system
on each registry node to store data instead of using a
remote distributed object storage system. Multiple layer
replicas are stored on Bolt registries for high availability
and reliability. DupHunter is implemented based on the
architecture of Bolt registry for high scalability.
Registry performance is critical to Docker clients. In
particular, the layer pulling performance (i.e., GET layer
performance) impacts container startup times signifi-
cantly [30]. A number of works have studied various

dimensions of registry performance for a Docker image
dataset [11, 14,30,60,64,71,72]. However, such works
do not provide deduplication for the registry. A com-
munity proposal exists to add file-level deduplication
to container images [8], but as of now lacks even a de-
tailed design, let alone performance analysis. Skourtis
et al. [59] propose restructuring layers to optimize for
various dimensions, including registry storage utilization.
Their approach does not remove all duplicates, whereas
DupHunter leaves images unchanged and can eliminate
all duplicates in the registry. Finally, a lot of works aim to
reduce the size of a single container image [22,29,54,65],
and are complementary to DupHunter.

2.2 Deduplication

Data deduplication has received considerable attention,
particularly for virtual machine images [33,36,61,73].
Many deduplication studies focus on primary and backup
data deduplication [23-25,39,40,42,48,58,63,68,74] and
show the effectiveness of file- and block-level deduplica-
tion [45, 62]. To further reduce storage space, integrating
block-level deduplication with compression has been pro-
posed [66]. In addition to local deduplication schemes,
a global deduplication method [49] has also been pro-
posed to improve the deduplication ratio and provide
high scalability for distributed storage systems.

Data restoring latency is an important factor for stor-
age systems with deduplication support. Efficient chunk
caching algorithms and forward assembly are proposed to
accelerate data restore performance [15]. At first glance,
one could apply existing deduplication techniques to
solve the issue of high data redundancy among container
images. However, as we demonstrate in detail in §3.2,
such a naive approach leads to slow reconstruction of
layers on image pulls, which severely degrades container
startup times. DupHunter is specifically designed for
Docker registries, which allows it to leverage image and
workload information to reduce deduplication and layer
restore overhead.

3 Motivating Observations

The need and feasibility of DupHunter is based on three
key observations: 1) container images have a lot of redun-
dancy; 2) existing scalable deduplication technologies
significantly increase image pull latencies; and 3) image
access patterns can be predicted reliably.

3.1 Redundancy in Container Images

Container image layers exhibit a large degree of redun-
dancy in terms of duplicate files. Although Docker sup-
ports the sharing of layers among different images to
remove some redundant data in the Docker registry, this
is not sufficient to effectively eliminate duplicates. Ac-
cording to the deduplication analysis of the Docker Hub

Table 1: Dedup. ratio vs. increase in GET layer latency.

Dedup ratio, Dedup ratio, .

Technology| compressed uncompressed GET latency increase

layers layers wrt. uncompressed

layers
Jdupes 1 2.1 36 x
VDO 1 4 60 x
Btrfs 1 2.3 51 %
ZFS I 23 50 x
Ceph 1 3.1 98 x

dataset [72], 97% of files have more than one file dupli-
cate, resulting in a deduplication ratio of 2x in terms of
capacity. We believe that the deduplication ratio is much
higher when private repositories are taken into account.

The duplicate files are executables, object code, li-
braries, and source code, and are likely imported by differ-
ent image developers using package installers or version
control systems such as apt, pip, or git to install simi-
lar dependencies. However, as layers often share many
but not all files, this redundancy cannot be eliminated by
Docker’s current layer sharing approach.

R-way replication for reliability further fuels the high
storage demands of Docker registries. Hence, satisfying
demand by adding more disks and scaling out storage
systems quickly becomes expensive.

3.2 Drawbacks of Existing Technologies

A naive approach to eliminating duplicates in container
images could be to apply an existing deduplication tech-
nique. To experimentally demonstrate that such a strat-
egy has significant shortcomings, we try four popular
local deduplication technologies, VDO [67], Btrfs [13],
ZFS [70], Jdupes [34], in a single-node setup and on one
distributed solution, Ceph [16], on a 3-node cluster. The
deduplication block sizes are set to 4KB for both VDO
and Ceph, and 128KB for both Btrfs [13] and ZF'S [70]
by default. Table | presents the deduplication ratio and
pull latency overhead for each technology in two cases:
1) when layers are stored compressed (as-is); and 2) when
layers are uncompressed and unpacked into their individ-
ual files. Note that the deduplication ratios are calculated
against the case when all layers are compressed (the de-
tails of the dataset and testbed are presented in §6).

Deduplication ratios. Putting the original compressed
layer tarballs in any of the deduplication systems re-
sults, unsuprisingly, in a deduplication ratio of 1. This
is because even a single byte change in any file in a
tarball scrambles the content of the compressed tarball
entirely [18,44]. Hence, to expose the redundancy to the
deduplication systems, we decompress every layer before
storing it.

After decompression, all deduplication schemes yield
significant deduplication ratios. Jdupes, Btrfs, and ZFS
reduce the dataset to about half and achieve deduplication
ratios of 2.1, 2.3, and 2.3, respectively. Ceph has a higher

| I
- —Dal !
©09 —Dev Q08p 208
-3 Fra = ! z
& Lon =06 fT —Dal Zo6
£08 —Pre k4 i —Dev g
§‘ Sta 504 1;”‘ S04
— i ——Pre 59
30'7 ----Syd 502* Sta DOZ
- [~=Syd S
L
on 0

e
=N

1 10 100 1,000
GET Layer count

10,00050,000

Figure 1: CDF of GET layer request

count. probability.

deduplication ratio since it uses a smaller deduplication
block size, while VDO shows the highest deduplication
ratio as it also compresses deduplicated data.

It is important to note that for an enterprise-scale reg-
istry, a large number of storage servers need to be de-
ployed and single-node deduplication systems (Jdupes,
Btrfs, ZFS, and VDO) can only deduplicate data within
a single node. Therefore, in a multi-node setup, such so-
lutions can never achieve optimal global deduplication,
i.e., duplication across nodes.

Pull latencies. To analyze layer pull latencies, we im-
plement a layer restoring process for each technology.
Restoring includes fetching files, creating a layer tarball,
and compressing it. We measure the average GET layer
latency and calculate the restore overhead compared to
GET requests without layer deduplication.

As shown in Table 1, the restoration overhead is high.
The file-level deduplication scheme Jdupes increases the
GET layer latency by 36x. This is caused by the expensive
restoring process. Btrfs, ZFS, and VDO show an increase
of more than 50, as they are block-level deduplication
systems, and hence they also add file restoring overhead.
The overhead for Ceph is the highest because restoration
is distributed and incurs network communication.

In summary, our analysis shows that while existing
technologies can provide storage space savings for con-
tainer images (after decompression), they incur high cost
during image pulls due to slow layer reconstruction. At
the same time, pull latency constitutes the major portion
of container startup times even without deduplication.
According to [30], pulling images accounts for 76% of
container startup times. This means that, for example, for
Btrfs the increase of layer GET latency by 51 x would
prolong container startup times by 38 x. Hence, dedupli-
cation has a major negative impact on the startup times
of containerized applications.

3.3 Predictable User Access Patterns

A promising approach to mitigate layer restoring over-
head is predicting which layers will be accessed and
preconstruct them. In DupHunter, we can exploit the fact
that when a Docker client pulls an image from the reg-

0
0 0.1020304 0506070809 1
Repulling probability

Figure 2: CDF of client repulling

GET manifest/layer inter-arrival time (s)

Figure 3: CDF of GET mani-
fest/layer inter-arrival time.

istry, it first retrieves the image manifest, which includes
references to the image layers.

User pulling patterns. Typically, if a layer is already
stored locally, then the client will not fetch this layer
again. However, higher-level container orchestrators al-
low users to configure different policies for starting new
containers. For example, Kubernetes allows policies such
as IfNotPresent, i.e., only get the layer if it has not
been pulled already, or AlwaysGet, i.e., always retrieve
the layer, even if it is already present locally. These dif-
ferent behaviors need to be considered when predicting
whether a layer will be pulled by a user or not.

We use the IBM Cloud registry workload [11] to ana-
lyze the likelihood for a user to repull an already present
layer. The traces span ~80 days for 7 registry clus-
ters: Dallas, Frankfurt, London, Sydney, Development,
Prestaging, and Staging. Figure | shows the CDF of layer
GET counts by the same clients. The analysis shows that
the majority of layers are only fetched once by the same
clients. For example, 97% of layers from Syd are only
fetched once by the same clients. However, there are
clients that pull the same layers repeatedly. E.g., a client
from London fetched the same layer 19,300 times.

Figure 2 shows the corresponding client repull proba-
bility, calculated as the number of repulled layers divided
by the number of total GET layer requests issued by the
same client. We see that 50% of the clients have a repull
probability of less than 0.2 across all registries. We also
observe that the slope of the CDFs is steep at both lower
and higher probabilities, but becomes flat in the middle.
This suggests that, by observing access patterns, we are
able to classify clients into two categories, always-pull
clients and pull-once clients, and predict, whether they
will pull a layer or not by keeping track of user access
history.

Layer preconstruction. We analyze the inter-arrival
time between a GET manifest request and the subsequent
GET layer request. As shown in Figure 3, the majority of
intervals are greater than 1 second. For example, 80% of
intervals from London are greater than 1 second, and 60%
of the intervals from Sydney are greater than 5 seconds.
There are several reasons for this long gap. First, when

Distributed;

File index | _Layer recipe| [i map
metadata |Layer index | |Slice recipe
database Id: L1:A:P :

| 7

Registry REST AP/

Prefetch cache

Layer store

Registry REST API
Layer stage area

Tier 1 Primary cluster },

P-server A P-server B

@ﬁ Tier 2 Deduplication élusteri

Preconstruct cache

: File store
local storage
storage cluster system

Figure 4: DupHunter architecture.

fetching an image from a registry, the Docker client
fetches a fixed number of layers in parallel (three by
default) starting from the lowest layer. In the case where
an image contains more than three layers, the upper lay-
ers have to wait until the lower layers are downloaded,
which delays the GET layer request for these layers. Sec-
ond, network delay between clients and registry often
accounts for a large portion of the GET latency in cloud
environments.

As we show in §6, layer preconstruction can signifi-
cantly reduce layer restoring overhead. In the case of a
shorter duration between a GET manifest request and its
subsequent GET layer requests, layer preconstruction can
still be beneficial because the layer construction starts
prior to the arrival of the GET request.

4 DupHunter Design

In this section, we first provide an overview of Du-
pHunter (§4.1). We then describe in detail how it dedu-
plicates (§4.2) and restores (§4.3) layers, and how it fur-
ther improves performance via predictive cache manage-
ment (§4.4). Finally, we discuss the integration of sub-file
deduplication and erasure coding with DupHunter (§4.5).

4.1 Overview

Figure 4 shows the architecture of DupHunter. Du-
pHunter consists of two main components: 1) a cluster
of storage servers, each exposing the registry REST API;
and 2) a distributed metadata database. When uploading
or downloading layers, Docker clients communicate with
any DupHunter server using the registry APIL. Each server
in the cluster contains an API service and a backend stor-
age system. The backend storage systems store layers and
perform deduplication, keeping the deduplication meta-
data in the database. DupHunter uses three techniques to
reduce deduplication and restoring overhead: 1) replica
deduplication modes; 2) parallel layer reconstruction;
and 3) proactive layer prefetching/preconstruction.

Replica deduplication modes. For higher fault toler-
ance and availability, existing registry setups replicate
layers. DupHunter also performs layer replication, but

additionally deduplicates files inside the replicas.

A basic deduplication mode n (B-mode n) defines that
DupHunter should only keep »n layer replicas intact and
deduplicate the remaining R — n layer replicas, where R
is the layer replication level. At one extreme, B-mode R
means that no replicas should be deduplicated, and hence
provides the best performance but no data reduction. At
the other end, B-mode 0 deduplicates all layer replicas,
i.e., it provides the highest deduplication ratio but adds
restoration overhead for GET requests. The remaining in-
between B-modes allow to trade off performance for data
reduction.

For heavily skewed workloads, DupHunter also pro-
vides a selective deduplication mode (S-mode). The S-
mode utilizes the skewness in layer popularity, observed
in [11], to decide how many replicas should be dedupli-
cated for each layer. As there are hot layers that are pulled
frequently, S-mode sets the number of intact replicas pro-
portional to their popularity. This means that hot layers
have more intact replicas, and hence can be served faster,
while cold layers are deduplicated more aggressively.

Deduplication in DupHunter, for the example of B-
mode 1, works as follows: DupHunter first creates 3 layer
replicas across 3 servers. It keeps a single layer replica
as the primary layer replica on one server. Deduplication
is then carried out in one of the other servers storing a
replica, i.e., the layer replica is decompressed and any du-
plicate files are discarded while unique files are kept. The
unique files are replicated and saved on different servers
for fault tolerance. Once deduplication is complete, the
remaining two layer replicas are removed. Any subse-
quent GET layer requests are sent to the primary replica
server first since it stores the complete layer replica. If
that server crashes, one of the other servers is used to
rebuild the layer and serve the GET request.

To support different deduplication modes, DupHunter
stores a mix of both layer tarballs and individual files.
This makes data placement decision more complex with
respect to fault tolerance because individual files and
their corresponding layer tarballs need to be placed on
different servers. As more tarballs and files are stored in
the cluster, the placement problem gets more challenging.

To avoid accidentally co-locating layer tarballs and
unique files, which are present in the tarball, and sim-
plify the placement problem, DupHunter divides storage
servers into two groups (Figure 4): a primary cluster con-
sisting of P-servers and a deduplication cluster consist-
ing of D-servers. P-servers are responsible for storing full
layer tarball replicas and replicas of the manifest, while
D-servers deduplicate, store, and replicate the unique
files from the layer tarballs. The split allows DupHunter
to treat layers and individual files separately and prevent
co-location during placement.

P- and D-servers form a 2-tier storage hierarchy. In

the default case, the primary cluster serves all incoming
GET requests. If a request cannot be served from the pri-
mary cluster (e.g., due to a node failure, or DupHunter
operating in B-mode 0 or S-mode), it will be forwarded
to the deduplication cluster and the requested layer will
be reconstructed.

Parallel layer reconstruction. DupHunter speeds up
layer reconstruction through parallelism. As shown in
Figure 4, each D-server’s local storage is divided into
three parts: the layer stage area, preconstruction cache,
and file store. The layer stage area temporarily stores
newly added layer replicas. After deduplicating a replica,
the resulting unique files are stored in a content address-
able file store and replicated to the peer servers to provide
redundancy. Once all file replicas have been stored, the
layer replica is deleted from the layer stage area.
DupHunter distributes the layer’s unique files onto
several servers (see §4.2). All files on a single server
belonging to the same layer are called a slice. A slice has
a corresponding slice recipe, which defines the files that
are part of this slice, and a layer recipe defines the slices
needed to reconstruct the layer. This information is stored
in DupHunter’s metadata database. This allows D-servers
to rebuild layer slices in parallel and thereby improve
reconstruction performance. DupHunter maintains layer
and file fingerprint indices in the metadata database.

Predictive cache prefetch and preconstruction. To im-
prove the layer access latency, DupHunter employs a
cache layer in both the primary and the deduplication
clusters, respectively. Each P-server has an in-memory
user-behavior based prefetch cache to reduce disk I/Os.
When a GET manifest request is received from a user,
DupHunter predicts which layers in the image will ac-
tually need to be pulled and prefetches them in the
cache. Additionally, to reduce layer restoring overhead,
each D-server maintains an on-disk user-behavior based
preconstruct cache. As with the prefetch cache, when
a GET manifest request is received, DupHunter predicts
which layers in the image will be pulled, preconstructs
the layers, and loads them in the preconstruct cache. To
accurately predict which layers to prefetch, DupHunter
maintains two maps: ILmap and ULmap. ILmap stores
the mapping between images and layers while ULmap
keeps track of a user’s access history, i.e., which layers
the user has pulled and how many times (see §4.4).

4.2 Deduplicating Layers

As in the traditional Docker registry, DupHunter main-
tains a layer index. After receiving a PUT layer request,
DupHunter first checks the layer fingerprint in the layer
index to ensure an identical layer is not already stored.
If not, DupHunter, replicates the layer r times across the
P-servers and submits the remaining R — r layer replicas
to the D-servers. Those replicas are temporarily stored in

the layer stage areas of the D-servers. Once the replicas
have been stored successfully, DupHunter notifies the
client of the request completion.

File-level deduplication. Once in the staging area, one
of the D-servers decompresses the layer and starts the
deduplication process. First, it extracts file entries from
the tar archive. Each file entry is represented as a file
header and the associated file content [26]. The file
header contains metadata such as file name, path, size,
mode, and owner information. DupHunter records every
file header in slice recipes (described below) to be able
to correctly restore the complete layer archive later.

To deduplicate a file, DupHunter computes a file Id by
hashing the file content and checks if the Id is already
present in the file index. If present, the file content is
discarded. Otherwise, the file content is assigned to a D-
server and stored in its file store, and the file Id is recorded
in the file index. The file index maps different file Ids to
their physical replicas stored on different D-servers.

Layer partitioning. DupHunter picks D-servers for files
to improve reconstruction times. For that, it is important
that different layer slices are similarly sized and evenly
distributed across D-servers. To achieve this, DupHunter
employs a greedy packing algorithm. Consider first the
simpler case in which each file only has a single replica.
DupHunter first computes the total size of the layer’s
existing shared files on each D-server (this might be O if
a D-server does not store any shared files for the layer).
Next, it assigns the largest new unique file to the smallest
partition until all the unique files are assigned. Note that
during layer partitioning, DupHunter does not migrate
existing shared files to reduce I/O overhead.

In the case where a file has more than one replica,
DupHunter performs the above-described partitioning
per replica. That means that it first assigns the primary
replicas of the new unique files to D-servers according to
the location of the primary replicas of the existing shared
files. It then does the same for the secondary replicas and
so on. DupHunter also ensures that two replicas of the
same file are never placed on the same node.

Unique file replication. Next, DupHunter replicates and
distributes the unique file replicas across D-servers based
on the layer partitioning. The headers and content point-
ers of all files in the deduplicated layer that are assigned
to a specific D-server are included in that D-server’s slice
recipe for that layer. After file replication, DupHunter
adds the new slice recipes to the metadata database.
DupHunter also creates a layer recipe for the uploaded
layer and stores it in the metadata database. The layer
recipe records all the D-servers that store slices for that
layer and which can act as restoring workers. When a
layer needs to be reconstructed, one worker is selected as
the restoring master, responsible for gathering all slices

Content
Header |fingerprint

Layer hl £1 }D. |

] @}

@ replicas
tar || h2 | £2 Sharedflles
archive| | h3 | £3 E } Newly_
Ll h4 £4

b5 | £5 }U"iq”e [] - E

files
hé £6
D server A D server B

\—Y—/
_____Fileentries T ...
File index Layer recipe
Id | r1 r2 Id: L1
Master: A o
£1 |A:/.).. |B:/.... Head
2 Workers: [A, B, C] eacer|pointer
£2 |B:/..l.. |C:l.[.. h2 | £2
h5 | £5

Figure 5: Layer dedup., replication, and partitioning.

Slice constructor

Layer constructor

File /0O stream Tar stream

Figure 6: Parallel streaming layer construction.

and rebuilding the layer (see §4.3).

Figure 5 shows an example deduplication process. The
example assumes B-mode 1 with 3-way replication, i.e.,
each unique file has two replicas distributed on two differ-
ent D-servers. The files f1, f2, and f3 are already stored
in DupHunter, and f1’, f2’, and f3’ are their correspond-
ing replicas. Layer L1 is being pushed and contains files
f1=f6. f1, f2, and f3 are shared files between L1 and
other layers, and hence are discarded during file-level
deduplication. The unique files 4, 5 and f6 are added
to the system and replicated to D-servers A, B, and C.

After replication, server B contains f2, f5, f1’, and
f4'. Together f2 and f5 form the primary slice of L1,
denoted as L1 :: B :: P. This slice Id contains the layer Id
the slices belongs to (L1), the node, which stores the slice
(B) and the backup level (P for primary). The two backup
file replicas f1’ and f4' on B form the backup slice L1 ::
B :: B. During layer restoring, L1 can be restored by using
any combination of primary and backup slices to achieve
maximum parallelism.

4.3 Restoring Layers

The restoring process works in two phases: slice recon-
struction and layer reconstruction. Considering the exam-
ple in Figure 5, restoring works as follows:

According to L1’s layer recipe, the restoring workers
are D-servers A, B, and C. The node with the largest
slice is picked as the restoring master, also called layer
constructor (A in the example). Since A is the restoring
master it sends GET slice requests for the primary slices
to B and C. If a primary slice is missing, the master

added file
replicas

A Layer

locates its corresponding backup slice and sends a GET
slice request to the corresponding D-server.

After a GET slice request has been received, B’s and
C’s slice constructors start rebuilding their primary slices
and send them to A as shown in Figure 6. Meanwhile, A
instructs its local slice constructor to restore its primary
slice for L1. To construct a layer slice, a slice constructor
first gets the associated slice recipe from the metadata
database. The recipe is keyed by a combination of layer
Id, host address and requested backup level, e.g., L1 ::
A :: P. Based on the recipe, the slice constructor creates
a slice tar file by concatenating each file header and the
corresponding file contents; it then compresses the slice
and passes it to the master. The master concatenates all
the compressed slices into a single compressed layer
tarball and sends it back to the client.

The layer restoration performance is critical to keep
pull latencies low. Hence, DupHunter parallelizes slice
reconstruction on a single node and avoids generating
intermediate files on disk to reduce disk I/O.

4.4 Caching and Preconstructing Layers

DupHunter maintains a cache layer in both the primary
and deduplication clusters to speedup pull requests. The
primary cluster cache (in-memory prefetch cache) is to
avoid disk I/O during layer retrievals while the dedupli-
cation cluster on-disk cache stores preconstructed layers,
which are likely to be accessed in the future. Both caches
are filled based on the user access patterns seen in §3.

Request prediction. To accurately predict layers that
will be accessed in the future, DupHunter keeps track
of image metadata and user access patterns in two data
structures: ILmap and ULmap. ILmap maps an image
to its containing layer set. ULmap stores for each user
the layers the user has accessed and the corresponding
pull count. A user is uniquely identified by extracting
the sender IP address from the request. If DupHunter has
not seen an IP address before, it assumes that the request
comes from a new host, which does not store any layers
yet.

When a GET manifest request r is received, Du-
pHunter first calculates a set of image layers that have
not been pulled by the user r.addr by calculating the dif-
ference S between the image’s layer set and the user’s
accessed layer set:

Sa = ILmaplr.img) — ULmap|r.addr].
The layers in Sx are expected to be accessed soon.

Recall from §3.3 that some users always pull layers, no
matter if the layers have been previously pulled. To detect
such users, DupHunter maintains a repull probability y
for each user. For a GET manifest request r by a user

T.iel"l Cache Cache L1 Prefetch cache
Primary Layer store Layer store | L2 Layer store
cluster
L P-server A P-server B
S ——— ——
Tier 2 Stage area Stage area | L3 Layer stage area
Deduplication- Cache Cache L4 preconstruct cache
cluster File store File store [L5File store
D-server C D-server D

Figure 7: Tiered storage architecture.

r.addr, yis computed as

Ylraddr] =Y l.pullCount/ Y I.pullCount
IERL leL

where RL is the set of layers that the user has repulled
before (i.e., with a pull count > 1) and L is the set of all
layers the user has ever pulled. DupHunter updates the
pull counts every time it receives a GET layer request.

DupHunter compares the clients’ repull probability
to a predefined threshold €. If y[r.addr] > €, then Du-
pHunter classifies the user as a repull user and computes
the subset, Sn, of layers from the requested image that
have already been pulled by the user:

Sn = ILmap|r.img| NULmap|r.addr).

It then fetches the layers in S into the cache.

Cache handling in tiered storage. The introduction of
the two caches results in a 5-level 2-tier storage architec-
ture of DupHunter as shown in Figure 7. Requests are
passed through the tiers from top to bottom. Upon a GET
layer request, DupHunter first determines the P-server(s)
which is (are) responsible for the layer and searches the
prefetch cache(s). If the layer is present, the request will
be served from the cache. Otherwise, the request will be
served from the layer store.

If a GET layer request cannot be served from the
primary cluster due to a failure of the corresponding P-
server(s), the request will be forwarded to the deduplica-
tion cluster. In that case, DupHunter will first lookup the
layer recipe. If the recipe is not found, it means that the
layer has not been fully deduplicated yet and DupHunter
will serve the layer from one of the layer stage areas of
the responsible D-servers. If the layer recipe is present,
DupHunter will contact the restoring master to check,
whether the layer is in its preconstruct cache. Otherwise,
it will instruct the restoring master to rebuild the layer.

Both the prefetch and the preconstruct caches are write-
through caches. When a layer is evicted, it is simply
discarded since the layers are read-only. We use an Adap-
tive Replacement Cache (ARC) replacement policy [43],
which keeps track of both the frequently and recently
used layers and adapts to changing access patterns.

4.5 Discussion

The goal of DupHunter is to provide flexible dedupli-
cation modes to meet different space-saving and perfor-
mance requirements and mitigate layer restore overhead.
The above design of DupHunter mainly focuses on file-
level deduplication and assumes layer replication.

To achieve a higher deduplication ratio, DupHunter
can integrate with block-level deduplication. After re-
moving redundant files, D-servers can further perform
block-level deduplication only on unique files by using
systems such as VDO [67] and Ceph [49]. However, higher
deduplication ratios come with higher layer restoring
overhead as the restoring latency for block-level dedupli-
cation is higher than that of file level as we show in §6.
This is because to restore a layer, its associated files
need to be first restored, which incurs extra overhead.
Furthermore, when integrating with a global block-level
deduplication scheme, the layer restoring overhead will
be higher due to network communication. In this case,
it is beneficial to maintain a number of layer replicas on
P-servers to maintain a good performance.

While DupHunter exploits existing replication
schemes, it is not limited to those. If the registry is
using erasure coding for reliability, DupHunter can
integrate with the erasure coding algorithm to improve
space efficiency. Specifically, after removing redundant
files from layers, DupHunter can store unique files as
erasure-coded chunks. While DupHunter can not make
use of existing replicas to improve pull performance in
this case, its preconstruct cache remains beneficial to
mitigate high restoring overheads as shown in §6.

A known side effect when performing deduplication
is that the loss of a chunk has a bigger impact on fault
tolerance as the chunk is referenced by several objects

[57]. To provide adequate fault tolerance, DupHunter
maintains at least three copies of a layer (either as full
layer replicas or unique files that can rebuild the layer)
in the cluster.

S Implementation

We implemented DupHunter' in Go by adding ~2,000
lines of code to Bolt [41]. Note that Bolt is based on the
reference Docker registry [20] for high availability and
scalability (see Bolt details in §2.1.)

DupHunter can use any POSIX file system to store its
data and uses Redis [6] for metadata, i.e., slice and layer
recipes, file and layer indices, and ULmap and ILmap. We
chose Redis because it provides high lookup and update
performance and it is widely used in production systems.
Another benefit of Redis is that it comes with a Go client
library, which makes it easy to integrate with the Docker

'DupHunter’s code is available at https://github.com/
nnzhaocs/DupHunter.

https://github.com/nnzhaocs/DupHunter
https://github.com/nnzhaocs/DupHunter

Table 2: Workload parameters.

Trace| #GET| #GET| #PUT | #PUT | #Uniq. #Accessed
Layer | Man- | Layer| Man- | Layer| Uniq. Dataset
ifest ifest Size (GB)
Dal 6963 | 7561 453 23 1870 18
Fra 4117 10350 | 508 25 1012 | 9
Lon | 2570 11808 | 582 40 1979 13
Syd | 3382 11150 | 453 15 558 5

Registry. We enable append-only file in Redis to log all
changes for durability purposes. Moreover, we configure
Redis to save snapshots every few minutes for additional
reliability. To improve availability and scalability, we
use 3-way replication. In our setup, Redis is deployed
on all nodes of the cluster (P-servers and D-servers) so
that a dedicated metadata database cluster is not needed.
However, it is also possible to setup DupHunter with a
dedicated metadata database cluster.

To ensure that the metadata is in a consistent state, Du-
pHunter uses Redis’ atomicity so that no file duplicates
are stored in the cluster. For the file and layer indices and
the slice and layer recipes, each key can be set to hold its
value only if the key does not yet exist in Redis (i.e, us-
ing SETNX [55]). When a key already holds a value, a file
duplicate or layer duplicate is identified and is removed
from the registry cluster.

Additionally, DupHunter maintains a synchronization
map to ensure that multiple layer restoring processes do
not attempt to restore the same layer simultaneously. If
a layer is currently being restored, subsequent GET layer
requests to this layer wait until the layer is restored. Other
layers, however, can be constructed in parallel.

Both the metadata database and layer store used by
DupHunter are scalable and can handle large image
datasets. DupHunter’s metadata overhead is about 0.6%
in practice, e.g., for a real-world layer dataset of 18 GB,
DupHunter stores less than 100 MB of metadata in Redis.

6 Evaluation

We answer two questions in the evaluation: how do dedu-
plication modes impact the performance—redundancy
trade-off, and how effective are DupHunter’s caches.

6.1 Evaluation Setup

Testbed. Our testbed consists of a 16-node cluster, where
each node is equipped with 8 cores, 16 GB RAM, a
500 GB SSD, and a 10 Gbps NIC.

Dataset. We downloaded 0.93 TB of popular Docker im-
ages (i.e., images with a pull count greater than 100) with
36,000 compressed layers, totalling 2 TB after decom-
pression. Such dataset size allowed us to quickly evaluate
DupHunter’s different modes without losing the gener-
ality of results. The file-level deduplication ratio of the
decompressed dataset is 2.1.

Workload generation. To evaluate how DupHunter per-
forms with production registry workloads, we use the
IBM Cloud Registry traces [11] that come from four pro-
duction registry clusters (Dal, Fra, Lon, and Syd) and
span approximately 80 days. We use Docker registry
trace player [11] to replay the first 15,000 requests from
each workload as shown in Table 2. We modify the player
to match requested layers in the IBM trace with real lay-
ers downloaded from Docker Hub based on the layer
size’. Consequently, each layer request pulls or pushes
a real layer. For manifest requests, we generate random
well-formed, manifest files.

In addition, our workload generator uses a proxy em-
ulator to decide the server for each request. The proxy
emulator uses consistent hashing [37] to distribute lay-
ers and manifests. It maintains a ring of registry servers
and calculates a destination registry server for each push
layer or manifest request by hashing its digest. For pull
manifest requests, the proxy emulator maintains two con-
sistent hashing rings, one for the P-servers, and another
for the D-servers. By default, the proxy first queries the
P-servers but if the requested P-server is not available, it
pulls from the D-servers.

Schemes. We evaluate DupHunter’s deduplication ratio
and performance using different deduplication and re-
dundancy schemes. The base case considers 3-way layer
replication and file-level deduplication. In that case, Du-
pHunter provides five deduplication modes: B-mode 0,
1, 2, 3, and S-mode. Note that B-mode 0 deduplicates
all layer replicas (denoted as global file-level deduplica-
tion with replication or GF-R) while B-mode 3 does not
deduplicate any layer replicas.

To evaluate how DupHunter works with block-level
deduplication, we integrate B-mode 0 with vDO. For each
D-server, all unique files are stored on a local VDO de-
vice. Hence, in that mode DupHunter provides global
file-level deduplication and local block-level deduplica-
tion (GF+LB-R).

We also evaluate DupHunter with an erasure coding
policy instead of replication. We combine B-mode 0
with Ceph such that each D-server stores unique files
on a Ceph erasure coding pool with global block-level
deduplication enabled. We denote this scheme as GB-
EC. We compare each scheme to Bolt [41] with 3-way
replication as our baseline (No-dedup).

6.2 Deduplication Ratio vs. Performance

We first evaluate DupHunter’s performance/deduplica-
tion ratio trade-off for all of the above described dedu-
plication schemes. For the replication scenarios, we use
3-way replication and for GB-EC, we use a (6,2) Reed
Solomon code [53, 56]. Both replication and erasure cod-

2The original player generates random or zeroed data for layers.

Table 3: Dedup. ratio vs. GET layer latency.

Mode Dedup. ratio Performance improvement (P-servers)
B-mode 1 1.5 1.6x
S-mode 1.3 2x
B-mode 2 1.2 2.6x
B-mode 3 1 2.8%
Dedup ratio Performance degradation (D-servers)
GF-R (Global file-level [3 replicas])
2.1 [-1.03 x
B-mode 0 GF+LB-R (Global file- and local block-Ievel [3 replicas])
3.0 [-2.87x
GB-EC (Global block-level [Erasure coding])
6.9 [-6.37 %

ing policies can sustain the loss of two nodes. We use 300
clients spread across 10 nodes and measure the average
GET layer latency across the four production workloads.
Table 3 shows the results normalized to the baseline.

We see that all four performance modes of DupHunter
(B-mode 1, 2, and 3, and S-mode) have better GET layer
performance compared to No-dedup. B-mode 1 and 3
reduce the GET layer latency by 1.6x and 2.8 x, respec-
tively. This is because the prefetch cache hit ratio on
P-servers is 0.98 and a high cache hit ratio significantly
reduces disk accesses. B-mode 3 has the highest GET
layer performance but does not provide any space sav-
ings since each layer in B-mode 3 has three full replicas.
B-mode 1 and 2 maintain only one and two layer replicas
for each layer, respectively. Hence, B-mode 1 has a lower
performance improvement (i.e., 1.6x) than B-mode 2
(i.e., 2.6), but has a higher deduplication ratio of 1.5x.
S-mode lies between B-mode 1 and 2 in terms of the
deduplication ratio and performance. This is because, in
S-mode, popular layers have three layer replicas while
cold layers only have a single replica.

Compared to the above four modes, B-mode 0 has the
highest deduplication ratio because all layer replicas are
deduplicated. Consequently, B-mode 0 adds overhead to
GET layer requests compared to the baseline performance.
As shown in Table 3, if file-level deduplication and 3-way
replication are used, the deduplication ratio of B-mode 0
is 2.1 while the GET layer performance is 1.03 x slower.

If block-level deduplication and block-level compres-
sion are used (GF+LB-R), the deduplication ratio in-
creases to 3.0 while the GET layer performance decreases
to 2.87x. This is because of the additional overhead
added by restoring the layer’s files prior to restoring the
actual layer. Compared to replication, erasure coding
naturally reduces storage space. The deduplication ratio
with erasure coding and block-level deduplication is the
highest (i.e., 6.9). However, the GET layer performance
decreases by 6.37x because to restore a layer, its con-
taining files, which are split into data chunks and spread
across different nodes, must first be restored.

Overall, DupHunter, even in B-mode 0, significantly
decreases the layer restoring overhead compared to the

naive approaches shown in Table | in §3.2. For example,
DupHunter B-mode 0 with VDO (the GF+LB-R scheme)
has a GET layer latency only 2.87 x slower than the base-
line compared to a the VDO-only scheme which is 60x
slower compared to the baseline.

6.3 Cache Effectiveness

Next, we analyze DupHunter’s caching behavior. We first
study the prefetch cache and then the preconstruct cache.

6.3.1 Prefetch cache

To understand how the prefetch cache improves the P-
servers’ performance, we first show its hit ratio com-
pared to two popular cache algorithms: LRU [50] and
ARC [43]. Moreover, we compare DupHunter’s prefetch
cache with another prefetch algorithm, which makes pre-
dictions based on PUT requests [11] (denotes as ARC+P-
PUT). Both of these algorithms are implemented on ARC
since ARC outperforms LRU. DupHunter’s prefetch al-
gorithm, based on user behavior (UB), is denoted as
ARC+P-UB. We vary the cache sizes from 5% to 15%
of each workload’s unique dataset size. Figure 8 shows
the results for the four production workloads (Dal, Syd,
Lon, and Fra).

For a cache size of 5%, the hit ratios of LRU are only
0.59, 0.58, 0.27, and 0.10, respectively. ARC hit ratios are
higher compared to LRU (e.g., 1.6 Lon) because after a
user pulls a layer, the user is not likely to repull this layer
in the future as it is locally available. Compared to LRU,
ARC maintains two lists, an LRU list and an LFU list, and
adaptively balances them to increase the hit ratio.

ARC+P-PUT improves the ARC hit ratio by 1.9x for
Lon. However, ARC+P-PUT only slightly improves the
hit ratio for the other workloads. This is because ARC+P-
PUT acts like a write cache which temporally holds re-
cently uploaded layers and waits for the clients that have
not yet pulled these layers to issue GET requests. This is
not practical because the layer reuse time (i.e., interval
between a PUT layer request and its subsequent GET layer
request) is long. For example, the reuse time is 0.5 hr
for Dal on average based on our observation. Moreover,
ARCH+P-PUT ignores the fact that some clients always re-
pull layers. DupHunter’s ARC+P-UB achieves the high-
est hit ratio. For example, ARC+P-UB’s hit ratio for Dal
is 0.89, resulting in a 4.2x improvement compared to
ARC+P-PUT.

As shown in Figure 8, the hit ratio increases as the
cache size increases. For example, when cache size in-
creases from 5% to 15%, the hit ratio for ARC under
workload Lon increases from 0.44 to 0.6. ARC+P-UB
achieves the highest hit ratio of 0.96 for a cache size of
15% under workload Lon. Overall, this shows that by
exploiting user behavior ARC+P-UB can achieve high
hit ratios, even for smaller cache sizes.

LRU EARC 8ARC+P-PUT @ ARC+P-UB
1
0.8
‘206 7] A
Ehadl’| EiN U U
o VINER CIMEN e / /|
Dal Fra Lon Syd Dal Fra Lon Syd Dal Fra Lon Syd

5% 10% 15%

Figure 8: Cache hit ratio on P-servers with different cache
algorithms.

@ Layer recipe lookup B Slice recipe lookup D@ Slice transfer

@
O Slice compression @ Layer transfer @O Slice concatenation E 1
B Slice packing B Layer loading E.-'O 8
@
No-Dedup =0.6
204
GB-EC E
= 0.2
GF+LB-R =E
° 4
GF-R))
o
&)
0.0001 0.001 0.01 0.1 1 10 =
Latency (s)

=
)

Figure 10: Layer restoring latency break-
down (X-axis is log-scale).

Figure 9 shows the 99" percentile of GET request la-
tencies for P-servers with different cache algorithms. The
GET layer latency decreases with higher hit ratios. For
example, when the cache size increases from 5% to 15%,
the 99" percentile latencies decrease from 0.19st0 0.15 s
for DupHunter’s ARC+P-UB under workload Dal and
the cache hit ratio increases from 0.8 to 0.92. Moreover,
when the cache size is only 5%, ARC+P-UB significantly
outperforms the other 3 caching algorithms. For example,
ARC+P-UB reduces latency by 1.4 x compared to LRU
for workload Fra. Overall, ARC+P-UB can largely im-
prove GET layer performance for P-servers with a small
cache size.

6.3.2 Preconstruct cache

For the preconstruct cache to be effective, layer restoring
must be fast enough to complete within the time window
between the GET manifest and GET layer request.

Layer restoring performance. To understand the layer
restoring overhead, we disable the preconstruct cache
and measure the average GET layer latency when a layer
needs to be restored on D-servers. We evaluate GB-EC,
GB+LB-R, and GF-R and compare it to No-dedup.

We break down the average reconstruction latency
into its individual steps. The steps in layer reconstruction
include looking up the layer recipe, fetching and con-
catenating slices, and transferring the layer. Fetching and
concatenating slices in itself involves slice recipe lookup,
slice packing, slice compression, and slice transfer. No-
dedup contains three steps: layer metadata lookup, layer
loading from disk to memory, and layer transfer.

As shown in Figure 10, GF-R has the lowest layer

GF+LB-R I

GB-EC I

Figure 11: Preconstruct cache hit ratio.

C
o
)

EARC

8 ARC+P-PUT

N
|
N
N
AN

Lon Syd Dal
10%

EARC+P-UB

7

li

Lon Syd Dal
5%

nih

Fra Lon Syd
15%

i

Dal Fra

Fra

Figure 9: 99" percentile GET layer latency of P-servers.

=
]
=
I
m
=

GF-R I =
GF+LB-R I

B GF-R BGF+LB-R 8 GB-EC @ No-Dedup
1.2

GF-R I,
GF+LB-R D=
GB-EC I

GB-EC I %
GF-R I
GF+LB-R I

GB-EC I]
Latency (s)
]
SN A N0 -

]
=
S
=
S
El
»

<z
a

Figure 12: Performance of
D-servers.

restoring overhead compared to GF+LB-R and GB-EC.
It takes 0.44 s to rebuild a layer tarball for GF-R. Com-
pared to the No-Dedup scheme, the GET layer latency of
GF-R increases by 3.1 x. Half of the GET layer latency is
spent on slice concatenation. This is because slice con-
catenation involves writing each slice into a compressed
tar archive, which is done sequentially. Slice packing
and compression are faster, 0.07 s and 0.05 s, respec-
tively, because slices are smaller and evenly distributed
on different D-servers.

For the GF+LB-R scheme, it takes 0.55 s to rebuild
a layer. Compared to GF-R, adding local block-level
deduplication increases the overall overhead by up to
1.4 x due to more expensive slice packing. It takes 0.18 s
to pack a slice into an archive, 2.7 x higher than GF-R’s
slice packing latency as reading files from the local VDO
device requires an additional file restoring process.

The GB-EC scheme has the highest layer restoring
overhead. The bottleneck is again slice packing which
takes 5 s. This is because each file is split into four data
chunks, distributed on different D-servers, and dedupli-
cated. To pack a slice, each involved file needs to be
reconstructed from different D-servers and then written
to a slice archive, which incurs considerable overhead.

Preconstruct cache impact. To understand how the pre-
construct cache improves D-servers’ GET layer perfor-
mance, we first show its hit ratio on D-servers with three
deduplication schemes (GF-R, GF+LB-R, and GF-EC).
The cache size is set to 10% of the unique dataset.
Figure 11 shows the preconstruct cache hit ratio break-
down. Hit means the requested layer is present in the
cache while Wait means the requested layer is in the

EGF-R EGF+LB-R ©GB-EC

Figure 13: Request wait ratio with different number of

clients.

process of preconstruction and the request needs to wait
until the construction process finishes. Miss means the
requested layer is neither present in the cache nor in the
process of preconstruction. As shown in the figure, GF-R
has the highest hit ratio, e.g., 0.98 for the Dal workload.
Correspondingly, GF-R also has the lowest wait and miss
ratios because it has the lowest restoring latency and a
majority of the layers can be preconstructed on time.

Note that the miss ratio of the preconstruct cache is
slightly lower than that of the perfetch cache across all
traces. This is because we use an in-memory buffer to
hold the layer archives that are in the process of construc-
tion to avoid disk I/O. After preconstruction is done, the
layers are flushed to the on-disk preconstruct cache. In
this case, many requests can be served directly from the
buffer and consequently, layer preconstruction does not
immediately trigger cache eviction like layer prefetching.
The preconstruct cache eviction is delayed til the layer
preconstruction finishes.

GF+LB-R shows a slightly higher wait ratio than GF-R.
Eg., the wait ratios for GF-R and GF+LB-R are 0.04 and
0.06, respectively under workload Syd. This is because
the layer restoring latency of GF+LB-R is slightly higher
than GF-R. GB-EC’s wait ratio is the highest. Under
workload Syd, 39% of GET layer requests are waiting for
GB-EC as layers cannot be preconstructed on time.

Figure 12 shows the corresponding average GET layer
latencies of D-servers compared to No-dedup. GF-R and
GF+LB-R increase the latency by 1.04x and 3.1 x, re-
spectively, while GB-EC adds a 5 increase. This is due
to GB-EC’s high wait ratios.

Scalability. To analyze the scalability of the preconstruct
cache under higher load, we increase the number of con-
current clients sending GET layer requests, and measure
the request wait ratio (Figure 13) and the average wait
time (Figure 14).

Under workload Fra and Syd, the wait ratio for GB-
EC increases dramatically with the number of concurrent
clients. For example, the wait ratio increases from 15%
to 28% as the number of concurrent clients increases
from 50 to 300. This is because the layer restore latency
for GB-EC is higher and with more concurrent client
requests, more requested layers cannot be preconstructed
on time. Under workload Lon and Dal, the wait ratio for

Average wait time (s)

o LU LU e LG LD

Figure 14: Average wait time with different number of

cl

ients (Y-axis is log-scale).

GB-EC remains stable. This is because the client requests
are highly skewed. A small number of clients issue the
majority of GET layer requests. Correspondingly, GB-EC
also has the highest wait time. Under workload Fra and
Syd, the average wait time increases from 0.6 sto 1.1 s
and 0.4 s to 1.4 s respectively as the number of clients
increases from 50 to 300 for GB-EC.

Although some layers cannot be preconstructed before
the GET layer requests arrive, the preconstruct cache can
still reduce the overhead because layer construction starts
prior to the arrival of the GET requests. This is shown
by the fact that the wait times are significantly lower
than the layer construction times. For GF-R and GF+LB-
R, the average wait times are only 0.001 s and 0.003
s, respectively under workload Dal. When the number
of concurrent clients increases, the average wait time
of GF-R and GF+LB-R remains low. This means that
the majority of layers can be preconstructed on time for
both GF-R and GF+LB-R, and the layers that cannot be
preconstructed on time do not incur high overhead.

7 Conclusion

We presented DupHunter, a new Docker registry archi-
tecture that provides flexible and high performance dedu-
plication for container images and reduces storage uti-
lization. DupHunter supports multiple configurable dedu-
plication modes to meet different space saving and per-
formance requirements. Additionally, it parallelizes layer
reconstruction locally and across the cluster to further
mitigate overheads. Moreover, by exploiting knowledge
of the application domain, DupHunter introduces a two-
tier storage hierarchy with a novel layer prefetch/pre-
construct cache algorithm based on user access patterns.
DupHunter’s prefetch cache can improve GET latencies
by up to 2.8 x while the preconstruct cache can reduce
the restore overhead by up to 20.9x compared to the
state of the art.

Acknowledgments

We are thankful to the anonymous reviewers and our
shepherd Abhinav Duggal for their valuable feedback.
This work is sponsored in part by the National Science
Foundation under grants CCF-1919113, CNS-1405697,
CNS-1615411, and OAC-2004751.

References

[1] Aliyun Open Storage Service (Aliyun OSS).
https://cn.aliyun.com/product/oss?spm=
5176.683009.2.4.Wma3SL.

[2] Docker. https://www.docker.com/.
[3] Docker Hub. https://hub.docker.com/.

[4] Dockerfile. https://docs.docker.com/
engine/reference/builder/.

[S] Microsoft azure storage. https://azure.
microsoft.com/en-us/services/storage/.

[6] Redis. https://redis.io/.

[7] K. Adams and O. Agesen. A Comparison of Soft-
ware and Hardware Techniques for x86 Virtualiza-
tion. ACM SIGOPS Operating Systems Review,
40(5):2-13, 2006.

[8] Alfred Krohmer. Proposal: Dedupli-
cated storage and transfer of container im-
ages. https://gist.github.com/devkid/
5249ea4c88aab4cTbff1b34c955¢1980.

[9] Amazon. Amazon elastic container registry. https:
//aws.amazon.com/ecr/.

[10] Amazon. Containers on aws. https://aws.
amazon.com/containers/services/.

[11] A. Anwar, M. Mohamed, V. Tarasov, M. Littley,
L. Rupprecht, Y. Cheng, N. Zhao, D. Skourtis, A. S.
Warke, H. Ludwig, D. Hildebrand, and A. R. Butt.
Improving Docker Registry Design Based on Pro-
duction Workload Analysis. In 16th USENIX Con-
ference on File and Storage Technologies (FAST),
2018.

[12] N. Bonvin, T. G. Papaioannou, and K. Aberer. A
Self-organized, Fault-tolerant and Scalable Repli-
cation Scheme for Cloud Storage. In /st ACM Sym-
posium on Cloud Computing (SoCC), 2010.

[13] Btrfs. https://btrfs.wiki.kernel.org/
index.php/Deduplication.

[14] R. S. Canon and D. Jacobsen. Shifter: Containers
for HPC. In Cray User Group, 2016.

[15] Z. Cao, H. Wen, F. Wu, and D. H. Du. {ALACC}:
Accelerating restore performance of data dedupli-
cation systems using adaptive look-ahead window
assisted chunk caching. In /6th {USENIX} Con-
ference on File and Storage Technologies ({FAST}
18), pages 309-324, 2018.

[16] Ceph. https://docs.ceph.com/docs/master/
dev/deduplication/.

[17] Cloud Native Computing Foundation Projects.
https://www.cncf.io/projects/.

[18] B. Compression and Deduplication. https://
tinyurl.com/vgvb7wu.

[19] Datadog. 8 Surprising Facts about Real
Docker Adoption. https://www.datadoghq.
com/docker-adoption/.

[20] Docker. Docker Registry. https://github.com/
docker/distribution.

[21] Docker. Docker Registry HTTP API V2.
https://github.com/docker/distribution/
blob/master/docs/spec/api.md.

[22] DockerSlim. https://dockersl.im.

[23] M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia,
F. Huang, and Q. Liu. Accelerating Restore
and Garbage Collection in Deduplication-based
Backup Systems via Exploiting Historical Infor-
mation. In USENIX Annual Technical Conference
(ATC), 2014.

[24] M. Fu, D. Feng, Y. Hua, X. He, Z. Chen, W. Xia,
Y. Zhang, and Y. Tan. Design Tradeoffs for Data
Deduplication Performance in Backup Workloads.
In 13th USENIX Conference on File and Storage
Technologies (FAST), 2015.

[25] Y. Fu, H. Jiang, N. Xiao, L. Tian, and F. Liu. AA-
Dedupe: An Application-aware Source Dedupli-
cation Approach for Cloud Backup Services in the
Personal Computing Environment. In IEEE Interna-

tional Conference on Cluster Computing (Cluster),
2011.

[26] GNU Tar. Basic Tar Format. https:
//www.gnu.org/software/tar/manual/html_
node/Standard.html.

[27] Google. Google container registry. https://
cloud.google.com/container-registry/.

[28] Google compute engine. Google Compute Engine.
https://cloud.google.com/compute/.

[29] K. Gschwind, C. Adam, S. Duri, S. Nadgowda, and
M. Vukovic. Optimizing Service Delivery with
Minimal Runtimes. In International Conference on
Service-Oriented Computing (ICSOC), 2017.

https://cn.aliyun.com/product/oss?spm=5176.683009.2.4.Wma3SL
https://cn.aliyun.com/product/oss?spm=5176.683009.2.4.Wma3SL
https://www.docker.com/
https://hub.docker.com/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://azure.microsoft.com/en-us/services/storage/
https://azure.microsoft.com/en-us/services/storage/
https://redis.io/
https://gist.github.com/devkid/5249ea4c88aab4c7bff1b34c955c1980
https://gist.github.com/devkid/5249ea4c88aab4c7bff1b34c955c1980
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/containers/services/
https://aws.amazon.com/containers/services/
https://btrfs.wiki.kernel.org/index.php/Deduplication
https://btrfs.wiki.kernel.org/index.php/Deduplication
https://docs.ceph.com/docs/master/dev/deduplication/
https://docs.ceph.com/docs/master/dev/deduplication/
https://www.cncf.io/projects/
https://tinyurl.com/vgvb7wu
https://tinyurl.com/vgvb7wu
https://www.datadoghq.com/docker-adoption/
https://www.datadoghq.com/docker-adoption/
https://github.com/docker/distribution
https://github.com/docker/distribution
https://github.com/docker/distribution/blob/master/docs/spec/api.md
https://github.com/docker/distribution/blob/master/docs/spec/api.md
https://dockersl.im
https://www.gnu.org/software/tar/manual/html_node/Standard.html
https://www.gnu.org/software/tar/manual/html_node/Standard.html
https://www.gnu.org/software/tar/manual/html_node/Standard.html
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://cloud.google.com/compute/

[30]

[31]

[32]

[33]

[34] jdupes.

[35]

[36]

[37]

[38]

[39]

[40]

[41]

T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. Slacker: Fast Dis-
tribution with Lazy Docker Containers. In 14th
USENIX Conference on File and Storage Technolo-
gies (FAST), 2016.

IBM Cloud Kubernetes Service. Ibm cloud ku-
bernetes service. https://www.1ibm.com/cloud/
container-service.

IBM Cloud Kubernetes Service. S3 storage
driver. https://docs.docker.com/registry/
storage-drivers/s3/.

K. Jayaram, C. Peng, Z. Zhang, M. Kim, H. Chen,
and H. Lei. An Empirical Analysis of Similarity in
Virtual Machine Images. In Middleware Industry
Track Workshop, 2011.

https://github.com/jbruchon/
jdupes.

JFrog Artifcatory.
artifactory/.

https://jfrog.com/

K. Jin and E. L. Miller. The Effectiveness of Dedu-
plication on Virtual Machine Disk Images. In In-
ternational Systems and Storage Conference (SYS-
TOR), 2009.

D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin. Consistent Hashing and
Random Trees: Distributed Caching Protocols for
Relieving Hot Spots on the World Wide Web. In
29th Annual ACM Symposium on Theory of Com-
puting (STOC), 1997.

K. Kumar and M. Kurhekar. Economically Efficient
Virtualization over Cloud Using Docker Contain-
ers. In IEEE International Conference on Cloud
Computing in Emerging Markets (CCEM), 2016.

M. Lillibridge, K. Eshghi, and D. Bhagwat. Im-
proving Restore Speed for Backup Systems that
use Inline Chunk-based Deduplication. In //th
USENIX Conference on File and Storage Technolo-
gies (FAST), 2013.

M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deola-
likar, G. Trezise, and P. Camble. Sparse Indexing:
Large Scale, Inline Deduplication Using Sampling
and Locality. In 7th USENIX Conference on File
and Storage Technologies (FAST), 2009.

M. Littley, A. Anwar, H. Fayyaz, Z. Fayyaz,
V. Tarasov, L. Rupprecht, D. Skourtis, M. Mohamed,
H. Ludwig, Y. Cheng, and A. R. Butt. Bolt: Towards
a Scalable Docker Registry via Hyperconvergence.

(42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

[52]

In IEEE International Conference on Cloud Com-
puting (CLOUD), 2019.

M. Lu, D. Chambliss, J. Glider, and C. Constan-
tinescu. Insights for Data Reduction in Primary
Storage: A Practical Analysis. In International
Systems and Storage Conference (SYSTOR), 2012.

N. Megiddo and D. S. Modha. ARC: A Self-
Tuning, Low Overhead Replacement Cache. In
2nd USENIX Conference on File and Storage Tech-
nologies (FAST), 2003.

D. Meister, J. Kaiser, A. Brinkmann, T. Cortes,
M. Kuhn, and J. Kunkel. A Study on Data Dedupli-
cation in HPC Storage Systems. In International
Conference on High Performance Computing, Net-
working, Storage and Analysis (SC), 2012.

D. Meister, J. Kaiser, A. Brinkmann, T. Cortes,
M. Kuhn, and J. Kunkel. A Study on Data Dedupli-
cation in HPC Storage Systems. In International
Conference on High Performance Computing, Net-
working, Storage and Analysis (SC), 2012.

Microsoft. Azure container registry.
https://azure.microsoft.com/en-us/
services/container-registry/.

Microsoft Azure.
com/en-us/.

https://azure.microsoft.

A. Muthitacharoen, B. Chen, and D. Mazieres. A
Low-bandwidth Network File System. In ACM
SIGOPS Operating Systems Review, volume 35,
2001.

M. Oh, S. Park, J. Yoon, S. Kim, K. Lee, S. Weil,
H. Y. Yeom, and M. Jung. Design of global data
deduplication for a scale-out distributed storage sys-
tem. In 2018 IEEE 38th International Conference
on Distributed Computing Systems (ICDCS), pages
1063-1073, 2018.

E. J. O’Neil, P. E. O’Neil, and G. Weikum. The
LRU-K page replacement algorithm for database
disk buffering. Acm Sigmod Record, 22(2):297-306,
1993.

OpenStack Swift storage driver. Openstack
swift storage driver. https://docs.docker.com/
registry/storage-drivers/swift/.

J. Paulo and J. Pereira. A survey and classification
of storage deduplication systems. ACM Computing
Surveys (CSUR), 47(1):11, 2014.

https://www.ibm.com/cloud/container-service
https://www.ibm.com/cloud/container-service
https://docs.docker.com/registry/storage-drivers/s3/
https://docs.docker.com/registry/storage-drivers/s3/
https://github.com/jbruchon/jdupes
https://github.com/jbruchon/jdupes
https://jfrog.com/artifactory/
https://jfrog.com/artifactory/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
https://docs.docker.com/registry/storage-drivers/swift/
https://docs.docker.com/registry/storage-drivers/swift/

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

J. S. Plank, M. Blaum, and J. L. Hafner. Sd codes:
erasure codes designed for how storage systems
really fail. In FAST, pages 95-104, 2013.

V. Rastogi, D. Davidson, L. De Carli, S. Jha, and
P. McDaniel. Cimplifier: Automatically Debloating
Containers. In 11th Joint Meeting on Foundations
of Software Engineering (FSE), 2017.

Redis. SETNX. https://redis.io/commands/
setnx.

I. S. Reed and G. Solomon. Polynomial codes
over certain finite fields. Journal of the society for
industrial and applied mathematics, 8(2):300-304,
1960.

P. Shilane, R. Chitloor, and U. K. Jonnala. 99 dedu-
plication problems. In 8th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage
16), Denver, CO, June 2016. USENIX Association.

H. Shim, P. Shilane, and W. Hsu. Characterization
of Incremental Data Changes for Efficient Data Pro-
tection. In USENIX Annual Technical Conference
(ATC), 2013.

D. Skourtis, L. Rupprecht, V. Tarasov, and
N. Megiddo. Carving Perfect Layers out of Docker
Images. In 11th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud), 2019.

R. P. Spillane, W. Wang, L. Lu, M. Austruy,
R. Rivera, and C. Karamanolis. Exo-clones: Better
Container Runtime Image Management Across the
Clouds. In 8th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage), 2016.

K. Srinivasan, T. Bisson, G. R. Goodson, and
K. Voruganti. iDedup: latency-aware, inline data
deduplication for primary storage. In 10th USENIX
Conference on File and Storage Technologies
(FAST), 2012.

Z. Sun, G. Kuenning, S. Mandal, P. Shilane,
V. Tarasov, N. Xiao, and E. Zadok. A Long-Term
User-Centric Analysis of Deduplication Patterns. In
32nd International Conference on Massive Storage
Systems and Technology (MSST), 2016.

V. Tarasov, D. Jain, G. Kuenning, S. Mandal,
K. Palanisami, P. Shilane, S. Trehan, and E. Zadok.

[64]

[65]

[66]

[67]
[68]

[69]

[70]
[71]

[72]

(73]

[74]

Dmdedup: Device Mapper Target for Data Dedupli-
cation. In Ottawa Linux Symposium, 2014.

V. Tarasov, L. Rupprecht, D. Skourtis, A. Warke,
D. Hildebrand, M. Mohamed, N. Mandagere, W. Li,
R. Rangaswami, and M. Zhao. In Search of the
Ideal Storage Configuration for Docker Containers.
In 2nd IEEE International Workshops on Founda-
tions and Applications of Self* Systems (FAS*W),
2017.

J. Thalheim, P. Bhatotia, P. Fonseca, and B. Kasikci.
Cntr: Lightweight OS Containers. In USENIX An-
nual Technical Conference (ATC), 2018.

A. Upadhyay, P. R. Balihalli, S. Ivaturi, and S. Rao.
Deduplication and compression techniques in cloud
design. In 2012 IEEE International Systems Con-
ference SysCon 2012, pages 1-6. IEEE, 2012.

Vdo. https://github.com/dm-vdo/vdo.

G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smal-
done, M. Chamness, and W. Hsu. Characteristics
of Backup Workloads in Production Systems. In
10th USENIX Conference on File and Storage Tech-
nologies (FAST), 2012.

E. Wolff. Microservices: Flexible Software Archi-
tecture. Addison-Wesley Professional, 2016.

ZFS. https://en.wikipedia.org/wiki/ZFS.

F. Zhao, K. Xu, and R. Shain. Improving Copy-on-
Write Performance in Container Storage Drivers.
In Storage Developer Conference (SDC), 2016.

N. Zhao, V. Tarasov, H. Albahar, A. Anwar, L. Rup-
precht, D. Skourtis, A. S. Warke, M. Mohamed, and
A. R. Butt. Large-scale analysis of the docker hub
dataset. In IEEE International Conference on Clus-
ter Computing (Cluster), 2019.

R. Zhou, M. Liu, and T. Li. Characterizing the
efficiency of data deduplication for big data storage
management. In IEEFE International Symposium on
Workload Characterization (IISWC), 2013.

B. Zhu, K. Li, and R. H. Patterson. Avoiding the
Disk Bottleneck in the Data Domain Deduplication
File System. In 6th USENIX Conference on File
and Storage Technologies (FAST), 2008.

https://redis.io/commands/setnx
https://redis.io/commands/setnx
https://github.com/dm-vdo/vdo
https://en.wikipedia.org/wiki/ZFS

	Introduction
	Background and Related Work
	Docker Registry
	Deduplication

	Motivating Observations
	Redundancy in Container Images
	Drawbacks of Existing Technologies
	Predictable User Access Patterns

	DupHunter Design
	Overview
	Deduplicating Layers
	Restoring Layers
	Caching and Preconstructing Layers
	Discussion

	Implementation
	Evaluation
	Evaluation Setup
	Deduplication Ratio vs. Performance
	Cache Effectiveness
	Prefetch cache
	Preconstruct cache

	Conclusion

