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Abstract

Fast and effective image compression for multi-
dimensional images has become increasingly important for
efficient storage and transfer of massive amounts of high-
resolution images and videos. Desirable properties in com-
pression methods include (1) high reconstruction quality at
a wide range of compression rates while preserving key local
details, (2) computational scalability, (3) applicability to a
variety of different image/video types and of different dimen-
sions, and (4) ease of tuning. We present such a method for
multi-dimensional image compression called Compression
via Adaptive Recursive Partitioning (CARP). CARP uses
an optimal permutation of the image pixels inferred from a
Bayesian probabilistic model on recursive partitions of the
image to reduce its effective dimensionality, achieving a par-
simonious representation that preserves information. CARP
uses a multi-layer Bayesian hierarchical model to achieve
self-tuning and regularization to avoid overfitting—resulting
in one single parameter to be specified by the user to achieve
the desired compression rate. Extensive numerical experi-
ments using a variety of datasets including 2D ImageNet,
3D medical image, and real-life YouTube and surveillance
videos show that CARP dominates the state-of-the-art com-
pression approaches—including JPEG, JPEG2000, MPEG4,
and a neural network-based method—for all of these dif-
ferent image types and often on nearly all of the individual
images.

1. Introduction

Image compression is a long-standing, fundamental prob-
lem in computer vision and image processing, and is key
to efficient storage and transfer of the vast amount of high-
resolution images and videos that are routinely collected in
a variety of applications. Efficient compression relies on
parsimonious representations of images that preserve im-
portant spatial and contextual features. Standards such as
JPEG and JPEG2000 utilize fixed, deterministic linear func-
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tion transforms, such as wavelets, followed by optimized
encoding under such transforms. These approaches give ex-
cellent stability and scalability in practical implementation,
and require little training and tuning. However, they lack
adaptivity to image-specific features and as such achieve
only suboptimal compression efficiency. The more recent
convolutional neural network (CNN) based approaches uti-
lize much more flexible, nonlinear transformations of the
original image. This additional flexibility often leads to im-
proved compression efficiency, but at the same time leads
to substantially more extensive training and tuning of the
methods.

We aim to strike a middle ground between these two ap-
proaches by introducing a Bayesian probabilistic modeling
strategy for incorporating adaptivity to image features into
the wavelet transform based image processing framework,
while maintaining its computational scalability and ease of
tuning. Instead of using fixed wavelet transforms, we treat
the transform as an unknown latent quantity and learn an
optimal transform by placing a Bayesian prior on the space
of such transforms induced by random recursive partition-
ing on the image and compute the maximum a posteriori
(MAP) estimate of the transform under our model. A com-
pressed image can then be produced under the inferred trans-
form that tailors to image-specific features. Moreover, such
computation is as efficient as the classical wavelet-based
methods—scaling linearly with the size of the image.

Aside from achieving excellent compression efficiency
(to be demonstrated in our numerical experiments), our
method, called Compression via Adaptive Recursive Par-
titioning (CARP), enjoys two additional advantages. First, it
is directly applicable to images of different dimensions with-
out modification, making it readily applicable to a variety
of image/video types. Second, it does not require a sepa-
rate training stage on external data and involves minimal
tuning. The Bayesian hierarchical modeling strategy uses
hyperpriors on the parameters to allow automatic tuning on
those parameters, leaving only one free parameter for the
user to specify, which corresponds directly to the desired
compression rate of the image. This makes CARP very easy
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Figure 1. Performance summary of CARP and competitors in four databases consisting of still images (2D and 3D) and videos. Each plot
presents the peak-signal-to-noise-ratio (PSNR) at various compression ratios for each method. Details are given in Section 4.

to use, especially by common users, without requiring expert
knowledge of the underlying method.

To validate the efficiency and robustness of our method,
we use a variety of benchmark databases to compare CARP
with several state-of-the-art compression methods for 2D
and 3D images. Figure 1 summarizes the average per-
formance on four image/video types, and in all of them
CARP dominates the state-of-the-art competitors—including
JPEG, JPEG2000, End-to-End deep learning (E2E-DL) and
MPEG4. We note that in Figure 1(a) the average PSNRs are
calculated over a subset of 70 images from the ImageNet
on which the methods being compared are able to achieve
a wide range of compression ratios (from 15 to 35). Also,
we have used a pre-trained model for E2E-DL [5], and so
part of the substantial performance gap between E2E-DL
from other methods could be narrowed had the CNNs been
trained on images that are particularly suited for the Ima-
geNet database. The code for average performance is also
available on Github for reproducibility. In Section 4 we
present more detailed numerical results that compare the
image-specific performance of the methods, which show that
CARP in fact often dominates the competitors in nearly all
of the individual images we have examined.

2. Related work

For 2D images, perhaps the most well-known image
compression algorithms are JPEG [23] and its successor
JPEG2000 [21]. The JPEG standard uses a discrete cosine
transform (DCT) on each 8 by 8 small block of pixels. A
quantization table is applied, and Huffman encoding is used
on DCT blocks for compression. Compared to the JPEG
standard, JPEG2000 uses a multiscale orthogonal wavelet
decomposition with arithmetic coding. However, both JPEG
and JPEG2000 are suboptimal for image compression [14]
due to non-adaptive image transformation and a separate
optimization on codecs.

Besides JPEG and JPEG2000, there is a growing litera-
ture in developing deep learning-based methods [15, 5, |,

, 4, 18] for image compression. Among these methods,
end-to-end deep learning-based approaches are particularly
appealing, which go directly from the input to the desired out-
put with optimized codecs [5, 14]. For example, a pre-trained
model over a database of training images was proposed in
[5] with all the required components for end-to-end imple-
mentation, including a nonlinear analysis transformation, a
uniform quantizer, and a nonlinear synthesis transformation.

Videos have a different structure than 2D images due
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to the extra temporal dimension. Although a video can be
compressed frame by frame by some existing 2D image com-
pression methods (e.g., JPEG and JPEG2000), the critical
temporal redundancy is undesirably ignored. Thus, most
video compression algorithms in Moving Picture Experts
Group (MPEG) [24] exploit both spatial and temporal re-
dundancy. For example, MPEG-4 absorbs many features
of different standards using both DCT and motion compen-
sation [7] techniques to achieve this goal. In addition, to
reach a higher compression ratio, MPEG-4 only stores and
encodes the inter-frame changes instead of the entire orig-
inal frame. However, the redundancy detection strategy in
MPEG-4 is localized to capturing the difference of adjacent
frames, and thus might be not globally optimal and hurdle a
more efficient compression.

Recursive partitioning induces a permutation of the pixels
and has been used previously in other applications. In partic-
ular, [3] adopts peak transform to obtain spatial permutation.
[13] uses random recursive partitioning to induce a prior on
the permutations of image pixels, leading to an effective al-
gorithm for image denoising using posterior Bayesian model
averaging. In this work we use random recursive partition-
ing to induce a probability model on wavelet transforms, but
instead aim at learning an optimal transform to represent the
image thereby achieving efficient compression.

3. Method
3.1. CARP: The framework

In this paper, we develop a framework for Compression
via Adaptive Recursive Partitioning (CARP). CARP uses
an optimal permutation of the image pixels inferred from a
Bayesian probabilistic model to reduce the dimensionality
of an m-dimensional image, thereby achieving a parsimo-
nious representation that effectively preserves information.
Because the space of all permutations is massive and only
those permutations that preserve spatial features in an im-
age can provide efficient representations, CARP utilizes a
Bayesian prior on the space of permutations induced by ran-
dom recursive partitioning along a bifurcating tree. This
random recursive partitioning incorporates a pruning option
to probabilistic terminate the partitioning within the partition
blocks where the pixel intensities are similar enough. The
maximum a posteriori (MAP) estimate, i.e., the posterior
mode of the posterior distribution on the recursive partition-
ing, produces a representative permutation (or vectorization)
of the image pixels that can be readily fed into encoding
methods to generate compressed representation, followed
by the corresponding decoder to reconstruct the compressed
image. In this work, we use the 1D discrete wavelet trans-
form (DWT) and Huffman symbol encoding algorithm as
the encoder, and use the inverse DWI and Huffman symbol
decoding algorithm as the decoder.

Figure 2 presents the workflow of CARP, where the two
black boxes pinpoint the key techniques used in CARP. We
next describe details of the pipeline of CARP, annotated by
a toy example given by the 4 by 4 image in Figure 2 (also
plotted at the top of Figure 3) to ease demonstration.

Input CARP takes an m-dimensional image y observed at
an m-dimensional rectangular “pixel” space €2 of the form

Q=[0,n1 —1) x[0,ng — 1] X -+ X [0, 7y, — 1],

where the notation [a, b] is the set {a,a + 1,...,b} for two
integers a and b with a < b. This means CARP can be
readily applied to images of various dimensions including
but not limited to 2D still images and 3D videos. Without
loss of generality, we assume n; = 2”¢ in the ith dimension
fori =1,2,...,m; an image of general size can be upsized
to such dimensions through padding. The total number of
pixels is n = 27, where J = """ | J;. In our toy example
in Figure 3, we have m = 2, J; = Jo = 2,and J = 4.

The effectiveness of the compression highly depends on
the representation power of the transform in use, especially
its adaptivity to local and spatial features in an image. In
CAREP, this is achieved by a Bayesian probabilistic modeling
strategy, where adaptivity to image features is incorporated
into a wavelet transform based multiscale image processing
framework. In particular, we use random recursive parti-
tioning on {2 to induce models on wavelet transforms that
incorporate such adaptivity. In the following section, we
describe some basic concepts related to recursive dyadic par-
titioning, which will form the building blocks for the model
used in CARP.

3.2. Recursive dyadic partitioning

While multiscale wavelet transforms enjoy excellent scal-
ability, a deterministic transform may fail to efficiently adapt
to the rich spatial and local features present in a multi-
dimensional image. We enrich the representation power
and effectiveness of wavelets by a convolution between a
classic 1D wavelet transform and a class of permutation of
the index space (2 of the pixels.

Considering all n! permutations of pixels in €2 is not only
computationally prohibitive but wasteful as well because the
vast majority of permutations ignores the spatial features in
the image. In CARP, we only consider the class of permuta-
tions induced by a recursive dyadic partitioning (RDP) on
2, which includes a rich class of permutations for effective
representation of the image while allowing scalable learning
of the optimal permutation among this class—with compu-
tational complexity O(n). An RDP on €2, denoted by 7 as
it is essentially a bifurcating tree, consists of a sequence of
nested partitions on €2, i.e., 7 = U}I:OTj with the partition
T being the set of all blocks at level j for j = 0,...,.J.
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Figure 2. The workflow of CARP.

From now on we shall refer to the partition blocks as “nodes”
in the partition tree 7. Two children nodes are formed by di-
viding a parent node into two halves in one of its dimensions,
and 7/ consists of the leaf nodes, each of which contains a
single element in 2. Note that each RDP induces a unique
permutation of €2, with the order of the pixels given by the
binary coding sequence tracking the left/right children that
each pixel belongs to along the corresponding branch in the
tree. Figure 3 shows one RDP from Level 0 (£2) down to
Level 4, where all pixels at Level 4 are ordered according to
the induced permutation of ().

3.3. Bayesian modeling of RDPs

We use a hierarchical Bayesian model to adaptively learn
an optimal RDP through maximizing the posterior distribu-
tion. To this end, we adopt a generative distribution called
“random RDP” (RRDP) proposed in [25, 16, 13] as the prior
on the RDP. For any node A in 7, RRDP specifies the proba-
bility of partitioning A in its ith dimension fori = 1,...,m
using a vector-valued hyperparameter A(A). We use A to
collect all these parameters and indicate with 7 ~ RRDP(A)
the distribution of RRDP. By default, we set the value of A
to be such that all divisible dimensions of each A have equal
probability to be divided.

3.4. Pruning by Markov-tree wavelet regression

Each RDP turns the pixel space {2 into a vector of the
same length as the number of pixels. To achieve a parsi-
monious image representation, the next component of our
model aims at pruning the RDP tree in nodes where the
pixel intensities are similar enough. To this end, we use
wavelet shrinkage to achieve the desired pruning. In partic-
ular, given an RDP, we adopt a wavelet regression model
as the data generative mechanism for the image. There is a
rich literature on how to effectively carry out thresholding
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- Reconstruction - |
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Figure 3. Toy example to demonstrate
RDP and pruning: the partition tree is ob-
tained by MAP.

Level 2
N .
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and shrinkage on the wavelet coefficients [&, 9, 6, 12, 19],
and we shall use a Bayesian wavelet regression model with
a Markov tree prior on the wavelet coefficients to achieve
adaptive shrinkage [10]. An important benefit of adopting a
Bayesian model for the image given the RDP is that we can
now combine it with our Bayesian model on the RDPs to
form a coherent hierarchical model, allowing inference to be
carried out in a principled manner (through maximizing the
posterior distribution) without ad hoc strategies to “stitching”
together separate algorithmic pieces.

Specifically, conditional on an RDP tree 7 and following
an application of Haar wavelet transform to the vectorized
image under 7, the Bayesian wavelet regression model is as
follows

Wik = Zjk + Ujk (1
) ~ind 50() iijJ(; =0or2
Zae | S ™ { Normal(0, 7702 ifs,, =1 @

forj=0,1,...,J—landk =0,1,...,27 — 1. Here w; s,
Zj k> Uj,k are the kth wavelet coefficient, signal, and “noise”
at the jth scale in the wavelet domain, respectively. The
ternary latent state variable S}, indicates whether z; ;, is
from dy(-) (a point mass at 0) if S; , = 0 or 2, or a normal
distribution with mean 0 and variance 770 if Sj; = 1.
To achieve adaptive pruning, we model S;; jointly by a
Markov tree model [10] such that if S;_; |x/2) = 2 then
Sjr = 2 with probability 1. Thus S;; = 2 is an “ab-
sorbing state” representing the pruning of a branch of 7.
If S;_1,|k/2) # 2 then S; = (0,1,2) with probabilities
(i (L =), (1 = pj) (1 = mj k), mjik), respectively. We
assume u; ; ~ N(0,0?%) independently across j and k. In
the context of compressing noiseless images, the “noise’
term u; ;, quantifies the extent of local variations in pixel
intensities to which one ignores in the compressed image,
and therefore its standard deviation o becomes a parameter

>
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for setting how aggressively (in terms of the compression
ratio) one wants to compress the image through pruning the
tree. This will be the only parameter the user will set.

3.5. Posterior inference

For image compression, we need to find a single repre-
sentative RDP that most effectively represent features in the
image. To this end, we maximize the posterior probability
of T based on its marginal posterior distribution. In other
words, we aim to find the maximum a posteriori (MAP)
estimate for 7, which we denote as T.

To this end, we first need to find the marginal posterior
distribution for 7. It turns out that under the above model,
the posterior of 7 is conjugate—it is still an RRDP distri-
bution, but with updated posterior selection probabilities, 5\,
where we use tilde to indicate the posterior updated values
for the parameters A. Theorem 1 of [13] provides an exact
forward-backward algorithm for analytically computing the
values for X with computational complexity O(n). Finally,
based on the marginal posterior, we compute the MAP tree T
by standard bottom-up dynamic programming, which again
incurs complexity O(n).

3.6. Encoder/decoder and compressed structures

Given the permutation of the original image induced by
7", under which the order of each pixel is given by binary
coding of the branch under 7 to which each pixel belongs,
we have a vectorization of the original image. Within a
pruned node, the ordering of the pixels is arbitrary. At this
point, one has the flexibility of choosing the favorite encoder
and decoder of this vectorized image. In our following
numerical experiment, we use the 1D Haar DWT and a
symbol encoder as the encoder part while a symbol decoder
and the inverse DWT as the decoder part, respectively, due
to their computational scalability. For the symbol encoder,
we adopt the Huffman encoding method to reduce coding
redundancy. Specifically, the Huffman table is derived from
the estimated probability or frequency of occurrence for
each possible value of the source symbol. Furthermore, the
reduced symbols are stored as the compressed representation,
and the Huffman table is also used in the decoder part to
perform the inverse operation of symbol encoder.

3.7. Empirical Bayes for setting hyperparameters

We specify the parameters p; 1, 7; 1, and 1); ;. by reparam-
eterizing them using five hyperparameters («, 3, C, 79, 10):
Pjk = min(l, CQiBj), Tjk = 270(]’7_0’ and N,k = 10- We
use an empirical Bayes strategy to set the hyperparameters
by maximizing the marginal likelihood over a grid. We ob-
serve that specifying the hyperparameters at fixed values
eliminates the need of computing maximum likelihood with-
out sacrificing compression efficiency much. As such our
software allows both options. Under either option, a user

just needs to specify a single parameter ¢ to obtain images
at desired compression ratios when applying CARP.

4. Experiments

In this section, we compare CARP with several state-of-
the-art compression methods using a variety of benchmark
databases, including still images (2D and 3D) and videos of
low and high resolutions. In particular, we use 2D natural im-
ages from the ImageNet database [ | 1], a 3D brain image [17],
a YouTube video dataset from [2], and a surveillance video
dataset from [22]. Specifically, CARP package is available
at Github: https://github.com/xylimeng/CARP.
CARP and its software implementation are readily applica-
ble to all these types of images, while the competitors may
tailor to images of a particular dimension. We thus compare
CARP with a different batch of methods depending on the
image type. In this section, we opt for fixed hyperparameters
for simplicity. In particular, we use « = 0.5, = 1,C' =
0.05,79 = 1/0,and g = 0.4.

4.1. Still images: 2D ImageNet Images

We compare CARP with popular compression methods
designed for 2D images, including JPEG, JPEG2000, 2D
wavelet transformation, and a deep learning method. For the
deep learning method, we adopted a pre-trained end-to-end
optimized image compression method (‘E2E-DL’) in [5]. We
also include a compression method termed ‘1D-JPEG2000°,
where JPEG2000 is applied to a vectorized 1D vector column
by column. While 1D-JPEG2000 is not a standard approach
for image compression, its comparison with CARP quantifies
the performance gain by using adaptive vectorization that
serves as a central technique in our CARP method.

The Fall 2011 release of the ImageNet database [11]
consists of 14,197,122 urls. We here randomly select 100
images of 512 by 512 to test each method and all these 100
images are provided in the Github. Some of the 2D images
are presented in Figure 4.

To assess each method, we use the peak signal-to-noise
ratio (PSNR) of the reconstructed images at various compres-
sion ratios, which is further supplemented by visual compar-
ison. Specifically, at various compression ratios, each 2D
image is compressed and reconstructed, then the PSNR is
calculated using the reconstructed image. Figure 1(a) shows
CARP gives the best average PSNR at all compression ratios.
Figure 5 plots the PSNR ratio curve between each alternative
method and CARP—with values under 1 indicating CARP
outperforms the competitor—for all 100 individual images
as well as the PNSR curve for CARP for all 100 images.
CARP almost uniformly outperforms all of the five competi-
tors for nearly all individual images and at all compression
ratios up to 300 at which we are able to apply the competitor,
except on a handful of images for JPEG and JPEG2000 at
very low compression ratios. For this database, E2E-DL un-
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Figure 4. A subset of 2D images from the ImageNet dataset.

derperforms CARP substantially, but we acknowledge that
part of the substantial performance gap could be narrowed
had the CNNs been trained on images that are particularly
suited for the ImageNet database. Like JPEG and JPEG2000,
CARP does not require external pre-training and is applica-
ble for compressing any single image; moreover, the user
does not need to specify any tuning parameter other than o,
which is equivalent to specifying the compression ratio.

The locally adaptive nature of CARP enhances its ability
to preserve local details in the images. As an illustration,
we visualize reconstructions with a particular focus on de-
tailed features in an image using one selected image, the
bird image, in Figure 6. The region of interest is marked
in the original image, and we present zoom-in views of the
interesting region in the reconstructed images from six differ-
ent methods (compression ratio is set to 30). CARP, JPEG,
and JPEG2000 clearly outperform the other three methods
(wavelet, E2E-DL, and 1D-JPEG2000) overall. A further
zoom-in into the head region of the bird shows that CARP
preserves the most details among all methods.

4.2, Still image: 3D brain image

We use a 3D magnetic resonance imaging (MRI) dataset
of size 64 x64 x64 [17] accessed from MATLAB to illustrate
CARP in 3D settings. The middle slice in each of the three
directions (axial view, sagittal view, and coronal view) are
presented in the first row of Figure 7.

CARRP is directly applicable to 3D images with no modi-
fication, whereas JPEG and JPEG2000 are not directly ap-
plicable to 3D images. We adapt JPEG and JPEG2000 slice-
by-slice to compress 3D volumes, where each slice of the
3D image is compressed and then combined to form a 3D
compression. The PSNR curves in Figure 1(b) shows that
CARP dominates the other two methods for all compression
ratios (up to 30). This is expected as CARP is not only
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E2E-DL, 1D-JPEG2000 relative to CARP in (b)—(f), respectively.
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more efficient in compressing single slices but also enables
information sharing across slices.

Figure 7 shows the reconstructed images via CARP, JPEG,
and JPEG2000 of the same slices in the original image. The
zoomed region in the last column in the coronal view shows
CARP preserves substantially more details in the reconstruc-
tion compared to JPEG and JPEG2000.

4.3. YouTube video dataset

We use the YouTube dataset in [2], which consists of
instructional videos for five different tasks including making
a coffee, changing a car tire, performing cardiopulmonary
resuscitation (CPR), jumping a car and repotting a plant.
The dataset has 150 videos with an average length of about
4,000 frames (or 2 minutes). Here we randomly select 20
videos from each task totaling 100 videos. Some frames
of the sampled videos are displayed in Figure 8. Note that
these YouTube videos have a low resolution of 256 by 256,
and thus they favor the MPEG-4 standard as MPEG-4 is
optimized at low bit-rate video communications [20].

CARP is applicable for streaming data by taking the en-
tire video as input, treating time as an additional dimen-
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Figure 8. Selected frames of videos in the YouTube dataset.

sion, thus constituting a genuine video compression method
like MPEG-4. In addition to the popular MPEG-4 standard

for video compression, we also consider using JPEG and
JPEG2000 through a frame-by-frame compression as in Sec-
tion 4.2. Figure 9 presents the PSNR ratio curves (alternative
methods over CARP) at various compression ratios for all the
100 videos, as well as the PSNR curve of CARP. CARP sub-
stantially outperforms methods of JPEG and JPEG2000 for
nearly all individual videos at all compression ratios. CARP
is better than MPEG-4 on all videos when the compression
ratio is smaller than 10; for compression ratios between 10
and 20, MPEG-4 and CARP each performs better at a subset
of the videos; for compression ratios above 20, CARP in-
creasingly outperforms MPEG-4 at more videos. Moreover,
CARP never underperforms MPEG-4 much on any individ-
ual image with the maximum PSNR ratio around 1.1. We
note again that all the videos are at a low resolution that
substantially favors MPEG-4. Overall, CARP gives better
average PSNR than MPEG-4 at all compression ratios, as
shown in Figure 1(c).

For visual comparison, we select a video from the “replot-
ting a plant” task and compare one frame of the reconstructed
video to that of the original one in Figure 10. The zoomed
region shown in the bottom row shows that the reconstructed
frame via CARP captures most details in the original frame
(e.g., the words on the label), while the regions reconstructed
via the other three methods are more blurry.

4.4. Video: Surveillance video dataset

We next investigate the performance of CARP on higher-
resolution videos through a surveillance video dataset [22],
where each video has a resolution of 1024 by 1024. We
randomly select one surveillance video for a parking lot,
shown in Figure 11. We divide the entire video into 180
segments of equal length to help assess the longitudinal
variability of compression performances of each method and
reduce the computational time of each method.

Figure 12 plots the PSNR ratio curves (alternative method
over CARP) among all the 180 videos as well as the PSNR
curve for CARP at various compression ratios. We can see
that CARP gives the best PSNRs uniformly for all videos at
all compression ratios (up to 300).

For visual comparison, we randomly select one video and
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Figure 9. YouTube videos: PSNR curves of CARP for 100 videos
in (a) and PSNR ratio curves of JPEG, JPEG200, MPEG-4 relative
to CARP in (b)—(d), respectively.
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Figure 10. One frame of reconstructed YouTube videos. Left to
right: original, CARP, JPEG, JPEG2000, and MPEG-4. Compres-
sion ratio is set to 30.
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Figure 11. Selected frames from the surveillance video.

compare one frame of reconstructed videos. Figure 13 shows
the original frame and reconstructed frames by CARP, JPEG,
JPEG2000, and MPEG-4, when the compression ratio is set
to 30. The zoomed region is the shadow area at the top-right
corner in the original frame, shown in the bottom row. In
comparison, the reconstructed frame via CARP captured
most details of the region in the original frame, while the
regions reconstructed via the other three methods are more
blurry (e.g., the edge of the yellow arrow).

5. Discussion

CARP uses a principled Bayesian hierarchical model to
learn an optimal permutation on the image space, which
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Figure 12. Surveillance video: PSNRs of CARP for 180 images in
(a) and PSNR ratio curves for JPEG, JPEG200, MPEG-4 relative
to CARP in (b)—(d), respectively.

Original CARP JPEG

Figure 13. Surveillance video: the comparison of reconstructed
surveillance video among four different methods when compression
ratio is set to 30.

effectively allows adaptive wavelet transforms on the im-
age. It is computationally efficient in that it scales linearly
with the number of pixels of an image. Currently for the
2D ImageNet data, the average computation time under our
implementation of CARP, without any parallel computing,
is around 3.17 second/image, while 0.82 second/image for
JPEG, 0.40 second/image for JPEG2000, 0.33 second/image
for Wavelet, 88.75 second/image for E2E-DL, and 0.44 sec-
ond/image for 1D-JPEG2000, tested on a Macbook pro with
2.2 GHz Intel Core i7 processor. The computing time of
CARP can be further reduced with more optimized imple-
mentation. In particular, one main computational task in
CARP is to compute the marginal likelihood of the wavelet
regression model on each node in the partition tree, which
can be parallelized over the nodes in the partition tree. We
plan to implement a GPU parallelized version of CARP in
the future to achieve substantial speedup.
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