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Abstract. In this paper, we investigate the planar dynamic pivoting
problem, in which a pinched object is reoriented to a desired pose through
wrist swing motion and grip force regulation. Traditional approaches
based on friction compensation do not work well for this problem, as
we observe the torsional friction at the contact has large uncertainties
during pivoting. In addition, the discontinuities of friction and the lower
bound constraint on the grip force all make dynamic pivoting a chal-
lenging task for robots. To address these problems, we propose a robust
control strategy that directly uses friction as a key input for dynamic
pivoting, and show that active friction control by regulating the grip
force significantly improves system stability. In particular, we embed a
Lyapunov-based control law into a quadratic programming framework,
which also ensures real-time computational speed and the existence of a
solution. The proposed algorithm has been validated on our dynamic piv-
oting robot that emulates human wrist-finger configuration and motion.
The object orientation can quickly converge to the target even under con-
siderable uncertainties from friction and object grasping position, where
traditional methods fail.
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1 Introduction

Compared with humans, robots have limited dexterity. In particular, certain
tasks that are simple for humans can be quite challenging for robots. Beyond
the dexterity of human hand, one important advantage of human manipulation is
the use of a richer set of force resources (extrinsic dexterity [1]), including gravity,
inertial forces, contact forces and friction. One such example is regrasping - to
shift an object from one grasp pose to another. For robots, a common solution
is to put the object on the ground or in a fixture, then move the robot hand to
the desired pose and grasp again. The human hand, however, often employs a
more direct approach: in-hand regrasp through arm, wrist, and finger motions
without breaking contact.

In this paper, we study dynamic pivoting – a common nonprehensile regrasp-
ing manipulation. One example is shown in Fig. 1: the hand holds a cellphone



Fig. 1. Human pivots an in-hand object in the horizontal plane (top view).

between two finger tips, and rotates it to a desired angle relative to the finger by
varying grip force and wrist rotation. Pivoting is a simple way to orient objects
in the hand, and is faster than pick-and-place [2]. This operation is interest-
ing because a human can modulate friction force and switch the contact mode
between left sliding, right sliding and sticking, which is a hybrid control strategy.

This paper investigates techniques that enable a robot to perform human-like
dynamic pivoting. The task is challenging for robots, because the contact brings
three problems: [3–5].

The Modeling Uncertainty. On the one hand, we may not exactly know which
area on the object is grasped, due to slipping or noise in the initial grasp. On
the other hand, precise contact friction modeling is usually not realistic [6], so
we have to tolerate some degree of uncertainty with practical friction models.
Dynamic pivoting has even more frictional uncertainty due to noise in grip force
control during fast motion. Recent work indicates that for certain robotic appli-
cations, a very detailed friction model is unnecessary [7–9]. However, a closed-
loop strategy is preferred in these cases.

Positive lower bound constraint on grip force. We need a positive contact
normal force to maintain grasping and reduce slip. In our preliminary simula-
tions, however, a traditional nonlinear controller often commands large negative
grip force when trying to pull the system back from error. If we truncate the
grip force to satisfy the constraint, the traditional controller no longer works.

Friction discontinuity. We cannot assume a certain sliding direction, since the
closed-loop system will need to fight against the position error in both directions
during pivoting. As detailed in section 3.2, the stiction phenomenon introduces
several different continuous modes, thereby directly introducing discontinuities
into the gain matrix of the system.

In this work we propose a robust control strategy for robotic dynamic pivoting
that addresses the above issues. A control law based on sliding mode control
(SMC) calculates wrist torque and grip force within each continuous friction
mode. The sliding condition, which leads to Lyapunov convergence, is imposed
by a soft constraint and solved under control saturation as hard constraints.
Following a hybrid system routine, when transition to multiple modes is possible,
we add constraints to prevent undesired mode transitions when solving for a
specific mode.



In particular, our algorithm:

• works with a discontinuous friction model;
• satisfies control saturation constraints including the positive lower bound;
• converges in experiments even when friction modeling are simplified and

imprecise.

The paper is organized as follows. Section 2 describes the related work. Sec-
tion 3 introduces the robotic pivoting system and modeling highlights. Section
4 presents the control strategy design. Section 5 presents the implementation
and experimental results. Finally, Section 6 gives the summary and directions
for future work.

2 Related Work

2.1 Pivoting

Rao et al. [10] were the first to use the term “pivoting” for the rotation of a
grasped object relative to the contact point with fingers. Since there is no active
joint at the contact, there must be an extrinsic source of actuation that drives
the object, i.e. the extrinsic dexterity [1]. One such source is gravity [10, 2, 11,
9, 8, 12]. Brock calculated possible twists for an object in a multi-fingered hand
under gravity by maximizing the virtual work [11]. Rao et al. [10], described how
to choose a grasp so that after lifting up polyhedral objects from the ground, the
object rotates to a desired stable pose under gravity. Holladay et al. [2], extended
[10] by planning a whole trajectory for the gripper with the consideration of
dynamics, and utilizing contact with the ground to discretize the final poses.

Gravity is a good source of actuation, for its perfectly precise direction and
magnitude. The disadvantage is also obvious: its direction cannot change. We
refer to those works as gravity pivoting in this paper.

Pivoting can be done by making contact with environment [1, 13]. We call
them contact pivoting. Chavan-Dafle et al. implemented open-loop contact pivot-
ing [13], where a firm grasp was maintained all the time during sliding. Contact
pivoting is shown to be reliable in slow motion, as the object position can be
inferred from the contact position.

We use inertial force as source of actuation, and call it inertial pivoting. Like
gravity, inertial force does not rely on contact with the environment; however
its direction is also controllable. Shi et al. [7], proposed an open-loop strategy
for a three-DOF planar sliding problem, where an object grasped by a parallel
gripper slides under inertial force and gravity. This strategy, though verified
in simulation, showed notable error in experiments; the reason could be the
lack of feedback, according to the authors. When the object is treated as an
additional link of the robot with frictionless joint, pivoting reduces to a passive
last joint manipulator problem, where partial feedback linearization is shown to
be successful [14–18]. These approaches are extended in this paper in two ways.
Firstly, we add a robust control term to the feedback linearization control law, so



as to explicitly tackle the non-trivial, uncertain contact friction and some amount
of slip during pivoting. Secondly, we utilize the grip force as an additional source
of control, which brings notable stability improvement as well as new difficulties
in controller design.

There are very few studies using contact normal force to control friction
directly, except for vibration suppression [19]. Closely related to our work, Via
et al. [8, 9] performed controlled gravity pivoting to a spoon by controlling the
grip force, and closed the loop with vision feedback. Robust control [8], and
adaptive control techniques [9] were used to ensure convergence under friction
uncertainty. They also improved the performance by adopting a more precise
soft finger model. The controller was verified on a parallel gripper, for which
the grip force control was implemented by compressing soft finger with tactile
feedback. Sintov et al. [12] used optimal control to solve the gravity pivoting
control problem by linearizing the dynamics for one mode. They also designed
a strategy to swing the object up above the desired angle. The main limitation
for both work is the dependency on gravity, which makes it hard to recover from
overshoot.

Pivoting is a typical example of nonprehensile manipulation (except [13]),
where the object is manipulated without a firm grasp. Analysis of nonprehensile
manipulation dates back to the 1980s. A more thorough list of nonprehensile
manipulation can be found in [20, 21].

2.2 Friction Modeling

Friction determines the interaction between robots and grasped objects in piv-
oting [13, 7, 11]. The tribology community has extensive researches on precise
friction modeling [22]. Static friction models treat friction as a memoryless func-
tion of contact normal force, contact sliding velocity and external force, [5].
More detailed static friction phenomena and modeling can be found in [5]. In
the robotics community, Goyal analyzed the Coulomb friction in rigid body 2D
planar sliding, described the relation between the wrench acting on the object
and 3D twist of the object using limit surface concept. Zhou et al. proposed
a polynomial approximation of the limit surface [23], and a method for fast
identification from pushing experiments.

The discontinuity and lack of expressiveness of static friction models moti-
vates dynamic friction modeling [5, 6, 4], which provides smooth friction behav-
ior even during friction direction transitions. Dynamic friction models use one
or more hidden state variables to describe microscopic asperities in contact [6,
4]. Complicated friction models provide a more precise description of friction
phenomena. The cost is more effort and more data required for parameter esti-
mation. In this work, we will stick to a static model while relying on hardware
design to minimize unexpected dynamic frictional behavior.



3 Modeling

3.1 Robot Hardware

Fig. 2 shows our robot tailored for this task by emulating human operation. The
wrist joint motor generates rotational torque and provides inertial force to the
hand assembly. The top motor generate grip force through a lever mechanism.
The bottom fingertip, which is mounted on a low-friction small-inertia shaft,
contacts the object with high friction rubber and rotates with it. The rotational
angles of the object is thus measured by an encoder on the shaft. The lower
finger is installed on a loadcell to provide grip force feedback.

Fig. 2. The robot and gripper designed for dynamic pivoting.

The top finger provides frictional torque through a piece of hard fingertip.
It is chosen to be hard and thin to minimize spring-like stiction behavior [5],
which is reported as troublesome for pivoting in [9]. Large stiction makes it
hard to predict when sliding will occur. The size of the fingertip is critical. A
smaller contact area will result in a more flat limit surface [24], which makes
rotation easier than slip. The fingertip should also be large enough to provide
frictional torque in order to handle the object’s momentum. It is also important
to select the right material so that a non-trivial range of friction can be provided
by the grip force. In our experiments, a 11mm-diameter round piece cut from a
0.8mm-thick Teflon sheet is used.

To drive the wrist joint, we choose a Maxon RE-40 DC motor (with a 4.3:1
gearbox) operated in current control mode with 0.8Nm maximum continuous
torque output. The torsional friction in this joint is modeled and compensated
as constant stiction plus viscous friction. The grip force is produced by a current
controlled Maxon RE-36 DC motor. Through a lever mechanism, the motor



can provide a maximum of 40N grip force, while staying close to the wrist axis
and contributing a small moment of inertia. There is a significant hysteresis
nonlinearity in motor stall torque; hence we use a 5kg loadcell to provide grip
force feedback, then close the loop with a PI plus feed-forward controller. Typical
response time of the grip force control is around 25ms, which is limited by the
latency in loadcell reading.

3.2 Two Link Model

The following assumptions are made on the pivoting robot shown in Fig. 2:

1. Dimensional/inertial properties of the robot and the object are known.
2. The robot wrist joint axis is parallel to gravity. The object always stays

within the horizontal plane during motion. Consequently, the gravity does
not affect the rotation of the robot or the object.

3. The object is initially grasped at rest, but our knowledge of the grasping
position may not be exact.

4. The object may have translational slip during motion, but will not slip off
the gripper.

Denote α as the wrist joint angle. Instead of coping with a known object with
uncertain position, we model the contact as pin joint (call it pivoting joint, joint
variable denoted by θ), and treat the object as an additional link whose inertia
properties have uncertainty. Denote x = [θ, α]T as the joint state vector. The
Lagrange dynamics of the whole 2-DOF system are:

M(x)ẍ + C(ẋ,x)ẋ +N(x) =

(
τf (ẋ, Nf )

τ

)
, (1)

where the joint torque vector consists of wrist torque τ and contact frictional
torque τf . For friction modeling we use Coulomb friction plus stiction, which is
a trade-off between accurancy and simplicity. Then the frictional torque can be
related to the contact normal force Nf by [5]:

τf =

−µNf sgn(θ̇) if θ̇ 6= 0

−Fe if θ̇ = 0 and |Fe| ≤ µNf

−µNf sgn(Fe) otherwise

, (2)

where Fe is the external torque [5] acting on the contact. Note the normal force
is subjected to unilateral constraint:

Nf ≥ N (low)
f > 0 (3)

Denote control vector as u = [Nf , τ ]T . We can express the hybrid dynamics (1)
with a compact form:

ẍ = F (x, ẋ) +B(x, ẋ)u. (4)



We suppress the arguments x, ẋ, ẍ in what follows for conciseness. For slipping
mode |θ̇| 6= 0, we have:

F = −M−1(C +N), B = BSlipping := M−1

[
−µ sgn(θ̇) 0

0 1

]
. (5)

The gain matrix B is of full rank, so feedback linearization is possible. Similarly,
when θ̇ = 0 and |Fe| > µNf , the dynamics are still of the form in (4), but with:

B = BToSlip := M−1

[
−µ sgn(Fe) 0

0 1

]
. (6)

During sticking, however, the system reduces to 1D. Denote mc as the momen-
tum of inertia of the whole assembly, the dynamics satisfies:

F = 0, B = BSticking :=

[
0 0
0 m−1

c

]
(7)

Here the zeros are vectors of suitable size. In practice, we replace the condition
θ̇ = 0 by a range |θ̇| < ξ, where ξ describes the noise level in angular velocity
measurement.

3.3 Uncertainty Analysis

Our experiment shows that there is a considerable amount of uncertainty in
friction, which is a compound result of a simple friction model, non-perfect fric-
tion parameter estimation, and the noise in grip force control. This uncertainty
directly affects the gain matrix B in (4). Another source of uncertainty is the
grasping position. In our pin joint model, this uncertainty will affect the inertia
matrix M in the Lagrange dynamics (1), which will eventually affect both F
and B in (4). The influence of all other uncertainty sources, including measure-
ment noise, can be modeled as an uncertainty in F . Denoting by F̂ and B̂ our
estimation of F and B, respectively, we can describe the bounded uncertainty
as:

F̂ = F +∆F |∆F | ≺ δF
B = ∆BB̂ |∆B − I| ≺ δB .

(8)

where | · |, ≺ denote element-wise absolute value and inequality. δF � 0, δB � 0
are estimated error bounds. With this notation, the true dynamics (4) can be
expressed by the estimated model with bounded uncertainty as:

ẍ = F̂ (x, ẋ)−∆F +∆BB̂(x, ẋ)u. (9)

Note that if ∆B has non-zero off-diagonal component we can decompose it into
diagonal and off-diagonal terms, ∆B = ID + OD. Then, move the off-diagonal
terms out of gain matrix:

ẍ = F̂ − (∆F −ODB̂u) + IDB̂u,



and treat the quantity inside the parentheses as the new ∆F , which is still
bounded. Consequently, we consider ∆B to be diagonal from now on:

∆B =

[
db1 0
0 db2

]
, db1, db2 > 0. (10)

It is not trivial to estimate an error bound on F̂ or B̂, as the error is a compound
result of multiple sources of uncertainty. Instead, we treat them as parameters
and tune them according to experimental results.

4 Robust Controller Design

4.1 Robust Controller Design Within a Continuous Mode

Within any certain mode, the system is continuous with uncertainties described
in Section 3.3. Before considering constraints, we can use the sliding mode control
(SMC) [25] to solve the unconstrained problem, for its ability to converge under
bounded uncertainty. Denote xr(t) as a smooth reference state trajectory, the
control task is to make the tracking error x(t)−xr(t) converge to zero. The 2-D
sliding mode s = [s1, s2]T is defined as:

s(t) = GD
˙̃x(t) +GP x̃(t) +GI

∫ t

0

x̃(τ)dτ, (11)

where x̃(t) = x(t) − xr(t) is the state tracking error, and GP , GI , and GD are
diagonal positive definite coefficient matrices. When the system stays on the
sliding surface s = 0, equation (11) indicates that x̃(t) will converge to zero
exponentially. Thus the control problem for the original system is equivalent to
the problem of stabilizing s, which is only a first-order system described by:

ṡ = GDF + G̃+GDBu, G̃ := −GDẍr +GP
˙̃x +GI x̃ (12)

Use the following Lyapunov function:

V =
1

2
sT s, (13)

And choose the controller structure to be a feedback linearization term plus a
robust control term: ( the measured B̂,F̂ are described in (8) )

u = (GDB̂)−1(−GDF̂ − G̃−K sgn(s)), (14)

where K is the gain matrix: K =

[
k1 0
0 k2

]
� 0, Now we can express V̇ as:

V̇ = sT ṡ

= sT
(
−GD∆F +GD(I −∆B)F̂ + (I −∆B)G̃

)
− sT∆BKsgn(s)

(15)



The function V becomes a Robust Control Lyapunov Function (RCLF) and
guarantees convergence if there exists u to make its derivative negative under
all possible uncertainties:

V̇ < −η||s||, ∀|∆F | ≺ δF , |∆B − I| ≺ δB . (16)

This is called the sliding condition in sliding control literature [25], as it ensures
s converges to sliding surface exponentially. The sliding condition is satisfied if

Dlowk > Cup. (17)

where k = [k1, k2]
T

, Dlow, Cup are lower bound and upper bound of

D =

[
|s1|db1
|s2|db2

]T
,

C = sT
(
−GD∆F +GD(I −∆B)F̂ + (I −∆B)G̃

)
+ η||s||.

(18)

Here we use the fact that GD, ∆B are diagonal to simplify the derivation. The
bound can be obtained by linear programming over ∆F and ∆B . In traditional
sliding control, we solve equation (17) for k, calculate controls u from (14).
However, in pivoting we also need to consider control saturation constraints:

N
(low)
f < Nf < N

(high)
f ,

τ (low) < τ < τ (high).
(19)

where the positive lower bound Nlow is causing problem. In simulation the con-
troller often produces negative grip force, and the control would fail if we truncate
grip force to satisfy saturation constraints. Instead of direct truncation, we need
to leverage wrist rotation more when grip force can not attain a desired value,
i.e. find a solution to for both (17) and (19). Unfortunately, the two constraints
together are infeasible, if we do not have a tight uncertainty bound in ∆B , ∆F .
In practice we enforce (17) by soft constraint and solve a constrained optimiza-
tion at each time step, similar with the optimization performed in [26]. We solve
for the two-dimensional gain k by:

min
k

(Dlowk− Cup)2 + wkTk, (20)

with (19) as the only constraint. The second term is a regularization term. From
(14), we know u is linear in gain vector k. Hence, the saturation constraints are
linear on k. Therefore, we end up with a quadratic programming problem that
can be efficiently solved by an off-the-shelf QP solver. The overall computation
time, including solving the LP and QP, is less than 1ms for each control loop.

The optimization formulation above sacrifices robust convergence guarantee
for feasibility. However, in experiments we still obtain good convergence, indi-
cating the worst case guarantee is unnecessary in our case.



4.2 Control Strategy Among Different Modes

We design one controller for each mode. A such controller will not make sense if
it drives the system to any other modes. This could happen when the pivoting
velocity θ̇ equals zero, as shown in equation (2). Depending on the external
torque Fe, the contact dynamics can end up in one of three possible modes:

• Rotating with θ̈ > 0, if Fe > µNf ;

• Rotating with θ̈ < 0, if Fe < −µNf ;

• Sticking, θ̈ = 0, if |Fe| < µNf .

To resolve this ambiguity, we solve each of the three modes with the condition
above as additional constraints. Then we just pick the solution with optimal
cost. In hybrid systems theory, the additional condition is called guard condition
[27]. Note Fe is linear in u, thus the guard conditions are linear in k, and the
problem is still quadratic programming.

The last issue is when to stop the controller. We observe in experiments
that the closed-loop system has small-amplitude oscillations around the goal. To
stop the oscillation, we set the goal region to be |θ − θgoal| < σ, and stop the
controller as soon as the object stops within this region. The overall algorithm
at each control time step is described as follows:

1. If |θ̇| > ξ, solve the corresponding mode for control.
2. While |θ̇| <= ξ,

(a) If |θ − θgoal| < σ, stop the control loop and apply the maximum grip
force with zero wrist torque.

(b) Otherwise, solve the three possible modes under guard condition respec-
tively, and pick the one with the best cost value.

5 Experiments

The proposed algorithm is implemented on the hardware described in Section
3.1. The robust control loop runs at 50Hz. The object to be rotated is an acrylic
board with a protective paper cover.

5.1 System Identification and Parameter Tuning

Robot mass 700g Robot moment of inertia 8.9 × 10−3kgm2

Object mass 44g Object moment of inertia 8.96 × 10−5kgm2

Length of wrist link 0.16m Contact friction coefficient µ 4.5 × 10−4m

Grip force range 4N ∼ 15N Wrist joint torque range −0.5Nm ∼ 0.5Nm

Table 1. Physical properties of the robot and the object.

The inertia parameters of the robot are identified offline from torque-speed pro-
file. To measure the friction coefficient between the object and the finger, we



fix the wrist joint and apply a certain grip force on the object. Then we give
the object an initial rotational velocity and record the deceleration curve. The
friction coefficient estimated are shown in Fig. 3. An affine relation is fitted,
with a rate representing the Coulomb friction coefficient. Physical parameters
and actuation constraints are listed in table 5.1. Note all frictional coefficients
are torsional.

2 2.5 3 3.5 4 4.5 5 5.5 6

N
f
 [N]

1.5

2

2.5

3

3.5

f 
[N

m
]

×10
-3

Fig. 3. Measured torsional friction f under different grip forces Nf .

Now we briefly explain how to tune parameters. δB can be estimated from fric-

tion measuring data, and here we use δB =

[
0.4

0.1

]
. The performance is not

sensitive to η, we pick η = 5. Next, start with δF = 0, we firstly tune the gains
GP , GI , GD as if we are tuning a normal PID controller. When performance is
peaked, go back to tune δF . Repeat the last two steps until satisfactory perfor-
mance is obtained.

5.2 Experiment I: Pivoting under Grasping Position Uncertainty

In real-life manipulation, the object may not be grasped exactly at the expected
position. The ability to endure grasping position uncertainty is crucial to piv-
oting control. Here we implement and compare our method with two baselines:
The first baseline controller is based on partial feedback linearization (PFL),
which is a typical approach in the passive manipulator literature [14–18]. In this
controller, only wrist joint torque is used as control. The control is chosen such
that the dynamics of the passive joint (i.e. the object) is linear and stable, while
the stability of the wrist joint dynamics is determined by the zero dynamics of
the system, which can be shown to be stable using center manifold theorem if
we ignore friction [14]. In our simulation, the approach converges to the goal
if there is no friction and no slip. However the inertia force generated on the
object is usually very low. If we add friction, the inertia force is not able to over-
come stiction, the controller would diverge by keeping accelerating wrist joint.
The phenomenon is verified in experiments. The second baseline is a robust con-
troller that only uses wrist joint torque as control. It extends the first controller
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Fig. 4. Results of experiment I. Each dot represents the actual initial grasping position
with respect to the object (the outer solid line frame) for one pivoting trail, while the
cross of dotted lines denotes the nominal grasping position. A green solid circle denotes
a success, a blue star denotes a pass, and a red circle denotes a failure.

in that friction (and its uncertainty) is explicitly handled. Here we set the target
object rotation to be θ = 1 rad, starting from zero initial condition θ = α = 0.
The reference trajectory θref in xref is generated by simulating PID control on
an integrator, so we can tune its shape. αref in xref is simply set to zero, as we
expect the wrist to stay close to the origin and move gently. The two baselines
do not utilize grip force, thus we set grip force to the minimal possible value
(4N) to make them work better.
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Fig. 5. The reference (dashed line) and response (solid line) trajectories of object
orientation θ and robot wrist angle α of our method.

We perform the experiment multiple times with different initial positions offset
unknown to the controller. The results are plotted in Fig. 4. A success is defined
as converging and stopping in the target region [0.95, 1.05] within 4 seconds. A
pass means the object motion is converging, but not fast enough to stop within
4s. Failure means the trail diverged. Our full controller almost converges all the
time and outperforms the other two approaches. Fig. 5 shows a typical response



for our full controller. Note that during pivoting, the θ converges to the desired
region with a steady-state error less than 0.05rad, while the wrist joint stays
close to the origin (within about 0.25rad).

0 0.5 1 1.5 2 2.5 3

Time (s)

2

3

4

5

6

7

Grip force (N)

Reference

Response

Fig. 6. The grip force control in pivoting.

The calculated grip force and the loadcell feedback are shown in Fig. 6, with
notable tracking error. The main source of error is the noise generated from
fast motion. In our grip force control test, the error grows immediately as the
object rotates. Although the lower-level force control is not perfect, this source
of control still appears to be crucial to the overall stability.

Fig. 7. Snapshots of consecutive pivoting experiments comparing wrist only controller
(top) and full controller (bottom). The blue, green, red and yellow lines are hand
orientation, object orientation, goal orientation and the next goal, respectively.

The ability to tolerate grasping position uncertainty becomes important in
tasks where multiple pivots are performed consecutively, as the slips will accu-
mulate. Starting from a precise initial grasping position (error < 0.3mm ), the
controller with grip force control is able to perform at least four pivots stably in
a row, while the controller without grip force control will diverge before finish-
ing the second pivot, as shown in Fig. 7. We omit partial feedback linearization
controller to save space, as it never works. See attached video for more details.



5.3 Experiment II: Disturbance Recovery

Our closed-loop controller is able to recover from unexpected disturbances. To
illustrate this, we run the controller with goal at the origin, and directly perturb
the object through external intervention. The controller with both wrist torque
and grip force control can always recover from disturbance and converge back to
the origin, while the one without grip force control will diverge quickly. The re-
sults are shown in Fig. 8. Again we omit partial feedback linearization controller
to save space, as it diverges immediately after perturbation. See the attached
video for all three experiments.

Fig. 8. Snapshots of pivoting under disturbance, comparing wrist only controller (top)
and full controller (bottom)

5.4 Discussion

An interesting phenomenon observed from our experiments is the small-amplitude
oscillation shown in Fig. 5 and Fig. 6. The oscillation has a pattern sometimes
observed in human pivoting. This is partly due to the fact that the robust con-
troller, or a human, tries to move the object towards the goal even in the worst
possible friction. This will make it hard to avoid overshoot within one control
time step. The observation suggests a faster control loop with lower latency is
likely to reduce the oscillation.

6 Conclusions and Future Work

We have performed robust dynamic pivoting driven by inertial force and grip
force, and described the robust control algorithm being used. The work helps us
better understand how to cope with friction in manipulation tasks. It is worth
noting that a coarse grip force control can significantly improve the stability
of the closed-loop pivoting system. The experiment results also help us better
understand how humans cope with friction. We use a low control frequency
(50Hz) on a highly dynamic motion. This agrees with the human case where
control frequency is also low because of slow nerve conduction velocity. The



auto-generated oscillation pattern is similar to human pivoting strategy, which
may suggest the importance of incorporating feedback information and actively
recover from error.

We believe a precise, less noisy grip force controller with lower latency is
likely to improve the performance of pivoting. Our gripper only approximates
a parallel gripper for objects of a certain thickness, which is another limitation
to be resolved in the future. Our algorithm behaves greedily in terms of friction
mode switching. A higher level planning on the sequence of modes may bring
further performance improvement. Finally, we are also interested in exploring
learning and adaptive control strategies that can handle more general problems,
where knowledge of the object inertia property and friction coefficient is not
fully available.
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