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Abstract: Nonlinear optimal control problems are challenging to solve due to the prevalence of local
minima that prevent convergence and/or optimality. This paper describes nearest-neighbors optimal
control (NNOC), a data-driven framework for nonlinear optimal control using indirect methods.
It determines initial guesses for new problems with the help of precomputed solutions to similar
problems, retrieved using k-nearest neighbors. A sensitivity analysis technique is introduced to
linearly approximate the variation of solutions between new and precomputed problems based on
their variation of parameters. Experiments show that NNOC can obtain the global optimal solution
orders of magnitude faster than standard random restart methods, and sensitivity analysis can further
reduce the solving time almost by half. Examples are shown on optimal control problems in vehicle
control and agile satellite reorientation demonstrating that global optima can be determined with more
than 99% reliability within times at the order of 10-100 milliseconds.
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1 Introduction

Nonlinear optimal control problems are observed in many engineering applications, but despite decades of research, they are still difficult
to solve globally with high confidence. Methods for solving optimal control problems mainly fall into two categories: direct and indirect
methods [1]. Direct methods, such as transcription and collocation, convert the optimal control problem into an optimization problem
through a parameterization of the state trajectory. Indirect methods derive the necessary conditions for optimality using costate variables,
and convert the optimal control problem into a two-point boundary value problem (TPBVP) [2]. Indirect methods can be more efficient
than direct methods. However, they are difficult to apply successfully because the TPBVP has a narrow convergence domain [3].

The main difficulty of indirect methods is that the costate variables lack physical meaning, so good starting values are difficult to
provide. For problems with strong nonlinearity, the convergence domain is so narrow that a large number of initial guesses have to be
tried to obtain convergence. Hence, they must be augmented with another approach like random restarts to have any chance of obtaining
a global optimum. Such a shortcoming makes these methods impractical for real-time applications.

In recent years, the approach of using precomputed data to initialize optimization processes has received some attention, with some
success in trajectory optimization [4] and global nonlinear optimization [5]. The general idea is that a database of solutions can be
precomputed among a parameterized set of optimization problems. If the parameters specifying a novel problem are sufficiently close
to the parameters of an example in the database, then the existing solution should be near the solution of the new problem. Using
the prior solution as a seed improves both the solution time and the success rate of optimization. Although this approach pays a price
in precomputation of thousands or millions of optimization problems, the speed gains may be worthwhile for systems with minimal
computing resources, or on-line control applications that require repeated solution of similar problems, like model predictive control
(MPC). Moreover, high-performance computing resources can be used to make the precomputation phase relatively practical. To our
knowledge, this approach has not yet been applied to indirect solution of optimal control problems.
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This paper presents Nearest Neighbor Optimal Control (NNOC), a data-driven implicit optimal control method that uses a precomputed
database of solutions and performs k nearest neighbors lookups to determine initial costate guesses for solving TPBVPs. In addition
to the basic approach, we develop a sensitivity analysis (SA) technique to approximate how solutions vary with respect to problem
parameters. Using this technique to guess initial costates is more accurate than the basic approach.

We evaluate this work in simulation on two vehicle control problems with 4D and 5D state spaces, as well as a satellite reorientation
problem with a 6D state space. Experiments study how the technique performs compared to random restart optimization on computation
time and likelihood of successfully determining global near-optima. NNOC exhibits success rates close to 100% and is 1–2 orders of
magnitude faster than random restarts. As the size of the database grows, NNOC demonstrates increasingly high success rates and lower
computation time. The use of our proposed SA technique also reduces solution times by approximately 50% beyond plain NNOC.

2 Related Work

For nonlinear optimal control problems solved by indirect methods, the difficulty comes from non-continuous control, i.e. bang-
bang control [2], inaccurate numerical integration, and strong sensitivity of the TPBVP. As a result, shooting methods have narrow
convergence domain and require an initial guess of costates sufficiently close to optimum in order to converge. Moreover, since TPBVP
is built on necessary condition of optimality, shooting methods might converge into a local optimum.

In [3, 6] a homotopic approach is used to address these challenges, in which the solver starts from an easier problem and gradually
improves the approximation of the original problem. In [3] a distribution of initial costates is proposed which roughly overcomes the
problem of not knowing the bounds of costate variables. Other techniques have been proposed to guess costates, including grid search of
costate variables [7], initialization by direct methods [8] and initialization from linearization [9]. Each of these methods are proposed for
specific problems and require researchers’ understanding of the problem being studied so they are not easily applied to other problems.

The idea of learning from experience has attracted researchers’ interest for decades in robotics field. Machine learning techniques
have been used in trajectory optimization to predict the outcome of a starting point [10] or to predict good initial trajectories [11] for
local optimization. The grasps of novel objects are generated using the experience of grasps [12]. In [13] precomputed examples of
optimal trajectory are generalized to enable the optimizer to work in real-time, as applied to a robot ball-catching problem. With the
advance of deep learning, both deep reinforcement learning [14] and supervised learning [15] have been used to learn a policy for robot
control. Other works use supervised learning to directly learn the optimal trajectories [16, 17].

Our technique is related to explicit model predictive control (MPC) [18], a technique for linearly constrained linear systems with
quadratic costs, that analytically computes the piecewise-linear optimal MPC control function over all initial states. Our approach takes
a similar approach to nonlinear optimal control using data.

NNOC is similar to a numerical continuation approach where the solution of a similar problem is used to solve a novel problem [15].
In that work, a random walk approach is used to generate optimal trajectories to train deep neural network. However, in [15] the issue
of local optima is not considered and the data distribution is not uniform. In our approach, multiple neighbors are used to solve novel
problems so the chance of obtaining the global optimum is higher.

Recently, a great deal of attention has been devoted to the idea of applying machine learning, especially deep learning, to optimal
control problems [15, 16, 19–22]. These learning approaches use a function approximator, like a neural network, to build a policy
function, an estimate of the optimal trajectory, or a surrogate model for the value function. NNOC is related, but uses a nonparametric
machine learning method to approximate initial costates for each state. We note that for indirect methods a trajectory is fully determined
by the state and costate at initial time. As a result, approximating initial costate is equivalent to approximating the optimal trajectory.
From now on, we use trajectory and costate approximation interchangeably. In our experiments, we observe that applying a small
amount of trajectory optimization greatly improves learned estimates, and furthermore we are able to better handle discontinuities in the
function using multiple initializations from k > 1 nearest-neighbors.

This work is an extended version of a previous conference publication [23]. In this version, we extend the discussion of related work,
perform extended experiments to analyze the performance of our technique, and add a new satellite reorientation example.
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3 Data-driven Framework

3.1 Indirect Methods for Optimal Control

Indirect methods essentially convert an optimal control problem to a system of nonlinear differential equations. Suppose a nonlinear
optimal control problem is given as

Minimize J = ϕ(t0,x0, tf ,xf ) +

∫ tf

t0

L(t,x,u)dt (1)

s.t. ẋ = f(t,x) (2)

c(u(t)) ≤ 0 for all t (3)

h(t0,x0, tf ,xf ) = 0 (4)

where x(t) ∈ Rn is the state variable, u(t) ∈ Rm is the control, and t ∈ [t0, tf ] is time. The path constraint c collects inequality
constraints on control. h is a collection of equality constraint on state variables at initial and final time. In this paper, we consider
problems where c constrains the bounds on control and h constraints the exact values of initial and final states. For simplicity we will
ignore other types of path constraints. The indirect method introduces corresponding costate variables λ(t) ∈ Rn and the Hamiltonian
[2]

H = L(t,x,u) + λTẋ = L(t,x,u) + λTf(t,x,u) (5)

and derives the Euler–Lagrange equations 
ẋ =

∂H

∂λ

λ̇ = −∂H
∂x

(6)

and the optimal control
u?(t) = arg min

u | c(u)≤0

H(t,x(t),u). (7)

If the control u has no constraint, we use ∂H/∂u = 0 to calculate u?. For example, suppose

L(t,x,u) = xTQx+ uTRu

be a quadratic cost and

f(t,x,u) = f0(t,x) +

m∑
i=1

fi(t,x)ui

be the dynamics function. Then

∂H

∂u
= 2Ru+


λTf1(t,x)

...

λTfm(t,x)

 = 0 (8)

and hence u can be determined by multiplying the second summand by −R−1/2. In cases where control u is indeed constrained, the
optimum u∗ is found subject to those constraints.

Then, to solve for the optimal trajectory given two-point boundary conditions including an initial state,

x(t0) = x0 (9)

and final state
x(tf ) = xf , (10)

a shooting method is used to determine the unknowns so that the boundary condition at tf in Eq. (10) is satisfied. For the fixed-time
problem where t0 and tf are fixed, the unknowns s are the initial costate variables λ(t0).

In this paper we also consider problems with free tf . In those problems the final time tf is also a unknown, so we let s ≡ (λ, tf ) and
impose another boundary condition at tf :

H(tf ) = 0. (11)

The TPBVP solver guesses all the unknowns s and integrates Eqs. (6) simultaneously from time t0 to tf using the optimal control
derived from Eq. 7. The unknowns are updated until the boundary conditions (i.e. Eq. (10) for fixed tf ) at tf are satisfied up to a
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given tolerance. We implement a TPBVP shooting method using the nonlinear least-squares software Minpack [24]. In general, the
convergence of a nonlinear equation solver depends on several parameter choices, and whether a relaxation technique is used, which
usually increases convergence time but also success rate. Experiments in this paper set all of the parameters of Minpack to their defaults.
We observe when the initial guess is quite close to an optimum, as it is in NNOC, the performance of the solver is relatively insensitive
to the parameter settings.

Note that these least-squares solvers, typically based on Gauss-Newton or Levenberg-Marquardt methods, are only local optimizers,
they may indeed fail to find a solution that successfully meets all the boundary conditions. The basin of attraction of the optimum is often
quite small and cannot be predicted easily from the problem specification. In practice, a random restart method is usually employed to
increase the likelihood of finding an initial guess in the basin of attraction of a solution. Multiple solutions can be generated and the
minimum cost kept, which increases the likelihood of finding a globally optimal solution. This is not particularly reliable without using
a large number of guesses, which makes the approach too slow for real-time application.

3.2 Problem-Solution Mapping

NNOC addresses the scenario where a family of optimal control problems has to be solved and each problem is parameterized by a
vector p ∈ Rp. For example, in model predictive control we may set p = x0 to be the initial state. In problems where a target or cost
function may be chosen by an operator, p can contain a parameterization of these choices.

A complete, globally optimal method for solving a parametric optimal control problem can be viewed as a mapping g from p to the
optimal solution of the unknowns, denoted as s∗:

g : p→ s?. (12)

Of course, in nearly all practical problems, the solution g cannot be obtained analytically.
NNOC approximates this map using finite instances of problems that have been solved to global optima in a precomputation step.

Assuming p is defined in setX , the first step to build the database is sampling fromX and calculating the corresponding global optimal
solution. We can thus form a database of N parameter-solution pairs where p is the parameter and s? is the solution. Specifically, the
database D = {(p(i), s?(i))|i = 1, . . . , N} where we denote (p(i), s?(i)) as an optimal control pair. Since the computation of the
database is offline, we employ heuristic global optimization techniques such as random restarts. It should be noted that for a general
nonlinear optimal control problem there is no guarantee that a global optimal solution can be found. The best local optimal solution is
considered as the global optimal solution so a sufficiently large number of restarts is used. However, it is possible that for certain initial
states no solution exist or we fail to find a feasible solution. In that case we simply mark that no solution exists.

3.3 Extending the Database along Trajectories

We observe that each successful trajectory solve provides not only the optimal costate at the initial time t0, but also all times thereafter.
For problems that obey the stationary property, such as our MPC-like formulations below, we can populate the database more quickly
by generating optimal problem-solution pairs (x(t), s(t)) along the trajectory. So, after calculating an optimal trajectory x(t), costate
trajectory λ(t), and optionally the final time tf , we evenly sample M states and costates along the trajectory and add their examples to
the database. Specifically, we divide the time range [t0, tf ] at intermediate values ti, i = 1, . . . ,M , and add all of (x(ti), s(ti)) to the
database. In the case where the final time is a free variable, we set the final time for point i to be t0 + tf − ti.

3.4 Function Approximator

During a query, NNOC approximates g : p→ s? based on databaseD to generate initial guesses. This problem has been widely studied
in statistical learning community and several models have been proposed as function approximator. Typical function approximators
including linear regression, neural network, and Gaussian process assume continuity of the function and tend to perform worse in the
presence of function discontinuity. However, for nonlinear optimal control problems the problem-solution mapping can be discontinuous
due to the existence of multiple local optima. As a result, NNOC applies a k-Nearest Neighbor (k-NN) optimization model that
determines multiple candidates for optimization, without performing undesirable interpolation between candidates.

The standard k-NN function approximator approximates an arbitrary function using a piecewise constant function:

g(p) ≈ 1

k

∑
i∈Nk(p)

s?i (13)

where Nk(p) are the indices of the k nearest neighbors in D. But rather than averaging the neighbors as in standard function
approximation, NNOC uses all k nearest neighbors as initial guesses for optimization. By doing so, we obtain multiple local minima
zi ← Opt(s?i ,p) where Opt(s,p) uses the costate s as an initial seed for the TPBVP problem defined by p. We then pick the best as
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follows:
g(p) ≈ arg min

z∈{z1,...,zk}
Cost(z) (14)

and returns the objective function value. We adopt the convention that Cost(zi) = ∞ if no feasible solution is found for th4 ith
optimization. To make the nearest neighbors lookup fast, our implementation performs the NN query using the approximate nearest-
neighbors library FLANN ∗

By returning multiple candidate function values, k-NN increases the probability of obtaining a global optimum. Other function
approximators that only return one function value run a higher risk of obtaining a local optimum, and moreover can obtain poorer results
by interpolating across discontinuities.

We present the option to employ sensitivity analysis (SA) when determining an initial guess to a novel problem. Rather than using
precomputed solutions directly as the initial guess for new problems, SA builds a first-order approximation of g at each sample point to
determine a better guess. This method is described below.

3.5 Sensitivity Analysis

Assuming the mapping from parameters to solutions is continuous and differentiable, SA can be used to build a first-order approximation
to their variations. We can thus obtain a better initial guess than directly using the solutions of precomputed problems. Specifically, for
a neighbor i of problem p, we derive a better guess s via a first-order approximation

s = s?i + Si(p− pi). (15)

in which the sensitivity matrix Si links the variation of parameters and the variation of solutions. We derive the form of this matrix
below.

Let us first explain the method for the fixed-time case where problem parameter is the initial state. Denote λ0 ≡ λ(t0). We take the
variation of (10) and obtain

∂x(tf )

∂x0
δx0 +

∂x(tf )

∂λ0
δλ0 = 0 (16)

where
∂x(tf )

∂x0
and

∂x(tf )

∂λ0
are easily obtained by integrating the variational equation of the system dynamics. We refer to [25] for

further details.
Using (16) we can obtain a linear relationship between the change of initial state and the change of initial costate variables

δλ0 =
∂λ0

∂x0
δx0 = −∂x(tf )

∂λ0

−1 ∂x(tf )

∂x0
δx0. (17)

It should be noted that the matrix
∂λ0

∂x0
can be computed offline since it is determined by x0 and λ0 and can be computed when the

database is being built.
Then, when a query problem p = x is matched to an example pi = x0, s?i = λ0 in the database, we seed the solver with the initial

costate
λ = λ0 +

∂λ0

∂x0
(x− x0). (18)

In other words, the sensitivity matrix is Si =
∂λ0

∂x0
(pi, s

?
i ).

For free-time problems, we must compute the sensitivity of both λ0 and tf with respect to x0. To do so, compute the variation of (10)
and (11), obtaining 

∂x(tf )

∂x0
δx0 +

∂x(tf )

∂λ0
δλ0 +

∂x(tf )

∂tf
δtf = 0

∂H(tf )

∂x0
δx0 +

∂H(tf )

∂λ0
δλ0 +

∂H(tf )

∂tf
δtf = 0.

(19)

Here,
∂x(tf )

∂x0
and

∂x(tf )

∂λ0
are obtained as before;

∂x(tf )

∂tf
= ẋ(tf ) is obtained by substituting the optimal control into the dynamics

function;
∂H(tf )

∂tf
= 0 since H does not depend on time [2];

∂H(tf )

∂x0
=
∂H(t0)

∂x0
= −λ̇(t0); and

∂H(tf )

∂λ0
=
∂H(t0)

∂λ0
= ẋ(t0). Then

∗http://www.cs.ubc.ca/research/flann/, retrieved Dec/25/2018.
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we can calculate δλ0 and δtf by solving a system of n+ 1 linear equations.[
δλ0

δtf

]
= −


∂x(tf )

∂λ0

∂x(tf )

∂tf
∂H(tf )

∂λ0

∂H(tf )

∂tf


−1  ∂x(tf )

∂x0
∂H(tf )

∂x0

 δx0. (20)

As with the fixed-time case, the sensitivity matrix can be done offline and stored with the example in the database.

3.6 Summary

The overall NNOC procedure is listed below.

Precomputation phase
1) Determine a parameterization p of the set of problems that will be encountered during the query phase.
2) Determine a representative distribution over problem parameters.
3) Sample N/M problem parameters, and use a global optimization such as random-restarts to solve them.
4) Apply the method of Section 3.3 to extend the database by a factor of M examples. 5) Store the database D and precompute data
structures for nearest-neighbor lookup.

Query phase
1. For a new problem p, determine the k nearest neighbor examples (pi, s

?
i ).

2. Optionally (NNOC+SA), for each of k examples, use sensitivity analysis (Section 3.5) to determine a seed si.
3. For each of k examples, run a local optimization zi = Opt(si,p). Return the one with minimum cost.

Several hyperparameters affect performance, including:

(1) Database size N . If N is too small, the distance between new parameters and the nearest neighbors might be too large so the
solutions might not lead to convergence. Larger N is needed for problems that are highly nonlinear with small convergence
domain. Nearest-neighbor lookup time is fairly insensitive to N due to the use of approximate methods.

(2) Distribution of the examples in the database should approximate the query distribution. A naive method is to sample each state
component uniformly at random in a range, but if knowledge is available about which states are encountered in practice, it should
be employed.

(3) Number of neighbors k determines how many precomputed solutions are used as tentative values for new problems. A larger k
contributes to the robustness by combating the effects of local optimal solutions. However, larger values increase running time.

4 Numerical Examples
We test NNOC in three problems:

• Planar Car: a minimum effort problem on a second-order Dubins car

• Quadcopter: a minimum-time problem on a dynamic quadcopter model.

• Satellite: an agile satellite rest-to-rest reorientation problem.

In each case we seed the database using randomly sampled initial states, solved using a random restart method. The test set is randomly
generated from the same distribution as the training set. We study the effects of parameters such as the database size, stopping criteria
for random restart, database size, number of neighbors queried, and whether SA is used.

4.1 Planar Car

We consider a simplified planar car with the following dynamics [26]:

ẋ = v sin θ, ẏ = v cos θ, θ̇ = uθv, v̇ = uv (21)

where the statex = [x, y, θ, v] includes the planar coordinates, orientation, and forward velocity of the vehicle. The controlu = [uθ, uv]

includes the control variables, which indicate steering angle rate of change and velocity rate of change, respectively.
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4.1.1 Optimal Control Formulation
The performance index is given by the quadratic control effort

J =

∫ tf

t0

uTRudt (22)

whereR is a diagonal matrix with entries r1 = 0.2 and r2 = 0.1, as chosen in accordance with [26].
We arbitrarily choose fixed initial and final times, i.e. t0 = 0, tf = 2.5. Initial states are sampled from the range x ∈ [−3, 0], y ∈

[−3, 3], θ ∈ [−π, π], v = 0. It should be noted that due to the symmetry of the problem we do not have to consider positive x. The
target state is the origin, so that final orientation and velocity is 0.

The costate variables λ = [λx, λy, λθ, λv] are governed by the Hamiltonian [2]

H = λTẋ+ uTRu

= λxv sin θ + λyv cos θ + λθvuθ + λvuv + r1u
2
θ + r2u

2
v

(23)

and the Euler–Lagrange equations 

λ̇x = −∂H
∂x

= 0

λ̇y = −∂H
∂y

= 0

λ̇θ = −∂H
∂θ

= −λxv cos θ + λyv sin θ

λ̇v = −∂H
∂v

= −λx sin θ − λy cos θ − λθuθ

(24)

Then we readily derive the optimal control which minimizes H as

u∗θ = −vλθ
2r1

, u∗v = − λv
2r2

. (25)

4.1.2 Estimation of Costate Magnitudes
The difficulty for providing tentativeλ(t0) is partially caused by the its unknown bounds. Admittedly, with the help of the normalization

of initial costate variables [3] we can sample them on the surface of a high-dimension ball. Here we use a non-rigorous formula to help
provide bounds for initial costate variables. Experiments show that it helps to increase success rate of random restart technique. The
formula we use for estimation of the magnitude of λv is

s̄ = 2
√
x2 + y2, v̄ =

s̄

t
, ā =

4v̄

t
, λ̄v = 2ār2 (26)

where (̄·) denotes the magnitude. We first estimate the length of the trajectory, then average velocity and average acceleration assuming
a constant acceleration and deceleration. Then the formulation of the optimal control is used to get the magnitude of λv . Using a similar
way, we obtain the magnitude of λθ as

λ̄θ =
16|θ0|r1
t2v̄2

.dd (27)

It should be noted that an additional term v̄2 is multiplied in the denominator because the additional multiplication of v in Eqs. (25)
and (21).

4.1.3 Simulation Result
We evaluate four methods that differ in how initial guesses are provided and how the iteration is terminated.

(1) RR: Random Restart using k restarts, where k = 5, 10, 50, 100

(2) RL: Random restart, terminating after k Locally optimal solutions are solved, where k = 1, 3, 5, 10

(3) NNOC: our method with k neighbors and without sensitivity analysis, where k = 1, 5, 10

(4) NNOC+SA: our method with k neighbors and with sensitivity analysis, where k = 1, 5, 10

In RL, the maximum number of restarts is limited to 100 in order to avoid an infinite loop. For random restart techniques, the
normalization of initial costates is used [3].

To build the database, we randomly generate N = 20, 000 initial states and calculate the corresponding costates. No database
extension is performed (M = 1). Then 5 databases having size 1,250, 2,500, 5,000, 10,000, 20,000 are constructed. In the database
construction phase, it is important to make sure the solutions are indeed global optimal. We adopt a random restart technique with 100
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initial guesses. As experiments will later show in Fig. 4, such a choice does achieve about 95% global optimal rate. To further reduce
the likelihood of the database containing local optima, for each example we use NNOC to adapt the solutions from its neighbors, and
keep the optimized solution with lowest cost. This also suggests an incremental construction technique, whereby random restarts is used
to solve a subset of examples and then NNOC is used to propagate to other examples. Building the database in this manner takes a few
hours on a single core of a CPU.

In Fig. 1 we plot the optimal trajectories of 30 examples where the arrow shows the direction the car is heading. We record the running
time, number of solutions, and the best performance index of each method. In the presented results, the Global Optimum Rate denotes
the fraction of times a method obtains a globally optimal solution; and Avg. Time is the average computation time for solving the TPBVP
using shooting methods. To calculate global optimum rate, for each test example we compute the minimum cost solution found over
all methods tested. This value is then considered the globally minimum cost. A local optimum returned by each method is considered
global if its cost is close to the minimum cost (the difference is less than 1× 10−3).

The results of average computation time and global optimum rate are shown in Fig. 2 and 3 for NNOC with different choice of
hyperparameters including database size N , neighbor count k, and whether SA is used.

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1

-3

-2

-1

0

1

2

3

Fig. 1 Sample of optimal trajectories for the Planar Car example. The arrow shows the initial angle.
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Fig. 2 Average computation time for the Planar Car example.

The average computation time decreases with increasing N since larger N indicates closer distance from novel problem to its nearest
neighbors. The influence of N on average computation time is more significant for larger k. This is reasonable since when k is large,
the distance of some neighbors might be quite large and increasing N can help avoid initial guesses that takes a long time to converge.
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Fig. 3 global optimum rate of for Planar Car example.

Larger k causes more trial of initial guess and increases average computation time. SA significantly reduces the computation time since
the linear approximation leads to a guess closer to the optimum.

For global optimum rate, similar trends are observed. With larger N and k the global optimum rate for NNOC related methods also
increases. Furthermore, SA also helps to improve it.

To compare between random restart technique and NNOC, the trade-off between computation time and solution optimality is shown in
Fig. 4. We note that in this figure, the results for NNOC+SA use the largest database size. For random restart techniques, the computation
time increases as the stopping criteria increases. With increasing stopping criteria for random restart methods, the global optimum rate
increases, too. We note that for this problem with many local optima, a random restart technique has pretty low global optimum rate
unless many initial guesses are tried, while NNOC with only 1 trial outperforms random restart with more than 10 initial guesses. To
achieve the same global optimum rate with NNOC+SA with 1 guess, random restart techniques cost two orders of magnitude more time.
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Fig. 4 Tradeoff between average computation time and global optimum rate for between random restart and NNOC+SA
with different choice of initial guesses. The upper left corner is ideal. To achieve the same level of global optimum rate,
NNOC+SA is much faster than random restart.

4.2 Planar Quadcopter

The Quadcopter example defines the following dynamics [27]:

ẍ =
FT
m

sin θ, z̈ =
FT
m

cos θ − g, θ̇ = ω (28)
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where g is the gravitational acceleration; m the mass of the quadcopter; FT the total thrust force; and ω the pitch rate. The state
x = [x, z, ẋ, ż, θ] include the x, z coordinates, the velocity, and the pitch angle. The control is defined as u = [u, ω] where u = FT /m.
Both controls are subject to saturation:

u ≤ u ≤ u, |ω| ≤ ω (29)

where u = 1, u = 20, ω = 5. The initial state of the quadcopter is randomly sampled such that x ∈ [−10, 0], z ∈ [−10, 10], ẋ = ż =

θ = 0. Due to symmetry of the problem, we do not have to sample the cases with positive x.

4.2.1 Optimal Control Formulation
The objective in this problem is to move to and hover at the origin in minimum time. The time-optimal performance index is

J =

∫ tf

0

1dt (30)

where tf is a free variable. However, the resulting optimal control is bang-bang control which is numerically challenging to solve [27].
Hence, we use an alternate formulation that adds regularization parameters to the performance index so the resulting optimal control is
continuous [28]. We introduce a logarithmic barrier function to the performance index, which is a widely-used method in the field of
aerospace engineering. [6, 29], as follows,

J =

∫ tf

0

L dt

=

∫ tf

0

1− ε1 ln[û(1− û)]− ε2 ln[ω̂(1− ω̂)] dt.

(31)

where û ∈ [0, 1] and ω̂ ∈ [0, 1] are nondimensionalized controls such that u ≡ u+(u−u)û and ω ≡ ω+(ω−ω)ω̂. It can be shown that
with this modification, the resulting optimal control is continuous and differentiable. The parameters ε1 and ε2 control the magnitude
of the logarithmic barrier. Smaller values lead to a better approximation to the bang-bang control, but they also enlarge numerical
sensitivity and thus reduce the convergence domain. In this work we initially choose the values ε1 = ε2 = 1 which are relatively large
compared with [29], but also have a larger convergence domain as the optimal control problem becomes less ill-conditioned.

With costate variables λ = [λx, λz, λẋ, λż, λθ], we write the Hamiltonian as

H = λxẋ+ λz ż + λẋu sin θ + λż(u cos θ − g) + λθω + L (32)

and derive the Euler–Lagrange equations 
λ̇x = −∂H

∂x
= 0, λ̇y = −∂H

∂x
= 0

λ̇ẋ = −∂H
∂ẋ

= −λx, λ̇ż = −∂H
∂ż

= −λz

λ̇θ = −∂H
∂θ

= λżu sin θ − λẋu cos θ

(33)

Then the non-dimensionalized optimal control that minimizes H is
u∗ =

2ε1

2ε1 + ρ1 +
√

4ε21 + ρ21

ω∗ =
2ε2

2ε2 + ρ2 +
√

4ε22 + ρ22

(34)

where ρ1 and ρ2 are called switching functions and are defined as

ρ1 = (u− u)(λẋ sin θ + λż cos θ), ρ2 = (ω − ω)λθ. (35)

4.2.2 Simulation Result
To build the database, we randomly generate 2,000 initial states and calculate the corresponding costates. In Fig. 5 we plot the optimal

trajectories of 50 examples. Then the database extension technique of Sec. 3.3 is applied using M = 100 to get 200,000 state-costate
pairs. Databases of size 25,000, 50,000, 100,000, and 200,000 are constructed. As for the test set, 500 samples of initial states are
randomly generated. The database extension technique is also used to extend the test set by sampling 10 states along each trajectory. As
a result, the test set has 5,000 samples.

Fig. 6 shows solving time for NNOC for varying parameters. The trends agree with the planar car problem. Fig. 7 shows the tradeoff
between computation time and global optimum rate. A comparison between random restart and NNOC is presented. Observe that for
this problem, the difficulty is convergence to a solution, not to a local optimal solution. The low global optimum rate for RR is they fail
to find a solution within the given number of trials, not the sub-optimality of the found solutions. In practice, with 100 random initial
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Fig. 5 Sample optimal trajectories for the Quadcopter example. The short line shows orientation of the quadcopter.

guesses, the success rate is 99.4%. Since existence of multiple local optima is not an issue, the global optimum rate of RL is determined
by if convergence can be achieved within the maximum trials numbers, which is chosen to be the same with maximum number of initial
guesses for RR. As the result, RL has the same global optimum rate with whatever stopping criteria. For problems without multiple local
optima, RL is surly a better choice than RR since returning the first found solution turns out to be sufficient. However, in general this
property is unknown in advance. Besides, for problems with multiple local optima, such as the planar car problem, RL tends to achieve
lower global optimum rate, as Fig. 7 shows, unless the same amount of initial guesses are used. However, random restart techniques still
cost much higher computation time than NNOC+SA which is less than 4 ms with k = 1 and achieves 99.9% global optimum rate.
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Fig. 6 Average computation time of NNOC for the Quadcopter problem.

4.3 Agile Satellite Reorientation

A satellite is modeled as a rigid body under torque control and without perturbation. The system dynamics are

Jω̇ + ω × Jω = Mu (36)

where ω = [ω1, ω2, ω3]T is the the vector of angular velocities; ′×′ is the cross product operator; J = diag([J1, J2, J3]) is the inertia
matrix (along the principal axes so it is diagonal); M is the maximum torque magnitude; and u = [u1, u2, u3]T denotes the vector of
the torque directions. It should be noted that here the subscript 1, 2, 3 denotes the component along x, y, z axis, respectively. We assume
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Fig. 7 Tradeoff between average computation time and global optimum rate for the Quadcopter problem. A detailed
description is in Fig. 4.

that the maximum torque magnitudes along all axes are the same so the constraint

− 1 ≤ u ≤ 1 (37)

where the inequality denotes element-wise inequality. It should be noted that Eq. (36) can be expanded into matrix-vector form by
expressing the cross product as the multiplication of a skew-symmetric matrix and a vector, i.e.

ω̇ = −J−1[ω]×Jω + J−1Mu (38)

where

[ω]×
def
=


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (39)

In order to describe the attitude of the satellite, a variety of attitude coordinates have been developed each of which has its advantages
and weakness [30]. We use the modified Rodrigues parameters (MRPs) defined as

σ = e tan(Φ/4) (40)

where e and Φ are the eigenaxis and rotation angle. Although MRP is a minimal parameterization, it has singularity at Φ = 2π.
However, in this paper we only consider rotation within one revolution and by choosing the eigenaxis direction properly we constrain
the rotation angle to be within [0, π].

From [30] the differential equation of MRPs is derived as

σ̇ =
1

4
Bω (41)

where the matrixB is defined as

B =


1− σ2 + 2σ2

1 2(σ1σ2 − σ3) 2(σ1σ3 + σ2)

2(σ1σ2 + σ3) 1− σ2 + 2σ2
2 2(σ2σ3 − 2σ1)

2(σ1σ3 − σ2) 2(σ2σ3 + σ1) 1− σ2 + 2σ2
3

 (42)

where σi, i = 1, 2, 3 denotes the three components of MRP and σ2 ≡ σ2
1 + σ2

2 + σ2
3 .

The overall 6D state consists of (σ,ω) and the system dynamics consist of Eqs. (41) and (38).

4.3.1 Optimal Control Formulation
We want to solve the time-optimal problem and use homotopic approach to bypass the issue of control discontinuity. The cost function

is defined as

J =

∫ tf

t0

1−
3∑
i=1

ε ln[(ui − 1)(1− ui)]dt (43)

12



Astrodynamics
https://mc03.manuscriptcentral.com/astrod

where ε controls the magnitude of the perturbation. By introducing costate variables λσ and λω , the Hamiltonian is defined as

H = 1−
3∑
i=1

ε ln[(ui − 1)(1− ui)] + λT
σ σ̇ + λT

ω ω̇ (44)

and the terms that depends on ui, i = 1, 2, 3 are

− ε ln[(ui − 1)(1− ui)] +
λωiM

Ji
ui (45)

and the optimal control can be calculated by solving the ui such that the derivative of Eq. (45) with respect to ui is zero, i.e.

ui =
−ρi

ε+
√
ε2 + ρ2i

(46)

where
ρi =

λωiM

Ji
. (47)

The Euler–Lagrange equations are derived by Eq. (6) and found in [31, 32].
For the rest-to-rest time-optimal problem, the initial and final orientation of the satellite, denoted as σ0 and σf , respectively, are

already known. Specifically, any reorientation problem between two orientations is essentially equivalent to the reorientation from
σ0 = 0 to another σ′f . From now on we assume σf has already been converted for simplicity. The TPBVP is built and s ≡
[λσ(t0),λω(t0), tf ] is solved to satisfy boundary conditions

σ(tf ) = σf , ω(tf ) = 0 (48)

and
H(tf ) = 0. (49)

4.3.2 Simulation Result
For simplicity, a symmetric satellite with J = diag([1, 1, 1]) with maximum torque magnitude M = 1 is considered. The parameters

are the target orientations which are sampled and the corresponding solutions are computed. In order to generate a uniform distribution
in SO(3), the method in [33] is used and the corresponding program† is used. 10000 samples of orientations are generated. For
each sample, the time-optimal control problem with homotopic approach (ε = 0.01) is solved using a random restart technique with a
maximum iteration number of 100. The normalization of initial costate variables [3] is used and the initial guesses of costate variables
are generated randomly. Numerical results show that a corresponding solution is found for every sample. In order to see how the
database size N affects the computation time for novel problems, the first 1250, 2500, 5000 and all the 10000 samples are used to build
databases, respectively. We show in Fig. 8 three trajectories of reorientation. It should be noted that these results are obtained with a
homotopic approach, so the optimal reorientation time is a little lower than the ones obtained here.
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Fig. 8 Three example trajectories of reorientation. The red, green, blue axis denotes the x, y, z axis, respectively. The
solid and dashed lines shows the initial and final axes. The stars shows the trace of the tails of the unit vectors.

Fig. 9 compares the running time of NNOC for different database size N , neighbor count k, and whether SA is enabled. The trends
agree with previous two benchmark problems except that SA does not decrease average computation time when dataset size N is small.
As N increases, the improvement by SA also increases. The reason is that SA is based on linearization and is only locally valid. As
a result, such linearization causes larger error as difference in p increases, caused by increasing k. Again, for this problem the global

†http://msl.cs.uiuc.edu/˜yershova/software/so3sampling/so3sampling.htm, retrieved Oct/16/2018
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optimum rate is not a serious issue and the comparison is thus omitted.
The comparison between random restart and NNOC is shown in Fig. 10. Compared to NNOC+SA with 1 initial guess, random restarts

takes one to two orders of magnitude more time to obtain the same global optimum rate.
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Fig. 9 Average computation time of NNOC for random satellite reorientations.
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Fig. 10 Tradeoff between computation time and global optimum rate for random satellite reorientations.

5 Conclusion
In this paper a data-driven technique is proposed to help solve nonlinear optimal control problems quickly and reliably. NNOC addresses
the major difficulty faced in indirect optimal control — providing tentative values for the unknowns — by retrieving the solutions to
problems that have already been solved using brute force methods. The effects of several crucial parameters such as the database size,
number of neighbors, and whether to use sensitivity analysis are investigated. Compared with brute-force random restart technique, this
method can obtain the global optimal solution an order of magnitude faster and has the potential for real-time application in nonlinear
MPC.

In future work we intend to enhance the suitability of NNOC for real time control of physical systems. Although current results are
promising, robustness could be improved in a number of ways. One approach so might use NNOC to calculate a reference trajectory
for a trajectory-tracking controller. Or, we could explicitly optimize robust trajectories for use in the database. In some applications it
may be challenging to define the problem parameterization, such as obstacles observed through sensor data, and one approach may be to
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compute a feature mapping from sensor information directly. Future work should also address scalability to higher-dimensional systems
as well as state and model uncertainty.
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