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Abstract—As machine learning systems become more pervasive
in safety-critical tasks, it is important to carefully analyze their
robustness against attack. Our work focuses on developing an
extensible framework for verifying adversarial robustness in
machine learning systems over time, leveraging existing methods
from probabilistic model checking and optimization. We present
preliminary progress and consider future directions for verifying
several key properties against sophisticated, dynamic attackers.
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Adversarial machine learning is a well-developed area of re-
search analyzing the safety and robustness of machine learning
algorithms. A significant amount of research in adversarial ma-
chine learning addresses robustness of neural networks trained
for image classification tasks. In this research area, one attack
is to synthesize small perturbations of the network inputs to
craft “adversarial examples” which result in violations to some
desired properties [1]–[3]. In this approach, attacks seek to
falsify the robustness property of the neural networks. For
example, adding adversarially selected noise to an image of
a panda bear can cause a convolutional neural network to
erroneously label the image “gibbon” with high confidence,
while to a human the changes are indistinguishable [4].
In recent years, tools such as Reluplex [5], ReluVal [6],

AI2 [7], and Charon [8] attempt to verify robustness in
neural networks. In these works, the authors go beyond
finding counterexamples to robustness, and attempt to verify
the correctness of the algorithms using techniques including
abstract interpretation and projected gradient descent.
However, it is often the case that neural networks and other

machine learning technologies exist in larger systems, engag-
ing with uncertain environments over long time durations.
A natural extension to the rich area of adversarial machine
learning is to evaluate the adversarial robustness of AI agents
acting over time in probabilistic environments.
Some preliminary work has been done to address this

problem. Dreossi et. al [9] use a falsification approach to deter-
mine whether adversarial perturbations in a machine learning
component of a cyber-physical system can cause a failure in
the entire system. Verily [10] takes a verification approach,
and leverages existing DNN verifiers to verify safety and
liveness properties in a deep reinforcement learning algorithm.
Verisig [11] verifies safety properties in closed-loop systems
for hybrid systems with sigmoid-based neural network compo-
nents. Bacci and Parker [12] use model abstraction to provide
robustness guarantees for the controller of a deep RL agent.
Suilen et. al. [13] use convex optimization to synthesize robust

policies which interact with uncertain, partially observable
environments.
We propose the use of formal verification methods for

probabilistic programs as a framework for ensuring provable
adversarial robustness in AI policies acting in probabilistic
environments. In this approach, we model the environment as
a Markov decision process (MDP), and consider an adversary
that can modify the transition probabilities in the environment.
The adversary’s goal is to find minimal environmental modifi-
cations which result in a violation of some previously satisfied
property. Some properties of interest include reachability,
safety, and expected reward.
In the initial stages of this work, we have reduced selected

instances of this problem to quadratic programming. We also
developed a tool in python which successfully minimizes the
reachability property of any policy over two time steps with
bounded perturbations on randomized MDPs. Our tool is easily
extensible to more complex MDPs, and we have plans to test
our solution on Grid-world [14] environments with large state
space. We also plan to explore novel adversarial models for
MDPs, as well as additional security properties that can be
probabilistically verified in our framework.
Exploring robustness of MDPs has many benefits. Firstly,

MDPs and Markov chains are widely used for modeling agent
interactions with probabilistic systems with cybersecurity ap-
plications such as virus infections in a network [15] and
advanced persistent threats (APTs) [16]. Therefore, we have a
significant body of real-world applications in which to test
our method. Furthermore, using environments described as
MDPs allows us to leverage the rich field of probabilistic
model checking to implement efficient and provably correct
algorithms using state of the art model checking software
such as PRISM [17]. Additionally, we can generalize the
verifications to many types of agents, including applications
to reinforcement learning and other synthesized policies for
MDPs and POMDPs [18].
As we continue this research, we plan to make improve-

ments to our tool to address longer time durations and more
properties. Additionally, we intend to consider more sophisti-
cated threat models including dynamic attacks which can adapt
over time. We believe that leveraging verification methods
for probabilistic programs to address adversarial robustness
in policies for probabilistic systems is a novel and promising
research direction. We intend to continue working to address
these challenges and move toward a future of provably robust
artificial intelligence.
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