
Automated Attacker Synthesis for Distributed Protocols

Max von Hippel, Cole Vick, Stavros Tripakis, and Cristina Nita-Rotaru

Northeastern University, Boston MA 02118, USA
{vonhippel.m,stavros,c.nitarotaru}@northeastern.edu

vick.c@husky.neu.edu

Abstract. Distributed protocols should be robust to both benign malfunction
(e.g. packet loss or delay) and attacks (e.g. message replay). In this paper we
take a formal approach to the automated synthesis of attackers, i.e. adversarial
processes that can cause the protocol to malfunction. Specifically, given a formal
threat model capturing the distributed protocol model and network topology, as
well as the placement, goals, and interface of potential attackers, we automat-
ically synthesize an attacker. We formalize four attacker synthesis problems -
across attackers that always succeed versus those that sometimes fail, and attack-
ers that may attack forever versus those that may not - and we propose algorithmic
solutions to two of them. We report on a prototype implementation called KORG

and its application to TCP as a case-study. Our experiments show that KORG can
automatically generate well-known attacks for TCP within seconds or minutes.

Keywords: Synthesis · Security · Distributed Protocols

1 Introduction
Distributed protocols represent the fundamental communication backbone for all ser-
vices over the Internet. Ensuring the correctness and security of these protocols is crit-
ical for the services built on top of them [9]. Prior literature proposed different ap-
proaches to correctness assurance, e.g. testing [26, 12], or structural reasoning [11].
Many such approaches rely on manual analysis or are ad-hoc in nature.

In this paper, we take a systematic approach to the problem of security of distributed
protocols, by using formal methods and synthesis [10]. Our focus is the automated
generation of attacks. But what exactly is an attack? The notion of an attack is often
implicit in the formal verification of security properties: it is a counterexample violating
some security specification. We build on this idea. We provide a formal definition of
threat models capturing the distributed protocol model and network topology, as well
as the placement, goals, and capabilities of potential attackers. Intuitively, an attacker
is a process that, when composed with the system, results a protocol property violation.

By formally defining attackers as processes, our approach has several benefits: first,
we can ensure that these processes are executable, meaning attackers are programs that
reproduce attacks. This is in contrast to other approaches that generate a trace exempli-
fying an attack, but not a program producing the attack, e.g. [5, 39]. Second, an explicit
formal attacker definition allows us to distinguish different types of attackers, depend-
ing on: what exactly does it mean to violate a property (in some cases? in all cases?);

2 von Hippel et al.

how the attacker can behave, etc. We distinguish between ∃-attackers (that sometimes
succeed in violating the security property) and ∀-attackers (that always succeed); and
between attackers with recovery (that eventually revert to normal system behavior) and
attackers without (that may attack forever). We make four primary contributions.

– We propose a novel formalization of threat models and attackers, where the threat
models algebraically capture not only the attackers but also the attacker goals, the
environmental and victim processes, and the network topology.

– We formalize four attacker synthesis problems – ∃ASP, R-∃ASP, ∀ASP, R-∀ASP –
one for each of the four combinations of types of attackers.

– We propose solutions for ∃ASP and R-∃ASP via reduction to model-checking. The
key idea of our approach is to replace the vulnerable processes - the victim(s) -
by appropriate “gadgets”, then ask a model-checker whether the resulting system
violates a certain property.

– We implement our solutions in a prototype open-source tool called KORG, and
apply KORG to TCP connection establishment and tear-down routines. Our experi-
ments show KORG is able to automatically synthesize realistic, well-known attacks
against TCP within seconds or minutes.

The rest of the paper is organized as follows. We present background material in §2.
We define attacker synthesis problems in §3 and present solutions in §4. We describe
the TCP case study in §5, present related work in §6, and conclude in §7.

2 Formal Model Preliminaries
We model distributed protocols as interacting processes, in the spirit of [1]. We next
define formally these processes and their composition. We use 2X to denote the power-
set of X , and ω-exponentiation to denote infinite repetition, e.g., aω = aaa · · · .

2.1 Processes

Definition 1 (Process). A process is a tuple P = 〈AP, I, O, S, s0, T, L〉 with set of
atomic propositions AP, set of inputs I , set of outputs O, set of states S, initial state
s0 ∈ S, transition relation T ⊆ S× (I ∪O)×S, and (total) labeling function L : S →
2AP, such that: AP, I, O, and S are finite; and I ∩O = ∅.

Let P = 〈AP, I, O, S, s0, T, L〉 be a process. For each state s ∈ S, L(s) is a subset
of AP containing the atomic propositions that are true at state s. Consider a transition
(s, x, s′) starting at state s and ending at state s′ with label x. If the label x is an input,
then the transition is called an input transition and denoted s x?−→ s′. Otherwise, x is an
output, and the transition is called an output transition and denoted s x!−→ s′. A transition
(s, x, s′) is called outgoing from state s and incoming to state s′.

A state s ∈ S is called a deadlock iff it has no outgoing transitions. The state s is
called input-enabled iff, for all inputs x ∈ I , there exists some state s′ ∈ S such that
there exists a transition (s, x, s′) ∈ T . We call s an input state (or output sate) if all its
outgoing transitions are input transitions (or output transitions, respectively).

Automated Attacker Synthesis for Distributed Protocols 3

A process P is deterministic iff all of the following hold: (i) its transition relation T
can be expressed as a function S × (I ∪ O)→ S; (ii) every non-deadlock state in S is
either an input state or an output state, but not both; (iii) input states are input-enabled;
and (iv) each output state has only one outgoing transition. Determinism guarantees
that: each state is a deadlock, an input state, or an output state; when a process outputs,
its output is uniquely determined by its state; and when a process inputs, the input and
state uniquely determine where the process transitions.

A run of a process P is an infinite sequence r =
(
(si, xi, si+1)

)∞
i=0
⊆ Tω of

consecutive transitions. We use runs(P) to denote all the runs of P . A run over states
s0, s1, ... induces a sequence of labels L(s0), L(s1), ... called a computation.

2.2 Composition

The composition of two processes P1 and P2 is another process denoted P1 ‖ P2, cap-
turing both the individual behaviors of P1 and P2 as well as their interactions with one
another. We define the asynchronous parallel composition operator ‖ with rendezvous
communication as in [1].

Definition 2 (Process Composition). Let Pi = 〈APi, Ii, Oi, Si, si0, Ti, Li〉 be pro-
cesses, for i = 1, 2. For the composition of P1 and P2 (denoted P1 ‖ P2) to be
well-defined, the processes must have no common outputs, and no common atomic
propositions. Then P1 ‖ P2 is defined below:

P1 ‖ P2 = 〈AP1 ∪ AP2, (I1 ∪ I2) \ (O1 ∪O2), O1 ∪O2, S1 × S2, (s
1
0, s

2
0), T, L〉 (1)

... where the transition relation T is precisely the set of transitions (s1, s2)
x−→ (s′1, s

′
2)

such that, for i = 1, 2, if the label x ∈ Ii ∪Oi is a label of Pi, then si
x−→ s′i ∈ Ti, else

si = s′i.L : S1×S2 → 2AP1∪AP2 is the function defined asL(s1, s2) = L1(s1)∪L2(s2).

The labeling function L is total as L1 and L2 are total. Since we required the pro-
cesses P1, P2 to have disjoint sets of atomic propositions, L does not change the logic
of the two processes under composition. Note that the composition of two processes is
a process. Additionally, ‖ is commutative and associative [1].

2.3 LTL

LTL [28] is a linear temporal logic for reasoning about computations. In this work,
we use LTL to formulate properties of processes. The syntax of LTL is defined by the
following grammar: φ ::= p | q | ... | φ1 ∧ φ2 | ¬φ1 | Xφ1 | φ1Uφ2, where the
p | q | ... are any atomic propositions ∈ AP, and φ1, φ2 can be any LTL formulae.

Let σ be a computation. If σ satisfies an LTL formula φ we write σ |= φ. If ¬(σ |=
φ), then we write σ 6|= φ. The satisfaction relation for LTL is formally defined as
follows: σ |= p if p is true in σ(0); σ |= Xp if p is true in σ(1); σ |= Fp if there exists
some K ≥ 0 such that p is true in σ(K); σ |= Gp if for all K ≥ 0, p is true in σ(K);
σ |= pUq if there exists some K ≥ 0 such that for all k1 < K ≤ k2, p is true in σ(k1)
and q is true in σ(q2); and σ |= φ1 ∧ φ2 if σ |= φ1 and σ |= φ2.

4 von Hippel et al.

An LTL formula φ is called a safety property iff it can be violated by a finite pre-
fix of a computation, or a liveness property iff it can only be violated by an infinite
computation [2]. For a process P and LTL formula φ, we write P |= φ iff, for every
computation σ of P , σ |= φ. For convenience, we naturally elevate our notation for
satisfaction on computations to satisfaction on runs.

3 Attacker Synthesis Problems
We want to synthesize attackers automatically. Intuitively, an attacker is a process that,
when composed with the system, violates some property. There are different types of at-
tackers, depending on what it means to violate a property (in some cases? in all cases?),
as well as on the system topology (threat model). Next, we define the threat model and
attacker concepts formally, followed by the problems considered in this paper.

3.1 Threat Models

A threat model or attacker model prosaically captures the goals and capabilities of an
attacker with respect to some victim and environment. Our threat model captures: how
many attacker components there are; how they communicate with each other and with
the rest of the system; and the attacker goals.

Definition 3 (Input-Output Interface). An input-output interface is a tuple (I,O)
such that I ∩ O = ∅ and I ∪ O 6= ∅. The class of an input-output interface (I,O),
denoted C(I,O), is the set of processes with inputs I and outputs O. Likewise, C(P)
denotes the input-output interface the process P belongs to. (e.g. Fig. 2)

Definition 4 (Threat Model). A threat model is a tuple (P, (Qi)
m
i=0, φ) where

P,Q0, ..., Qm are processes, each process Qi has no atomic propositions (i.e., its set
of atomic propositions is empty), and φ is an LTL formula such that P ‖ Q0 ‖ ... ‖
Qm |= φ. We also require that the system P ‖ Q0 ‖ ... ‖ Qm satisfies the formula φ in
a non-trivial manner, that is, that P ‖ Q0 ‖ ... ‖ Qm has at least one infinite run.

In a threat model, the process P is called the target process, and the processes Qi
are called vulnerable processes. The goal of the adversary is to modify the vulnerable
processes Qi so that composition with the target process violates φ. (We assume that
prior to the attack, the protocol behaves correctly, i.e., it satisfies φ.) See Fig. 1.

3.2 Attackers

Definition 5 (Attacker). Let TM = (P, (Qi)
m
i=0, φ) be a threat model. Then A =

(Ai)
m
i=0 is called a TM-attacker if P ‖ A0 ‖ ... ‖ Am 6|= φ, and, for all 0 ≤ i ≤ m: Ai

is a deterministic process; Ai has no atomic propositions, and Ai ∈ C(Qi).

The existence of a (P, (Qi)
m
i=0, φ)-attacker means that if an adversary can exploit

all the Qi, then the adversary can attack P with respect to φ. Note that an attacker A
cannot succeed by blocking the system from having any runs at all. Indeed, P ‖ A0 ‖
... ‖ Am 6|= φ implies that P ‖ A0 ‖ ... ‖ Am has at least one infinite run violating φ.

Automated Attacker Synthesis for Distributed Protocols 5

Alice Mallory Bob

TM3 = (Alice ‖ Bob, (Mallory), φ3)

Alice
Eve

Mark

TM4 = (Alice ‖ Mark, (Eve), φ4)

Alice Oscar

TM2 = (Alice, (Oscar), φ2)

Alice
Trudy

Oscar
Bob

TM1 = (Alice ‖ Bob, (Oscar,Trudy), φ1)

Simon

Jacob

Juan

Sophia

Isabelle

TM5 = (Jacob ‖ Simon ‖ Sophia ‖ Juan, (Isabelle), φ5)

Fig. 1: Example Threat Models. The properties φi are not shown. Solid and dashed boxes are
processes; we only assume the adversary can exploit the processes in the dashed boxes. TM1

describes a distributed on-path attacker scenario, TM2 describes an off-path attacker, TM3 is a
classical man-in-the-middle scenario, and TM4 describes a one-directional man-in-the middle, or,
depending on the problem formulation, an eavesdropper. TM5 is a threat model with a distributed
victim where the attacker cannot affect or read messages from Simon to Juan. Note that a directed
edge in a network topology from Node 1 to Node 2 is logically equivalent to the statement that a
portion of the outputs of Node 1 are also inputs to Node 2. In cases where the same packet might
be sent to multiple recipients, the sender and recipient can be encoded in a message subscript.
Therefore, the entire network topology is implicit in the interfaces of the processes in the threat
model according to the composition definition.

Real-world computer programs implemented in languages like C or JAVA are called
concrete, while logical models of those programs implemented as algebraic transition
systems such as processes are called abstract. The motivation for synthesizing abstract
attackers is ultimately to recover exploitation strategies that actually work against con-
crete protocols. So, we should be able to translate an abstract attacker (Fig. 2) into a
concrete one (Fig. 8). Determinism guarantees that we can do this. We also require the
attacker and the vulnerable processes to have no atomic propositions, so the attacker
cannot “cheat” by directly changing the truth-hood of the property it aims to violate.

For a given threat model many attackers may exist. We want to differentiate attacks
that are more effective from attacks that are less effective. One straightforward com-
parison is to partition attackers into those that always violate φ, and those that only
sometimes violate φ. We formalize this notion with ∃-attackers and ∀-attackers.

Definition 6 (∃-Attacker vs ∀-Attacker). Let A be a (P, (Qi)
m
i=0, φ)-attacker. Then

A is a ∀-attacker if P ‖ A0 ‖ ... ‖ Am |= ¬φ. Otherwise, A is an ∃-attacker.

A ∀-attacker A always succeeds, because P ‖ A |= ¬φ means that every behavior
of P ‖ A satisfies ¬φ, that is, every behavior of P ‖ A violates φ. Since P ‖ A 6|= φ,
there must exist a computation σ of P ‖ A such that σ |= ¬φ, so, a ∀-attacker cannot
succeed by blocking. An ∃-attacker is any attacker that is not a ∀-attacker, and every
attacker succeeds in at least one computation, so an ∃-attacker sometimes succeeds,
and sometimes does not. In most real-world systems, infinite attacks are impossible,
implausible, or just uninteresting. To avoid such attacks, we define an attacker that
produces finite-length sequences of adversarial behavior, and then “recovers”, meaning
that it behaves like the vulnerable process it replaced (see Fig. 3).

Definition 7 (Attacker with Recovery). Let A be a (P, (Qi)
m
i=0, φ)-attacker. If, for

each 0 ≤ i ≤ m, the attacker component Ai consists of a finite directed acyclic graph

6 von Hippel et al.

(DAG) ending in the initial state of the vulnerable process Qi, followed by all of the
vulnerable process Qi, then we say the attacker A is an attacker with recovery. We
refer to the Qi postfix of each Ai as its recovery .

Note that researchers sometimes use “recovery” to mean when a system undoes the
damage caused by an attack. We use the word differently, to mean when the property φ
remains violated even under modus operandi subsequent to attack termination.

p0 : {OK} p1 : ∅

a?

c?

b?

c?

a?, b?, c?

q0

a!

a10

b!

a20

c!

A3

DAG

Q

a30

q0

b!

a!

Fig. 2: From left to right: processes P , Q, A1, A2, A3. Let φ = GOK, and let the interface of Q
be C(Q) = (∅, {a, b, c}). Then P ‖ Q |= φ. A1 and A2 are both deterministic and have no input
states. Let C(A1) = C(A2) = C(Q). Then, A1 and A2 are both (P, (Q), φ)-attackers. A1 is a
∀-attacker, and A2 is an ∃-attacker. A3 is a ∀-attacker with recovery consisting of a DAG starting
at a30 and ending at the initial state q0 of Q, plus all of Q, namely the recovery.

Ai
DAG

Qiai0

ai1

ai2

ai3

x0

x1

x2

x3

...

...

...

...

...

x4

x5

x6

x7

x8

x9
x10

qi0

xk

xk+1

xk+2

xk+3

xk+4

Fig. 3: Suppose A = (Ai)
m
i=0 is attacker with recovery for TM = (P, (Ai)

m
i=0, φ). Further

suppose Ai has initial state ai0, and Qi has initial state qi0. Then Ai should consist of a DAG
starting at ai0 and ending at qi0, plus all of Qi, called the recovery, indicated by the shaded blob.
Note that if some Qi is non-deterministic, then there can be no attacker with recovery, because
Qi is a subprocess of Ai, and all the Ais must be deterministic in order for A to be an attacker.

3.3 Attacker Synthesis Problems

Each type of attacker - ∃ versus ∀, with recovery versus without - naturally induces a
synthesis problem.

Problem 1 (∃-Attacker Synthesis Problem (∃ASP)). Given a threat model TM, find a
TM-attacker, if one exists; otherwise state that none exists.

Automated Attacker Synthesis for Distributed Protocols 7

Problem 2 (Recovery ∃-Attacker Synthesis Problem (R-∃ASP)). Given a threat model
TM, find a TM-attacker with recovery, if one exists; otherwise state that none exists.

We defined ∃ and ∀-attackers to be disjoint, but, if the goal is to find an ∃-attacker, then
surely a ∀-attacker is acceptable too; we therefore did not restrict the ∃-problems to
only ∃-attackers. Next we define the two ∀-problems, which remain for future work.

Problem 3 (∀-Attacker Synthesis Problem (∀ASP)). Given a threat model TM, find a
TM-∀-attacker, if one exists; otherwise state that none exists.

Problem 4 (Recovery ∀-Attacker Synthesis Problem (R-∀ASP)). Given a threat model
TM, find a TM-∀-attacker with recovery, if one exists; otherwise state that none exists.

4 Solutions
We present solutions ∃ASP and R-∃ASP for any number of attackers, and for both
safety and liveness properties. Our success criteria are soundness and completeness.
Both solutions are polynomial in the product of the size of P and the sizes of the in-
terfaces of the Qis, and exponential in the size of the property φ [35]. For real-world
performance, see Section 5.

We reduce ∃ASP and R-∃ASP to model-checking. The idea is to replace the vul-
nerable processes Qi with appropriate “gadgets”, then ask a model-checker whether
the system violates a certain property. We prove that existence of a violation (a coun-
terexample) is equivalent to existence of an attacker, and we show how to transform
the counterexample into an attacker. The gadgets and the LTL formula are different,
depending on whether we seek attackers without or with recovery.

4.1 Gadgetry

A computation σ is a lasso if it equals a finite word α, then infinite repetition of a finite
word β, i.e., σ = α · βω . A prefix α of a computation σ is called a bad prefix for P
and φ if P has ≥ 1 runs inducing computations starting with α, and every computation
starting with α violates φ. We naturally elevate the terms lasso and bad prefix to runs
and their prefixes. We assume a model checker: a procedure MC(P, φ) that takes as
input a process P and property φ, and returns ∅ if P |= φ, or one or more violating
lasso runs or bad prefixes of runs for P and φ, otherwise [2].

Attackers cannot have atomic propositions. So, the only way for A to attack TM
is by sending and receiving messages, hence the space of attacks is within the space
of labeled transition sequences. The Daisy Process nondeterministically exhausts the
space of input and output events of a vulnerable process.

Definition 8 (Daisy Process). Let Q = 〈∅, I, O, S, s0, T, L〉 be a process with no
atomic propositions. Then the daisy of Q, denoted DAISY(Q), is the process defined
below, where L′ : {d0} → {∅} is the map such that L′(d0) = ∅.

DAISY(Q) = 〈∅, I, O, {d0}, d0, {(d0, w, d0) | w ∈ I ∪O}, L′〉 (2)

8 von Hippel et al.

Next, we define a Daisy with Recovery. This gadget is an abstract process, i.e., a
generalized process with a non-empty set of initial states S0 ⊆ S. Composition and
LTL semantics for abstract processes are naturally defined. We implicitly transform
processes to abstract processes by wrapping the initial state in a set.

Definition 9 (Daisy with Recovery). Given a process Qi = 〈∅, I, O, S, s0, T, L〉, the
daisy with recovery ofQi, denoted RDAISY(Qi), is the abstract process RDAISY(Qi) =
〈AP, I, O, S′, S0, T

′, L′〉, with atomic propositions AP = {recoveri}, states S′ =
S ∪ {d0}, initial states S0 = {s0, d0}, transitions T ′ = T ∪ {(d0, x, w0) | x ∈
I ∪ O,w0 ∈ S0}, and labeling function L′ : S′ → 2AP that takes s0 to {recoveri}
and other states to ∅. (We reserve the symbols recover0, ... for use in daisies with
recovery, so they cannot be sub-formulae of the property in any threat model.)

4.2 Solution to ∃ASP

Let TM = (P, (Qi)
m
i=0, φ) be a threat model. Our goal is to find an attacker for TM,

if one exists, or state that none exists, otherwise. First, we check whether the system
P ‖ DAISY(Q0) ‖ ... ‖ DAISY(Qm) satisfies φ. If it does, then no attacker exists, as
the daisy processes encompass any possible attacker behavior. Define a set R returned
by the model-checker MC:

R = MC(P ‖ DAISY(Q0) ‖ ... ‖ DAISY(Qm), φ) (3)

If R = ∅ then no attacker exists. On the other hand, if the system violates φ, then we
can transform a violating run into a set of attacker processes by projecting it onto the
corresponding interfaces. Choose a violating run or bad prefix r ∈ R arbitrarily. Either
r = α is some finite bad prefix, or r = α · βω is a violating lasso. For each 0 ≤ i ≤ m,
let αi be the projection of α onto the process DAISY(Qi). That is, let αi = []; then
for each (s, x, s′) in α, if x is an input or an output of Qi, and q, q′ are the states
DAISY(Qi) embodies in s, s′, add (q, x, q′) to αi. For each αi, create an incomplete
processAαi with a new state sαj+1 and transition sαj

z−→ sαj+1 for each αi[j] = (di0, z, d
i
0)

for 0 ≤ j < |αi|. If r = α ·βω is a lasso, then for each 0 ≤ i ≤ m, defineAβi from βi in
the same way that we defined Aαi from αi; let A′i be the result of merging the first and
last states of Aβi with the last state of Aαi . Otherwise, if r = α is a bad prefix, let A′i be
the result of adding an input self-loop to the last state of Aαi , or an output self-loop if
Qi has no inputs. Either way, A′i is an incomplete attacker. Finally let Ai be the result
of making every input state in A′i input-enabled via self-loops, and return the attacker
A = (Ai)

m
i=0. An illustration of the method is given in Figure 4.

Theorem 1 (∃ASP Solution is Sound and Complete). Let TM = (P, (Qi)
m
i=0, φ) be

a threat model, and define R as in Eqn. 3. Then the following hold. 1) R 6= ∅ iff a TM-
attacker exists. 2) IfR 6= ∅, then the procedure above eventually returns a TM-attacker.

4.3 Solution to R-∃ASP

Let TM = (P, (Qi)
m
i=0, φ) be a threat model as before. Now our goal is to find a TM-

attacker with recovery, if one exists, or state that none exists, otherwise. The idea to

Automated Attacker Synthesis for Distributed Protocols 9

Threat Model: TM′ = (P, (Q0, Q1), φ), where the processes from left to right are P , Q0,
and Q1, and where φ = FG l. P has inputs k,m, and output n. Q0 has no inputs, and
output m. Q1 has inputs n, h, and output k. Recall that P ‖ Q0 ‖ Q1 |= φ.

p0 : ∅ p1 : ∅ p2 : ∅ p3 : {l}k? m?

m?
k?

n!

q00

m!

q10 q11
n?

k! k!

Violating run: A run r ∈ R where R is defined as in Equation 3.

r =

α︷ ︸︸ ︷p0d00
d10

 k!−→

p1d00
d10

 m!−−→

βω︷ ︸︸ ︷p2d00
d10

 m!−−→

p3d00
d10

 n!−→

p2d00
d10

 m!−−→

p3d00
d10

 n!−→ ... ∈ R

Application of solution: r is projected and translated into an attacker A = (A0, A1).

α0 = d00 d00

Aα0 = sα0
0 sα0

1

m!

m!

α1 = d10 d10

Aα1 = sα1
0 sα1

1

k!

k!

β0 = d00 d00

Aβ0 = sβ00 sβ01

m!

m!

β1 = d10 d10

Aβ1 = sβ10 sβ11

n?

n?

A′
0 = a0

′
0 a0

′
1

m!
m!

A0 = a00 a01
m!

m!

A′
1 = a1

′
0 a1

′
1

k!
n?

A1 = a10 a11
k!

n?, h?

Fig. 4: Example threat model TM′ on top, followed by a violating run in R, followed by transla-
tion of the run into attacker.

solve this problem is similar to the idea for finding attackers without recovery, with two
differences. First, the daisy processes are now more complicated, and include recovery
to the original Qi processes. Second, the formula used in model-checking is not φ, but
a more complex formula ψ to ensure that the attacker eventually recovers, i.e., all the
attacker components eventually recover. We define the property ψ so that in prose it
says “if all daisies eventually recover, then φ holds”. We then define R like before,
except we replace daisies with daisies with recovery, and φ with ψ, as defined below.

ψ =
(∧
0≤i≤m

Frecoveri
)

=⇒ φ (4)

R = MC(P ‖ RDAISY(Q0) ‖ ... ‖ RDAISY(Qm), ψ) (5)

If R = ∅ then no attacker with recovery exists. If any Qi is not deterministic, then
likewise no attacker with recovery exists, because our attacker definition requires the
attacker to be deterministic, but if Qi is not and Qi ⊆ Ai then neither is Ai.

10 von Hippel et al.

Otherwise, choose a violating run (or bad prefix) r ∈ R arbitrarily. We proceed as
we did for ∃ASP but with three key differences. First, we define αi by projecting α onto
RDAISY(Qi) as opposed to DAISY(Qi). Second, for each 0 ≤ i ≤ m, instead of using
Aβi if r is a lasso, or adding self-loops to the final state if r is a bad prefix, we simply
glue Aαi to Qi by setting the last state of Aαi to be the initial state of Qi. (The result of
gluing is a process; the initial state ofAαi is its only initial state.) Third, instead of using
self-loops to input-enable input states, we use input transitions to the initial state of Qi.
This ensures the pre-recovery portion is a DAG. Then we return A = (Ai)

m
i=0.

Theorem 2 (R-∃ASP Solution is Sound and Complete). Let TM = (P, (Qi)
m
i=0, φ)

be a threat model, and defineR as in Eqn. 5. Assume all theQis are deterministic. Then
the following hold. 1) R 6= ∅ iff a TM-attacker with recovery exists. 2) If R 6= ∅, then
the procedure described above eventually returns a TM-attacker with recovery.

5 Case Study: TCP
Implementation We implemented our solutions in an open-source tool called KORG.
We say an attacker A for a threat model TM = (P, (Qi)

m
i=0, φ) is a centralized attacker

if m = 0, or a distributed attacker, otherwise. In other words, a centralized attacker
has only one attacker component A = (A), whereas a distributed attacker has many
attacker components A = (Ai)

m
i=0. KORG handles ∃ASP and R-∃ASP for liveness and

safety properties for a centralized attacker. KORG is implemented in PYTHON 3 and
uses the model-checker SPIN [15] as its underlying verification engine.

TCP is a fundamental Internet protocol consisting of three stages: connection es-
tablishment, data transfer, and connection tear-down. We focus on the first and third
stages, which jointly we call the connection routine. Our approach and model (see Fig.
5, 6) are inspired by SNAKE [19]. Run-times and results are listed in Table 1.

PEER 1

1TON

NTO1

NETWORK

2TON

NTO2

PEER 2

Fig. 5: TCP threat model block diagram. Each box is a process. An arrow from process P1 to pro-
cess P2 denotes that a subset of the outputs of P2 are exclusively inputs of P1. PEERs 1 and 2 are
TCP peers. A channel is a directed FIFO queue of size one with the ability to detect fullness. A
full channel may be overwritten. 1TON, NTO1, 2TON, and NTO2 are channels. Implicitly, chan-
nels relabel: for instance, 1TON relabels outputs from PEER 1 to become inputs of NETWORK;
NETWORK transfers messages between peers via channels, and is the vulnerable process.

Threat Models Rather than communicating directly with the NETWORK, the peers
communicate with the channels, and the channels communicate with the NETWORK,
allowing us to model the fact that packets are not instantaneously transferred in the
wild. We use the shorthand CHAN!MSG to denote the event where MSG is sent over a
channel CHAN; it is contextually clear who sent or received the message. We abstract
the lower network stack layer TCP relies on with NETWORK, which passes messages
between 1TON ‖ 2TON and NTO1 ‖ NTO2. We model the peers symmetrically.

Automated Attacker Synthesis for Distributed Protocols 11

Closed End

Listen

SYN Sent

i0

i1

i2

SYN Received

Established i3

FIN Wait 1

Close Wait

FIN Wait 2

i4

Closing

i5

Time Wait

Last ACK

SND!SYN

RCV?SYN ACK

RCV?SYN

RCV?SYN

SND!ACK

SND!ACK

SND!SYN ACK

RCV?ACK

RCV?FIN

SND!FIN
RCV?ACK

RCV?FIN

SND!ACK

SND!FIN

SND!ACK

RCV?FIN

SND!ACK

RCV?ACK

RCV?ACK

Fig. 6: A TCP peer. For i = 1, 2, if this is PEER i, then SND := iTON and RCV := NTOi. All
the states except i0, ..., i5, and End are from the finite state machine in the TCP RFC [29]. The
RFC diagram omits the implicit states i0, ..., i5, instead combining send and receive events on
individual transitions. In the RFC, Closed is called a “fictional state”, where no TCP exists. We
add a state End to capture the difference between a machine that elects not to instantiate a peer
and a machine that is turned off. We label each state swith a single atomic proposition si. Dashed
transitions are timeout transitions, meaning they are taken when the rest of the system deadlocks.

Given a property φ about TCP, we can formulate a threat model TM as follows,
where we assume the adversary can exploit the lower layers of a network and ask if the
adversary can induce TCP to violate φ:

TM = (PEER 1 ‖ PEER 2 ‖ 1TON ‖ 2TON ‖ NTO1 ‖ NTO2, (NETWORK), φ) (6)

We consider the properties φ1, φ2, φ3, giving rise to the threat models TM1, TM2, TM3.

TM1: No Half-Closed Connection Establishment The safety property φ1 says that
if PEER 1 is in Closed state, then PEER 2 cannot be in Established state.

φ1 = G(Closed1 =⇒ ¬Established2) (7)

KORG discovers an attacker that spoofs the active participant in an active-passive con-
nection establishment (see message sequence chart in Fig. 7), as described in [13].

TM2: Passive-Active Connection Establishment Eventually Succeeds The liveness
property φ2 says that if it is infinitely often true that PEER 1 is in Listen state while PEER
2 is in SYN Sent state, then it must eventually be true that PEER 1 is in Established state.

φ2 = (GF(Listen1 ∧ SYN Sent2)) =⇒ FEstablished1 (8)

KORG discovers an attack where a SYN packet from PEER 2 is dropped. The corre-
sponding attacker code is given in the PROMELA language of SPIN in Fig. 8.

12 von Hippel et al.

PEER 1 A PEER 2

Closed a0 Closed

Closed a0 Listen
SYN

Closed a1 i2
SYN ACK

Closed a2 SYN Received
ACK

Closed a4 Established

Fig. 7: Time progresses from top to bottom. Labeled arrows denote message exchanges over
implicit channels. The property is violated in the final row; after this recovery may begin.

Nto1 ! ACK; Nto2 ! ACK; 2toN ? SYN; /* ... recovery ... */

Fig. 8: Body of PROMELA process for a TM2-attacker with recovery generated by KORG. PEER 2
transitions from Closed state to SYN Sent state and sends SYN to PEER 1. The attacker drops this
packet so that it never reaches PEER 1. PEER 1 then transitions back and forth forever between
Closed and Listen states, and the property is violated. Because SPIN attempts to find counterex-
amples as quickly as possible, the counterexamples it produces are not in general minimal.

TM3: Peers Do Not Get Stuck The safety property φ3 says that the two peers will
never simultaneously deadlock outside their End states. Let Si denote the set of states
in Fig. 6 for PEER i, and S′i = Si \ {End}.

φ3 =
∧

s1∈S′
1

∧
s2∈S′

2

¬FG(s1 ∧ s2) (9)

For the problem with recovery, KORG discovers an attacker that selectively drops the
ACK sent by PEER 1 as it transitions from i0 to Established state in an active/passive
connection establishment routine, leaving PEER 2 stranded in SYN Received state, lead-
ing to a violation of φ3. Similar bugs exist in real-world implementations, e.g. [31].

Performance Performance results for Case Study are given in Table 1. Our success
criteria was to produce realistic attackers faster than an expert human could with pen-
and-paper. We discovered attackers in seconds or minutes as shown in Table 1.

6 Related Work
Prior works formalized security problems using game theory (e.g., FLIPIT [34], [22]),
“weird machines” [7], attack trees [37], Markov models [33], and other methods. Prior
notions of attacker quality include O-complexity [6], expected information loss [30],
or success probability [25, 36], which is similar to our concept of ∀ versus ∃-attackers.
The formalism of [36] also captures attack consequence (cost to a stakeholder).

Attacker synthesis work exists in cyber-physical systems [27, 3, 18, 25], most of
which define attacker success using bad states (e.g., reactor meltdown, vehicle colli-
sion, etc.) or information theory (e.g., information leakage metrics). Problems include
the actuator attacker synthesis problem [23]; the hardware-aware attacker synthesis
problem [32]; and the fault-attacker synthesis problem [4].

Automated Attacker Synthesis for Distributed Protocols 13

Property
Avg. Runtime (s)
Unique Attacker

Unique Attackers Found

∃ASP R-∃ASP ∃ASP R-∃ASP
φ1 0.32 0.49 7 5
φ2 0.45 0.48 5 5
φ3 876.74 2757.98 4 5

Table 1: For each property φi, we asked KORG 10 times to generate 10 attackers with recovery,
and 10 without, on a 16Gb 2018 Intel c© Coretm i7-8550U CPU running Linux Mint 19.3 Cin-
namon. KORG may generate duplicate attackers, so for each property (Column 1), we list the
average time to generate a unique attacker without recovery (Column 2) or with (Column 3), and
the total number of unique attackers found without recovery (Column 4) or with (Column 5).
E.g., for φ3, of 100 attackers with recovery generated over about four hours, five were unique and
95 duplicates, so KORG took about 2.3 minutes per attacker, or, 45 minutes per unique attacker.
Instructions and code to reproduce these results are given in the GitHub repository.

Maybe the most similar work to our own is PROVERIF [5], which verifies proper-
ties of, and generates attacks against, cryptographic protocols. We formalize the prob-
lem with operational semantics (processes) and reduce it to model checking, whereas
PROVERIF uses axiomatic semantics (PROLOG clauses) and reduces it to automated
proving. Another similar tool is NETSMC [39], a model-checker that efficiently finds
counter-examples to security properties of stateful networks.

Existing techniques for automated attack discovery include model-guided search
[19, 16] (including using inference [8]), open-source-intelligence [38], bug analysis
[17], and genetic programming [21]. The generation of a failing test-case for a protocol
property is not unlike attack discovery, so [24] is also related.

This paper focuses on attacker synthesis at the protocol level, and thus differs from
the work reported in [20] in two ways: first, the work in [20] synthesizes mappings
between high-level protocol models and execution platform models, thereby focusing
on linking protocol design and implementation; second, the work in [20] synthesizes
correct (secure) mappings, whereas we are interested in synthesizing attackers.

7 Conclusion

We present a novel formal framework for automated attacker synthesis. The framework
includes an explicit definition of threat models and four novel, to our knowledge, cat-
egories of attackers. We formulate four attacker synthesis problems, and propose solu-
tions to two of them by program transformations and reduction to model-checking. We
prove our solutions sound and complete; these proofs are available online [14]. Finally,
we implement our solutions for the case of a centralized attacker in an open-source tool
called KORG, apply KORG to the study of the TCP connection routine, and discuss the
results. KORG and the TCP case study are freely and openly available1.
Acknowledgments This material is based upon work supported by the National Science Foun-
dation under NSF SaTC award CNS-1801546. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation. The authors thank four anonymous reviewers.
Additionally, the first author thanks Benjamin Quiring, Dr. Ming Li, and Dr. Frank von Hippel.

1 github.com/maxvonhippel/AttackerSynthesis

14 von Hippel et al.

References

1. Alur, R., Tripakis, S.: Automatic synthesis of distributed protocols. SIGACT News 48(1),
55–90 (2017)

2. Baier, C., Katoen, J.P.: Principles of model checking. MIT press (2008)
3. Bang, L., Rosner, N., Bultan, T.: Online synthesis of adaptive side-channel attacks based

on noisy observations. In: 2018 IEEE European Symposium on Security and Privacy. pp.
307–322. IEEE (2018)

4. Barthe, G., Dupressoir, F., Fouque, P.A., Grégoire, B., Zapalowicz, J.C.: Synthesis of fault
attacks on cryptographic implementations. In: Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security. pp. 1016–1027 (2014)

5. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In: 14th
IEEE Computer Security Foundations Workshop. pp. 82–96. IEEE Computer Society, Cape
Breton, Nova Scotia, Canada (Jun 2001)

6. Branco, R., Hu, K., Kawakami, H., Sun, K.: A mathematical modeling of exploitations
and mitigation techniques using set theory. In: 2018 IEEE Security and Privacy Workshops
(SPW). pp. 323–328. IEEE (2018)

7. Bratus, S., Locasto, M.E., Patterson, M.L., Sassaman, L., Shubina, A.: Exploit programming:
From buffer overflows to weird machines and theory of computation. USENIX; login 36(6)
(2011)

8. Cho, C.Y., Babic, D., Poosankam, P., Chen, K.Z., Wu, E.X., Song, D.: MACE: Model-
inference-assisted concolic exploration for protocol and vulnerability discovery. In: USENIX
Security Symposium. vol. 139 (2011)

9. Chong, S., Guttman, J., Datta, A., Myers, A., Pierce, B., Schaumont, P., Sherwood, T., Zel-
dovich, N.: Report on the NSF workshop on formal methods for security. (2016)

10. Church, A.: Application of recursive arithmetic to the problem of circuit synthesis (7 1957),
as cited in doi:10.2307/2271310.

11. Dijkstra, E.W., et al.: Notes on structured programming. http://www.cs.utexas.
edu/users/EWD/ewd02xx/EWD249.PDF (1970), accessed: 11 May 2020

12. Duran, J.W., Ntafos, S.: A report on random testing. In: Proceedings of the 5th international
conference on Software engineering. pp. 179–183. IEEE Press (1981)

13. Friedrichs, O.: A simple TCP spoofing attack. citi.umich.edu/u/provos/
papers/secnet-spoof.txt (February 1997), accessed: 3 January 2020

14. von Hippel, M., Vick, C., Tripakis, S., Nita-Rotaru, C.: Automated attacker synthesis for
distributed protocols. arXiv preprint arXiv:2004.01220 (2020)

15. Holzmann, G.: The Spin Model Checker. Addison-Wesley (2003)
16. Hoque, E., Chowdhury, O., Chau, S.Y., Nita-Rotaru, C., Li, N.: Analyzing operational behav-

ior of stateful protocol implementations for detecting semantic bugs. In: 2017 47th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). pp. 627–
638. IEEE (2017)

17. Huang, S.K., Huang, M.H., Huang, P.Y., Lai, C.W., Lu, H.L., Leong, W.M.: Crax: Software
crash analysis for automatic exploit generation by modeling attacks as symbolic continua-
tions. In: 2012 IEEE Sixth International Conference on Software Security and Reliability.
pp. 78–87. IEEE (2012)

18. Huang, Z., Etigowni, S., Garcia, L., Mitra, S., Zonouz, S.: Algorithmic attack synthesis us-
ing hybrid dynamics of power grid critical infrastructures. In: 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. pp. 151–162. IEEE (2018)

19. Jero, S., Lee, H., Nita-Rotaru, C.: Leveraging state information for automated attack dis-
covery in transport protocol implementations. In: 2015 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks. pp. 1–12. IEEE (2015)

Automated Attacker Synthesis for Distributed Protocols 15

20. Kang, E., Lafortune, S., Tripakis, S.: Automated Synthesis of Secure Platform Mappings. In:
Computer Aided Verification (CAV) (Jul 2019)

21. Kayacik, H.G., Zincir-Heywood, A.N., Heywood, M.I., Burschka, S.: Generating mimicry
attacks using genetic programming: a benchmarking study. In: 2009 IEEE Symposium on
Computational Intelligence in Cyber Security. pp. 136–143. IEEE (2009)

22. Klaška, D., Kučera, A., Lamser, T., Řehák, V.: Automatic synthesis of efficient regular strate-
gies in adversarial patrolling games. In: Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems. pp. 659–666. International Foundation for
Autonomous Agents and Multiagent Systems (2018)

23. Lin, L., Zhu, Y., Su, R.: Synthesis of actuator attackers for free. arXiv preprint
arXiv:1904.10159 (2019)

24. McMillan, K.L., Zuck, L.D.: Formal specification and testing of QUIC. In: Proceedings of
the ACM Special Interest Group on Data Communication, pp. 227–240. ACM (2019)

25. Meira-Góes, R., Kwong, R., Lafortune, S.: Synthesis of sensor deception attacks for systems
modeled as probabilistic automata. In: 2019 American Control Conference. pp. 5620–5626.
IEEE (2019)

26. Myers, G.J.: The art of software testing. John Wiley & Sons (1979)
27. Phan, Q.S., Bang, L., Pasareanu, C.S., Malacaria, P., Bultan, T.: Synthesis of adaptive side-

channel attacks. In: 2017 IEEE 30th Computer Security Foundations Symposium. pp. 328–
342. IEEE (2017)

28. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of
Computer Science. pp. 46–57. IEEE (1977)

29. Postel, J., et al.: Rfc 793 Transmission Control Protocol (September 1981)
30. Srivastava, H., Dwivedi, K., Pankaj, P.K., Tewari, V.: A formal attack centric framework

highlighting expected losses of an information security breach. International Journal of Com-
puter Applications 68(17) (2013)

31. @henryouly: [Solved] TCP connection blocked in SYN SENT status. bbs.
archlinux.org/viewtopic.php?id=33875 (2007), accessed: 3 January 2020

32. Trippel, C., Lustig, D., Martonosi, M.: Security verification via automatic hardware-aware
exploit synthesis: The CheckMate approach. IEEE Micro 39(3), 84–93 (2019)

33. Valizadeh, S., van Dijk, M.: Toward a theory of cyber attacks. arXiv preprint
arXiv:1901.01598 (2019)

34. Van Dijk, M., Juels, A., Oprea, A., Rivest, R.L.: FlipIt: The game of stealthy takeover. Jour-
nal of Cryptology 26(4), 655–713 (2013)

35. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification.
In: Proceedings of the First Symposium on Logic in Computer Science. pp. 322–331. IEEE
Computer Society (1986)

36. Vasilevskaya, M., Nadjm-Tehrani, S.: Quantifying risks to data assets using formal metrics
in embedded system design. In: International Conference on Computer Safety, Reliability,
and Security. pp. 347–361. Springer (2014)

37. Wideł, W., Audinot, M., Fila, B., Pinchinat, S.: Beyond 2014: Formal methods for attack
tree–based security modeling. ACM Computing Surveys 52(4), 1–36 (2019)

38. You, W., Zong, P., Chen, K., Wang, X., Liao, X., Bian, P., Liang, B.: Semfuzz: Semantics-
based automatic generation of proof-of-concept exploits. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. pp. 2139–2154 (2017)

39. Yuan, Y., Moon, S.J., Uppal, S., Jia, L., Sekar, V.: NetSMC: A custom symbolic model
checker for stateful network verification. In: 17th USENIX Symposium on Networked Sys-
tems Design and Implementation. USENIX Association, Santa Clara, CA (Feb 2020)

