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Abstract
We consider high-frequency multiple-scattering problems in the exterior of two-dimensional
smooth scatterers consisting of finitely many compact, disjoint, and strictly convex obsta-
cles. To deal with this problem, we propose Galerkin boundary element methods, namely
the frequency-adapted Galerkin boundary element methods and Galerkin boundary element
methods generated using frequency-dependent changes of variables. For both of these new
algorithms, in connection with each multiple-scattering iterate, we show that the number of
degrees of freedom needs to increase as O(kε) (for any ε > 0) with increasing wavenumber
k to attain frequency-independent error tolerances. We support our theoretical developments
by a variety of numerical implementations.
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1 Introduction

Standard methods to deal with scattering problems are based on finite elements [7,19,34]
and integral equations [3,6,10,13,41]. Finite elements require the construction of artificial
interfaces along with absorbing boundary conditions in order to truncate the unbounded com-
putational domain and account for the radiation condition at infinity [5,26,29–31]. In the case
of multiple-scattering problems, the sizes of artificial interfaces increase due to the distance
between obstacles. This results in a large bounded domain that will lead to a challenging
computational linear system, especially at the high-frequency regime. For these reasons,
integral equation formulations are better adapted to these kinds of problems. Moreover, in
surface scattering problems considered herein, they provide a dimensional reduction in the
computational domain since the solutions can be computed based on a knowledge of the
densities confined to the surface of the scattering obstacles [18]. Nonetheless, they give rise
to dense linear systems whose sizes increase asO(k p) with increasing wavenumber k where
p is the dimension of the computational manifold.

In the context of two-dimensional single-scattering problems relating to smooth con-
vex obstacles, several high-frequency integral equation methods that incorporate the known
asymptotic behavior of solutions and that thereby reduce the sizes of linear systems were
designed in the last decades [1,2,12,21,23,24,28,38] (for similar approaches to scattering
problems related with convex polygons or variations thereof, see [14–17,27,32,33,35–37,39]
and the references therein). Among these algorithms, [1,2,12,21,38] are asymptotic since
they approximate the solutions in the shadow regions, beyond the O(k−1/3) shadow bound-
aries, by zero. This, in turn, implies that the numerical solutions do not converge to the actual
solutions for any fixed wavenumber k as the number of degrees of freedom goes to infin-
ity. Moreover, the methods in [1,2,12,28,38] are not supported with rigorous convergence
analyses. Indeed, while the developments in [11,12,28,38] have signaled the possibility of
obtaining approximate solutions within prescribed error tolerances in frequency independent
computational times, [21] has demonstrated that an upper bound on the number of degrees of
freedom necessary to represent the unknown surface densities in these approaches isO(k1/9).
Motivated by these observations, frequency-adapted Galerkin boundary element methods for
the solution of single scattering problems were proposed and rigorously analyzed in [24].
These methods demand, for any smooth and strictly convex scatterer, an increase of O(kε)

(for any ε > 0) in the number of degrees of freedom to maintain a prescribed accuracy inde-
pendent of frequency.More recently, a class ofGalerkin boundary element methods based on
frequency-dependent changes of variables for the solution of single-scattering problems that
display similar characteristics from both theoretical and practical perspectives were devel-
oped in [23]. The aim of this paper is to extend and rigorously analyze the single-scattering
algorithms in [23,24] to encompass multiple-scattering problems.

The only numerical algorithm that has provided evidence on the spectral convergence of
Neumann series for two convex obstacles, based on Nyström techniques, was designed in
[9]. However, this approach is not supported by any type of analysis. On the other hand, in
the context of a finite collection of two- or three-dimensional smooth compact and strictly
convex obstacles, the problem of convergence of Neumann series was later addressed in
[4,25] where the rigorous rate of convergence formulas on these orbits are derived.

In this paper, we extend the single-scattering algorithms in [23,24] to the case of multiple-
scattering problems in the exterior of a finite collection of two-dimensional smooth compact
and strictly convex obstacles. We use the theoretical results obtained in [25] in the numer-
ical analysis of the Galerkin methods proposed to deal with multiple-scattering problems.
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Specifically, here we prove for the numerical solution of each multiple-scattering iteration
that the required number of degrees of freedom to represent each one of these iterates needs
to increase only as O(kε) (for any ε > 0) with increasing wavenumber k to obtain pre-
scribed error tolerances independent of underlying frequency. Furthermore, following [22],
we elucidate that incorporation of the leading terms in the asymptotic expansions of the
multiple-scattering iterations [25] into the problem formulation reduces this bound to O(1)
for e.g. the standard combined field integral equation [18].While this is true of eachmultiple-
scattering iterate, the direct use of Neumann series in configurations involving more than two
obstacles is impractical as it requires the solution of an exponentially increasing number of
single-scattering problems with an increasing number of reflections. In practical implemen-
tations, the algorithms proposed in this article must, therefore, be utilized in conjunction
with the acceleration strategies recently developed in [8] (the approach there is based upon
a Krylov subspace method implemented through a novel identification process—that retains
the phase information associatedwith themultiple-scattering iterations and thereby preserves
the frequency independent operation count—combined with a dynamical Kirchhoff precon-
ditioning). In order to observe the true accuracy yielded by our algorithms, however, here we
do not employ these acceleration strategies in our numerical implementations.

In summary, this paper fills an important gap in the literature by providing the first rig-
orous numerical algorithms capable of predicting multiple-scattering returns in essentially
frequency independent computational times when combined with methods for the evaluation
of highly oscillatory integrals (see e.g. [20] and the references therein).

The paper is organized as follows. In §2, we introduce the multiple-scattering problem
along with appropriate integral equation formulations. In §3, we present the phase extraction
for multiple-scattering iterations in the context of finitelymany convex scatterers, and discuss
wavenumber explicit derivative estimates of the related amplitudes [25]. In §4, we present
the principles underlying the extensions of the frequency-adapted Galerkin boundary ele-
ment methods [24] and Galerkin boundary element methods based on frequency-dependent
changes of variables [23] to multiple-scattering problems and analyze their convergence
characteristics. In §5, we present a variety of numerical examples confirming our theoretical
results.

2 Multiple-Scattering Integral Equations

The two-dimensional exterior scattering problemconsidered herein is associatedwith a plane-
wave incidence uinc(x, k) = eikα·x with direction α (|α| = 1 and k > 0), impinging on a
sound-soft, smooth, and compact scatterer K . In this case, the resulting scattered field u is
sought to satisfy

⎧
⎪⎨

⎪⎩

(Δ + k2)u(x, k) = 0, x ∈ R
2\K ,

u(x, k) = −uinc(x, k), x ∈ ∂K ,

lim|x |→∞ |x |1/2
[(

x
|x | ,∇xu(x, k)

)
− iku(x, k)

]
= 0

(1)

where the limit holds uniformly in all directions x
|x | .

In integral equation methods, the direct approach in constructing the solution of problem
(1) is based on the single-layer representation

u(x, k) = −
∫

∂K
Φk(x, y)η(y, k)ds(y), x ∈ R

2\K
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where Φk(x, y) = i
4H

(1)
0 (k|x − y|) is the fundamental solution of Helmholtz equation, and

H (1)
0 is the Hankel function of the first kind and order zero. This converts the scattering

problem (1) into the determination of the unknown normal derivative of the total field

η(x, k) = ∂ν(x)(u(x, k) + uinc(x, k)) on ∂K .

The new unknown can then be recovered through uniquely solvable linear integral equations
which can be expressed as linear operator equations of the second kind

(I − R)η = f (2)

in L2(∂K ). In this connection, the classical combined field integral equation (CFIE) [18]
and the star combined integral equation (SCIE) [40] have been well understood in regards to
their continuity and coercivity properties associated with the convex scattering problems. To
allow the comparison of numerical results with the previous work on sound-soft scattering
problems, we use here the CFIE for which equation (2) takes on the form

(I + K′ − ikV)η = 2(∂ν − ik)uinc (3)

so that R = −K′ + ikV and f = 2(∂ν − ik)uinc. In (3), I is the identity operator, ν is the
exterior unit normal vector to ∂K , and V,K′ are the integral operators defined as

(Vη)(x) = 2
∫

∂K

Φ(x, y)η(y)ds(y), x ∈ ∂K ,

(K′η)(x) = 2
∫

∂K

∂ν(x)Φ(x, y)η(y)ds(y), x ∈ ∂K .

Representation (2) is particularly useful in modeling the scattering phenomenon as a
multiple-scattering problem when the scatterer K consists of disjoint obstacles. To elaborate
on this, we assume that K is comprised of the disjoint obstacles K1, . . . , KN (N ≥ 2). In
this case, (2) can be rewritten as

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

I1 0 · · · 0
0 I2 · · · 0
...

...
. . .

...

0 0 · · · IN

⎤

⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎣

R11 R12 · · · R1N

R21 R22 · · · R2N
...

...
. . .

...

RN1 RN2 · · · RNN

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

⎡

⎢
⎢
⎢
⎣

η1
η2
...

ηN

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

f1
f2
...

fN

⎤

⎥
⎥
⎥
⎦

(4)

where Ii is the identity operator on L2(∂Ki ), Ri j is the associated linear operator mapping
L2(∂K j ) into L2(∂Ki ), ηi and fi are the restrictions of η and f onto ∂Ki . In order to conclude
that η is the superposition of multiple-scattering effects, we first multiply equation (4) with
the inverse of the diagonal operator

D =

⎡

⎢
⎢
⎢
⎣

I1 − R11 0 · · · 0
0 I2 − R22 · · · 0
...

...
. . .

...

0 0 · · · IN − RNN

⎤

⎥
⎥
⎥
⎦

(5)

and obtain the equivalent operator equation

(I − T )η = f (6)

123



Journal of Scientific Computing (2020) 83 :1 Page 5 of 21 1

in L2(K ) where

I =

⎡

⎢
⎢
⎢
⎣

I1 0 · · · 0
0 I2 · · · 0
...

...
. . .

...

0 0 · · · IN

⎤

⎥
⎥
⎥
⎦

, T =

⎡

⎢
⎢
⎢
⎣

0 T12 · · · T1N
T21 0 · · · T2N
...

...
. . .

...

TN1 TN2 · · · 0

⎤

⎥
⎥
⎥
⎦

and f =

⎡

⎢
⎢
⎢
⎣

f1
f2
...

fN

⎤

⎥
⎥
⎥
⎦

(7)

with

Ti j = (Ii − Ri i )
−1Ri j and fi = (Ii − Ri i )

−1 fi .

Next, we observe that, when the spectral radius of T is less than 1, the solution of (6) is given
by the Neumann series

η =
∞∑

m=0

ηm with ηm = T m f (8)

which represents η as the superposition of multiple-scattering effects ηm .

Remark 1 It is not known exactly what geometrical conditions would imply that the spectral
radius of the operator T is less that 1. However, in the context of two smooth strictly convex
obstacles, a semi-rigorous proof is presented in [8, §6]; additionally, in the context of several
smooth convex obstacles illuminated by a plane wave incidence and satisfying appropriate
geometrical constraints, the convergence of Neumann series is discussed in the asymptotic
sense (k � 1) for its rearrangement into “primitive periodic orbits” is discussed in [25]
implying, in particular, its convergence for two smooth strictly convex obstacles.

Note further that, denoting the restriction of ηm onto ∂Ki by ηmi (i = 1, . . . , N ), repre-
sentation (8) implies that

η0i = fi (9)

and
ηmi =

∑

1≤ j≤N
j 
=i

Ti jηm−1
j (m > 0). (10)

Therefore ηmi is the surface current generated on ∂Ki by (a) the incident field uinc ignoring
the other N −1 obstacles form = 0, and (b) the fields scattering off the other N −1 obstacles
at the (m − 1)th iteration for m > 0. Accordingly, when N = 2, (9) and (10) dismantle the
scattering problem (2) into a recursive solution of single-scattering problems. When N > 2,
a further decomposition is necessary to achieve this. Indeed, setting ηmi j = Ti jηm−1

j ( j 
= i)
for m > 0, we clearly have

ηmi =
∑

1≤ j≤N
j 
=i

ηmi j ,

and repeating this process inductively we deduce that

ηmi =
∑

ησm ,...,σ0 (m > 0) (11)

where
ησm ,...,σ0 = Tσmσm−1 · · · Tσ1σ0 fσ0 (12)

123



1 Page 6 of 21 Journal of Scientific Computing (2020) 83 :1

and the summation is over all sequences {σ j }mj=0 ⊂ {1, . . . , N } such that σm = i and
σ j 
= σ j+1 for j = 0, . . . ,m − 1. Therefore, setting

ησ0 = fσ0 on Kσ0 and ησ j ,...,σ0 = Tσ jσ j−1ησ j−1,...,σ0 on Kσ j ( j = 1, . . . ,m),

we finally deduce that determination of ησm ,...,σ0 demands the recursive solution of single-
scattering integral equations

(Iσ j − Rσ jσ j )ησ j ,...,σ0 = gσ j ,...,σ0 on Kσ j , j = 0, . . . ,m, (13)

where

gσ j ,...,σ0 =
{
fσ0 , j = 0,
Rσ jσ j−1ησ j−1,...,σ0 , 1 ≤ j ≤ m.

(14)

Consequently, (8), (9), (11), and (13) provide a complete decomposition of the scattering
problem (2) into single-scattering contributions.

The foregoing argument reveals that efficient computation of ηmi (m ≥ 0) requires efficient
solution of the sequence of single-scattering integral equations in (13). In view of this, let
us mention that the rigorous high-frequency Galerkin boundary element methods in [23,24]
are specifically designed for the effective solution of single-scattering integral equation (2)
in configurations wherein the scatterer K consists of a single obstacle (in which case the
integral equations (2) and (13) clearly coincide when j = 0) that does not allow for multiple-
scattering of waves (in the sense that a ray with direction α initially hitting the obstacle K
does not return to K after a geometrical reflection). In detail, the Galerkin approximation
spaces in [23,24] are constructed based on the observation that, in this case, η can be factored
into the product of a highly-oscillatory exponential with the phase ϕ(x) = α · x and a slowly
varying amplitude as

η(x, k) = eik ϕ(x) ηslow(x, k), x ∈ ∂K . (15)

This implies that, in order to eliminate the oscillations in η with increasing wavenumber k,
the Galerkin approximation spaces X̂ in L2(∂K ) must be constructed in the form

X̂ = eik ϕ(x) Ŷ . (16)

Representations (15) and (16), in turn, imply that the approximation spaces Ŷ must be
designed to resemble the asymptotic behavior of the amplitude ηslow with increasing k in
order to guarantee the efficient (frequency independent) solution of the integral equation (2).
Indeed, as was shown in [23,24], the design of optimal approximation spaces can be based
on a fine analysis on the wavenumber explicit derivative estimates of the amplitude ηslow.

The preceding discussion clarifies the approach that must be utilized in extending the
algorithms in [23,24] for the (rigorous) iterative solution of integral equations in (13). More
precisely, one has to identify the phases of the multiple-scattering iterations ησ j ,...,σ0 , and
derive wavenumber explicit estimates on the derivatives of the related amplitudes. Let us note
in this connection that, when the obstacles K1, . . . , KN are (i) strictly convex, and they satisfy
(ii) the no-occlusion condition (in the sense that no line with the direction α passes through
both Ki and K j for 1 ≤ i 
= j ≤ N ; see Fig. 1a) along with (iii) the visibility condition
(in the sense that the closed convex hull of any two obstacles intersects trivially with any
one of the remaining obstacles; see Fig. 1b), the phases of ησ j ,...,σ0 are uniquely determined,
and sharp wavenumber explicit estimates on the derivatives of the related amplitudes can be
derived [25]. In the rest of the paper, we, therefore, assume that the obstacles K1, . . . , KN

satisfy these three purely geometrical conditions.
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 = (1,0)

K1

K2

K3

(a) Occlusion condition

K1

K2

K3

(b) Visibility condition

Fig. 1 Three obstacle configurations violating the a occlusion condition and b visibility condition

3 Phase Extraction and k-Explicit Derivative Estimates

As the line of reasoning in the preceding section shows, in order to delineate the details in
extending the single-scattering algorithms in [23,24] tomultiple-scattering problems, we first
have to describe the phases of the multiple scattering iterations and discuss the wavenumber
explicit estimates on the derivatives of the related amplitudes. To this end, it is sufficient to
consider an arbitrary sequence {σm}∞m=0 ⊂ {1, . . . , N } such that σm+1 
= σm for all m, and
identify the phases ϕm of the solutions ηm of the integral equations

(Iσm − Rσm ,σm )ηm = gm =
{
fσ0 , m = 0,
Rσm ,σm−1ηm−1, m > 0.

(17)

In this case, each ηm can be factored into the product of a highly-oscillatory exponential
modulated by a slowly varying amplitude as

ηm(x, k) = eikϕm (x)ηslowm (x, k), x ∈ ∂Kσm . (18)

Indeed, as was shown in [25], the phase function ϕm is determined at any point x ∈ ∂Kσm as

ϕm(x) =
⎧
⎨

⎩

α · x, m = 0,

α · Pm
0 (x) +

m−1∑

j=0
|Pm

j+1(x) − Pm
j (x)|, m > 0.

When m > 0, the points (Pm
0 (x), . . . ,Pm

m (x)) ∈ ∂Kσ0 × · · · × ∂Kσm , termed as the “broken
(m+1)-rays terminating at x ∈ ∂Kσm ,” are uniquely determinedby the geometrical conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) Pm
m (x) = x,

(ii) α · ν(Pm
0 (x)) < 0,

and, for 0 ≤ j < m,

(iii) (Pm
j+1(x) − Pm

j (x)) · ν(Pm
j (x)) > 0,

(iv)
Pm
1 (x) − Pm

0 (x)

|Pm
1 (x) − Pm

0 (x)| = α − 2α · ν(Pm
0 (x)) ν(Pm

0 (x)),

(v)
Pm

j+1(x) − Pm
j (x)

|Pm
j+1(x) − Pm

j (x)| = Pm
j (x) − Pm

j−1(x)

|Pm
j (x) − Pm

j−1(x)|
−2

Pm
j (x) − Pm

j−1(x)

|Pm
j (x) − Pm

j−1(x)|
· ν(Pm

j (x)) ν(Pm
j (x)).

(19)
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K
1

K
3

K
2

 = (1,0)

(a) Wavefronts: 1st reflections

K
2

 = (1,0)

K
1

K
3

(b) Broken rays: 1st reflections

(c) Wavefronts: 2nd reflections

 = (1,0)

K
1

K
2

K
3

(d) Broken rays: 2nd reflections

(e) Wavefronts: 3rd reflections

 = (1,0)

K
1

K
2

K
3

(f) Broken rays: 3rd reflections

Fig. 2 Left: Wavefronts generated by a planewave incidence with direction α = (0, 1) on the obstacle path
K1, K2, K3, K1. Right: The associated broken rays in the first three reflections

Conditions (19) mean that, for any x ∈ ∂Kσm , the associated broken (m + 1)-ray
(Pm

0 (x), . . . ,Pm
m (x)) terminating at x is obtained by tracing the ray with initial direction

α that arrives at x after precisely m geometrical reflections in the sense of the law of reflec-
tion. Indeed, wavefronts associated with the broken rays are convex at each reflection (see
the left pane in Fig. 2) and this, in turn, implies that the ray paths become closer and closer
with increasing number of reflections (see the right pane in Fig. 2); for a rigorous analysis of
these facts we refer to [25].
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Moreover, while the direction of incidence α identifies the illuminated region, shadow
boundaries, and shadow region on ∂Kσ0 as

∂K I L
σ0

= {
x ∈ ∂Kσ0 : α · ν(x) < 0

}

∂K SB
σ0

= {
x ∈ ∂Kσ0 : α · ν(x) = 0

}

∂K SR
σ0

= {
x ∈ ∂Kσ0 : α · ν(x) > 0

}
,

form > 0 the broken rays determine the illuminated regions, shadowboundaries, and shadow
regions on ∂Kσm as

∂K I L
σm

= {
x ∈ ∂Kσm : (Pm

m (x) − Pm
m−1(x)) · ν(x) < 0

}

∂K SB
σm

= {
x ∈ ∂Kσm : (Pm

m (x) − Pm
m−1(x)) · ν(x) = 0

}

∂K SR
σm

= {
x ∈ ∂Kσm : (Pm

m (x) − Pm
m−1(x)) · ν(x) > 0

}
.

As for the k-explicit estimates on the derivatives of the amplitude ηslowm , we use Lm to
denote the arc-length of ∂Kσm , and we choose γm(s) to be a counterclockwise oriented

Lm-periodic arc-length parameterization of ∂Kσm such that, for some 0 < t (1)m < t (2)m < Lm ,

∂K I L
σm

= γm((t (1)m , t (2)m ))

∂K SB
σm

= {γm(t (1)m ), γm(t (2)m )}
∂K SR

σm
= γm((t (2)m , t (1)m + Lm)).

Also, with a slight abuse of notation, we write ηslowm (s, k) for ηslowm (γm(s), k). The afore-
mentioned estimates are now given in the following theorem where we use the standard
convention that an empty sum is zero.

Theorem 1 (k-explicit estimates on the derivatives of ηslowm ) For all m, n ∈ N ∪ {0} and
k0 > 0, there exists a positive constant C independent of k and s such that

∣
∣Dn

s η
slow
m (s, k)

∣
∣ ≤ C

(
k +

n+2∑

p=4

(
k−1/3 + |wm(s)|)−p

)
(20)

holds for all k ≥ k0 where wm(s) = (s − t (1)m )(t (2)m − s).

Proof As was shown in [25, Theorem 3.2], estimate (20) holds for all sufficiently large k.
That (20) holds for all k ≥ k0 is, therefore, a consequence of the fact that Dn

s η
slow
m (s, k)

depends continuously on s and k just as the parenthesized expression on the right-hand side
of (20). 
�

Remark 2 Note that the proof of [25, Theorem 3.2] is based on [25, Theorem 3.1] which, in
turn, is proved under the assumption that the conclusions of Theorem 2.1 and Corollary 2.1
there are valid for incident fields of the form

u(x) = eikψ(x) uslow(x), x ∈ O,

where O is an open set containing the smooth and strictly convex obstacle, ψ is a smooth
phase functionwith smooth and convexwave-fronts {x : ψ(x) = t}with respect to the normal
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field ∇ψ , and uslow(x) = uslow(x, k) belongs to the Hörmander class S01,0(O × (0,∞)) and
has a classical asymptotic expansion

uslow(x, k) ∼
∞∑

p=0

k−p Ap(x);

see Assumption C on page 289 in [25]. As was shown in [25], under the no-occlusion and
visibility conditions, this assumption allows one to prove [25, Theorem 3.1] recursively.

4 Multiple-Scattering Galerkin Boundary Element Methods

In this section, we describe our approach in extending the Galerkin boundary element meth-
ods developed in [23,24] for the numerical solution of integral equations in (17) for any
arbitrary sequence {σm}∞m=0 ⊂ {1, . . . , N } such that σm+1 
= σm for all m. For simplicity of
presentation, we write ∂Km , ∂K IL

m , ∂K SB
m and ∂K SR

m for ∂Kσm , ∂K
IL
σm
, ∂K SB

σm
and ∂K SR

σm
, and

we let
Sm = Iσm − Rσmσm . (21)

In this case, equations (17) can be rephrased as the operator equations

Smηm = gm (22)

in L2(∂Km), and the factorizations (18) motivate the first step in the construction of Galerkin
approximation spaces for the solution of equations (22). Indeed, provided the operator Sm
is bounded and strictly coercive, for any finite-dimensional subspace X̂m of L2(∂Km), the
Galerkin equation

〈μ̂,Sm η̂m〉 = 〈μ̂, gm〉, for all μ̂ ∈ X̂m (23)

admits a unique solution η̂m ∈ X̂m , and Céa’s lemma provides the error estimate

‖ηm − η̂m‖ ≤ Cm

cm
inf

μ̂∈X̂m

‖ηm − μ̂‖ (24)

whereCm and cm are, respectively, the continuity and coercivity constants ofSm .Accordingly,
this inequality converts the problem of numerical solution of equations (22) into the design
of Galerkin approximation spaces X̂m in L2(∂Km) that best replicates the behavior of ηm .
In this connection, the factorization (18) implies that, in order to eliminate the oscillations
inherent in ηm , the spaces X̂m must be constructed as

X̂m = eikϕm Ŷm (25)

for some appropriate finite-dimensional function spaces Ŷm in L2(∂Km). Note that, in this
case, inequality (24) takes on the form

‖ηm − η̂m‖ ≤ Cm

cm
inf

μ̂∈Ŷm
‖ηslowm − μ̂‖ (26)

and this, in turn, implies that the spaces Ŷm must be designed tomimic the asymptotic behavior
of the amplitudes ηslowm with increasing wavenumber k. As was shown in [23,24] for m = 0,
optimal design of the spaces Ŷ0 must be based on a detailed understanding of thewavenumber
explicit estimates on the derivatives of ηslow0 . Let us note in this regard that Theorem 1 shows
that these estimates have the same form for any m ≥ 0. Therefore the algorithms, as well as
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the associated convergence analyses, presented in [23,24] apply without any change to the
solution of equations (22), except that the phase functions ϕm in (25) and the corresponding
illuminated regions ∂K IL

m , shadow boundaries ∂K SB
m , and shadow regions ∂K SR

m depend on
m.

With these observations, we nowdescribe the extensions of theGalerkin boundary element
methods in [23,24] alongwith the corresponding convergence results for the iterative solution
of multiple-scattering integral equations (21). To this end, we fixm and we identify L2(∂Km)

with L2([0, Lm]) through the Lm-periodic parameterization γm .

4.1 Frequency-Adapted Galerkin Methods for Multiple-Scattering Problems

Considering first the extension of frequency-adapted Galerkin boundary element methods
developed in [24] for the solution of multiple-scattering problems (21), given 
 ∈ N, we set

ε j = 1

3

2
 − 2 j + 1

2
 + 1
, j = 1 . . . , 
,

and define the illuminated region, shadow region, and the shadow boundaries as

I Lm = [t (1)m + ξ1k
−1/3+ε1 , t (2)m − ξ2k

−1/3+ε1 ],
DSm = [t (2)m + ζ2k

−1/3+ε1 , Lm + t (1)m − ζ1k
−1/3+ε1 ],

SB1
m = [t (1)m − ζ1k

−1/3+ε
 , t (1)m + ξ1k
−1/3+ε
 ],

SB2
m = [t (2)m − ξ1k

−1/3+ε
 , t (2)m + ζ2k
−1/3+ε
 ],

and the illuminated transitions and shadow transitions for j = 1 . . . , 
 as

I T 1
m, j = [t (1)m + ξ1k

−1/3+ε j+1 , t (1)m + ξ1k
−1/3+ε j ],

I T 2
m, j = [t (2)m − ξ2k

−1/3+ε j , t (2)m − ξ2k
−1/3+ε j+1 ],

ST 1
m, j = [t (1)m − ζ1k

−1/3+ε j , t (1)m − ζ1k
−1/3+ε j+1 ],

ST 2
m, j = [t (2)m + ζ2k

−1/3+ε j+1 , t (2)m + ζ2k
−1/3+ε j ]

which are superfluous when 
 = 1. Here the positive constants ξ1, ξ2, ζ1, ζ2 are chosen so
that these intervals are non-degenerate for k > 1, and

t (1)m − ξ1 < t (2)m − ξ2 and t (2)m + ζ2 < Lm + t (1)m − ζ1.

Using [a j , b j ] to denote these 4
 intervals, for a given d ∈ N∪ {0}, we define the frequency-
adapted Galerkin approximation space A
,d

m ⊂ L2([0, Lm]) of dimension 4
(d + 1) as

A
,d
m =

4
⊕

j=1

χ[a j ,b j ] eik ϕm◦γm Pd (27)

where Pd is the vector space of univariate polynomials of degree at most d .
The approximation properties of the resulting Galerkin boundary element methods are

given in the next theorem.

Theorem 2 Suppose that Sm is continuous with a continuity constant Ck and coercive with
a coercivity constant ck for all k > k0 for some k0 ≥ 1. Suppose further that 
 ∈ N and
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d ∈ N ∪ {0} are given, and η̂m,
,d is the unique solution of the Galerkin equation (23) for
X̂m = A
,d

m . Then there exists a positive constant C independent of k such that

‖ηm − η̂m,
,d‖
‖ηm‖ ≤ C

Ck

ck



(
1 + k

n
6
+3− 1

2

)

dn
(28)

for all n ∈ {0, . . . , d + 1} and all k > k0.

Proof In light of Theorem 1, the proof follows the same lines as the proof of [24, Corollary
1]; see also [24, Remark 1]. 
�
Remark 3 As noted in [22, p.10] (see also the references therein), the stability constantCk/ck
is in general unbounded as k → ∞. We note in this connection the operator Sm is continuous
for all k > 0 when it is related with the CFIE or SCIE, and it is coercive when k � 1 for
CFIE and when k > 0 for SCIE, with Ck/ck = O(k1/3) as k → ∞ in both cases.

Remark 4 Asdetailed in [24,Remark1], if 
 increases proportionallywith log k as k increases,
then estimate (28) can be shown to imply

‖ηm − η̂m,
,d‖L2(∂K )

‖ηm‖L2(∂K )

≤ C
Ck

ck

log k

dn
.

This, in turn, implies that the frequency-adapted Galerkin boundary element methods
described above can be tailored so that an increase of O (kε) in the number of degrees
of freedom 4
 (d + 1) is sufficient to retain any given accuracy with increasing wavenumber
k.

Let us note that incorporating sufficiently many terms in the asymptotic expansion of ηslowm
into the problem formulation one can improve estimate (28). Indeed, as shown in [25], over
the entire boundary ∂Km , ηslowm (x, k) belongs to theHörmander class S12/3,1/3(∂Km×(0,∞))

and admits the asymptotic expansion

ηslowm (x, k) ∼
∑

p,q≥0

am,p,q(x, k) =
∑

p,q≥0

k2/3−2p/3−q bm,p,q(x)Ψ
(p)(k1/3Zm(x)) (29)

where bm,p,q(x) are complex-analytic functions, Zm(x) is a real-valued smooth function
(positive on the illuminated region, negative on the shadow region, and vanishes precisely to
first order on the shadow boundary), and the function Ψ admits the asymptotic expansion

Ψ (τ) ∼
∞∑

j=0

c jτ
1−3 j as τ → ∞,

and it is rapidly decreasing in the sense of Schwartz as τ → −∞. If am,p,q is incorporated
into the problem formulation for (p, q) satisfying 2p/3 + q < β(r) where β(0) = 0 and
β(r) = r+1

3 (r ∈ N), then (as in [22]) one obtains the estimate

‖ηm − η̂m,
,d‖L2(∂K )

‖ηm‖L2(∂K )

≤ C
Ck

ck

1

kβ(r)



(
1 + k

n
6
+3− 1

2

)

dn
(30)

which improves (28). Therefore, it follows that, for any given continuous and coercive integral
equation formulation of the scattering problem, use of sufficiently many terms appearing in
the asymptotic expansion of ηslowm in the problem formulation guarantees the frequency inde-
pendent solvability of the scattering problem; see Ecevit [22, Corollary 12]. In particular, for
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the CFIE, knowledge of the leading term in the asymptotic expansion, namely am,0,0, would
guarantee not only frequency independent solvability but in fact, the accuracy of numerical
solutions would increase with increasing wavenumber k. However, explicit expressions for
am,0,0 are not available form ≥ 1 around the shadow boundaries and the deep shadow regions
(for m = 0, see Remark 13 in [22]), and this is left for future work.

4.2 Galerkin Methods Based on Frequency-Dependent Changes of Variables for
Multiple-Scattering Problems

Considering next the extension of Galerkin approximation spaces based on frequency-
dependent changes of variables presented in [23] for the solution of multiple-scattering
problems (21), we choose positive constants ξ j , ξ

′
j , ζ j , ζ

′
j ( j = 1, 2) satisfying the condi-

tions

t (1)m + ξ1 ≤ t (1)m + ξ ′
1 = t (2)m − ξ ′

2 ≤ t (2)m − ξ2

and

t (2)m + ζ2 ≤ t (2)m + ζ ′
2 = Lm + t (1)m − ζ ′

1 ≤ P + t (1)m − ζ1.

For k > 1, we define the illuminated and shadow transition intervals as

I T 1
m = [t (1)m + ξ1k

−1/3, t (1)m + ξ ′
1] ST 1

m = [t (1)m − ζ ′
1, t

(1)
m − ζ1k

−1/3]
I T 2

m = [t (2)m − ξ ′
2, t

(2)
m − ξ2k

−1/3] ST 2
m = [t (2)m + ζ2k

−1/3, t (2)m + ζ ′
2]

and the shadow boundary intervals as

SB1
m = [t (1)m − ζ1k

−1/3, t (1)m + ξ1k
−1/3] SB2

m = [t (2)m − ξ2k
−1/3, t (2)m + ζ2k

−1/3].
Using [a j , b j ] to denote these 6 intervals, given d ∈ Z+, we define the Galerkin approx-
imation space Cdm ⊂ L2([0, Lm]) based on frequency-dependent changes of variables of
dimension 6(d + 1) as

Cdm =
6⊕

j=1

χ[a j ,b j ] eik ϕm◦γm P̂m, j ,

where

P̂m, j =
{
Pd ◦ φ−1

m , if [a j , b j ] is a transition interval,
Pd , otherwise,

and φm is the frequency-dependent change of variables defined on the transition intervals as

φm(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t (1)m +
(

ξ1 + (
ξ ′
1 − ξ1

) s − a1
b1 − a1

)

exp

(

− 1

3

b1 − s

b1 − a1
log k

)

, s ∈ I T 1
m,

t (2)m −
(

ξ ′
2 + (

ξ2 − ξ ′
2

) s − a2
b2 − a2

)

exp

(

− 1

3

s − a2
b2 − a2

log k

)

, s ∈ I T 2
m,

t (1)m −
(

ζ ′
1 + (

ζ1 − ζ ′
1

) s − a3
b3 − a3

)

exp

(

− 1

3

s − a3
b3 − a3

log k

)

, s ∈ ST 1
m,

t (2)m +
(

ζ2 + (
ζ ′
2 − ζ2

) s − a4
b4 − a4

)

exp

(

− 1

3

b4 − s

b4 − a4
log k

)

, s ∈ ST 2
m .

(31)
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Convergence properties of the Galerkin approximation spaces Cdm are given in the next
theorem.

Theorem 3 Suppose that Sm is continuous with a continuity constant Ck and coercive with
a coercivity constant ck for all k > k0 for some k0 ≥ 1. Suppose also that d ∈ N ∪ {0} is
given, and η̂m,d is the unique solution of the Galerkin equation (23) for X̂m = Cdm. Then
there exists a positive constant C independent of k such that

‖ηm − η̂m,d‖
‖ηm‖ ≤ C

Ck

ck

(log k)n+1/2

dn
(32)

for all n ∈ {0, . . . , d + 1} and all k > k0.

Proof Using Theorem 1, the proof follows as in the proof of [23, Corollary 3.1]. 
�
Remark 5 Similar comments as in Remark 4 apply to theGalerkin boundary elementmethods
based on frequency-dependent changes of variables for multiple scattering problems. For
details, we refer to Ecevit [22].

5 Numerical Results

Herewe present examples to confirm the developments in this paper. As demonstrated in [24],
frequency-adapted Galerkin boundary element methods exhibit better numerical accuracy
when implementedwith the choice 
 = 2 in (27)which corresponds to the use of 8 subregions
over the boundary of each scatterer. Moreover, in this case, all our numerical tests have shown
that the accuracy thereby obtained is almost the same as that produced by the Galerkin
boundary element methods based on frequency-dependent changes of variables when the
same number of degrees of freedom is utilized. Therefore here we present only numerical
results based on frequency-adapted Galerkin boundary element methods for 
 = 2. For the
implementation details relating to frequency-adapted Galerkin boundary element methods
andGalerkin boundary elementmethods based on frequency-dependent changes of variables,
we refer to Ecevit and Özen [24] and Ecevit and Eruslu [23].

In all the examples, we take the direction of incidence as α = (1, 0), and we display the
number of reflections M versus the logarithmic relative error

log10

(‖η − μM‖L2(∂K )

‖η‖L2(∂K )

)

(33)

associated to the local polynomial degrees p = 4, 8, 12, 16, 20 or p = 4, 8, 12, 16 for the
wavenumbers k = 50, 100, 200, 400 and 800. In (33), η is a reference solution (taken as the
exact solution) obtained through the numerical solution of a standard Nyström discretization
[18] of the integral equation (3) using approximately 10 to 12 points per wavelength. On the
other hand, μM is the numerical approximation of the M th partial sum

M−1∑

m=0

ηm (M ≥ 1) (34)

of the Neumann series (8) through use of the frequency-adapted Galerkin boundary element
methods. More precisely, in (34) we approximate each ηm by the superposition of the numer-
ical solution of the associated single-scattering integral equations (13) through utilization of
the frequency-adapted Galerkin boundary element methods.
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Fig. 3 Number of reflections M versus logarithmic relative errors (33) for the polynomial degrees p =
4, 8, 12, 16

For concrete instances, we consider three different configurations consisting of either two
three obstacles that are depicted in Figs. 3, 4 and 5.

Ourfirst example concerns amultiple scattering configuration consisting of twounit circles
centered at the points (0, 0) and (0,−3) where we consider reflections M = 1, 2, . . . , 50.
The results displayed in Fig. 3 show that, for any fixed value of k, the accuracy increases as the
local polynomial degree p increases, for each fixed M . On the other hand, with increasing p
the condition numbers of the stiffnessmatrices also increase in amanner roughly independent
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Fig. 4 Number of reflections M versus logarithmic relative errors (33) for the polynomial degrees p =
4, 8, 12, 16

of the underlying wavenumber k (see the left pane in Fig. 6), and the accuracy stagnates even
with increasing p; as evident from error plots in Fig. 3. We also note that for each k, the rate
of decrease in errors with respect to the number of reflections is nearly identical until the
accuracy provided by approximation space for the particular polynomial degree is reached,
beyond which, obviously, there is no further improvement. Indeed, the slopes observed in
these plots are consistent with the rate of convergence (as k → ∞) of the Neumann series
given in [25] as
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Fig. 5 Number of reflections M versus logarithmic relative errors (33) for the polynomial degrees p =
4, 8, 12, 16

1
√

(1 + dκ1)(1 + dκ2)

(

1 +
√

1 − 1

(1 + dκ1)(1 + dκ2)

)

where d is the distance between the obstacles, and κ1, κ2 are the curvatures at the distance
minimizing points.
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Fig. 6 Condition numbers of the Galerkin matrices versus the local polynomial degrees p at the 10th reflection
on obstacle K1 for the configurations in Fig. 3 (left) and Fig. 4 (right)

The second example presents a more challenging scattering geometry where the rate of
convergence of the Neumann series is slower owing to the fact that the multiple-scattering
rays are trapped longer in between the obstacles before they eventually leave. This particular
configuration consists of two elliptical scatterers initially parameterized as ( 32 cos t,

1
2 sin t)

and ( 32 cos t,
1
3 sin t) but having undergone counterclockwise rotations by π/6 and π/12

radians, respectively, where the latter is also translated by the vector s = (0.5,−1.6). The
results are presented in Fig. 4 for the reflections M = 1, 2, . . . , 50. As we noted, in this
case, the rate of convergence is slower requiring more reflections to reach a certain level of
accuracy. Note further that there is only a marginal improvement in accuracy for the local
polynomial degree p = 20 and, as we explained above, this again is related to the condition
numbers of the associated stiffness matrices (see the right pane in Fig. 6).

The examples presented above concern configurations consisting only of two obstacles
where the number of single-scattering integral equations (13) to be solved while computing
the partial sum μM given in (34) is simply 2M . On the contrary, this count grows expo-
nentially with M when the number of obstacles N is more than 2. Indeed, in this case, it is
straightforward to see that the computation of μM requires the solution of

N [1 + (N − 1) + (N − 1)2 + · · · + (N − 1)M−1] (35)

number of single-scattering integral equations (13). This shows that the direct utilization
of our algorithms is impractical when this number is large. This difficulty, however, can
be overcome by employing a recently developed Krylov subspace method that retains the
phase information associated with the multiple-scattering iterates and that thereby allows for
the acceleration of convergence of the Neumann series [8]. This convergence can be further
enhanced the through utilization of “dynamical Kirchhoff preconditioning” [8].

The nature of this kind of preconditioners, however, can “affect” the resulting conclusions
concerning the accuracy of the final solution mainly because the illuminated regions change
from one reflection to another. This represents a major difference when compared to classical
preconditioners as explained in [8]. Therefore, for the sake of this paper, we will focus
only on the accuracy provided by the algorithms developed herein. We therefore present,
as a final example, a simple multiple-scattering example consisting of three obstacles. The

configurationwe consider is comprised of two circles of radius 1
4 centered at (− 1

2 ,±
√
3
2 ), and

an ellipse parametrized as (1+ 3
8 cos t,

1
8 sin t); see Fig. 5. In this particular implementation,

we again observe similar behavior in the accuracy in terms of the rate of convergence and
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increase in polynomial degree. Let us mention in the context of the speed of convergence that
when the number of obstacles is more than two, the corresponding theoretical convergence
rates (as k → ∞) of the Neumann series are not known; rate of convergence formulas are
available only on “periodic orbits” [4,25].

6 Conclusion

In this paper, we extended the single-scattering algorithms proposed in [23,24] to encompass
the multiple-scattering problems in the exterior of finitely many smooth, compact, convex
obstacles. In this connection, we showed that each single-scattering iterate can be approx-
imated efficiently through the use of these algorithms. Indeed, as we showed, the Galerkin
spaces proposed in this article have the capability of producing prescribed tolerances for
arbitrary frequencies provided that the number of degrees of freedom is increased according
to O(kε) (for any ε > 0) with increasing wavenumber k. Moreover, when sufficiently many
terms in the asymptotic expansion of the multiple scattering iterations are incorporated into
the problem formulation, these algorithms yield solutions for each single scattering iteration
in a frequency independent operation count. Furthermore, the convergence of the Neumann
series related to the multiple-scattering iterations can be significantly accelerated by a uti-
lization of the Krylov subspace method along with the dynamical Kirchhoff preconditioning
developed in [8]. Accordingly, these algorithms provide the first examples of rigorously error
controllable procedures for the solution of multiple-scattering problems.
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