Focussed degassing of stored continental deep carbon

T.P. FISCHER1*, J. MUIRHEAD2, S.F. FOLEY3, Y. SANO4, H. LEE5, N. TAKAHATA4, A. LAIZER, 6, E. KAZIMOTO 6, S. OLIVA7, C. EBINGER7, J. VAN WIJK8, C. WERNER9, A. AIUPPA10, P. ALLARD11, T. LOPEZ12, J.DUFEK13, B. MARTY14

- 1 EPS, University of New Mexico, Albuquerque, NM 87131 USA (*correspondence: fischer@unm.edu)
- 2 Syracuse University, Syracuse, NY 13244 USA (james.muirhead@fulbrightmail.org)
- 3 Macquire University, North Ryde, NSW, Australia (stephen.foley@mq.edu.au)
- 4 AORI, University of Tokyo, Chiba, Japan (ysano@aori.u-tokyo.ac.jp, ntaka@aori.u-tokyo.ac.jp)
- 5 Seoul National University, Seoul 08826, Rep. of Korea
- 6 University of Dar Es Salaam, Dar Es Salaam, Tanzania
- 7 Tulane University, New Orleans, LA70118
- 8 New Mexico Tech, Socorro, NM 87801 USA
- 9 CVO, Vancouver, WA 98683 USA (cwerner@usgs.gov)
- 10 DiSTeM, University of Palermo, 90123 Palermo, Italy
- 11 IPGP, Université de Paris, France (pallard@ipgp.fr)
- 12 University of Alaska, Fairbanks, AK 99775 USA
- 13 University of Oregon, Eugene, OR 97403 USA
- 14 CRPG- CNRS, 54501 Vandoeuvre Cedex France

Carbon (C) recycling from the Earth's surface to its interior depends on the rates of carbon subduction, carbon outgassing and deep carbon storage. New compilations of CO2 outgassing from volcanic arcs indicate a lower CO2 flux [1, 2] than the amount that is subducted, consistent with the idea of potentially significant C storage below the arc crust [4]. Estimates of the overall release of crustal C, however, range from minor [5] to significant [6]. Over geologic times, stored C can accumulate in the cratonic lithosphere below continents [7] and at cratonic edges in the East African Rift massive amounts of CO2 are released into the atmosphere [8]. New gas data were collected from springs and diffuse discharges along the orogenic-cratonic transition in the Lake Manyara to Gendabi basin in Tanzania in 2018. Compared to the Natron-Magadi rifted region to the north, these new data reveal much weaker mantle-derived CO2 emission, purely crustal helium isotope values, biogenic C isotopes, and low C/N-C/He ratios. These results support the concept of focussed and variable C release along craton edges. Magmas generated by small degrees of partial melting at the cratonic edges are consequently strongly enriched in C, as illustrated by the current locations of carbonate-rich magmatism around the Tanzanian Craton, including Oldoinyo Lengai, the world's only active carbonatite volcano, and Nyiragongo and Nyamuragira, the world's highest volcanic CO2 emitters. When advancing our knowledge of the Earth's C budget, long-term storage below continents needs to be taken into consideration and quantified.

[1] Werner et al., (in press) *Deep Carbon, Past to Present Cambridge Univ. Press;* [2] Fischer et al., (in rev) Sci. Rep.; [4] Kelemen and Manning (2015) PNAS 112, E3997-E4006; [5] Aiuppa et al., (2017) Earth Sci. Rev. 168, 24-47; [6] Mason, E., M. et al., (2017), Science, 357, 290-294. [7] Foley and Fischer (2017) Nature Geosci. 10, 897-902; [8] Lee et al., (2016) Nature Geosci. 9, 145-149.