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Abstract

Personalized interventions in social services, education, and healthcare leverage
individual-level causal effect predictions in order to give the best treatment to each
individual or to prioritize program interventions for the individuals most likely to
benefit. While the sensitivity of these domains compels us to evaluate the fairness
of such policies, we show that actually auditing their disparate impacts per standard
observational metrics, such as true positive rates, is impossible since ground truths
are unknown. Whether our data is experimental or observational, an individual’s
actual outcome under an intervention different than that received can never be
known, only predicted based on features. We prove how we can nonetheless point-
identify these quantities under the additional assumption of monotone treatment
response, which may be reasonable in many applications. We further provide a
sensitivity analysis for this assumption by means of sharp partial-identification
bounds under violations of monotonicity of varying strengths. We show how to use
our results to audit personalized interventions using partially-identified ROC and
xROC curves and demonstrate this in a case study of a French job training dataset.

1 Introduction

The expanding use of predictive algorithms in the public sector for risk assessment has sparked recent
concern and study of fairness considerations [3} 9, [10]. One critique of the use of predictive risk
assessment argues that the discussion should be reframed to instead focus on the role of positive
interventions in distributing beneficial resources, such as directing pre-trial services to prevent
recidivism, rather than in meting out pre-trial detention based on a risk prediction [8]]; or using risk
assessment in child welfare services to provide families with additional childcare resources rather
than to inform the allocation of harmful suspicion [29, 62]. However, due to limited resources,
interventions are necessarily targeted. Recent research specifically investigates the use of models that
predict an intervention’s benefit in order to efficiently target their allocation, such as in developing
triage tools to target homeless youth [46l I57]]. Both ethics and law compel such personalized
interventions to be fair and to avoid disparities in how they impact different groups defined by certain
protected attributes, such as race, age, or gender.

The delivery of interventions to better target those individuals deemed most likely to respond well,
even if a prediction or policy allocation rule does not have access to the protected attribute, might still
result in disparate impact (with regards to social welfare) for the same reasons that these disparities
occur in machine learning classification models [21]. (See Appendix [C|for an expanded discussion
on our use of the term “disparate impact.”) However, in the problem of personalized interventions,
the “fundamental problem of causal inference,” that outcomes are not observed for interventions not
administered, poses a fundamental challenge for evaluating the fairness of any intervention allocation
rule, as the true “labels” of intervention efficacy of any individual are never observed in the dataset.
Metrics commonly assessed in the study of fairness in machine learning, such as group true positive
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and false positive rates, are therefore conditional on potential outcomes which are not observed in the
data and therefore cannot be computed as in standard classification problems.

The problem of personalized policy learning has surfaced in econometrics and computer science
[13L136} 137,137,145, 151]], gaining renewed attention alongside recent advances in causal inference and
machine learning [4} [14} 28} 163]]. In particular, [17] analyze optimal treatment allocations for malaria
bednets with nonparametric plug-in estimates of conditional average treatment effects, accounting for
budget restrictions; [27] use the generalized random forests method of [64] to evaluate heterogeneity
of causal effects in a program matching at-risk youth in Chicago with summer jobs on outcomes
and crime; and [46] use BART [32] to analyze heterogeneity of treatment effect for allocation
of homeless youth to different interventions, remarking that studying fairness considerations for
algorithmically-guided interventions is necessary.

In this paper, we address the challenges of assessing the disparate impact of such personalized
intervention rules in the face of unknown ground truth labels. We show that we can actually obtain
point identification of common observational fairness metrics under the assumption of monotone
treatment response. We motivate this assumption and discuss why it might be natural in settings
where interventions only either help or do nothing. Recognizing nonetheless that this assumption is
not actually testable, we show how to conduct sensitivity analyses for fairness metrics. In particular,
we show how to obtain sharp partial identification bounds on the metrics of interest as we vary the
strength of violation of the assumption. We then show to use these tools to visualize disparities using
partially identified ROC and xROC curves. We illustrate all of this in a case study of personalized job
training based on a dataset from a French field experiment.

2 Problem Setup

We suppose we have data on individuals (X, A, T, Y") consisting of:

e Prognostic features X € X', upon which interventions are personalized;

e Sensitive attribute A € A, against which disparate impact will be measured;

e Binary treatment indicator 7' € {0, 1}, indicating intervention exposure; and
e Binary response outcome Y € {0, 1}, indicating the benefit to the individual.

Our convention is to identify 7" = 1 with an active intervention, such as job training or a homeless pre-
vention program, and 7' = 0 with lack thereof. Similarly, we assume that a positive outcome, ¥ = 1,
is associated with a beneficial event for the individual, e.g., successful employment or non-recidivation.
Using the Neyman-Rubin potential outcome framework [34], we let Y'(0), Y (1) € {0, 1} denote the
potential outcomes of each treatment. We let the observed outcome be the potential outcome of the
assigned treatment, Y = Y (T'), encapsulating non-interference and consistency assumptions, also
known as SUTVA [60]. Importantly, for any one individual, we never simultaneously observe Y (0)
and Y'(1). This is sometimes termed the fundamental problem of causal inference. We assume our
data either came from a randomized controlled trial (the most common case) or an unconfounded
observational study so that the treatment assignment is ignorable, that is, Y (1), Y (0) L T'| X, A.

When both treatment and potential outcomes are binary, we can exhaustively enumerate the
four possible realizations of potential outcomes as (Y(0),Y (1)) € {0,1}2%. We call units with
(Y(0),Y (1)) = (0,1) responders, (Y(0),Y (1)) = (1,0) anti-responders, and Y (0) = Y (1) non-
responders. Such a decomposition is also common in instrumental variable analysis [2] where the
binary outcome is take-up of treatment with the analogous nomenclature of compliers, never-takers,
always-takers, and defiers. In the context of talking about an actual outcome, following [52], we
replace this nomenclature with the notion of response rather than compliance. We remind the reader
that due to the fundamental problem of causal inference, response type is unobserved.

We denote the conditional probabilities of each response type by
By exhaustiveness of these types, poo + po1 + P10 + p11 = 1. (Note p;; are random variables.)

We consider evaluating the fairness of a personalized intervention policy Z = Z(X, A) € {0,1},
which assigns interventions based on observable features X, A (potentially just X). Note that by
definition, the intervention has zero effect on non-responders, negative effect on anti-responders,
and a positive effect only on responders. Therefore, in seeking to benefit individuals with limited



resources, the personalized intervention policy should seek to target only the responders. Naturally,
response type is unobserved and the policy can only mete out interventions based on observables.

In classification settings, minimume-error classifiers on the efficient frontier of type-I and -II errors
are given by Bayes classifiers that threshold the probability of a positive label. In personalized
interventions, policies that are on the efficient frontier of social welfare (fraction of positive outcomes,
P(Y(Z) =1)) and program cost (fraction intervened on, P (Z = 1)) are given by thresholding
(Z =17 > 0)]) the conditional average treatment effect (CATE):

T=7(X,A) =E[Y(1) - Y(0) | X, A] = po1 — p1o
=PY=1|T=1,XA)-PY=1|T=0,X,A),

where the latter equality follows by the assumed ignorable treatment assignment. Estimating 7 from
unconfounded data using flexible models has been the subject of much recent work [32} 161} 164].

We consider observational fairness metrics in analogy to the classification setting, where the “true
label” of an individual is their responder status, R = 1[Y (1) > Y (0)]. We define the analogous true
positive rate and true negative rate for the intervention assignment Z, conditional on the (unobserved)
events of an individual being a responder or non-responder, respectively:

TPR, =P(Z=1]|A=a,Y(1)>Y(0)), TNR,=P(Z=0|A=a,Y(1)<Y(0). (1)

2.1 Interpreting Disparities for Personalized Interventions

The use of predictive models to deliver interventions can induce disparate impact if responding
(respectively, non-responding) individuals of different groups receive the intervention at dispropor-
tionate rates under the treatment policy. This can occur even with efficient policies that threshold the
true CATE 7 and can arise from the disparate predictiveness of X, A of response type (i.e., how far
p;; are from 0 and 1). This is problematic because the choice of features X is usually made by the
intervening agent (e.g., government agency, etc.).

We discuss one possible interpretation of TPR or TNR disparities in this setting when the intervention
is the bestowal of a benefit, like access to job training or case management. From the point of view of
the intervening agent, there are specific program goals, such as employment of the target individual
within 6 months. Therefore, false positives are costly due to program cost and false negatives are
missed opportunities. But outcomes also affect the individual’s utility. Discrepancies in TPR across
values of A are of concern since they suggest that the needs of those who could actually benefit
from intervention (responders) in one group are not being met at the same rates as in other groups.
Arguably, for benefit-bestowing interventions, TPR discrepancies are of greater concern. Nonetheless,
from the point of view of the individual, the intervention may always grant some positive resource
(e.g., from the point of view of well-being), regardless of responder status, since it corresponds to
access to a good (and the individual can gain other benefits from job training that may not necessarily
align with the intervener’s program goals, such as employment in 1 year or personal enrichment). If
so, then TNR discrepancies across values of A imply a “disparate benefit of the doubt” such that the
policy disparately over-benefits one group over another using the limited public resource without the
cover of advancing the public program’s goal, which may raise fairness and envy concerns, especially
since this “waste” is at the cost of more slots for responders.

Beyond assessing disparities in TPR and TNR for one fixed policy, we will also use our ability to
assess these over varying CATE thresholds in order to compute xAUC metrics [41] in Section [6.
These give the disparity between the probabilities that a non-responder from group a is ranked above
a responder from group b and vice-versa. Thus, they measure the disproportionate access one group
gets relative to another in any allocation of resources that is non-decreasing in CATE.

We emphasize that the identification arguments and bounds that we present on fairness metrics are
primarily intended to facilitate the assessment of disparities, which may require further inquiry as
to their morality and legality, not necessarily to promote statistical parity via adjustments such as
group-specific thresholds, though that is also possible using our tools. We defer a more detailed
discussion to Section|[8|and re-emphasize that assessing the distribution of outcome-conditional model
errors are of central importance both in machine learning [10} 30, 155] and in the economic efficiency
of targeting resources [[16, |18} [54].



3 Related Work

[S0]] consider estimating joint treatment effects of race and treatment under a deep latent variable
model to reconstruct unobserved confounding. For evaluating fairness of policies derived from
estimated effects, they consider the gap in population accuracy Acc, =P (Z = Z* | A = a), where
Z* = I[r(X) > 0] is the (identifiable) optimal policy. In contrast, we highlight the unfairness
of even optimal policies and focus on outcome-conditional error rates (TPR, TNR), where the
non-identifiability of responder status introduces challenges regarding identifiability.

The issue of model evaluation under the censoring problem of selective labels has been discussed in
situations such as pretrial detention, where detention censors outcomes [40, 48]. Sensitivity analysis
to account for possible unmeasured confounders is used in [35}39]. The distinction is that we focus
on the targeted delivery of interventions with unknown (but estimated) causal effects, rather than
considering classifications that induce one-sided censoring but have definitionally known effects.
Recently, partial identification approaches has also been proposed in the case of known outcomes but
missing protected attributes [22} 142].

Our emphasis is distinct from other work discussing fairness and causality that uses graphical causal
models to decompose predictive models along causal pathways and assessing the normative validity
of path-specific effects [44, 47, such as the effect of probabilistic hypothetical interventions on race
variables or other potentially immutable protected attributes. When discussing treatments, we here
consider interventions corresponding to allocation of concrete resources (e.g., give job training),
which are in fact physically manipulable by an intervening agent. The correlation of the intervention’s
conditional average treatment effects by, say, race and its implications for downstream resource
allocation are our primary concern.

There is extensive literature on partial identification, e.g. [53], including for individual-level causal
effect [43]. In contrast to previous work that analyzes partial identification of average treatment
effects when data is confounded and using monotonicity to improve precision [6, [15}153]], we focus
on unconfounded (e.g., RCT) data and achieve full identification by assuming monotonicity and
consider sensitivity analysis bounds for nonlinear functionals of partially identified sets, namely, true
positive and false positive rates.

4 Identifiability of Disparate Impact Metrics

Since the definitions of the disparate impact metrics in Eq. (I) are conditioned on an unobserved
event, such as the response event Y (1) > Y (0), they actually cannot be identified from the data,
even under ignorable treatment. That is, the values of TPR,, TNR,, can vary even when the joint
distribution of (X, A, T, Y") remains the same, meaning the data we see cannot possibly tell us about
the specific value of TPR,, TNR,.

Proposition 1. TPR,, TNR,, (or discrepancies therein over groups) are generally not identifiable.

Essentially, PropositionE]follows because the data only identifies the marginals p1g + p11, Po1 + P11
while TPR,, TNR, depend on the joint via pg;, which can vary even while marginals are fixed.
Since this can vary independently across values of A, discrepancies are not identifiable either.

4.1 Identification under monotonicity

We next show identifiability if we impose the additional assumption of monotone treatment response.
Assumption 1 (Monotone treatment response). Y (1) > Y(0). (Equivalently, p1o = 0.)

Assumption|l|says that anti-responders do not exist. In other words, the treatment either does nothing
(e.g., an individual would have gotten a job or not gotten a job, regardless of receiving job training)
or it benefits the individual (would get a job if and only if receive job training), but it never harms
the individual. This assumption is reasonable for positive interventions. As [38]] points out, policy
learning in this setting is equivalent to the binary classification problem of predicting responder status.

Proposition 2. Under Assumption

Efr|A=a,Z=1]P(Z=1|A=aqa)
E[r|A=a] ’

E(l-7)|A=a,Z=0|P(Z=0|A=na)
E[(1-7)] A=d]

TPR, =

2)
TNR, =

4



Since the quantities on the right hand sides in Eq. (2) are in terms of identified quantities (functions
of the distribution of (X, A, T,Y)), this proves identifiability. Given a sample and an estimate of
T, it also provides a simple recipe for estimation by replacing each average or probability by a
sample version, since both A and Z are discrete. More generally, since these averages are average
treatment effects (over subpopulations defined by A, Z values), these quantities can also alternatively
be estimated by any average treatment effect estimator and plugged in. For example, we can use
doubly robust estimators to ensure specification-robustness [58]] or double ML estimators to ensure
efficiency when X may be high-dimensional [23]].

Thus, Proposition[2]provides a novel means of assessing disparate impact of personalized interventions
under monotone response. This is relevant because monotonicity is a defensible assumption in the
case of many interventions that bestow an additional benefit, good, or resource, such as the ones
mentioned in Section[I] Nonetheless, the validity of Assumption|[I]is itself not identifiable. Therefore,
should it fail even slightly, it is not immediately clear whether these disparity estimates can be relied
upon. We therefore next study a sensitivity analysis by means of constructing partial identification
bounds for TPR,, TNR,.

5 Partial Identification Bounds for Sensitivity Analysis

We next study the partial identification of disparate impact metrics when Assumption [T fails, i.e.,
p1o 7# 0. We first state a more general version of Proposition For any n = n(X, A), let

mer, . E[r+n|A=a,Z=1P(Z=1|A=a)
Pa ) = E[r+7]A=d] ’
El—(t+n)|A=a,Z=0P(Z=0]|A=na)

El—(r+n) | A=d]
Proposition 3. TPR,, = pIFR(p1g), TNR, = pINE(pyp).

a a

PN ) =

Since the anti-responder probability pio is unknown, we cannot use Proposition [3 to identify
TPR,, TNR,. We instead use Proposition [3 to compute bounds on them by restricting pi¢ to
be in an uncertainty set. Formally, given an uncertainty set U/ for p1¢ (i.e., a set of functions of x, a),
we define the simultaneous identification region of the TPR and TNR for all groups a € A as:

o= {<PaTPR(77),PENR(77))a6A NS Z/{} C RQX\A|_

For brevity, we will let p.(n) = (pg (1), pa (1)) and p(n) = (pa(1))aca-

The set © describes all possible simultaneous values of the group-conditional true pos-
itive and true negative rates. As long as Vn € U we have 0 < n(X,4) <
min(P(Y=1|T=0,X,4),P(Y =0|T =1,X,A)) (which is identified from the data) by
Proposition 3] this set is necessarily sharp [53] given only the restriction that po € U. (In particular,
this bound on 7 can be achieved by just point-wise clipping &/ with this identifiable bound as nec-
essary.) That is, given a joint on (X, A,7T,Y), on the one hand, every p € O is realized by some
full joint distribution on (X, A, T,Y(0),Y (1)) with p1p € U, and on the other hand, every such
joint gives rise to a p € ©. In other words, O is an exact characterization of the in-fact possible
simultaneous values of the group-conditional TPRs and TNRs.

Therefore, if, for example, we are interested in the minimal and maximal possible values for the true

(unknown) TPR discrepancy between groups a and b, we should seek to compute inf ,co pIPR _

pi PR and sup,cq pat R — pf PR, More generally, for any y € R**I, we may wish to compute

he (1) = sup,ce i’ p. 3)
Note that this, for example, covers the above example since for any u we can also take —u. The
function hg is known as the support function of © [59]. Not only does the support function provide
the maximal and minimal contrasts in a set, it also exactly characterizes its convex hull. That is,
Conv (©) = {p: u"p < he(n) Vu}. So computing he allows us to compute Conv (©).

Our next result gives an explicit program to compute the support function when / has a product form
of within-group uncertainty sets:

U={n:n(-,a) €EU,Va e A}, 4
which leads to © = [[,c 4 ©a Where ©, = {pa(14) : Mo € Ua}.



Proposition 4. Letr? =P(Z =z |A=a)and 7 =E[r| A=a,Z = z]. Suppose U is as in
(). Then Eq. can be reformulated as:
he(p) = 2aeaho,(ia),  where
he, (Ha) =supy, ;, ﬂaTPRTi (taTal +Ewa(X) [ A=0a,Z= 1])
TNR,.0

# e Tag (1 50) 4 Bl (X) | A= 0,7 =0)

St wa(") €tqUa, ta (rord+71e7h) +Elw, | A=a] = 1.

For a fixed value of ¢,, the above program is a linear program, given that I/, is linearly representable.
Therefore a solution may be found by grid search on the univariate t,. Moreover, if g. *® = 0 or
puINR = 0, the above remains a linear program even with ¢,, as a variable [20]. With this, we are able

to express group-level disparities through assessing the support function at specific contrast vectors L.
5.1 Partial Identification under Relaxed Monotone Treatment Response

We next consider the implications of the above for the following relaxation of the monotone treatment
response assumption:

Assumption 2 (B-relaxed monotone treatment response). pi1g < B.

Note that Assumption Z with B = 0 recovers Assumption [I and Assumption 2 with
B = 1 is a vacuous assumption. In between these two extremes we can consider milder
or stronger violations of monotone response and the partial identification bounds they corre-
sponds to. This provides us with a means of sensitivity analysis of the disparities we mea-
sure, recognizing that monotone response may not hold exactly and that disparities may not
be exactly identifiable. For the rest of the paper, we focus solely on partial identification
under Assumption [2. Note that Assumption [2 corresponds exactly to the uncertainty set
U ={n:0< (X, A) <min(B,P(Y=1|T=0,X,4),P(Y=0|T=1,X,A))}. Wede-
fine ©p = [[,c4 ©B,a to be the corresponding identification region.

Under Assumption E, our bounds take on a particularly simple form. Let BZ(B) =
E[min(B,P(Y=1|T=0,X,A),PY=0|T=1,X,4)) | A=a,Z = z] and define

PTPR(B) = (7a + Ba(B))ra PINR (B — (1 —7a)ra

‘ Torg + (1 + By(B)rg” (1 =r)rd + (1 =75 = Bi(B))rs’
pTPR(B) = TaTa pTNR(BY) = (1 — 75 — Ba(B))ra
- (78 + BY(B)rg + vy~ (1 =79 =BY(B)rg + (1 = 7a)ry

Proposition 5. Suppose Assumption|§|holds. Then [pT"R(B), py " (B)] and [p™*(B), p, " (B)]
are the sharp identification intervals for TPR, and TNR,, respectively. Moreover,
(paTPR(B),paTNR(B)) € Op, and (pI*R(B),pINR(B)) € Op.,, i.e., the two extremes are si-
multaneously achievable.

6 Partial Identification of Group Disparities and ROC and xROC Curves
We discuss diagnostics to summarize possible impact disparities across a range of possible policies.

TPR and TNR disparity. Discrepancies in model errors (TPR or TNR) are of interest when audit-
ing classification performance on different groups with a given, fixed policy Z. Under Assumption|I}
they are identified by Proposition[2] Under violations of Assumption[I} we can consider their partial
identification bounds. If the minimal disparity remains nonzero, that provides strong evidence of dis-
parity. Similarly, if the maximal disparity is large, a responsible decision maker should be concerned
about the possibility of a disparity.

Under Assumption [2] Proposition [5] provides that the sharp identification intervals of TPR, — TPR,,
and TNR, — TNRy, are, respectively, given by
[0, (B) =, "(B), Pa M(B) = p, (B,
[N (B) =y “(B), Pa H(B) = p, " (B)]-

Given effect scores 7, we can then use this to plot disparity curves by plotting the endpoints of Eq.
for policies Z = I[r > 6] for varying thresholds 6.

&)



Robust ROC Curves We first define the analogous group-conditional ROC curve corresponding
to a CATE function 7. These are the parametric curves traced out by the pairs (1 — TNR,, TPR,)
of policies that threshold the CATE for varying thresholds. To make explicit that we are now
computing metrics for different policies, we use the notation p(n; T > 6) to refer to the metrics of
the policy Z = I[r > 6]. Under Assumption E, Proposition@provides point identification of the
group-conditional ROC curve:

ROCq(r) = {(1 = pg " (057 > 0), p, "™ (0;7 > 6)) : 6 € R}

When Assumption [T fails, we cannot point identify TPR,, TNR, and correspondingly we cannot
identify ROC, (7). We instead define the robust ROC curve as the union of all partially identified
ROC curves. Specifically:

OF0(r) = {1 = pa (a3 2 0),pg " M(na;T = 0)): 0 € Ry1ja € Uy}

a

Plotted, this set provides a visual representation of the region that the true ROC curve can lie in. We
next prove that under Assumption 2} we can easily compute this set as the area between two curves.

Proposition 6. Let U = Up. Then OROC(7) is given as the area between the two parametric
curves ROC, (1) = {(1 = p"™"®(B;7 > ), p""®(B; 7 > 6)): 6 € R} and ROC,(7) = {(1 -
Pa " (BiT > 0),0, " (B;7 > 0)): 0 € R},

This follows because the extremes are simultaneously achievable as noted in Proposition [5. We
highlight, however, that the lower (resp., upper) ROC curve may not be simultaneously realizable.

Robust XROC Curves Comparison of group-conditional ROC curves may not necessarily show
impact disparities as, even in standard classification settings ROC curves can overlap despite disparate
impacts [30,41]]. At the same time, comparing disparities for fixed policies Z with fixed thresholds
may not accurately capture the impact of using 7 for rankings. [41]] develop the xAUC metric for
assessing the bipartite ranking quality of risk scores, as well as the analogous notion of a xROC
curve which parametrically plots the TPR of one group vs. the FPR of another group, at any fixed
threshold. This is relevant if effect scores 7 are used for downstream decisions by different facilities
with different budget constraints or if the score is intended to be used by a “human-in-the-loop”
exercising additional judgment, e.g., individual caseworkers as in the encouragement design of [12].

Under Assumption E, we can point identify TPR,, TNR,, so, following [41]], we can define the
point-identified xROC curve as

xROC, (1) = {(1 — pfN®(0; 7 > 0), pTPR(0;7 > 0)) : 0 € R}.

Without Assumption [T, we analogously define the robust xROC curve as the union of all partially
identified XROC curves:

OxRO%(r) = {(1 — "B (a; T = 0), pa TR (a3 T > 0)) 1 0 € R,y € Uy}

Proposition 7. Let Y = Up. Then @2%00(7') is given as the area between the two parametric
curves xROC,, (1) = {(1 — BENR(B;T > 0),BIPR(B;T > 0)): 6 € R} and xROC, (1) =
{1 =2 (B;7 > 0),p, " (B;7 > 0)): 0 € R}.

This follows because U takes the form of a product set over a € A.

7 Case Study: Personalized Job Training (Behaghel et al.)

We consider a case study from a three-armed large randomized controlled trial that randomly assigned
job-seekers in France to a control-group, a job training program managed by a public vendor, and an
out-sourced program managed by a private vendor [11]. While the original experiment was interested
in the design of contracts for program service delivery, we consider a task of heterogeneous causal
effect estimation, motivated by interest in personalizing different types of counseling or active labor
market programs that would be beneficial for the individual. Recent work in policy learning has also
considered personalized job training assignment [45}163|] and suggested excluding sensitive attributes
from the input to the decision rule for fairness considerations, but without consideration of fairness
in the causal effect estimation itself and how significant impact disparities may still remain after
excising sensitive attributes because of it.
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Figure 1: TPR and TNR disparity curves and bounds on French job training dataset (Eq. (3))
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Figure 2: ROC and xROC for A = nationality, age on French job training dataset

We focus on the public program vs. control arm, which enrolled about 7950 participants in total,
with n; = 3385 participants in the public program. The treatment arm, 7" = 1, corresponds to
assignment to the public program. The original analysis suggests a small but statistically significant
positive treatment effect of the public program, with an ATE of 0.023. We omit further details on the
data processing to Appendix [B| We consider the group indicators: nationality (0,1 denoting French
nationals vs. non-French, respectively), gender (denoting woman vs. non-woman), and age (below
the age of 26 vs. above). (Figures for gender appear in Appendix [B])

In Fig. [T, we plot the identified “disparity curves” of Eq. (5) corresponding to the maximal and
minimal sensitivity bounds on TPR and TNR disparity between groups. Levels of shading correspond
to different values of B, with color legend at right. We learn 7 by the Generalized Random Forests
method of [5,164] and use sample splitting, learning 7 on half the data and using our methods to assess
bounds on pTPR pTNR and other quantities with out-of-sample estimates on the other half of the

data. We bootstrap over 50 sampled splits and average disparity curves to reduce sample uncertainty.

In general, the small probability of being a responder leads to increased sensitivity of TPR estimates
(wide identification bands). The curves and sensitivity bounds suggest that with respect to nationality
and gender, there is small or no disparity in true positive rates but the true negative rates for nationality,
gender, and age may differ significantly across groups, such that non-women would have a higher
chance of being bestowed job-training benefits when they are in fact not responders. However, TPR
disparity by age appears to hold with as much as -0.1 difference, with older actually-responding
individuals being less likely to be given job training than younger individuals. Overall, this suggests
that differences in heterogeneous treatment effects across age categories could lead to significant
adverse impact on older individuals.

This is similarly reflected in the robust ROC, xROC curves (Fig.[2). Despite possibly small differences
in ROCs, the xROCs indicate strong disparities: the sensitivity analysis suggests that the likelihood of
ranking a non-responding young individual above a responding old individual (xAUC [41]]) is clearly
larger than the symmetric error, meaning that older individuals who benefit from the treatment may
be disproportionately shut out of it as seats are instead given to non-responding younger individuals.

8 Discussion and Conclusion

We presented identification results and bounds for assessing disparate model errors of causal-effect
maximizing treatment policies, which can lead disparities in access to those who stand to benefit
from treatment across groups. Whether this is “unfair” would naturally rely on one’s normative



assumptions. One such is “claims across outcomes,” that individuals have a claim to the public
intervention if they stand to benefit, which can be understood within [1]]’s axiomatic justification of
fair distribution. There may also be other justice-based considerations, e.g. minimax fairness. We
discuss this more extensively in Appendix [C]

With the new ability to assess disparities using our results, a second natural question is whether these
disparities warrant adjustment, which is easy to do given our tools combined with the approach of
[30]. This question again is dependent both on one’s viewpoint and ultimately on the problem context,
and we discuss it further in Appendix [C] Regardless of normative viewpoints, auditing allocative
disparities that would arise from the implementation of a personalized rule must be a crucial step of a
responsible and convincing program evaluation. We presented fundamental identification limits to
such assessments but provided sensitivity analyses that can support reliable auditing.

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No.
1846210. This research was funded in part by JPMorgan Chase & Co. Any views or opinions
expressed herein are solely those of the authors listed, and may differ from the views and opinions
expressed by JPMorgan Chase & Co. or its affiliates. This material is not a product of the Research
Department of J.P. Morgan Securities LLC. This material should not be construed as an individual
recommendation for any particular client and is not intended as a recommendation of particular
securities, financial instruments or strategies for a particular client. This material does not constitute
a solicitation or offer in any jurisdiction.

References

[1] M. Adler. Well-Being and Fair Distribution.

[2] J. D. Angrist, G. W. Imbens, and D. B. Rubin. Identification of causal effects using instrumental
variables. Journal of the American statistical Association, 1996.

[3] J. Angwin, J. Larson, S. Mattu, and L. Kirchner. Machine bias. Online., May 2016.
[4] S. Athey. Beyond prediction: Using big data for policy problems. Science, 2017.

[5] S. Athey, J. Tibshirani, S. Wager, et al. Generalized random forests. The Annals of Statistics, 47
(2):1148-1178, 2019.

[6] A. Balke and J. Pearl. Bounds on treatment effects from studies with imperfect compliance.
Journal of the American Statistical Association, 92(439):1171-1176, 1997.

[7] A. Banerjee, E. Duflo, N. Goldberg, D. Karlan, R. Osei, W. Parienté, J. Shapiro, B. Thuysbaert,
and C. Udry. A multifaceted program causes lasting progress for the very poor: Evidence from
six countries. Science, 348(6236):1260799, 2015.

[8] C. Barabas, K. Dinakar, J. Ito, M. Virza, and J. Zittrain. Interventions over predictions:
Reframing the ethical debate for actuarial risk assessment. Proceedings of Machine Learning
Research, 2017.

[9] S. Barocas and A. Selbst. Big data’s disparate impact. California Law Review, 2014.

[10] S. Barocas, M. Hardt, and A. Narayanan. Fairness and Machine Learning. fairmlbook.org,
2018. http://www.fairmlbook.org,

[11] L. Behaghel, B. Crépon, and M. Gurgand. Private and public provision of counseling to job
seekers: Evidence from a large controlled experiment. American Economic Journal: Applied
Economics, 2014.

[12] S. Behncke, M. Frolich, and M. Lechner. Targeting labour market programmes: results from a
randomized experiment. Work. Pap. 3085, IZA (Inst. Study Labor), 2007.

[13] A. Bennett and N. Kallus. Policy evaluation with latent confounders via optimal balance. In
Advances in Neural Information Processing Systems, 2019.


http://www.fairmlbook.org

[14] A. Bennett, N. Kallus, and T. Schnabel. Deep generalized method of moments for instrumental
variable analysis. In Advances in Neural Information Processing Systems, 2019.

[15] A. Beresteanu, I. Molchanov, and F. Molinari. Partial identification using random set theory.
Journal of Econometrics, 166(1):17-32, 2012.

[16] M. Berger, D. A. Black, and J. A. Smith. Econometric evaluation of labour market policies,
chapter EvaluatingProfiling as a Means of Allocating Government Service, pages 59—84. 2000.

[17] D. Bhattacharya and P. Dupas. Inferring welfare maximizing treatment assignment under budget
constraints. Journal of Econometrics, 2012.

[18] C. Brown, M. Ravallion, and D. van de Walle. A poor means test? econometric targeting in
africa. Policy Research Working Paper 7915: World Bank Group, Development Research Group,
Human Development and Public Services Team, 2016.

[19] P. Carneiro, K. T. Hansen, and J. J. Heckman. Removing the veil of ignorance in assessing
the distributional impacts of social policies. Technical report, National Bureau of Economic
Research, 2002.

[20] A. Charnes and W. W. Cooper. Programming with linear fractional functionals. Naval research
logistics (NRL), 9(3-4):181-186, 1962.

[21] I. Chen, F. Johansson, and D. Sontag. Why is my classifier discriminatory? In Advances in
Neural Information Processing Systems 31, 2018.

[22] J. Chen, N. Kallus, X. Mao, G. Svacha, and M. Udell. Fairness under unawareness: Assessing
disparity when protected class is unobserved. In Proceedings of the Conference on Fairness,
Accountability, and Transparency, pages 339-348. ACM, 2019.

[23] V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, and W. Newey. Dou-
ble/debiased/neyman machine learning of treatment effects. American Economic Review, 107
(5):261-65, 2017.

[24] A. Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism prediction
instruments. In Proceedings of FATML, 2016.

[25] S. Corbett-Davies and S. Goel. The measure and mismeasure of fairness: A critical review of
fair machine learning. ArXiv preprint, 2018.

[26] B. Crepon and G. J. van den Berg. Active labor market policies. Annual Review of Economics,
Vol. 8:521-546, 2016.

[27] J. M. Davis and S. B. Heller. Using causal forests to predict treatment heterogeneity: An
application to summer jobs. American Economic Review: Papers and Proceedings, 107(5):
546-550, 2017.

[28] M. Dudik, D. Erhan, J. Langford, and L. Li. Doubly robust policy evaluation and optimization.
Statistical Science, 2014.

[29] V. Eubanks. Automating inequality: How high-tech tools profile, police, and punish the poor.
St. Martin’s Press, 2018.

[30] M. Hardt, E. Price, N. Srebro, et al. Equality of opportunity in supervised learning. In Advances
in Neural Information Processing Systems, pages 3315-3323, 2016.

[31] H. Heidari, C. Ferrari, K. Gummadi, and A. Krause. Fairness behind a veil of ignorance: A
welfare analysis for automated decision making. In Advances in Neural Information Processing
Systems, pages 1265-1276, 2018.

[32] J. L. Hill. Bayesian nonparametric modeling for causal inference. Journal of Computational
and Graphical Statistics, 20(1):217-240, 2011.

[33] L. Hu and Y. Chen. Fair classification and social welfare. arXiv preprint arXiv:1905.00147,
2019.

10



[34] G. Imbens and D. Rubin. Causal Inference for Statistics, Social, and Biomedical Sciences.
Cambridge University Press, 2015.

[35] J. Jung, R. Shroff, A. Feller, and S. Goel. Algorithmic decision making in the presence of
unmeasured confounding. ArXiv, 2018.

[36] N. Kallus. Recursive partitioning for personalization using observation data. Proceedings of the
Thirty-fourth International Conference on Machine Learning, 2017.

[37] N. Kallus. Balanced policy evaluation and learning. In Advances in Neural Information
Processing Systems, pages 8895-8906, 2018.

[38] N. Kallus. Classifying treatment responders under causal effect monotonicity. Proceedings of
International Conference on Machine Learning, 2019.

[39] N. Kallus and A. Zhou. Confounding-robust policy improvement. In Advances in Neural
Information Processing Systems, pages 9269-9279, 2018.

[40] N. Kallus and A. Zhou. Residual unfairness in fair machine learning from prejudiced data.
Forthcoming at ICML, 2018.

[41] N. Kallus and A. Zhou. The fairness of risk scores beyond classification: Bipartite ranking and
the xauc metric. In Advances in Neural Information Processing Systems, 2019.

[42] N. Kallus, X. Mao, and A. Zhou. Assessing algorithmic fairness with unobserved protected
class using data combination. arXiv preprint arXiv:1906.00285, 2019.

[43] N. Kallus, X. Mao, and A. Zhou. Interval estimation of individual-level causal effects under
unobserved confounding. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 2281-2290, 2019.

[44] N. Kilbertus, M. Rojas-Carulla, G. Parascandolo, M. Hardt, D. Janzing, and B. Scholkopf.
Avoiding discrimination through causal reasoning. Advances in Neural Information Processing
Systems 30, 2017, 2017.

[45] T. Kitagawa and A. Tetenov. Empirical welfare maximization. 2015.

[46] A. Kube and S. Das. Allocating interventions based on predicted outcomes: A case study on
homelessness services. Proceedings of the AAAI Conference on Artificial Intelligence, 2019.

[47] M. J. Kusner, J. R. Loftus, C. Russell, and R. Silva. Counterfactual fairness. NIPS, 2017.

[48] H. Lakkaraju, J. Kleinberg, J. Leskovec, J. Ludwig, and S. Mullainathan. The selective labels
problem: Evaluating algorithmic predictions in the presence of unobservables. Proceedings of
KKD2017,2017.

[49] L. T. Liu, S. Dean, E. Rolf, M. Simchowitz, and M. Hardt. Delayed impact of fair machine
learning. Proceedings of the 35th International Conference on Machine Learning (ICML),
Stockholm, Sweden, 2018.

[50] D. Madras, E. Creager, T. Pitassi, and R. Zemel. Fairness through causal awareness: Learning
latent-variable models for biased data. ACM Conference on Fairness, Accountability, and
Transparency (ACM FAT%*) 2019, 2019.

[51] C. Manski. Social Choice with Partial Knoweldge of Treatment Response. The Econometric
Institute Lectures, 2005.

[52] C.F. Manski. Monotone treatment response. Econometrica: Journal of the Econometric Society,
pages 1311-1334, 1997.

[53] C. F. Manski. Partial identification of probability distributions. Springer Science & Business
Media, 2003.

[54] L. McBride and A. Nichols. Retooling poverty targeting using out-of-sample validation and
machine learning. Policy Research Working Paper 7849 (World Bank Group, Development
Economics Vice Presidency Operations and Strategy Team), 2016.

11



[55]

[56]

[57]

[58]

[59]
[60]

[61]

[62]

[63]
[64]

S. Mitchell, E. Potash, and S. Barocas. Prediction-based decisions and fairness: A catalogue of
choices, assumptions, and definitions. arXiv, 2018.

T. Mkandawire. Targeting and universalism in poverty reduction. Social Policy and Development,
2005.

E. Rice. The tay triage tool: A tool to identify homeless transition age youth most in need of
permanent supportive housing. 2013.

J. M. Robins, A. Rotnitzky, and L. P. Zhao. Estimation of regression coefficients when some
regressors are not always observed. Journal of the American statistical Association, 89(427):
846-866, 1994.

R. T. Rockafellar. Convex analysis. Princeton university press, 2015.

D. B. Rubin. Comments on “randomization analysis of experimental data: The fisher ran-
domization test comment”. Journal of the American Statistical Association, 75(371):591-593,
1980.

U. Shalit, F. Johansson, and D. Sontag. Estimating individual treatment effect: generalization
bounds and algorithms. Proceedings of the 34th International Conference on Machine Learning,
2017.

R. Shroff. Predictive analytics for city agencies: Lessons from children’s services. Big data, 5
(3):189-196, 2017.

S. Wager and S. Athey. Efficient policy learning. 2017.

S. Wager and S. Athey. Estimation and inference of heterogeneous treatment effects using
random forests. Journal of the American Statistical Association, (just-accepted), 2017.

12



