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Abstract

Instrumental variable analysis is a powerful tool for estimating causal effects when
randomization or full control of confounders is not possible. The application of
standard methods such as 2SLS, GMM, and more recent variants are significantly
impeded when the causal effects are complex, the instruments are high-dimensional,
and/or the treatment is high-dimensional. In this paper, we propose the DeepGMM
algorithm to overcome this. Our algorithm is based on a new variational reformula-
tion of GMMwith optimal inverse-covariance weighting that allows us to efficiently
control very many moment conditions. We further develop practical techniques for
optimization and model selection that make it particularly successful in practice.
Our algorithm is also computationally tractable and can handle large-scale datasets.
Numerical results show our algorithm matches the performance of the best tuned
methods in standard settings and continues to work in high-dimensional settings
where even recent methods break.

1 Introduction

Unlike standard supervised learning that models correlations, causal inference seeks to predict the
effect of counterfactual interventions not seen in the data. For example, when wanting to estimate
the effect of adherence to a prescription of �-blockers on the prevention of heart disease, supervised
learning may overestimate the true effect because good adherence is also strongly correlated with
health consciousness and therefore with good heart health [13]. Figure 1 shows a simple example of
this type and demonstrates how a standard neural network (in blue) fails to correctly estimate the true
treatment response curve (in orange) in a toy example. The issue is that standard supervised learning
assumes that the residual in the response from the prediction of interest is independent of the features.

One approach to account for this is by adjusting for all confounding factors that cause the depen-
dence, such as via matching [24, 33] or regression, potentially using neural networks [23, 25, 34].
However, this requires that we actually observe all confounders so that treatment is as-if random
after conditioning on observables. This would mean that in the �-blocker example, we would need to
perfectly measure all latent factors that determine both an individual’s adherence decision and their
general healthfulness which is often not possible in practice.

Instrumental variables (IVs) provide an alternative approach to causal-effect identification. If we
can find a latent experiment in another variable (the instrument) that influences the treatment (i.e., is
relevant) and does not directly affect the outcome (i.e., satisfies exclusion), then we can use this to
infer causal effects [3]. In the �-blocker example [13], the authors used co-pay cost as an IV. Because
they enable analyzing natural experiments under mild assumptions, IVs have been one of the most
widely used tools for empirical research in a variety of fields [2]. An important direction of research
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Figure 1: A toy example in which standard supervised learning fails to identify the true response
function g0(X) = max(X5 , X). Data was generated via Y = g0(X) � 2✏ + ⌘, X = Z + 2✏. All
other variables are standard normal.

for IV analysis is to develop methods that can effectively handle complex causal relationships and
complex variables like images that necessitate more flexible models like neural networks [21, 28].

In this paper, we tackle this through a new method called DeepGMM that builds upon the optimally-
weighted Generalized Method of Moments (GMM) [17], a widely popular method in econometrics
that uses the moment conditions implied by the IV model to efficiently estimate causal parameters.
Leveraging a new variational reformulation of the efficient GMM with optimal weights, we develop a
flexible framework, DeepGMM, for doing IV estimation with neural networks. In contrast to existing
approaches, DeepGMM is suited for high-dimensional treatments X and instruments Z, as well as
for complex causal and interaction effects. DeepGMM is given by the solution to a smooth game
between a prediction function and critic function. We prove that approximate equilibria provide
consistent estimates of the true causal parameters. We find these equilibria using optimistic gradient
descent algorithms for smooth game play [15], and give practical guidance on how to choose the
parameters of our algorithm and do model validation. In our empirical evaluation, we demonstrate
that DeepGMM’s performance is on par or superior to a large number of existing approaches in
standard benchmarks and continues to work in high-dimensional settings where other methods fail.

2 Setup and Notation

We assume that our data is generated by

Y = g0(X) + ✏, (1)

where the residual ✏ has zero mean and finite variance, i.e., E [✏] = 0 and E
⇥
✏2
⇤
< 1. How-

ever, different to standard supervised learning, we allow for the residual ✏ and X to be correlated,
E [✏ | X] 6= 0, i.e., X can be endogenous, and therefore g0(X) 6= E [Y | X]. We also assume that
we have access to an instrument Z satisfying

E [✏ | Z] = 0. (2)

Moreover, Z should be relevant, i.e. P (X | Z) 6= P (X). Our goal is to identify the causal response
function g0(·) from a parametrized family of functions G = {g(·; ✓) : ✓ 2 ⇥}. Examples are linear
functions g(x; ✓) = ✓T�(x), neural networks where ✓ represent weights, and non-parametric classes
with infinite-dimensional ✓. For convenience, let ✓0 2 ⇥ be such that g0(·) = g(·; ✓0). Throughout,
we measure the performance of an estimated response function ĝ by its MSE against the true g0.

Note that if we additionally have some exogenous context variables L, the standard way to model
this using Eq. (1) is to include them both in X and in Z as X = (X 0, L) and Z = (Z 0, L), where X 0

is the endogenous variable and Z 0 is an IV for it. In the �-blocker example, if we were interested in
the heterogeneity of the effect of adherence over demographics,X would include both adherence and
demographics whereas Z would include both co-payment and demographics.
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2.1 Existing methods for IV estimation

Two-stage methods. One strategy to identifying g0 is based on noting that Eq. (2) implies

E [Y | Z] = E [g0(X) | Z] =

Z
g0(x)dP (X = x | Z) . (3)

If we let g(x; ✓) = ✓T�(x) this becomes E [Y | Z] = ✓T0 E [�(X) | Z]. The two-stage least squares
(2SLS) method [3, §4.1.1] first fits E [�(X) | Z] by least-squares regression of �(X) on Z (with
Z possibly transformed) and then estimates ✓̂2SLS as the coefficient in the regression of Y on
E [�(X) | Z]. This, however, fails when one does not know a sufficient basis �(x) for g(x, ✓0).
[14, 29] propose non-parametric methods for expanding such a basis but such approaches are limited
to low-dimensional settings. [21] instead propose DeepIV, which estimates the conditional density
P (X = x | Z) by flexible neural-network-parametrized Gaussian mixtures. This may be limited
in settings with high-dimensional X and can suffer from the non-orthogonality of MLE under any
misspecification, known as the “forbidden regression” issue [3, §4.6.1] (see Section 5 for discussion).

Moment methods. The generalized method of moments (GMM) instead leverages the moment
conditions satisfied by ✓0. Given functions f1, . . . , fm, Eq. (2) implies E [fj(Z)✏] = 0, giving us

 (f1; ✓0) = · · · =  (fm; ✓0) = 0, where  (f ; ✓) = E [f(Z)(Y � g(X; ✓))] . (4)

A usual assumption when using GMM is that them moment conditions in Eq. (4) are sufficient to
uniquely pin down (identify) ✓0.2 To estimate ✓0, GMM considers these moments’ empirical counter-
parts,  n(f ; ✓) =

1
n

Pn
i=1 f(Zi)(Yi � g(Xi; ✓)), and seeks to make all of them small simultaneously,

measured by their Euclidean norm kvk2 = vT v:

✓̂GMM 2 argmin
✓2⇥

k( n(f1; ✓), . . . ,  n(fm; ✓))k2 . (5)

Other vector norms are possible. [28] propose using kvk1 and solving the optimization with no-regret
learning along with an intermittent jitter to moment conditions in a framework they call AGMM (see
Section 5 for discussion).

However, when there are many moments (many fj), using any unweighted vector norm can lead
to significant inefficiencies, as we may be wasting modeling resources to make less relevant or
duplicate moment conditions small. The optimal combination of moment conditions, yielding
minimal variance estimates is in fact given by weighting them by their inverse covariance, and it is
sufficient to consistently estimate this covariance. In particular, a celebrated result [17] shows that
(with finitely-many moments), using the following norm in Eq. (5) will yield minimal asymptotic
variance (efficiency) for any consistent estimate ✓̃ of ✓0:

kvk2
✓̃
= vTC�1

✓̃
v, where [C✓]jk =

1

n

nX

i=1

fj(Zi)fk(Zi)(Yi � g(Xi; ✓))
2. (6)

Examples of this are the two-step, iterative, and continuously updating GMM estimators [20]. We
generically refer to the GMM estimator given in Eq. (5) using the norm given in Eq. (6) as optimally-
weighted GMM (OWGMM), or ✓̂OWGMM.

Failure of (OW)GMM with Many Moment Conditions. When g(x; ✓) is a flexible model such
as a high-capacity neural network, many – possibly infinitely many – moment conditions may be
needed to identify ✓0. However, GMM and OWGMM algorithms fail when we use too many moment
conditions. On the one hand, one-step GMM (i.e., Eq. (5) with kvk = kvkp, p 2 [1,1]) is saddled
with the inefficiency of trying to impossibly control many equally-weighted moments: at the extreme,
if we let f1, . . . be all functions of Z with unit square integral, one-step GMM is simply equivalent
to the non-causal least-squares regression of Y on X . We discuss this further in Appendix C. On
the other hand, we also cannot hope to learn the optimal weighting: the matrix C✓̃ in Eq. (6) will
necessarily be singular and using its pseudoinverse would mean deleting all but n moment conditions.
Therefore, we cannot simply use infinite or even too many moment conditions in GMM or OWGMM.

2This assumption that a finite number of moment conditions uniquely identifies ✓ is perhaps too strong when
✓ is very complex, and it easily gives statistically efficient methods for estimating ✓ if true. However assuming
this is difficult to avoid in practice.
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3 Methodology

We next present our approach. We start by motivating it using a new reformulation of OWGMM.

3.1 Reformulating OWGMM

Let us start by reinterpreting OWGMM. Consider the vector space V of real-valued functions f of Z
under the usual operations. Note that, for any ✓,  n(f ; ✓) is a linear operator on V and

C✓(f, h) =
1

n

nX

i=1

f(Zi)h(Zi)(Yi � g(Xi; ✓))
2

is a bilinear form on V . Now, given any subset F ✓ V , consider the following objective function:

 n(✓;F , ✓̃) = sup
f2F

 n(f ; ✓)�
1

4
C✓̃(f, f). (7)

Lemma 1. Let kvk✓̃ be the optimally-weighted norm as in Eq. (6) and let F = span(f1, . . . , fm).
Then

k( n(f1; ✓), . . . ,  n(fm; ✓))k2✓̃ =  n(✓;F , ✓̃).

Corollary 1. An equivalent formulation of OWGMM is

✓̂OWGMM 2 argmin
✓2⇥

 n(✓;F , ✓̃). (8)

In other words, Lemma 1 provides a variational formulation of the objective function of OWGMM
and Corollary 1 provides a saddle-point formulation of the OWGMM estimate.

3.2 DeepGMM

In this section, we outline the details of our DeepGMM framework. Given our reformulation above
in Eq. (8), our approach is to simply replace the set F with a more flexible set of functions. Namely
we let F = {f(z; ⌧) : ⌧ 2 T } be the class of all neural networks of a given architecture with
varying weights ⌧ (but not their span). Using a rich class of moment conditions allows us to learn
correspondingly a rich g0. We therefore similarly let G = {g(x; ✓) : ✓ 2 ⇥} be the class of all neural
networks of a given architecture with varying weights ✓.

Given these choices, we let ✓̂DeepGMM be the minimizer in ⇥ of  n(✓;F , ✓̃) for any, potentially
data-driven, choice ✓̃. We discuss choosing ✓̃ in Section 4. Since this is no longer closed form, we
formulate our algorithm in terms of solving a smooth zero-sum game. Formally, our estimator is
defined as:

✓̂DeepGMM 2 argmin
✓2⇥

sup
⌧2T

U✓̃(✓, ⌧) (9)

where U✓̃(✓, ⌧) =
1

n

nX

i=1

f(Zi; ⌧)(Yi � g(Xi; ✓))�
1

4n

nX

i=1

f2(Zi; ⌧)(Yi � g(Xi; ✓̃))
2.

Since evaluation is linear, for any ✓̃, the game’s payoff function U✓̃(✓, ⌧) is convex-concave in the
functions g(·; ✓) and f(·; ⌧), although it may not be convex-concave in ✓ and ⌧ as is usually the
case when we parametrize functions using neural networks. Solving Eq. (9) can be done with any
of a variety of smooth game playing algorithms; we discuss our choice in Section 4. We note
that AGMM [28] also formulates IV estimation as a smooth game objective, but without the last
regularization term and with the adversary parametrized as a mixture over a finite fixed set of critic
functions.3 In our experiments, we found the regularization term to be crucial for solving the
game, and we found the use of a flexible neural network critic to be crucial with high-dimensional
instruments.

3In their code they also include a jitter step where these critic functions are updated, however this step is
heuristic and is not considered in their theoretical analysis.

4



Notably, our approach has very few tuning parameters: only the models F and G (i.e., the neural
network architectures) and whatever parameters the optimization method uses. In Section 4 we
discuss how to select these.

Finally, we highlight that unlike the case for OWGMM as in Lemma 1, our choice of F is not a
linear subspace of V . Indeed, per Lemma 1, replacing F with a high- or infinite-dimensional linear
subspace simply corresponds to GMM with many or infinite moments, which fails as discussed in
Section 2.1 (in particular, we would generically have  n(✓;F , ✓̃) = 1 unhelpfully). Similarly,
enumerating many moment conditions as generated by, say, many neural networks f and plugging
these into GMM, whether one-step or optimally weighted, will fail for the same reasons. Instead, our
approach is to leverage our variational reformulation in Lemma 1 and replace the class of functions
F with a rich (non-subspace) set in this new formulation, which is distinct from GMM and avoids
these issues. In particular, as long as F has bounded complexity, even if its ambient dimension may
be infinite, we can guarantee the consistency of our approach. Since the last layer in a network is
a linear combination of the penultimate one, our choice of F can in some sense be thought of as a
union over neural network weights of subspaces spanned by the penultimate layer of nodes.

3.3 Consistency

Before discussing practical considerations in implementing DeepGMM, we first turn to the theoretical
question of what consistency guarantees we can provide about our method if we were to approximately
solve Eq. (9). We phrase our results for generic bounded-complexity functional classes F ,G; not
necessarily neural networks.

Our main result depends on the following assumptions, which we discuss after stating the result.
Assumption 1 (Identification). ✓0 is the unique ✓ 2 ⇥ satisfying  (f ; ✓) = 0 for all f 2 F .
Assumption 2 (Bounded complexity). F and G have vanishing Rademacher complexities:

1

2n

X

⇠2{�1,+1}n

E sup
⌧2T

1

n

nX

i=1

⇠if(Zi; ⌧) ! 0,
1

2n

X

⇠2{�1,+1}n

E sup
✓2⇥

1

n

nX

i=1

⇠ig(Xi; ✓) ! 0.

Assumption 3 (Absolutely star shaped). For every f 2 F and |�|  1, we have �f 2 F .
Assumption 4 (Continuity). For any x, g(x; ✓), f(x; ⌧) are continuous in ✓, ⌧ , respectively.
Assumption 5 (Boundededness). Y, sup✓2⇥ |g(X; ✓)| , sup⌧2T |f(Z; ⌧)| are all bounded random
variables.
Theorem 2. Suppose Assumptions 1 to 5 hold. Let ✓̃n by any data-dependent sequence with a limit
in probability. Let ✓̂n, ⌧̂n be any approximate equilibrium in the game Eq. (9), i.e.,

sup
⌧2T

U✓̃n
(✓̂n, ⌧)� op(1)  U✓̃n

(✓̂n, ⌧̂n)  inf
✓
U✓̃n

(✓, ⌧̂n) + op(1).

Then ✓̂n ! ✓0 in probability.

Theorem 2 proves that approximately solving Eq. (9) (with eventually vanishing approximation error)
guarantees the consistency of our method. We next discuss the assumptions we made.

Assumption 1 stipulates that the moment conditions given by F are sufficient to identify ✓0. Note that,
by linearity, the moment conditions given by F are the same as those given by the subspace span(F)
so we are actually successfully controlling many or infinite moment conditions, perhaps making
the assumption defensible. If we do not assume Assumption 1, the arguments in Theorem 2 easily
extend to showing instead that we approach some identified ✓ that satisfies all moment conditions. In
particular this means that if we parametrize f and g via neural networks where we can permute the
parameter vector ✓ and obtain an identical function, our result still holds. We formalize this by the
following alternative assumption and lemma.
Assumption 6 (Identification of g). Let ⇥0 = {✓ 2 ⇥ :  (f ; ✓) = 0 8f 2 F}. Then for any
✓1, ✓2 2 ⇥0 the functions g(·; ✓1) and g(·; ✓2) are identical.
Lemma 2. Suppose Assumptions 2 to 6 hold. Let ✓̂n, ⌧̂n be any approximate equilibrium in the game
Eq. (9), i.e.,

sup
⌧2T

U✓̃n
(✓̂n, ⌧)� op(1)  U✓̃n

(✓̂n, ⌧̂n)  inf
✓
U✓̃n

(✓, ⌧̂n) + op(1).
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Then inf✓2⇥0 k✓̂n � ✓k ! 0 in probability.

Assumption 2 provides that F and G, although potentially infinite and even of infinite ambient
dimension, have limited complexity. Rademacher complexity is one way to measure function class
complexity [5]. Given a bound (envelope) as in Assumption 5, this complexity can also be reduced
to other combinatorial complexity measures such VC- or pseudo-dimension via chaining [31]. [6]
studied such combinatorial complexity measures of neural networks.

Assumption 3 is needed to ensure that, for any ✓ with  (f ; ✓) > 0 for some f , there also exists an
f such that  (f ; ✓) > 1

4C✓̃(f, f). It trivially holds for neural networks by considering their last
layer. Assumption 4 similarly holds trivially and helps ensure that the moment conditions cannot
simultaneously arbitrarily approach zero far from their true zero point at ✓0. Assumption 5 is a purely
technical assumption that can likely be relaxed to require only nice (sub-Gaussian) tail behavior.
Its latter two requirements can nonetheless be guaranteed by either bounding weights (equivalently,
using weight decay) or applying a bounded activation at the output. We do not find doing this is
necessary in practice.

4 Practical Considerations in Implementing DeepGMM

Solving the Smooth Zero-Sum Game. In order to solve Eq. (9), we turn to the literature on solving
smooth games, which has grown significantly with the recent surge of interest in generative adversarial
networks (GANs). In our experiments we use the OAdam algorithm of [15]. For our game objective,
we found this algorithm to be more stable than standard alternating descent steps using SGD or
Adam.

Using first-order iterative algorithms for solving Eq. (9) enables us to effectively handle very large
datasets. In particular, we implement DeepGMM using PyTorch, which efficiently provides gradients
for use in our descent algorithms [30]. As we see in Section 5, this allows us to handle very large
datasets with high-dimensional features and instruments where other methods fail.

Choosing ✓̃. In Eq. (9), we let ✓̃ be any potentially data-driven choice. Since the hope is that ✓̃ ⇡ ✓0,
one possible choice is just the solution ✓̂DeepGMM for another choice of ✓̃. We can recurse this many
times over. In practice, to simulate many such iterations on ✓̃, we continually update ✓̃ as the previous
✓ iterate over steps of our game-playing algorithm. Note that ✓̃ is nonetheless treated as “constant”
and does not enter into the gradient of ✓. That is, the second term of U in Eq. (9) has zero partial
derivative in ✓.Given this approach we can interpret ✓̃ in the premise of Theorem 2 as the final ✓̃ at
convergence, since Theorem 2 allows ✓̃ to be fully data-driven.

Hyperparameter Optimization. The only parameters of our algorithm are the neural network
architectures for F and G and the optimization algorithm parameters (e.g., learning rate). To tune
these parameters, we suggest the following general approach. We form a validation surrogate  ̂n for
our variational objective in Eq. (7) by taking instead averages on a validation data set and by replacing
F with the pool of all iterates f encountered in the learning algorithm for all hyperparameter choice.
We then choose the parameters that maximize this validation surrogate  ̂n. We discuss this process
in more detail in Appendix B.1.

Early Stopping. We further suggest to use  ̂n to facilitate early stopping for the learning algorithm.
Specifically, we periodically evaluate our iterate ✓ using  ̂n and return the best evaluated iterate.

5 Experiments

In this section, we compare DeepGMM against a wide set of baselines for IV estimation. Our
implementation of DeepGMM is publicly available at https://github.com/CausalML/DeepGMM.

We evaluate the various methods on two groups of scenarios: one where X,Z are both low-
dimensional and one where X , Z, or both are high-dimensional images. In the high-dimensional
scenarios, we use a convolutional architecture in all methods that employ a neural network to
accommodate the images. We evaluate performance of an estimated ĝ by MSE against the true g0.

More specifically, we use the following baselines:
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Figure 2: Low-dimensional scenarios (Section 5.1). Estimated ĝ in blue; true response g0 in orange.

Scenario DirectNN Vanilla2SLS Poly2SLS GMM+NN AGMM DeepIV Our Method

sin .26± .00 .09± .00 .04± .00 .08± .00 .11± .01 .06± .00 .02± .00
step .21± .00 .03± .00 .03± .00 .06± .00 .06± .01 .03± .00 .01± .00
abs .21± .00 .23± .00 .04± .00 .14± .02 .17± .03 .10± .00 .03± .01
linear .09± .00 .00± .00 .00± .00 .06± .01 .03± .00 .04± .00 .01± .00

Table 1: Low-dimensional scenarios: Test MSE averaged across ten runs with standard errors.

Scenario DirectNN Vanilla2SLS Ridge2SLS GMM+NN AGMM DeepIV Our Method

MNISTz .25± .02 .23± .00 .23± .00 .27± .01 – .11± .00 .07± .02
MNISTx .28± .03 > 1000 .19± .00 .19± .00 – – .15± .02
MNISTx,z .24± .01 > 1000 .39± .00 .25± .01 – – .14± .02

Table 2: High-dimensional scenarios: Test MSE averaged across ten runs with standard errors.

1. DirectNN: Predicts Y from X using a neural network with standard least squares loss.
2. Vanilla2SLS: Standard two-stage least squares on raw X,Z.
3. Poly2SLS: Both X and Z are expanded via polynomial features, and then 2SLS is done via ridge

regressions at each stage. The regularization parameters as well polynomial degrees are picked
via cross-validation at each stage.

4. GMM+NN: Here, we combine OWGMM with a neural network g(x; ✓). We solve Eq. (5) over
network weights ✓ using Adam. We employ optimal weighting, Eq. (6), by iterated GMM [20].
We are not aware of any prior work that uses OWGMM to train neural networks.

5. AGMM [28]: Uses the publicly available implementation4 of the Adversarial Generalized Method
of Moments, which performs no-regret learning on the one-step GMM objective Eq. (5) with norm
k · k1 and an additional jitter step on the moment conditions after each epoch.

6. DeepIV [21]: We use the latest implementation that was released as part of the econML package.5

Note that GMM+NN relies on being provided moment conditions. When Z is low-dimensional, we
follow AGMM [28] and expand Z via RBF kernels around 10 centroids returned from a Gaussian
Mixture model applied to the Z data. When Z is high-dimensional, we use the moment conditions
given by each of its components.6
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5.1 Low-dimensional scenarios

In this first group of scenarios, we study the case when both the instrument as well as treatment is
low-dimensional. Similar to [28], we generated data via the following process:

Y = g0(X) + e+ � X = Z1 + e+ �
Z ⇠ Uniform([�3, 3]2) e ⇠ N (0, 1), �, � ⇠ N (0, 0.1)

In other words, only the first instrument has an effect on X , and e is the confounder breaking
independence ofX and the residual Y � g0(X). We keep this data generating process fixed, but vary
the true response function g0 between the following cases:

sin: g0(x) = sin(x) step: g0(x) = {x�0} abs: g0(x) = |x| linear: g0(x) = x

We sample n = 2000 points for train, validation, and test sets each. To avoid numerical issues, we
standardize the observed Y values by removing the mean and scaling to unit variance. Hyperparam-
eters used for our method in these scenarios are described in Appendix B.2.We plot the results in
Fig. 2. The left column shows the sampled Y plotted againstX , with the true g0 in orange. The other
columns show in blue the estimated ĝ using various methods. Table 1 shows the corresponding MSE
over the test set.

First we note that in each case there is sufficient confounding that the DirectNN regression fails badly
and a method that can use the IV information to remove confounding is necessary.

Our next substantive observation is that our method performs competitively across scenarios, attaining
the lowest MSE in each (except linear where are beat just slightly and only by methods that use a
linear model). At the same time, other methods employing neural networks perform well in some
scenarios and less well in others. Therefore we conclude that in the low dimensional setting, our
method is able to adapt to the scenario and compete with best tuned methods for the scenario.

Overall, we also found that GMM+NN performed well (but not as well as our method). In some
sense GMM+NN is a novel method; we are not aware of previous work using (OW)GMM to train a
neural network. Whereas GMM+NN needs to be provided moment conditions, our method can be
understood as improving further on this by learning the best moment condition over a large class using
optimal weighting. AGMM performed similarly well to GMM+NN, which uses the same moment
conditions. Aside from the heuristic jitter step implemented in the AGMM code, it is equivalent to
one-step GMM, Eq. (5), with k · k1 vector norm in place of the standard k · k2 norm. Its worse
performance than our method perhaps also be explained by this change and by its lack of optimal
weighting.

In the experiments, the other NN-based method, DeepIV, was consistently outperformed by Poly2SLS
across scenarios. This may be related to the computational difficulty of its two-stage procedure, or
possibly due to sensitivity of the second stage to errors in the density fitting in the first stage. Notably
this is despite the fact that the neural-network-parametrized Gaussian mixture model fit in the first
stage is correctly specified, so DeepIV’s poorer performance cannot be attributed to the infamous
“forbidden regression” issue. Therefore we might expect that, in more complex scenarios where the
first-stage is not well specified, DeepIV could be at even more of a disadvantage. In the next section,
we also discuss its limitations with high-dimensional X .

5.2 High-dimensional scenarios

We now move on to scenarios based on the MNIST dataset [26] in order to test our method’s ability
to deal with structured, high-dimensional X and Z variables. For this group of scenarios, we use
same data generating process as in Section 5.1 and fix the response function g0 to be abs, but
map Z, X , or both X and Z to MNIST images. Let the output of Section 5.1 be X low, Z low and
⇡(x) = round(min(max(1.5x+5, 0), 9)) be a transformation function that maps inputs to an integer
between 0 and 9, and let RandomImage(d) be a function that selects a random MNIST image from
the digit class d. The images are 28⇥ 28 = 784-dimensional. The scenarios are then given as:

4https://github.com/vsyrgkanis/adversarial_gmm
5https://github.com/microsoft/EconML
6That is, we use fi(Z) = Zi for i = 1, . . . , dim(Z).
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• MNISTZ: X  X low, Z  RandomImage(⇡(Z low
1 )).

• MNISTX: X  RandomImage(⇡(X low)), Z  Z low.

• MNISTX, Z: X  RandomImage(⇡(X low)), Z  RandomImage(⇡(Z low
1 )).

We sampled 20000 points for the training, validation, and test sets and ran each method 10 times with
different random seeds. Hyperparameters used for our method in these scenarios are described in
Appendix B.2. We report the averaged MSEs in Table 2. We failed to run the AGMM code on any
of these scenarios, as it crashed and returned overflow errors. Similarly, the DeepIV code produced
nan outcomes on any scenario with a high-dimensional X . Furthermore, because of the size of
the examples, we were similarly not able to run Poly2SLS. Instead, we present Vanilla2SLS and
Ridge2SLS, where the latter is Poly2SLS with fixed linear degree. Vanilla2SLS failed to produce
reasonable numbers for high-dimensional X because the first-stage regression is ill-posed.

Again, we found that our method performed competitively across scenarios, achieving the lowest
MSE in each scenario. In the MNISTZ setting, our method had better MSE than DeepIV. In the
MNISTX and MNISTX,Z scenarios, it handily outperformed all other methods. Even if DeepIV had
run on these scenarios, it would be at great disadvantage since it models the conditional distribution
over images using a Gaussian mixture. This can perhaps be improved using richer conditional
density models like [12, 22], but the forbidden regression issue remains nonetheless. Overall, these
results highlights our method’s ability to adapt not only to each low-dimensional scenario but also to
high-dimensional scenarios, whether the features, instrument, or both are high-dimensional, where
other methods break. Aside from our method’s competitive performance, our algorithm was tractable
and was able to run on these large-scale examples where other algorithms broke computationally.

6 Conclusions
Other related literature and future work. We believe that our approach can also benefit other
applications where moment-based models and GMM is used [7, 18, 19]. Moreover, notice that while
DeepGMM is related to GANs [16], the adversarial game that we play is structurally quite different.
In some senses, the linear part of our payoff function is similar to that of the Wasserstein GAN [4];
therefore our optimization problem might benefit from a similar approaches to approximating the sup
player as employed by WGANs. Another related line of work is in methods for learning conditional
moment models, either in the context of IV regression or more generally, that are statistically efficient
[1, 8–11]. This line of work is different in focus than ours; they focus on methods that are statistically
efficient, whereas we focus on leveraging work on deep learning and smooth game optimization to
deal with complex high-dimensional instruments and/or treatment. However an important direction
for future work would be to investigate the possible efficiency of DeepGMM or efficient modifications
thereof. Finally, there has been some prior work connecting GANs and GMM in the context of image
generation [32], so another potential avenue of work would be to leverage some of the methodology
developed there for our problem of IV regression.

Conclusions. We presented DeepGMM as a way to deal with IV analysis with high-dimensional
variables and complex relationships. The method was based on a new variational reformulation of
GMM with optimal weights with the aim of handling many moments and was formulated as the
solution to a smooth zero-sum game. Our empirical experiments showed that the method is able to
adapt to a variety of scenarios, competing with the best tuned method in low dimensional settings and
performing well in high dimensional settings where even recent methods break.
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