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‘We study the problem of learning personalized decision policies from observational data while accounting
for possible unobserved confounding. Previous approaches, which assume unconfoundedness, i.e., that no
unobserved confounders affect both the treatment assignment as well as outcome, can lead to policies that
introduce harm rather than benefit when some unobserved confounding is present, as is generally the case
with observational data. Instead, since policy value and regret may not be point-identifiable, we study a
method that minimizes the worst-case estimated regret of a candidate policy against a baseline policy over
an uncertainty set for propensity weights that controls the extent of unobserved confounding. We prove
generalization guarantees that ensure our policy will be safe when applied in practice and will in fact obtain
the best-possible uniform control on the range of all possible population regrets that agree with the possible
extent of confounding. We develop efficient algorithmic solutions to compute this minimax-optimal policy.
Finally, we assess and compare our methods on synthetic and semi-synthetic data. In particular, we consider
a case study on personalizing hormone replacement therapy based on observational data, where we validate
our results on a randomized experiment. We demonstrate that hidden confounding can hinder existing
policy learning approaches and lead to unwarranted harm, while our robust approach guarantees safety and
focuses on well-evidenced improvement, a necessity for making personalized treatment policies learned from

observational data reliable in practice.

1. Introduction

The problem of learning personalized decision policies to study “what works and for whom” in
areas such as medicine, e-commerce, and civics often endeavors to draw insights from increasingly
rich and plentiful observational data, such as electronic medical records (EMRs), since data from
randomized controlled experiments may be scarce, costly, or unethical to acquire. A variety of methods
have been proposed to address the corresponding problem of policy learning from observational

data (Beygelzimer and Langford 2009, Dudik et al. 2014, Kallus 2017a,b, Kallus and Zhou 2018b,
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Kitagawa and Tetenov 2018, Wager and Athey 2017a). These methods, as well as approaches
to predict conditional-average treatment effects from observational data (Kiinzel et al. 2017, Nie
and Wager 2017, Shalit et al. 2017, Wager and Athey 2017b), operate under the controversial
assumption of unconfoundedness. Stated informally, such an assumption requires that the data
are sufficiently informative such that there remain no unobserved confounders that jointly affect
treatment assignment and individual response (Rubin 1974), effectively requiring that assignment is
as if at random once we control for observables. This key assumption may be always made to hold ez
ante by directly controlling the treatment assignment policy as in a randomized controlled experiment,
but in other domains of key interest such as personalized medicine where EMRs are increasingly
being analyzed ex post, unconfoundedness is an assumption that may never truly fully hold in fact.
Even in randomized controlled trials, in practice, challenges such as compliance, censoring, or even
site selection bias may lead to confounding.

Assuming unconfoundedness, also called ignorability, conditional exogeneity, or selection on observ-
ables, is controversial because it is fundamentally unverifiable since the counterfactual distribution is
never identified from the data (Imbens and Rubin 2015). Thus, insights from observational studies,
which passively study treatment-outcome data without directly intervening on treatment are always
vulnerable to this fundamental critique. For example, studying drug efficacy by assessing outcomes
of those prescribed the drug during the course of normal clinical practice may make a drug look
less clinically effective if those who were prescribed the drug were sicker to begin with and therefore
would have had worse outcomes regardless. Conversely, if the drug was correctly prescribed only to
the patients who would most benefit from it, it may make the drug appear to be falsely effective for
all patients. These issues can potentially be alleviated by controlling for more baseline factors that
may have affected treatment choices but they can never really be fully eliminated in practice.

Conclusions drawn from healthcare databases such as claims data are particularly vulnerable to
unobserved confounding because although they record administrative interactions and diagnostic
codes, they are uninformative about medical histories, notes on patient severity, observations, and
monitoring of clinical outcomes, i.e., the key clinical information which may drive a physician’s
treatment choices. EMRs provide great promise for enabling richer personalized medicine from
observational data because they record the entire patient treatment and diagnostic history, past
medical history and comorbidities, as well as fine-grained information regarding patient response
such as vital signs (Hoffman and Williams 2011). The growing adoption of richer EMRs can both
provide higher precision for personalized treatment and render unconfoundedness more plausible,
since the data includes more of the information regarding patient history and outcomes that informs
physician decision-making, yet unconfoundedness, an ideal stylized assumption, still may never be

fully satisfied in practice.
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1.1. Unobserved Confounding: the Example of the Women’s Health Initiative
Parallel Clinical Trial and Observational Study

The challenges of observational data are of course not new to the modern era of data-driven
decision-making, but have been widely recognized. One high-profile example is the case of the
parallel Women’s Health Initiative (WHI) observational study and clinical trial, which illustrates how
confounding factors can lead to dramatic discrepancies in drawing clinically relevant prescriptions
from randomized trial versus observational data. The parallel WHI observational study and clinical
trials studied whether hormone replacement therapy (HRT) had therapeutic benefits for chronic
disease prevention. While HRT was known to be clinically effective for vasomotor symptoms of
menopause, earlier observational epidemiological studies additionally suggested a protective benefit
against coronary heart disease (CHD) which led to the increasing clinical practice of prescribing
HRT in menopause for preventive purposes (without clinical trial evidence) (Pedersen and Ottesen
2003). The parallel WHI observational study and clinical trial were designed to evaluate the efficacy
of HRT in a preventive context on chronic disease, such as coronary heart disease (CHD) and breast
cancer, among other clinical endpoints. Ultimately, the WHI clinical trial dramatically repudiated
these purported therapeutic benefits. In fact, while the observational study suggested a protective
benefit of HRT against CHD, showing a 40-50% reduction in CHD incidence, the HRT arm of the
clinical trial had to be stopped early due to a dangerously elevated incidence of CHD (Prentice
et al. 2005). After the WHI study, the new evidence that arose not only dramatically changed the
standard of care, spurring an 80% reduction in the prescription of HRT, but also sparked a broader
methodological debate about the clinical credibility of observational studies (Lawlor et al. 2004).
Later in Section 7.2, we build a case-study with semi-synthetic data from the observational study
and clinical trial to illustrate potential harms of policy learning from realistically confounded data.
This case study, as well as others, illustrate the challenges of unobserved confounders that would
continue to plague richer data-driven decision-making strategies such as personalized policy learning.

We briefly overview the range of possible unobserved confounders which were posited to reconcile
the different findings from WHI. The observational study may have been confounded by plausible,
well-recognized confounding phenomena, healthy user bias due to self-selection and confounding
by indication due to expert-selection, which pose general challenges to the validity of research
on observational health databases, and which may induce correlation in either direction between
treatment selection and outcomes (Brookhart et al. 2010). Such possible confounding factors are
inherent in healthcare data in which physicians determined treatment assignment to manage health
outcomes in the first place. Healthy user bias may stem from differing lifestyle factors in the population
of women self-selecting into HRT: general health-seeking behaviors correlated with selection into

treatment, such as exercise or maintaining heart-healthy diets, are correlated with better expected
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outcomes related to CHD on average. These same lifestyle factors tend to reduce artherosclerotic
risk and risk of CHDs, but are unobserved confounders for self-enrollment into HRT. Conversely,
the study may have also been confounded by indication or severity, where the presence of clinical
activities such as prescription of HRT is correlated with, or indicates, greater initial symptom severity,

which may lead to attenuation in the perceived reduction in vasomotor symptoms.

1.2. Unobserved Confounding in Other Problem Settings

We discuss the relevance of unobserved confounders in other managerial settings to highlight
the broader relevance of unobserved confounding. (For discussion of causal inference models in
operations management, see Ho et al. (2017).) Unobserved confounders accompany the growing use
of transactional-level data either due to confounding introduced by previous managerial decisions (in
analogy to provider expertise in healthcare), or private information of individuals whose interactions
comprise a dataset (in analogy to self-selection). Operational decisions were historically made to
improve firm outcomes: previous decisions incorporate managerial discretion or expertise that is
correlated with outcomes of interest, introducing unobserved confounding. Gordon et al. (2019) find
that conclusions from large advertising experiments at Facebook and observational counterparts
on advertising effectiveness may differ in general, and conduct sensitivity analysis. A randomized
trial of the effectiveness of search ads on eBay (Blake et al. 2015) revealed the spurious efficacy
of advertising, based on observational studies of user search queries, which did not account for

unobserved intent or customer loyalty.

1.3. Contributions

Because unconfoundedness may fail to hold, existing policy learning methods that operate under
this assumption can lead to personalized decision policies that seek to exploit individual-level effects
that are not really there, may intervene where not necessary, and may in fact lead to net harm
rather than net good. Such dangers constitute obvious impediments to the use of policy learning to
enhance decision making in such sensitive applications as medicine, public policy, and civics, where
reliable and safe algorithms are critical to implementation. Clearly, a policy that could potentially
introduce additional harm, toxicity, or risk to patients compared to current standards of care is
an unacceptable replacement, and an algorithm that could potentially give rise to such a policy is
unusable in medical and other sensitive settings.

To address the deficiencies of policy learning that requires untenable assumptions of unconfound-
edness, in this paper we develop a framework for minimax-optimal policy learning which ensures
that the personalized decision policy derived from observational data, which inevitably will have
some unobserved confounding, will do no worse than a current policy such as the current standard

of care and, in fact, will do better if the data can indeed support it. We do so by requiring that the
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learned policy improve upon the baseline no matter the direction of potential unobserved confounding
which generated the data. Thus, we calibrate personalized decision policies to address sensitivity
to realistic violations of the unconfoundedness assumption. For the purposes of informing reliable
and personalized decision-making that leverages modern machine learning, our work highlights that
statistical point identification of individual-level causal effects, which previous approaches crucially
rely on, may not at all be necessary for successfully learning effective policies that reliably improve
on unpersonalized standards of care, but accounting for the lack of point identification is necessary.

Functionally, our approach is to optimize a policy to achieve the best worst-case improvement
relative to a baseline treatment assignment policy (such as treat all or treat none), where the
improvement is measured using a weighted average of outcomes and weights which take values in an
uncertainty set around the nominal, or observed inverse propensity weights (IPW). This generalizes
the popular class of IPW-based approaches to policy learning, which optimize an unbiased estimator
for policy value under unconfoundedness (Beygelzimer and Langford 2009, Kitagawa and Tetenov
2018, Li et al. 2011, Swaminathan and Joachims 2015a,b). Unlike standard approaches, in our
approach the choice of baseline is material and changes the resulting policy chosen by our method.
This framing supports reliable decision-making in practice, as often a practitioner is seeking evidence
of substantial improvement upon the standard of care or a default option, and/or the intervention
under consideration introduces risk of toxicity or adverse effects and should not be applied without
strong evidence.

Our contributions are as follows. We provide a framework for performing minimaz-optimal policy
learning that is robust in the face of unobserved confounding by using a robust optimization
formulation. Our framework allows for the specification of data-driven uncertainty sets based on
a sensitivity parameter describing a pointwise bound on the odds ratio between true and nominal
(observed) propensities as well as uncertainty sets with a global budget-of-uncertainty parameter.
Whereas previous approaches for sensitivity analysis in causal inference focus on evaluating the range
of inferential procedures (e.g. effect estimation or hypothesis tests), we focus on the question of
learning minimaz-optimal decision policies in the presence of unmeasured confounding. Sensitivity
models in causal inference introduce ambiguity sets in the space of inverse propensity weights
which do not vanish with increasing data. Thus, learning decision policies under sensitivity models
introduces analytical challenges in ensuring convergence. We prove a uniform convergence result
both over the space of policies of restricted complexity and over the possible confounded data-
generating distributions in our uncertainty set: therefore, our approach is asymptotically optimal
for the population minimax regret. These results also imply an appealing improvement guarantee
that shows that, up to vanishing factors that depend on the complexity of the policy class, our

approach will not do worse than the baseline and, moreover, will do better, as can be easily validated
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by simply evaluating the objective value of our optimization problem. Leveraging the structure of
our optimization problem and characterizing the inner subproblem, we provide a set of efficient
algorithms for performing robust policy optimization over parameterized policy classes and over
decision trees. We assess performance on a synthetic example that illustrates the possible benefits of
our approach and the effect of the uncertainty parameters. We then show, in a case study drawing
on the unique simultaneous WHI observational study and clinical trial, that in regimes with realistic
confounding, for a variety of possible treatment effect profiles, our approach can lead to improvement
upon a baseline while learning from confounded data causes harm. This case study allows us to
uniquely learn from observational data with unobserved confounding, yet assess out of sample

performance on an unconfounded clinical trial.!

2. Problem Statement and Preliminaries

We first summarize the setup. We consider policy learning from observational data consisting of
tuples of random variables {(X;,7;,Y;):i=1,...,n}, comprising of covariates X; € X, assigned
treatment level out of m discrete treatments T; € {0,...,m — 1}, and real-valued outcomes Y; € R.
We suppose that these constitute iid (independent and identically distributed) observations from a
population and we drop subscripts to denote a generic draw from this population. We allow m > 2,
so that we accommodate the case of multiple, discrete treatment levels. We let Y;(0),...,Y;(m —1)
denote the potential outcomes of applying each treatment option, respectively, and we assume that
Y; =Y;(T;) so that the observed outcome corresponds to the potential outcome of the observed
treatment.?. We let E,, denote the empirical expectation, i.e. taking a sample average over the data.
We define the index set for treatment value t as 7, ={i <n:T;=t}. We use the convention that
the outcomes Y; corresponds to losses so that lower outcomes are better.

We denote the nominal propensity function by é,(z) =P (T =t | X =) and the nominal general-
ized propensity score by ér,(X;). This can be estimated directly from the data using a probabilistic
classification model such as logistic regression or a neural network. When it is estimated, we denote
! The present paper builds upon an earlier paper by the authors (Kallus and Zhou 2018a). The method proposed
herein is distinct and uses per-treatment weight normalization, which provides sharp regret bounds in both the binary-
and multiple-treatment settings and enables the extension to multiple treatments. For this new method we provide
new theoretical guarantees on minimax optimality, or that the policy we learn performs similarly to the one that
provides the best-possible uniform control on the range of possible true regrets of the policy, and we extend previous
theoretical guarantees to this new method. We provide a new generic conic-optimization-based formulation of the
optimization problem that underlies the method. We provide practical tools for calibrating the sensitivity parameter

in our policy learning setting. And, we introduce a new case study on hormone replacement therapy using data from
the Women’s Health Initiative parallel observational study and clinical trial.

2 The equation Y; = Yi(T;) captures two important features. One is that the observed outcomes are consistent with
the hypothetical potential outcomes. Another is that the outcome of an individual only depends on the treatment
assignment of that individual and there is no interference between units. This two assumptions together are also
known as the stable unit treatment value assumption (Rubin 1980).
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the estimated nominal propensity function by é,(z). Since we do not assume unconfoundedness, the
nominal propensity is insufficient to account for confounding. We therefore additionally define the
true propensity function as e;(x,y) =P (T =t | X =x,Y (t) =y) and the true generalized propensity
score as er(X,Y). Note that these cannot be estimated from the data. Unconfoundedness (weak
ignorability) is the assumption that é,(x) = e;(x,y) as functions (i.e., [[T=¢] L Y (¢)| X). Here, we
do not assume unconfoundedness and will generally have that e;(z) # e;(x,y).

We consider evaluating and learning a (possibly) randomized policy mapping covariates to the
probability of assigning treatment, = : (¢,z) € {0,...,m — 1} x X+ [0, 1], where A™ denotes the
m-simplex. Given a policy m, we use the notation 7(¢ | ) to denote the probability 7 assigns to
treatment ¢ when observing covariates x. It is also convenient to also define the random treatment
variable Z™ that, given X, is independent of all else, and has the distribution P(Z" =t| X) =
m(t| X). The policy value of 7 is V(7m) =E [ :;Bl (| X)Y(t)| =E[Y(Z7)]. Asis common for
policy learning (e.g., Kallus 2017b, Wager and Athey 2017a), we focus on a restricted policy class
IT C [¥ — A™]. Examples include deterministic linear policies, 7, o, , (t(z) | 2) =1 where
t(r) € argmax,_, ., ;¢ + B{x; logistic policies, Mo, 1 o (t] ) < exp(ay + Bfx); or decision

trees of a bounded depth, which assign any probability vector to each leaf of the tree.

3. Related Work
Our work builds upon several strands of literatures, notably policy learning from observational data
as well as sensitivity analysis in causal inference.

Causal inference for personalization from observational data under unconfoundedness.
The key difficulty in learning interventional effects from observational data is that the outcome
Y;(T;) is only observed for the treatment actually administered historically to the unit, T;, whose
assignment can itself be correlated with the potential outcomes, obfuscating differences in them.
Since the data is observational and the treatment assignment procedure was not under the control of
the experimenter, the distribution of covariates may be systematically different between treatment
and control groups due to self selection of the individuals into treatments, medical imperatives
trading off treatment risk vs. patient severity, or business imperatives to offer discounts or target
advertising not completely at random. Thus, the systematic differences in covariates in the population
P(X=2,Y=y|T=1),P(X=2,Y=y|T=0), also known as covariate shift, make the treated
and untreated populations incomparable for the purpose of assessing effect.

When all covariates needed to ensure unconfoundedness are assumed to be observed, i.e, é;(z) =
ei(x,y), then a variety of approaches for learning personalized intervention policies that maximize
causal effect have been proposed. These fall under regression-based strategies (Bertsimas et al. 2016,

Qian and Murphy 2011), reweighting-based strategies (Beygelzimer and Langford 2009, Kallus 2017a,
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Kitagawa and Tetenov 2018, Swaminathan and Joachims 2015b), or doubly robust combinations
thereof (Dudik et al. 2014, Wager and Athey 2017a). Regression-based strategies estimate the
conditional average outcomes, E[Y (t) | X], which under unconfoundedness are equal to E[Y | X, T' =],
a regression of outcome on covariates in the ¢-treated group. These estimates are either used directly
to treat by picking the smallest value (known as direct comparison) or to score policies and pick the
best in a restricted class (known as the direct method). For binary treatments, we can directly fit the
difference E[Y (1) — Y (0) | X], known as the conditional average treatment effect (CATE) (Wager and
Athey 2017b). If the regression functions are ill-specified, we are not guaranteed to find the best policy,
even if the class is amenable to the estimation method (e.g., the best linear policy does not arise
from comparing the best linear CATE estimator to zero). Without unconfoundedness, the regression
functions or CATE are not identifiable from the data (parametrically or non-parametrically) and
these methods have no guarantees.

Reweighting-based strategies use inverse propensity weighting (IPW) (Beygelzimer and Langford
2009, Kallus 2017a, Kitagawa and Tetenov 2018, Swaminathan and Joachims 2015b) or covariate-
balancing weights (Kallus 2017b) to change measure from the distribution induced by a historical
logging policy to that induced by any new policy 7. Specifically, these methods use the fact (Li et al.

2011) that, under unconfoundedness, VPV (r) is unbiased for V (r;ér), where

V(i) = 3, | )

t=

Optimizing VIPW(W) for deterministic policies can be phrased as a weighted classification problem
(Beygelzimer and Langford 2009). Dudik et al. (2014) suggest to augment eq. (1) by using the
doubly-robust estimator (Robins et al. 1994), which centers the outcomes using a regression estimate.
Wager and Athey (2017a) show that since this estimate is semiparametrically efficient when using
cross-fold fitting, as shown by Chernozhukov et al. (2016), this leads to better regret bounds. Since
dividing by propensities can lead to extreme weights and high variance estimates, clipping the
probabilities are typically necessary for good performance (Swaminathan and Joachims 2015a, Wang
et al. 2017) or the use of weights that directly optimize for balance (Kallus 2017b). With or without
any of those fixes, if there are unobserved confounders, then, neither a policy’s value nor the optimal
policy are identifiable, and any of these methods may lead to learned policies that may well introduce
more harm than good. Under unconfoundedness, such reweighting-based methods are notable for
being able to find best-in-class policies regardless of specification of an outcome model (or with
outcome models learned at sub-parametric rates; Wager and Athey 2017a). Specifically, they focus
directly on the policy learning problem rather than a prediction problem and on finding a policy

that performs as the best in a given class. This leads to strong generalization guarantees (Kallus
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2017Db, Kitagawa and Tetenov 2018, Wager and Athey 2017a) and can also allow one to incorporate
domain-specific constraints that favor simple prescriptive decision policies that are interpretable,
implementable, and /or satisfy operational constraints, such as scorecards or decision-trees (Ustun
and Rudin 2015). These constraints and approaches for training optimal constrained policies can be
composed directly with the policy optimization problem by restricting the policy class. Because of
these unique properties, our approach will also be based on a reweighting approach that directly
optimizes a policy rather than a predictor.

The literature on optimal policy learning in econometrics has also considered a minimax regret
criterion as summarized in Hirano and Porter (2019). Manski (2005, 2008) consider the optimal
decision policy obtained by minimax regret bounds on conditional average outcomes, which arise
from partial identification bounds on arbitrary confounding from the unidentified counterfactual
probabilities: this approach is highly conservative and does not use available information on selection
based on observables (namely, é;(x) which exists despite additional unobserved confounding.). Stoye
(2009, 2012) consider minimax regret from a decision-theoretic point of view, where a closed form is
available under limiting asymptotic assumptions on an experimental sampling design generating
treatment assignments under a binary or Gaussian assumption on outcome models. In contrast to
these lines of work, we are minimax-optimal with respect to a data-driven uncertainty set around
the estimable inverse propensity weights, to assess reasonable violations of unconfoundedness, and
our minimax-regret guarantees focus on uniform convergence over a policy class and a data-driven
sensitivity model.

Policy improvement. A separate literature within reinforcement learning, unrelated to causal
inference, considers the idea of safe policy improvement by forming an uncertainty set around the
presumed unknown transition probabilities between states as in Thomas et al. (2015) or forming
a trust region for safe policy exploration via concentration inequalities on estimates of policy risk
as in Petrik et al. (2016). None of these consider the issue of confounding in the underlying action
generation policy (the analogous propensity score) or observational data. This general approach of
safely improving upon another policy using a robust or minimax formulation is related to the use of
a baseline policy in our method.

Sensitivity analysis. Sensitivity analysis in causal inference tests the robustness of inferences
about an average treatment effect made based on observational data to the violations of assumptions
such as unconfoundedness. In contrast, our work focuses on personalized policy learning in the
presence of unobserved confounding from an infinite family of potential policies. Some approaches
from sensitivity analysis for assessing unconfoundedness require auxiliary data or additional structural
assumptions, which we do not assume here (Imbens and Rubin 2015). Other approaches consider

how large the unobserved confounding must be to invalidate the conclusions of statistical inference,
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and typically consider assumptions restricting the strength of unobserved confounding, either on the
selection process, or on the outcome model. For example, sensitivity analysis would assess the range
of extremal p-values on the hypothesis of no effect for randomization inference, depending on the
value of I' so that consequent binary conclusions can be couched in terms of the level of unobserved
confounding required to overturn a nominal conclusion (Fogarty and Small 2016, Hasegawa and
Small 2017, Rosenbaum 2002). Our approach borrows the marginal sensitivity model from sensitivity
analysis (Tan 2012), assuming bounds on the strength of unobserved confounding on selection into
treatment, and focuses on the implications for personalized treatment decisions.

The Rosenbaum model for sensitivity analysis assesses the robustness of randomization inference
to the presence of unobserved confounding by considering a uniform bound I' on the odds ratio
between e;(x,y) and e;(z,y'), i.e., between the treatment propensities of any two units with equal
covariates (Rosenbaum 2002). The closely related marginal sensitivity model, introduced by Tan
(2012), considers a uniform bound I on the odds-ratio between the nominal propensity e;(z) and the
true propensity e;(x,y). Zhao et al. (2019) provides further discussion on the relationship between
the two sensitivity models. They are generally different and incomparable for equal values of I'. The
value of I" can be calibrated against the discrepancies induced by omitting observed variables; then
determining I' can be phrased in terms of whether one thinks one has omitted a variable that could
have increased or decreased the probability of treatment by as much as, say, gender or age can in
the observed data (Hsu and Small 2013).

In the sampling literature, the Hajek estimator for population mean (Hajek 1971) is an extension of
the classic Horvitz-Thompson estimator (Horvitz and Thompson 1952) that adds weight normalization.
The objective of the minimax game we define between policy optimizer and possible confounding is a
Héjek estimator for the policy value. Aronow and Lee (2012) derive sharp bounds on the estimator
arising from a uniform bound on the sampling weights, showing a closed-form for the solution for
a uniform bound on the sampling probabilities. Zhao et al. (2019) consider bounds on the Héjek
estimator, but impose a parametric model on the treatment assignment probability. Miratrix et al.
(2018) consider tightening the bounds from the Hajek estimator by adding shape constraints, such
as log-concavity, on the cumulative distribution of outcomes. Masten and Poirier (2018) consider
sup-norm bounds on propensity differences and show sharp partial identification of bounds for CATE
and ATE by integrating partially identified bounds on the conditional quantile treatment effect. In
contrast to the sensitivity analysis literature in causal inference, we focus on the implications of
sensitivity analysis for learning a robust personalized policy function: minimax policy learning poses

additional analytical challenges in ensuring convergence of data-driven robust policies.
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4. Policy Learning That Is Robust to Unobserved Confounding
We now present our framework for minimax-optimal confounding-robust policy learning under
unobserved confounding. Our approach minimizes a bound on policy regret against a specified
baseline policy 7o, Ry, (m) =V (7) —V (m). Our bound is achieved by maximizing a reweighting-based
regret estimate over an uncertainty set around the nominal propensities. This ensures that we cannot
do any worse than my and may in fact do better, even if the data is confounded.

The baseline policy my can be any fixed policy that we want to make sure not to do worse than
or deviate from unnecessarily. This is usually the current standard of care, established from prior
evidence, and we would not want any algorithmic solution to personalization to introduce any harm
relative to current standards. Generally, this is the policy that always assigns control, my(0 | X) = 1.
Alternatively, if reliable clinical guidelines exist for some limited personalization, then my(t | X)

represents the non-constant function that encodes these.

4.1. Confounding-Robust Policy Learning by Optimizing Minimax Regret

If we had oracle access to the true inverse propensities W, =1/er, (X;,Y;) we could form the correct
IPW estimate by replacing nominal with true propensities in eq. (1). We may go a step further and,
recognizing that E[W*I [T =t]] =1, use the empirical sum of true propensities as a control variate

by normalizing our IPW estimate by them. This gives rise to the Hajek regret estimator

R (M) = Ry (m; W), where

En[(m(t] X) —mo(t | X)I[T =] Y W]
E [WIT =1]]

These estimators introduce the denominator E[W I[T =t]| as a ratio control variate within each

R,
Z R(t) (m; W), R,(fg(w, W)=
—0

treatment group. It follows by Slutsky’s theorem that these estimates remain consistent (if we know
W). Note that the choice of my amounts to a constant shift to R;O (m) and does not change which
policy m minimizes the regret estimate. This will not be true of our bound, where the choice of
will be material to the success of the method.

Since the oracle weights W are unknown, we instead minimize the worst-case possible value of
our regret estimate, by ranging over the space of possible values for W;* that are consistent with the
observed data and our assumptions about the confounded data-generating process. Specifically, we
restrict the extent to which unobserved confounding may affect assignment probabilities.

We first consider an uncertainty set motivated by the odds-ratio bounds of the marginal sensitivity
model, which restricts how far the weights can vary pointwise from the nominal propensities Tan

(2012). Given a sensitivity parameter I' > 1, the marginal sensitivity model posits the following

restriction:
o2 (L= er(X))er(X,Y)

@ —er (X)) = 2
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The choice of I can be calibrated using, e.g., the method of Hsu and Small (2013), and we discuss
other approaches in Section 8. Note that I' =1 corresponds to unconfoundedness (weak ignorability)
and I' = 0o to no restriction at all.

The restriction in eq. (2) leads to an uncertainty set for the true inverse propensity weights of

each unit centered around the nominal inverse propensity weights,® W; = 1/ér,(X,):

Wi, eWr ={WeR":a; <W;<b;, Vi=1,...,n}, where (3)
Al =140 (W, —1), bF =141 (W, —1).

We assume for now that W; is known and phrase our method in terms of it. In practice, when &, (z)
is unknown, we suggest to estimate it (e.g., using regression) and plug in the corresponding estimates
of W; in their place. In Section 5.3, we will show that this approach is asymptotically equivalent and
provide explicit finite-sample bounds.

Given this uncertainty set, we obtain the following bound on the empirical regret Hajek estimator:

RWO(W;W}:): sup R,ro(w; W). (4)

wewk

We then propose to choose the policy 7 in our class II to minimize this regret bound, i.e.,
7(II, WL, 7y), where
(I, WE 1) € argmin R (m; W) (5)

well

We emphasize that different components of the framework such as weight normalization and
estimation error change the population minimax-optimal policy, in contrast to the policy learning
setting with unconfoundedness, where these components only affect finite-sample considerations.
In particular, for our worst-case regret objective ﬁﬂo (m; W), weight normalization is crucial for
only enforcing robustness against consequential realizations of confounding that affect the relative
weighting of outcomes. Any mode of the confounding that affects all weights similarly should
have no effect on policy choice. Even if we do not know W, we know that they must satisfy the
population moment conditions E[W*I[T =t]] = 1,Vt € T, so any realization that violates that is
impossible. Moreover, different baseline policies 7y structurally change the solution to the adversarial
subproblem by shifting the contribution of the loss term Y;I[T; = t|(7(T; | X;) — mo(T; | X3)) to
emphasize improvement upon different baselines. In particular, if the baseline policy is in the policy
class 11, it already achieves 0 regret; thus, minimizing regret necessitates learning a policy that must

offer some benefits in terms of decreased loss regardless of confounding.

3 The representation in eq. (3) is obtained by simply solving for 1/ér in each of the two inequalities in eq. (2)
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4.2. The Population Minimax-Optimal Policy

In the above, we showed that our approach minimizes an upper bound on an estimate for the policy
regret. We can also similarly define a population-level bound and consider the population-level
minimax-optimal policy. Specifically, we can translate the marginal sensitivity model, eq. (2), to an

uncertainty set about the population random variable W* =1/es(X,Y):

WE={W(t,z,y): a; (z) <KW (t,z,y) <b (z) Vt<m—1,z€ X,y R}, where

al(x) =14+T7 - (Yer)— 1), b (2) =14+T - (Yer(@) — 1).

Notice that WX = {(W (T}, X1,Y1), ..., W(T, X,,,Y,,) : W € W'} can be understood as the restric-

tion of the above to the data. The corresponding bound on the population-level regret is R, (m; W"),
where

R, (m;W) = sup Ry, (m; W), where

E[(r(t| X) = mo(t | X)L[T =] Y - W(T,X,Y)]
E[L[T =t]W(T,X,Y)]

m—1
Ru(m; W) =Y RU(m; W), RY(m;W)=
t=0

Note that R, (7) = Ry, (m; W*). In words, Ry, (m; W) is the largest-possible true regret of 7 relative
to my over all possible distributions that agree with the observable data-generating distribution of
(X,T,Y) and with the restrictions of the marginal sensitivity model. That is, every potentially-
possible regret of 7 is bounded by this quantity and this quantity is also tight in that there exist
distributions agreeing with the data and the assumptions that are arbitrarily close to it. The
denominator in R, (m; W) ensures that we adhere to the requirement that E[I[T =¢]W*] =14

In fact, the interval generated by the smallest-possible and largest-possible regret is sharp in that
it is equal to the closure of all possible regrets under the marginal sensitivity model of eq. (2). We

summarize this side observation as follows:

PROPOSITION 1 (Sharpness). W' is an uncertainty set for the marginal sensitivity model

(eq. (2)) with parameter value T".

{Rry(m;W): W e W'} = [infycpyr Ry (m; W), supyy epyr Ra, (13 W)

We can correspondingly conceive of what would be the minimaz-optimal policy at the population

level, i.e., T (IT, W', my), where

7 (LW, ) € argmin R, (m; W") (6)

mell

4 As an uncertainty set over the joint distribution P(T,X,Y(0),...,Y(m—1)) this would correspond to
{IP: P /bt (2) <P(T=t| X =2,Y(t)=y) <t/ai (x) V¢t <m —1, ¢ € RT, P is a probability distribution}.
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This minimax-optimal policy is the one that would obtain the best-possible uniform control over
all possible regrets under any possible realization of the true distribution of outcomes that agrees
with the observable data-generating distribution of (X,7,Y) and with the restrictions of the
marginal sensitivity model. This feature makes it an attractive target to aim for in the absence of

unconfoundedness.

4.3. Extension: Budgeted Uncertainty Sets

Our approach can flexibly accommodate additional modeling assumptions beyond the odds-ratio
bounds, which was motivated by sensitivity analysis. We illustrate via an example of a total-
variation bounded uncertainty set how to extend our framework to accommodate additional modeling
assumptions. In the subsequent sections we show that this alternative uncertainty set enjoys similar
minimax optimality and tractability guarantees as the approach above.

The pointwise interval odds-ratio uncertainty set, eq. (3), might be pessimistic in ensuring
robustness against every possible worst-case realization of unobserved confounding for each unit,
which may be plausible under individual self-selection into treatment, whereas concerns about
unobserved confounding might instead be limited to “exceptions”, e.g. individuals with specific
unobserved subgroup risk factors, as has also been recognized by Fogarty and Hasegawa (2019),
Hasegawa and Small (2017) in the context of classic sensitivity analysis.

Specifically, we construct the uncertainty set

ﬁ > ier, IWi— Wi| < A, Ve, }

Wyt =W eR™:
a; <W,; <b} Vi

with the population counterpart,

A {W@’x,y): E[|W(T.X.Y) = W(T.X)| | T =] < A, v, }

al (z) <W(t,z,y) <bi (z)Vi<m—-1l,z € X,y eR

When plugged into eq. (5), this provides an alternative policy choice criterion that is less conservative.
To make the choice of parameters easier, we suggest to calibrate A; as a fraction, p < 1, of the total

deviation already allowed by W.. Specifically, A; = p|Tlt\ > ez, max(W; —a;,bj — W;).?

17

5. Analysis, Improvement Guarantees, and Minimax Optimality

Before discussing how we actually algorithmically compute 7, we next introduce finite-sample
statistical guarantees on the performance of our approach. We first prove a finite-sample improvement
guarantee that provides that the policy we learn is assured to induce no harm, as long as the

sensitivity model is well-specified. We then prove a uniform convergence result simultaneously over

® Enforcing the uncertainty budget separately within each treatment partition is crucial for computationally tractable
policy learning and evaluation, as we discuss in Section 6.
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both the space of policies, II, and the space of possible weights that agree with our sensitivity model,
WY, As a consequence of this uniform convergence, we obtain a bound on the minimax regret that
converges to the population optimum. In our analysis, in Sections 5.1 and 5.2, we assume the nominal
propensities é;(z) are known so that the nominal inverse weights W; are known. In Section 5.3, we
extend all of our results to the case of estimated nominal propensities, where we instead plug in
the estimate é;(z) of é;(z). In particular, we analyze how our results change when we solve the
optimization problem with some é,(z) instead of é;(z), which provides a bound in terms of the
estimation error, which generally vanishes as we collect more data.

For both of these bounds we assume that both outcomes and true propensities are bounded.
AssuMPTION 1 (Bounded outcomes). Outcomes are bounded, i.e. |Y| < B.

ASSUMPTION 2 (Overlap). Strong overlap holds with respect to the true propensity: there exists
v >0 such that e;(x,y) >v Vt€{0,.... m—1},x € X,y €)Y

Moreover, both of these bounds depend on the flexibility of our policy class: it is critical that
we search over a flexible but not completely unrestricted class in order to be assured improvement.
We express the flexibility of II using the notion of the Vapnik-Chervonenkis (VC) major dimension,
which we define below (see Dudley 1987, p. 1309).

DEFINITION 1. Given a ground set G and set of maps F C [G — R], the VC-major dimension of

F is the largest number v € N such that there exists ¢1,...,9, € G with

{(Wf(g1) > 0],....1[f(g9s) > 0]): f € F,0 € R} ={0,1}". (7)

If eq. (7) holds then we say that the superlevel sets of F shatter gi,...,g,, which means that any
subset of the points belong exclusively to some superlevel set of some f € F and its complement to
the corresponding sublevel set. The more complex a class is, the larger the point sets it can shatter.
Thus, VC dimension is a natural expression of function class complexity or flexibility.

We will express the flexibility of II in terms of its VC-major dimension as a set of functions from

(t,z)€{0,...,m—1} x X to [0,1].

ASSUMPTION 3. The policy class 11, as a class of functions {0,...,m — 1} x X — [0,1], has a

finite VC-magor dimension.

Assumption 3 holds for all multi-treatment policy classes we consider, including linear, logistic, and
tree policies with bounded depth. Note that our treatment differs from multi-class classifiers as we
treat (t,z) as the ground set. It is nonetheless immediate to see that the VC-major dimension of both
linear and logistic policies is at most (m —1)(d+ 1). Moreover, for binary decision trees of depth no

more than D, if each inner node can be a query x; <@ for any i=1,...,d and 8 =0;,...,0;x and
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each leaf node is assigned its own probability vector in A™, then the VC dimension of this class is at
most 2P (m — 1) log,(dK + 2), as can been seen by following the arguments of Golea et al. (1998)

and seeing this a direct sum of 2P leaf functions, each consisting of D — 1 conjunctions.

5.1. Improvement Guarantee
We next prove that, if we appropriately bounded the potential hidden confounding, then the
optimal value of our minimax-optimal worst-case empirical regret objective ﬁﬂo (7 W,) (as defined in
Equation (4)) is asymptotically an upper bound on the true population regret of 7, R, (T, W, m0)).
The result is in fact a finite-sample result that gives precisely a bound on how much the latter
might exceed the former due to finite-sample errors — terms that vanish as n grows, even if there is
unobserved confounding.

Our guarantee relating the sample minimax regret (defined in Equation (4)) to the population

optimal regret, for any 7, is then as follows:

THEOREM 1 (Improvement bound). Suppose Assumptions 1, 2, and 3 hold. Suppose, more-
over, that W;., € W,. Then, for a constant K™ which only depends on the VC-major dimension of
II, we have that with probability at least 1 —§:

- ES 1 2 oo (8mv20
Ry (F(LL, Wi 0)) < By (F(IL Wiy 0): Wa) + = (BK ™ +-3) 2og(m20/s) (8)

n

Theorem 1 says that the true population regret of the policy we learn, %(H,Wn,wo), when we
implement it in practice, is bounded by the objective value that the policy minimizes, plus vanishing
terms. These vanishing terms, that is, the second term on the right hand side of eq. (8), vanish at a
rate of O(n~%/2) and have sub-Gaussian tails, regardless of any unobserved confounding. Notice that,

as long as mg € II, which can be ensured by design, then we have that our objective is nonpositive,

A~

R, (m;W,,) <0. Therefore, this means that we never do worse than 7, (i.e., do harm), up to vanishing
terms. Additionally, if our objective is sufficiently negative, which we can check by just evaluating it,
then we are assured some strict improvement. Since we are able to guarantee this without being
able to identify or estimate any causal effect due to the unobserved confounding, Theorem 1 exactly
captures the special appeal of our approach.

Our result above is generic for any uncertainty set W,,; it only requires that it be well-specified.
Note that for both of the uncertainty sets we propose in Section 4, the specification of the population
sensitivity model (W* € W) implies W7, € W, as the latter is simply the restriction of the former
to the data. In the next section we further show that we can obtain the minimax-optimal regret
in these sensitivity models. These results, however, will depend on the uncertainty set and their

complexity being manageable.
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5.2. Minimax-Optimality

In the previous section we argued that our policy is assured (almost) no harm. A remaining question is
whether it achieves the most improvement while doing no harm: whether or not, over all distributions
that agree with our sensitivity model, it obtains the best possible uniform control on policy regret.
That is, since unconfoundedness does not hold, each policy may incur a range of possible regrets,
depending on the true distribution of outcomes, which we cannot pin down even with infinite data.
The best safe policy uniformly minimizes all of these potential regrets simultaneously and is the
minimax-optimal policy 7 (II, W, m) defined in eq. 6. We next show our policy is not only safe but
also achieves the same uniform regret control asymptotically. In fact, we will give a finite-sample
bound on our uniform regret control.

Controlling the complexity of the sensitivity model. Recall that our policy, %(H,W,ﬂ'o), is defined
as the minimum over 7 of the maximum over W of Rﬂo(ﬂ'; W). Therefore, one approach may be
to establish the uniform convergence of Ry (m; W) to Ry, (m; W) over all policies and all weight
functions in the sensitivity model. However, for the uncertainty sets we propose, this will fail. For
example, the weight functions in W' are far too many (isomorphic to all bounded functions) to
expect such uniform convergence. Instead, as has been observed in similar sensitivity models with
linear-fractional structure Aronow and Lee (2012), Miratrix et al. (2018), Zhao et al. (2019), we first
observe that we need only consider a special subclass of weight functions, which will in fact have

bounded functional complexity.

PROPOSITION 2 (Monotone weight solution for W'). Let

T

W (m) = {W(t,x,y); W(t’x’y):atr(x)jL“(y(W(t\1’)—WO(t|Jf)))'(b£($)—atr(w))’}7

u:R —[0,1] is monotonic nondecreasing
r

W (1) = {(W(T1, X1, Y1), ..., W(To, X, Vo) : W €W ()}

Then, for any w,

m—1 m—1
Roy(mWh) =Y sup ROmW), R (mW))=> sup ROmW).
t=0 WGWF(W) t=0 WGWE(W)

This result is due to the special optimization characterization we present later in Theorem 3, which
uses linear-fractional optimization to show that the solution takes a monotonic, thresholding form.

COROLLARY 1. Let W' =U,en W F(77), WZ =U en WTFL(W) Then, for any 7 €11,

m—1 m—1
(7r; WF Z sup R(t) (m W), Eﬁo(ﬂ';wr Z Sup R(t)(’iT w).

t=0 WEW t=0 WEW
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Corollary 1 shows that, when searching for policies in II to obtain uniform control on regret, it
suffices to consider weight functions in WF, which is a subset of W', Again, this result crucially
relies on the optimization structure of our problem.

Importantly, this subset, WF, has much more structure and, in contrast to W', has bounded

complexity.
PROPOSITION 3. Suppose Assumption 3 holds. Then W' has a finite VC-magor dimension.

Proposition 3 leverages the stability of VC-major classes (see Van Der Vaart and Wellner 1996,
Lemma 2.6.19 and Dudley 1987, Proposition 4.2). Note that monotone functions are not a VC class
in the usual sense of having VC subgraphs, but they are VC-hull (Giné and Nickl 2016, Example
3.6.14).

Using Corollary 1 and Proposition 3, we can obtain the following uniform convergence:
THEOREM 2. Suppose Assumptions 1, 2, and 3 hold. Then, for a constant K that depends only
on the VC-major dimension of 11, we have that, with probability at least 1 —§:

= 2T B AT —1 n —1 -1 1 log(15™/p)
sup | Ry, (m;W,,) = Ry (m;W) | <36(12+v ) (BK +v (T =T ') (K" 4+ B+m))\| ———

mwell n

Relative to Theorem 1, the additional dependence on m arises due to the flexibility of WT where,
per Proposition 2, we may effectively choose a different monotone function u for each treatment
level t=0,...,m—1.

As a corollary to Theorem 2 we obtain a finite-sample bound on our minimax suboptimality, which

ensures asymptotic minimax optimality:

COROLLARY 2 (Minimax regret bounds for W"). Suppose Assumptions 1, 2, and 3 hold.

Then, with probability at least 1 — 9, we have that

R, (%(H, WE ) Wh)

log(*#/s)

< iggﬁwo (m W +36(124+v ) (BK"+v ' (T - T ) (K" + B+m)) -

It is important to note that, in contrast to Theorem 1, this result depends crucially on the structure

of WY. The key question is how flexible is the set of worst-case weight functions for any policy.
While our budgeted uncertainty set, W', is also too flexible to expect uniform convergence over

it, we can make similar arguments, focusing only on the set of worst-case weights: they satisfy a

nondecreasing property similar to that of Proposition 2, despite the additional constraint.
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PROPOSITION 4 (Monotone weight solution for W'). Let

. W(t,z,y) = a; (x) +uly(w(t|2) = mo(t ] 2))) - (b (v) — ai (2)),
W (i P) =S W(t,z,y): u(y(n(t|z) —mo(t]x))): R—[0,1] is monotonic nondecreasing, ¢ »

Ep[|[W(T,X,Y)—W(T,X)| | T=t] <AVt
(75 P) = {(W(T1, X1, Y2), ..., W(To, X0, o) : W W ™ (m; P)}.

r,A
n

W

Then, for any m: X — A™,

m—1 m—1
R, (mWhh) = g sup  RY(m W), R, (mWhh) = g sup Rgf)(w; W),
— A, 0 — A, 0
t=0 Wew (m;P) t=0 WeWw, (m;Py)

where P denotes the population distribution of T, X,Y and P, the corresponding empirical distribu-

tion.

These arguments require proving structural properties of the optimal solution under this budgeted
uncertainty set, which allow us to use the same stability arguments for various compositions of
VC-major classes. We remark that the structural results for the budgeted uncertainty set are weaker
than that of the unbudgeted one (Theorem 3), where we also obtain efficient algorithms. We quote

the final regret bound and refer the reader to the supplement for details.

PROPOSITION 5 (Minimax regret bounds for W'*). Suppose Assumptions 1, 2, and 3 hold.
Then, for a constant K" that depends only on the VC-major dimension of II, we have that, with
probability at least 1 —9:

Ry (R(IL,WEA o) ; WHA)
2BIv! log(30m
7y+1)KH+B+m)) M

min; Ay Al n

< inf Ry (m W) +36(12+ v )(BK™ 4~ (T =T7)((m

1 2myv 2Bl max; A,
n ming Ay Al

5.3. Estimated Propensity Scores

All of the above results are presented for the case of known nominal propensities, é;(z), that is, when
W", which is centered at the nominal inverse propensity weights W;, is known. If, as is the case for
an observational study, the nominal propensities need to be estimated from data, we optimize over
WY as an approximation to W'. We next show that the use of estimated nominal propensities é,(z)

results in an additive approximation error.

PROPOSITION 6 (Bounded perturbations). Let W; =1/ér5,(X;) and
W = {WGR": at <w, <, Vizl,...,n}, where aF =1+ T (W, — 1), 0¥ =1+ (W, - 1).

Then, under Assumption 1, for any w: X — A™,

n

1
<2B('+TI )=
B (T+ )nz

~

R7\'0 (7’[‘, WTI:) - ﬁﬂ'o (777 Wvl;)

- (9)
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Proposition 6 is a consequence of the linear-fractional optimization structure of the worst-case
regret over weights in W The proof leverages a partial Lagrangian dual of the optimization problem
and studies sensitivity to plugged-in nominal propensities in the dual. Note that by additionally
assuming strong overlap in the nominal propensities, we can bound errors in the inverse propensities
in terms of errors in the propensity function itself, which we can in turn bound using standard
finite-sample guarantees for learning conditional expectations (Bartlett et al. 2005). Note that
the bound in eq. (9) would scale as these bounds. It remains an important direction for future

research to obtain bounds of the form of eq. (9) that have a multiplicative-bias property, allowing

—-1/2 1/2

for slower-than-n estimation of propensities without deteriorating the overall n='/* rate, as in
Wager and Athey (2017a).

Since Proposition 6 holds deterministically and for all policies, including the sample-optimal policy,
it immediately shows that the policy we get by optimizing our worst-case empirical regret with
estimated nominal propensities, %(H, Wn, 7o), is actually near-optimal in objective relative to the
worst-case empirical regret we would obtain with true nominal propensities, that is, ﬁﬂo (m, WF).
Therefore, all previous results for our method similarly hold for %(H, W, 7o) with the addition of
two times the right-hand side of eq. (9) to any previous bound. In particular, for the improvement
guarantee for the case of W', we need only ensure that W* € W', which is implied by the validity
of the marginal sensitivity model; we do not need to ensure that W e W}; , which may be a random

event depending on our estimation.

6. Algorithms for Optimizing Robust Policies
We next discuss how to algorithmically solve the policy optimization problem in eq. (5) and actually
find the sample minimax-optimal policy, 7. In the main text, we focus on differentiable parametrized
policy classes, F = {mg( - ) : 6 € O} such that my(t | x) is differentiable with respect to 6, such as
logistic policies. We will use a subgradient method to find the robust policy. In the appendix,
we also discuss optimization over decision-tree based policies, using a mixed-integer optimization
formulation. In both cases, our solution will depend on a characterization of the inner worst-case
regret subproblem.

We first discuss how to solve the worst-case regret subproblem for a fixed policy, which we will

then use to develop our algorithms.

6.1. Dual Formulation of Worst-Case Regret
The minimization in eq. (5) involves an inner supremum, namely R, (m;WY.). Moreover, this
supremum over weights W does not on the face of it appear to be a convex problem. However, a

standard transformation will reveal its convexity. We next proceed to characterize this supremum,
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formulate it as a linear program, and, by dualizing it, provide an efficient line-search procedure for
finding the pessimal weights.
For compactness and generality, we address the optimization problem @Q,(r; W) parameterized

by an arbitrary reward vector r € R"”, where

= Soo riW(T, X, YO)UIT; = t]
@:(r; W) = max S W(T, XL Y)IT, =1] (10

To recover ﬁﬂo (m; WY, we would simply compute, with r; = (7(T; | X;) — mo(T; | X;))Yi,

m—1
ro(mWE) =3 Q,(r s W),

t=0
For the remainder of this subsection, we discuss solving the program generically for the r-weighted
linear fractional objective Q(r; W), without discussion of multiple treatment partitions. In doing
so, we reindex n. First we consider WY . Since WY involves only linear constraints on W, eq. (10)
for W=W! is a linear fractional program. We can reformulate it as a linear program by applying
the Charnes-Cooper transformation (Charnes and Cooper 1962), requiring weights to sum to 1, and
rescaling the pointwise bounds by a nonnegative scale factor 1. We obtain the following equivalent

linear program in a scaling factor and normalized weight variables, ¢ = ﬁ, w=Wha:

n
@(7"; WTIL‘) = max,/,zo,wzo Z T, W;

i=1

- 11
i=1
Yal <w; <Yb; Vi=1,...,n
The dual problem to eq. (11) has dual variables A € R for the weight normalization constraint

and u,v € RY} for the lower bound and upper bound constraints on weights, respectively. By linear

programming duality, we then have that

@(r; WE = mingso,>0x A
st. —oTb" +uTa" >0 (12)
v,—u;+A>r; Yi=1,...,n
We use this to show that solving the inner subproblem requires only sorting the data and a ternary
search to optimize a unimodal function. This generalizes the result of Aronow and Lee (2012) for
arbitrary pointwise bounds on the weights. Crucially, the algorithmically efficient solution will allow

for faster subproblem solutions when optimizing our regret bound over policies in a given policy

class.
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THEOREM 3 (Normalized optimization solution). Let (i) denote the ordering such that
ray <re <o <ry. Then, Q(r;WE) = A(k*), where k* =inf{k=1,...,n+1: A\(k) < A(k—1)}

and - .
(k) = Zi<ka(i)r(i) + Zizkb(i)r(i) (13)
- Z al + Z b
i<k (i) i>k9()
. = [ 77,VV]L cp . % .p o %
Specifically, we have that Q(r; WE) = Z;Zilwf where Wt) =ap, ifi<k* and W(Tl.) =bpy if i >k

Moreover, A(k) is a discrete concave unimodal function.

Next we consider a budgeted uncertainty set, Q(r; W-*). Write an extended formulation for WI-A

using only linear constraints:

WEA = {Wem: Id st Y di <A, di =W, =W, di > W, = W;, af <W; <} w}
i=1
This immediately shows that Q(r; W!*A) remains a fractional linear program. Indeed, a similar
Charnes-Cooper transformation as used above yields a non-fractional linear programming formula-

tion:

n
Q(r: W}:A) = MaXy>0,w>0,d Z wW;T;

i=1

i=1 i=1
arp <w; <bjp Yi=1,...,n

The corresponding dual problem is:

st. vy—u;+g,—h;+A>r; Vi=1,...,n
—bTv+aTu—Au+gTW+hTW20

As Q(r;WIA) remains a linear program, we can easily solve it using off-the-shelf solvers, even if it

does not admit as simple of a solution as Q(r; W) does.

6.2. Optimizing Parametric and Differentiable Policies

In the main text, we consider iterative optimization to optimize over a parametrized policy class
IT={my(-,-) : 0 € O}, where the parameter space O is convex (usually © =R™), and my(¢ | z) is
differentiable with respect to the parameter 6. In the appendix, we discuss global optimization

approaches for policy learning, for example over the interpretable policy class of optimal trees. We
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Algorithm 1 Subgradient Method

1: Input: step size 17, step-schedule exponent x € (0, 1], initial iterate 6y, number of iterations N

2: for k=0,...,N—1do:

3: N < Not ™" > Update step size
Wi -
4: l, W Imax, Earv%emv\z}mx S 1m(w9k(T | Xi) —mo(T3 | Xi))Y: > Solve inner
subproblem for 6,
5: 0141 < Projectiong (0 — nx - g(0; W)) > Move in subgradient direction

2

1 N
return > 0,

suppose that Vymy(t|x) is given as an evaluation oracle. An example is logistic policies for binary
treatments where it is sufficient to only parametrize for assigning T'=1, m,5(1|X)=0(a+47X)
and © =R, Since 0/(z) = 0(2)(1 — 0(z)), evaluating derivatives is simple.

Our gradient-based procedure leverages that we can solve the inner subproblem to full optimality
in the sample. Note that é(r; W) is convex in r since it is a maximum over linear functions in 7.

Correspondingly, its subdifferential at r is given by the argmax set, where ) W denotes the

i€Lp
vector of normalizing weights corresponding to the observed treatment pattern 7"

A~

QW) = = W EW ZZ ri = Q).

1 we st 1(6) = (o | )~ T | X% 50 hit Qr(8) W) = T (5 W), then oo
Y% Although F(0) := ﬁﬁo (mp; W) may not be convex in 6, this suggests a subgradlent
descent approach. Let

g(0; W) VGZZ (WG(T’X) mo(T3 | X3))Y: = ZZ YVGWG(T‘X)

]EIT ]EZT
Note that whenever &@(r(@) W) =
F(6).

At each step, our algorithm starts with a current value of 8, then proceeds by finding the weights

{Z = o7} is a singleton then g(6; W) is in fact a gradient of

W that realize ﬁwo (m(-;0) by using an efficient method as in the previous section, and then takes
a step in the direction of —g(#; ). Using this method, we can optimize policies, over both the
unbudgeted uncertainty set WL and the budgeted uncertainty set WXA. We return the averaged
0 parameter for each initialization; and we ultimately average the parameter achieving the best
over multiple restarts. Our method is summarized in Alg. 1. In Section C.1 of the Appendix, we
include further algorithmic refinements to this subgradient procedure that leverage the special nested
structure of the uncertainty sets. We find that these refinements help empirically in stabilizing the
optimization when we compute minimax-optimal policies for multiple values of I', as we anticipate a

decision-maker would, over reasonable plausible ranges of IT.
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6.3. Optimizing Over Other Policy Classes
We next discuss how our approach can be extended to other, more general policy classes, if we have a

representation of the constraint m € Il that is compatible with conic or integer programming solvers.

PROPOSITION 7. Suppose W,, = {Wi., : (W)=t €EWn e VE=0,...,m — 1} takes a product form
over treatments and that W, , is conver with a non-empty relative interior. Let 11, = {(m (11 |

X1)y..o,w(T, | X)) : €11}, Then,

m—1
meill%lﬁwo (Wawn) = lnf {z >\t: p € Hna (>‘ - Yz(pz - WO(T; | Xi)))iiTi:t € W;,t Vta }

t=0

where S* ={p:uTp <0Vu € S} denotes the dual cone of a set S.

Aside from the constraint p € II,,, Proposition 7 provides a convex conic formulation of our optimiza-
tion problem. If, as for our two proposed uncertainty sets, W, is polyhedral, then this formulation is
linear. The specific policy parametrization is formulated in the constraint p € I1,,. For the case of
sparse linear policies (Ustun and Rudin 2015) and fixed-depth decision trees (Bertsimas and Dunn
2017, Kallus 2017a), existing such formulations based on integer optimization exist and can be used
to adapt our approach to such policy classes. In the appendix, we provide a more detailed treatment

for the case of decision trees.

7. Empirical Results

In this section we present empirical results on two experiments to investigate the benefit of robustness
to unobserved confounding. Our first experiment is a simple synthetic example that we use to
illustrate the different methods in a controlled setting. Our second experiment develops a case-study,
drawing on the data from the parallel WHI observational study and clinical trial. There, harm
would be done by unwarranted aggressive intervention by personalized policy learning led astray by
confounding. Our minimax-optimal approach is able to avoid such harm, and still offer improvements
over baseline by personalizing care, for a variety of possible reward scalarizations of reductions in

high blood pressure against known clinical benefits.

7.1. Simulated Data

7.1.1. Binary Treatments We first consider a simple linear model specification demonstrating
the possible effects of significant confounding on inverse-propensity weighted estimators. We generate
our data as follows, from a true propensity model based on an unobserved confounder, U, which is a

function of the potential outcomes:
&~Bern(Y2), X~N(2T —-1)u,,Is), U=IY(1)<Y(0)]

Y(t) = pTe+ 1T =1]5}crr+ ol[T = 1] +n+n + €
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Figure 1 Out of sample policy regret on simulated data in Sec. 7.1

The constant treatment effect is = 2.5 with the linear interaction Sy.cq: = [—1.5,1,—1.5,1,0.5].
The covariate mean is p, = [—1,.5,—1,0,—1]. The noise term ¢ affects outcomes with coefficients
n=—2,w=1, in addition to a uniform noise term € ~ N(0,1) which is the same for both treatments.
We let the nominal propensities be logistic in X, é(X) =0(87X) with 5=10,.75,—.5,0,—1,0], and
we generate T; for each unit according to the true propensity score e(X,U), which we set to

(X, U) = 4+5U; —|—6éé((§i))(2 —5U;) '

In particular, this makes e(X;,U;) realize the upper bound in eq. (2) for I'=1.5 when U; =1 and
the lower bound otherwise. Recall U; =1 exactly when treatment with £ =1 is better than treatment
with ¢ = 0; therefore, we can interpret the confounding relationship as doctors giving the treatment
option that is better for the patient, based, however, on factors that were not recorded in the data.

We compare the policies learned by a variety of methods. We consider two commonplace standard
methods that assume unconfoundedness: the logistic policy minimizing the IPW estimate with
nominal propensities and the direct comparison policy gotten by estimating CATE using causal
forests and comparing it to zero (GRF; Wager and Athey 2017b). We compare these to two variants
of our methods using the never-treat baseline policy, m(0 | ) = 1: our confounding-robust logistic
policy using the unbudgeted uncertainty set (CRLogit) and our confounding-robust logistic policy
using the budgeted uncertainty set (CRLogit L1) and multipliers p = 0.5,0.25. For each of these we
vary the parameter I" in {0.1,0.2,0.3,...,1.8,1.9,2,3,4,5}. For logistic policies, we run 15 random
restarts of Alg. 1 with a step-schedule of kK =0.5 and return the one with the best robust objective
value, unless the best robust objective value is positive, in which case we just return my, which is
feasible.

For each of 50 replications, we generate an observational dataset of n =200 according to the above

model, run each of the above mentioned methods to learn a policy, and compute the true value of
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Figure 2 Out of sample policy regret on simulated data, three treatments in Sec. 7.1

each learned policy (by using the known counterfactuals, which we generated). We report the value
as the regret relative to the value of my. We plot the results in Fig. 1, showing the mean regret over
replications along with the standard error (shaded regions). We highlight that the worse performance
of IPW and GRF does not imply an issue with the algorithms themselves but rather with relying on

the assumption of unconfoundedness when it in fact fails to hold.

7.1.2. Multiple Treatments For comparison, we include an example with multiple (three)
treatments. We parametrize the policy class with a multinomial logistic probability model (a direct
extension of the binary treatment case), e.g. 7(t | X) = %. Our simulation setup is similar
to the case for binary treatments. We define the outcome models. In the simulation setup, one
treatment arm, 7' =1, is high-variance due to heterogeneous treatment effects and also greater
confounding (which increases variance in propensity scores). The unobserved confounding affects the

high-variance treatment, 7= 1, while now X is generated uniformly on [—3, 3] for all covariates, to

reduce variability.

¢ ~Bern(l2), X ~Unif(-3,3)°, U=I[Y(1)<Y(0)]

m—1
Y(t) = Bg.ﬁv +n£ + 6“" Z H[t e t/] (ﬁ;’treatm —|— Qlyr —I—’I’/t/g)

t'=1
We parametrize the simulation by vectors of confounding effect and average treatment effect, n =
(0,—2,0),a= (0,2,0.5), linear effects 8 = (0,.5,—0.5,0,0), By =0, 8; = 0.75(—1.,0.5, —1.,1.,0.5), B> =
0, and confounding effects By treat = 0, B treat = (0,1.5,—1,0, —2), B2 treat = (0,0,0.5,0,0.5). We include
the results in Figure 2. We generate 50 replications from this data generating process with n = 200,
and evaluate on a large generated test set with known counterfactuals. However, the additional
parametrization (scaling with the number of treatments) leads to a noisier optimization process by

the method of Alg. 1; we leave further refining the optimization for future investigation.
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7.2. Assessment with Clinical Data: Women’s Health Initiative Trial

We next develop a case study on the parallel Women’s Health Initiative (WHI) clinical trial and
observational study. We now revisit the real data, under a hypothetical scenario where treatment
provides some benefit (in both the observational study and clinical trial), introducing semi-synthetic
outcomes which scalarize actual clinical outcomes with a treatment effect “bonus” reflecting known
ancillary benefits. We consider binary treatment vs. control, where T =1 indicates treatment with
hormone replacement therapy (HRT). Since we vary over a range of possible scalarizations, our
focus here is not on drawing specific clinical or substantive conclusions, but rather illustrating the
behavior of the method in a variety of treatment effect profiles, and illustrating that for a variety of
parameters, our approach will lead to some degree of improvement while confounded methods would

introduce harm.

7.2.1. Policy Learning and HRT We motivate our policy learning setting noting that mod-
ern clinical guidelines, included in Bakour and Williamson (2015), recognize that “when HRT is
individually tailored, women gain maximum advantages and the risks are minimised.” For example,
heterogeneity of treatment effect in age was posited in the clinical literatureS. For all women, the
improvement of vasomotor symptoms was significant, but ultimately the greater risks of adverse
events outweighed the clinical benefits for older women. Since the clinical trial itself did not include
many younger women for whom treatment could be beneficial, the clinically relevant policy learning
question is determining the optimal tailoring of targeted treatments such that the clinical benefits of

HRT do not also incur substantial increase in risk of CHD and other adverse events.

7.2.2. WHI Case Study Evaluation Setup and Outcome Measures

Dataset details. We restrict attention to a complete-case subset of the WHI clinical-trial data
(n =13594) and a complete-case subset of the observational study (n = 48458), obtained after
dropping the cardiac arrest covariate (which is mostly missing). 7"= 1 denotes treatment with
combined estrogen-plus-progestin hormone replacement therapy. An estimate (using GRF Athey
et al. (2019)) of the ATE on the blood pressure outcome, as measured on the clinical trial, is 0.64
with 0.26 standard error, while from the observational study, the estimate is —0.94 with standard

error 0.38: wrongly deciding based on the observational study would introduce overall harm.

6 Clinical explanations for heterogeneity in age suggested that estrogen may slow down early artherosclerosis, the
formation of plaques in arteries, and have favorable endothelial effects in women with recent onset in menopause.
However, unlike other options such as statin therapies which help prevent CHD at any age and stage of disease, HRT
may actually worsen already-established plaques and thus increase the frequency of coronary events in older women
(see Manson et al. 2013, Rossouw et al. 2013).
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Outcome variable. We define our outcome variable to account for cardiovascular health as well as
the clinical benefits of HRT for menopause symptoms, and we range over the potential combinations
of these to study the changing behavior of our method. Specifically, letting S denote systolic blood

pressure and given A < 0, we define our outcome as
Y=S5+TA\

We vary A in a grid on [0,—1.5]. Every X\ generates a new dataset, on which we learn policies from
the observational study using our framework, varying the sensitivity parameter I', and estimate the
outcomes of these learned policies on the actual randomized WHI clinical trial data. In training on
the observational dataset, nominal propensities are estimated using logistic regression. We assess
our methods and appropriate baselines, which learn from the confounded observational data, and
evaluate their performance on the clinical trial dataset, with constant treatment arm randomization
probabilities. This demonstrates the range of possible behaviors as treatment becomes overall more
or less beneficial and offers a sensitivity analysis of our method to different scalarizations of clinical
benefits with the blood pressure outcome.

Clinical trial evaluation. Without access to the true counterfactual outcomes for patients, we
evaluate the performance of policies out of sample by using an unnormalized Horvitz-Thompson
estimator on the held-out truly-randomized data from the WHI clinical trial. As reported above,
treatment was randomized at 1/2 probability; po, p; denotes the observed treatment probabilities for
T =0,1. Correspondingly, our out-of-sample estimate of policy regret relative to a control baseline,

mo(0 | ) =1, is given by’

A 1
test _
Rﬂ'o (77-) -

3
\'M
5=

44 (I[7; = 0)(w (0| X;) = 1) + I[T; = 1] (1] X))

7.2.3. WHI Case Study Policy Learning Results We compare our method (CRLogit) to
two benchmark methods for policy learning that do assume unconfoundedness: the logistic policy
minimizing the IPW estimate with nominal propensities (IPW) and the same with policy value
estimates gotten by estimating CATE using causal forests (GRF Lin; Athey et al. 2019). In Figure 3
we display a (favorable) treatment effect scalarization, A = —0.64, where our policy, for certain
values of the sensitivity parameter, indeed finds benefit, while linear policies using only estimated
propensity scores or confounded outcome regression (IPW and RF lin.) still incur relative harm

relative to the all-control baseline.

" Note that the actual realized fraction treated in the dataset are 0.502 so the estimate is also nearly equal to the
corresponding Hajek estimator.
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Figure 3 Plots of out of sample regret on WHI case study data for a single treatment effect scalarization, A = —0.64
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Figure 4  Plots of out of sample regret, sensitivity analysis on scalarizations of WHI data, varying \

Of course, whether or not our approach finds relative improvement (or if the robust approach is
overly conservative), depends on the exact treatment effect scalarization parameter A. In Figure 4,
we include a comprehensive comparison of the relative performance of our approach, IPW, and the
control baseline, for a various levels of A\. (We report full numerics in Table EC.1 in the appendix.)

For moderate regions of benefit (A € [-0.11,—1]), confounded policies perform poorly, overtreating

and inducing harm, while our approach recovers regions of improvement (where the blue line is
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Figure 5  WHI Case Study: Policy properties (% of patients treated, average age of those treated)

below the dotted line of 0 regret). For larger values of treatment benefit, the improvement in
regret diminishes, while a robust approaches that defaults to baseline still achieves improvement.
In Figure 5a, we interpret the range of policies by plotting the percentage of individuals treated
under each log(T") value on the x-axis, ranging over scalarization parameters A (on the y-axis). In
Figure 5b, we plot the average age conditional on being treated with probability greater than 0.5
under a confounding-robust policy. For regions of moderate improvement, the confounding-robust
policies tend to treat younger patients on average. (Artifacts arise when assessing age conditional on

treating very few people).

8. Practical Considerations in Calibrating Uncertainty Sets

In the above we demonstrated the performance of our method as we vary the parameter I' controlling
the amount of allowed confounding. For practitioners, a remaining important question is how to
choose an appropriate range for I': we review recommendations from traditional sensitivity analysis

and then propose an approach specifically designed for the policy learning problem.

8.1. Comparison to Observed Covariates and Treatment Selection

As mentioned in Sections 3 and 4.1, one broad strategy for calibrating a sensitivity model benchmarks
the level of unobserved confounding relative to the informativeness of observed covariates for selection
into treatment (Hsu and Small 2013). For example, we can compute the effect of omitting each
observed covariate on the odds ratio of the propensity score. A decision-maker could use domain
knowledge to assess whether there are plausible unobserved confounders that could have as large an
effect as the observed one, suggesting a plausible upper bound on I'. While in traditional sensitivity
analysis this suggests how large I' one should consider in testing the robustness of one’s inferences,

in the context of policy learning, this suggests what amount of confounding should one be concerned
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Figure 6 Calibration plot for WHI case study: for each parameter choice T, the curve shows the possible estimated

worst-case regret when confounding may be as large as I, as we vary .

with protecting against to ensure no harm. In the next section, we discuss how to combine this
strategy with calibration plots, which we develop, to make an informed choice about which I'" to
choose for training a policy.

To illustrate this benchmarking in the WHI case study, we plot the odds ratios induced by dropping
different variables in Section D in the Appendix. This shows that, aside from variables such as age
that are highly predictive of treatment selection, the induced odds ratios are safely bounded by I"
somewhere in range of 0.8 to 1.2. Therefore, if we believe our omitted confounders cannot be as
informative as age, we should consider the safety of our policy for confounding levels as large as I' in

the range of 0.8 to 1.2.

8.2. Calibration Plots
Next, we propose a tool to visualize the trade-offs between choosing too-high or too-low a value
for I'. Choosing too-high I" leads to better uniform control on regret on a larger range of potential
confounding, but may be conservative if the actual confounding was in fact controlled by a smaller I,
while too-low a value of I' achieves worse uniform control over a larger range of potential confounding.
We propose to analyze this by re-evaluating, for all policies learned using some parameter I', that is,
ﬁﬁo (T(IL,WE, 79); W), its corresponding estimated worst-case regret over a different uncertainty
set W};/.

Specifically, we propose to visualize this in a calibration plot produced thus:

e Fix a sequence of I' values, I'y,...,I'k.

e For every k € {1,...,K}, train a confounding-robust policy under parameter I', Te =
(I, WE, 7).

e For every k,k' € {1,..., K}, evaluate the minimax regret estimate under parameter 'y, Ry 1 =

- S T,
Ry (T; Wa™).
e For each k, plot Ehk/ against ['.

An example of such a calibration plot for our WHI case study is given in Figure 6.
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First, this plot shows how the regret of a policy trained with one I' may grow and possibly become
positive if the true confounding may correspond to a larger IV > I'. In the example of Figure 6,
for very small I" = 1.05, we see that the policy (which essentially assumes unconfoundedness) may
incur large regret for even small values of I' in the range of 1.1 to 1.2. Since these values are smaller
than the ranges of I' we found by considering the informativeness of observed variables, if we may
have omitted a variable as important as these, we may be concerned about the safety of policies
learned using such small values of I'. Second, as we increase I' we find that we obtain uniform
control on regret even for confounding corresponding to larger IV. We may, however, pay in terms
of performance if confounding were in fact smaller. We can assess this using the plot, which shows
us the deterioration in performance for smaller levels of confounding, IV < I, relative to policies
that are trained with lower I', potentially even policies that are trained assuming unconfoundedness
(I'=1). In the example of Figure 6, we find that using I = 1.14 may offer safe control on regret for
I up to 1.2, ensuring no harm in the ranges deemed of potential concern, while it would cause only
minimal inefficiencies if confounding were really smaller relative to policies that would somehow
exploit this fact. Thus, calibration plots allow one to assess the trade-offs of safety and performance

and choose a policy that best fits the requirements of the application domain.

9. Conclusion

In this paper, we addressed the problem of learning personalized intervention policies from observa-
tional data with unobserved confounding. Standard methods can be corrupted by this confounding
and lead to harm compared to current standards of care, a concern of utmost importance in sensitive
applications such as medicine, public policy, and civics. We therefore develop a framework for
minimax-optimal policy learning under unobserved confounding, which optimizes personalization
policies in view of possible unobserved confounding in observational data, allowing for more reliable
and credible policy evaluation and learning. Our approach optimizes the minimax regret achieved
by a candidate personalized decision policy against a baseline policy. We generalize the class of
IPW-based estimators and construct uncertainty sets centered at the nominal IPW weights that can
be calibrated by approaches for sensitivity analysis in causal inference. A future line of investigation
is a confounding-robust variant based on the doubly robust estimator of policy value.

We prove a strong statistical guarantee that, if the uncertainty set is well-specified, our approach is
guaranteed to do no worse than the standard of care so that it can be safely implemented, and possibly
offer improvement if the data can support it. Specifically, the result proved a finite-sample guarantee
that can be checked. We leverage the optimization structure of weight-normalized estimators of the
policy value to perform policy optimization efficiently by subgradient descent on the robust risk

and we provide uniform convergence bounds showing that our approach achieves the population
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level minimax-optimal regret. Assessments on synthetic and clinical data demonstrate the benefits of
minimax-optimal policy learning, which can recommend personalized treatment while maintaining
strong guarantees on performance relative to baseline preferences. These tools allow an analyst to
find reliable and personalized policies that can safely offer improvements even if there is unobserved
confounding and to assess the different plausible levels of confounding on the performance of a robust
personalized decision policies. We believe this development is absolutely crucial for the practical
adoption of algorithms for personalization that work on the ever growing repositories of observational

data, which are the future of algorithmic decision making due to their size and richness.
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Supplemental Material for

Minimax-Optimal Policy Learning Under Unobserved Confounding

Appendix A: Proofs for optimization structure

Proof of the equivalence of programs (10) and (11). We can easily verify that a feasible solution for one

problem is feasible for the other: for a feasible solution W to (FP), we can generate a feasible solution to (LP)

as w; = %,d) = ﬁ with the same objective value. In the other direction, we can generate a feasible
solution to (11) from a feasible fractional program (10) solution W, ¢ if we take W; = “*. This solution has
the same objective value since ) w; =1. ]

Proof of Thm. 3. We analyze the program using complementary slackness, which will yield an algorithm
for finding a solution that generalizes that of Aronow and Lee (2012). At optimality only one of the
primal weight bound constraints, (for nontrivial bounds a” < b), w; < bl or val <w, will be tight. For
the nonbinding primal constraints, at the optimal solution, by complementary slackness the corresponding
dual variable u; or v; will be 0. Since at least n + 1 constraints are active in the dual, the constraint

>, —biv; +a;u; >0 is also active. So the optimal solution to the dual will satisfy:

min \
s.t. )\ZTZ‘FUl_fU“vZEl,,n

Z —brv;+alu; =0

By non-negativity of u;,v;, note that w; >0 if r; <X and v; > 0 if r; > A such that u; = max(0, A — r;) and
v; =max(0,7; — A). Additionally, feasible objective values satisfy A <max;Y; and A > min, Y;. Let (k) denote
the kth index of the increasing order statistics, an ordering where 71y < T(Q) <---<7n. Then at optimality,
there exists some index (k) where Yy < A < Y(441). We can subsitute in the solution from the binding
constraints A =r; +u; — v; and obtain the following equality which holds at optimality:
Y apA—re)—v Y by (rp —A) =0
i:(1) < (k) i:(1) > (k)

Rearranging, we have that

> apyre + Z( )be(i)

i: (i) < (k) i:(3)>(k

A =
* > oapt > b
(D)< (k) (D> (k)
Therefore, we only need to check the possible objective values A(;y for £ =1,...,n. The primal solution is eas-
ol T{(i LOI{(
ily recovered from the dual solution: for r;, take w(;) = “)Z{( )f:}j;b“)z{( ):Fk} and t= > a{i) + > b{i).
<o D a@sem @ ix(i)<(k) HONO)

Consider the parametric restriction of the primal program, where it is parametrized by the sum of weights
1: the value function is concave in ¥ and concave in the discrete restriction of 1 to the values it takes at
the solutions of Ax), ¥(xy, and 1) is increasing in k. So the optimal such A occurs with the order statistic

threshold at (k) for k* =inf{k=1,...,n+1: A(k+1) <A(k)}.
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Lastly, we discuss the case where Y may be discrete, or if it is distributed as a mixture of a continuous
density and atoms. Our characterization of the optimization solution as monotonic and also a function of the
sort order on Y implicitly assumes that outcomes Y are generated from a continuous density, so that Y; =Y;
with probability 0. Our analysis, too, requires this. We show that in the case where tiebreaking among Y is
required, there is a natural lexicographic order. Let (1),...(2)...(n) denote the ordering that is lexicographically
increasing in (Y(;),b() — a(;y): when outcomes Y are discrete, the appropriate sort order includes the weights
by — a(;). Denote the coefficients as r; and b(;) —a(;). Suppose that for a given sort order, the optimum is
achieved at A(k). We show that the lexicographic sort order, sorting first in y and then increasing in rA,
preserves the unimodality property. Suppose y; is the same for some interval [k, k + j]: we want to show that
the discrepancy A(k) — A(j) is increasing in 4,7 < j. Denote n(k) =3, 7:a,(X:)Y; + 32,04y 7:bi(X,)Yi and
d(k) =3, 10 (Xi) + 32541 Tibe(X;). Then,

_ n(k)  n(k) = Aypiires

Atk) = Ak +1) d(k)  d(k) — Apiiress
n(k)(d(k) — Apy1rie1) — (n(k) = App1yeiaras1)d(k)

d(k)(d(k) - Ak+17“ic+1)

= Ap41Tht1 A 1Yr1T et 1
A(K) _
d(k) =111 d(k) = Dpgparies
_ AKR) — Y1
oAk 1
Prt1 Dk

We show that if this difference changes sign, it continues to decrease: if A(k) < A(k—1), and if y;, = ys1, then
A(k+1) < A(k). By the above analysis, telescoping the finite difference A(k) — A\(k + 1),

j .
, Ak +9) = Yotrir)  AE) =Yg,
/\(k)_A(J):Zw_l:&—Jl
=1 Pt 1) D(ktit1) Thtj Bkt

so that where yx) = Y(ut), A(k) — A(j) is decreasing as rj4;A,; increases.

Proof of Proposition 2 We show via a similar argument to Theorem 3 that the linear program under
the one-to-one change of variable W; = a(X;) + (b(X;) — a(X,))u;, where u; € [0,1], has a similar solution
structure in the variable u;: that the optimal weights u} satisfy that u} = w(Y; (7 (T} | X;) — mo(T; | X;))) for
some function u: Y — [0,1] such that u(u(m(t | x) —m(t | z))) is nondecreasing in y(w(t | z) — 7o (¢ | )). Define
vectors a, 8 such that «; =Y;(w(T; | X;) — mo(T; | X3))(0(X,) — a(X,)I[T; =t] and B; = (b(X;) — a(X:))I[T; =14,

and constants c=3 " _, a(X,)Yi(7(T; | Xi) — mo(T5 | X)), d =37 —, a(X).
a’u+c
max————
v fTu+d
st. 0<u<1
By applying the Charnes-Cooper transformation with @ = g and 0= ﬁ, the linear-fractional program

above is equivalent to the following linear program:
max «' @+ b
st. 0<u<o

BT+ dd=1,5>0
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where the solution for @, v yields a solution for the original program: w; is such that u;, = %
Let the dual variables p; > 0 be associated with the primal constraints @; <o (corresponding to u; < 1),
¢; > 0 associated with @; >0 (corresponding to u; > 0), and X associated with the constraint 37 @+ do = 1.
The dual problem is:

min{: p—q+A8=a,~1"p+Ad>c,p; >0,¢ >0}
sP,q

By complementary slackness, at most one of p; or ¢; is nonzero. For brevity, let v, = Y;(7n(T; | X;) — w0 (T |
X:))I[T; =t]. Rearranging the first set of equality constraints gives p; — ¢; = I[T; = ¢](b(X;) — a(X))(r:) — A),
which implies that

p; =1[T; =t](b(X;) — a(X;)) max(r; — A, 0), q; =1[T; =t](b(X;) — a(X;)) max(A —r;,0)

Since the constraint —pr + Ad > c is tight at optimality (otherwise there exists smaller yet feasible A that

achives lower objective of the dual program),
D T =1](b(X,) — a(X,)) max(r; Z]I X)(ri =\

This rules out both A > max; r; and A <min, r;, thus 74y < A <71 for some k where r¢y, 72y, ..., ) are
the order statistics of the sample outcomes. This means that ¢; > 0 can happen only when r; <7, i.e., u; =0;
and p; > 0 can happen only when i > k+1, i.e., u; = 1. Applying this, we may rewrite the above expression to
recover that the optimal A must be one of A(). This proves that the structure of the optimal solution is such
that there exists a nondecreasing function u: R — [0,1] such that u; = u(Y;(7(T; | X;) — wo (T3 | X)I[T: =t])
attains the upper bound. [

Proof of Proposition 1, sharpness of minimax policy regret. It suffices to show that every element in the
interval is achieved by some W € W' and the converse: every W € W' achieves an element of the partially
identified interval. The latter follows from the definition of the endpoints as mf Rm( W), sup R,ro( s W):
every W’ € W is feasible so that R, (m;W’) is in the partially identified mterval for every fea51ble W’. We
then use convexity of the partially identified interval and the linear reformulation of the fractional linear
program to show that every element in the interval is achieved by some W € W. Consider a generic element r
in the partially identified interval; by convexity, it can be expressed as the convex combination of the extreme
points of the interval, r = )\Wiélvt;FR,ro (ms W)+ (1— )\)WS;RFRWO (m;W). Let W*, W be the weight vectors

achieving the supremum and infimum, respectively:

W* € argminR,, (m; W), W € argmaxR,, (m; W)

wewl wewl

W (-, ,t)

We then pass to the equivalent representation of regret in terms of normalized weights w(-,-,t) = Wi olr=a]"

Define the corresponding normalized weights @*(-,-,t),w (-,-,t), and analogous normalization factors t,,
w*
EW" | T =t]

Observe that by linearity of expectation and linearity of the objective function (with respect to normalized

@*(" 'at) =

weights), r is realizable by the same convex combination of the minimizing/maximizing weights:
r = XE[Y (x(X) — 7o(X)@(X. T.Y)] + (1 - NE[Y (r(X) — m0(X)T(X, 7, Y)]
=E[Y (1(X) - mo(X)) (A2 + (1 = N)w)]
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It then remains to argue that (A@(-,-,¢)+ (1 —\)w(-,-,t)) € p,WF, ¥t €[0,...,m — 1], with the conic relaxation
factor t, = A, + (1 —\)%,: this follows by convexity of 1,VF. Whenever the uncertainty sets are linearly
representable, convex combinations of elements of feasible elements of the set @, w additionally satisfy the
linear inequality or equality constraints of ¢,W. (e.g. the equality constraint E[I[T =t]w(-,-,t)]=1.). Again

by linearity, we have that the bounds constraints are satisfied with ¢, = )@t + (1 = M)t,. The claim of

sharpness follows.
Appendix B: Proofs of Uniform Convergence Guarantees
B.1. Uniform convergence: tail inequalities

In this subsection, we introduce definitions and stability results from empirical process theory in order to
keep the argument self-contained, and provide maximal inequalities for the function classes of interest: II, and
reparametrizations of the optimal weight functions, WF,WF. We will work with the packing and covering
numbers of II and the spaces of weight functions, and then relate these to bounds on the VC-major dimension
of the policy class. For a subset S of some metric space, the packing number D(e,S) is the largest number of
points we can take in .S that are not within e distance of one another, and the covering number N (¢, S) is the
smallest number of points we need to take in S so that every other point is within € of one of these (Pollard
1990).% First we introduce the stability results from empirical process theory which will yield bounds on the
covering numbers for the function classes of interest. We define the class of VC-hull functions, broader than
VC-subgraph and related to VC-major, but which result in bounded Dudley entropy integrals.
DEFINITION EC.1 (VC-HULL cLASS). Define conv(F), the convex hull of F:
conv(F) = {Z Afife }",Z)\f =1,A; > 0,\#0 for finitely many f}
fer f

conv(F) is the pointwise sequential closure of the convex hull of F: f € conv(F) if there exist f, € conv(F)
such that f,(z) — f(z) for all x in the domain of f, as n — oco. If the class (F) is VC-subgraph, then conv(F)
is a VC hull class of functions.

A bounded VC-major class is a VC-hull class. Since VC-hull classes are defined with respect to the sequential
closure of the convex hull (conv(F)) of another function class F, we frequently refer to F as the generating
VC-subgraph class for its corresponding VC-hull class. VC-hull classes provide a constructive definition for a
VC-major class in relation to a VC-subgraph class, and satisfy the following bound on the entropy integral of

the covering numbers:

THEOREM EC.1 (Theorem 2.6.9 of Van Der Vaart and Wellner (1996); Ball and Pajor (1990)).
Suppose there is a class of functions F, with measurable square integral envelope F with bounded second
moments, that is VC-subgraph of dimension V', such that D(e||F|,,F,|-|l,) <C (%)V . Then, for conv(F),
the closure of the convex hull of F (e.g. the VC-hull class that is generated by F), there exists a universal
constant K depending on C' and V' only such that

1\ 2V/(V+2)
o8 D{el[Fll, 1) < K (1)

8 The packing and covering numbers are closely related by the inequality N(e,to) < D(e,To) < N(e/2,to).
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Working with VC-major (equivalently, VC-hull) classes allows us to use stronger stability results such as the
following stability result on the stability of composition of the class of monotone functions and VC-major

function classes, though at the expense of introducing a universal constant in the Dudley entropy integral.

LeMMA EC.1 (Proposition 4.2 of Dudley (1987)). If H is a VC-major class for the generating class

C, and U,q denotes the set of all nondecreasing functions from R [0,1], and
F:={uoh: he H,u€lUna},
then F is a major class for the monotone derived class D of C. Therefore if H is a VC-major class, so is F.

These stability results allow us to prove, e.g. Proposition 3, that it is sufficient to restrict to optimizing
over the set of worst-case weights (with additional structure).

Proof of Proposition 8 The result follows from Proposition 2 by applying Lemma EC.1. [J

We introduce the uniform convergence setup we use to provide tail inequalities. We will apply a standard
chaining argument with Orlicz norms and introduce some notations from standard references, e.g. Pollard
(1990), Vershynin (2018), Wainwright (2019). A function ¢ : [0,00) — [0,00) is an Orlicz function if ¢ is
convex, increasing, and satisfies ¢(0) =0, ¢(x) — 0o as & — oo. For a given Orlicz function ¢, the Orlicz norm
of a random variable X is defined as || X||, =inf{t > 0: E[®([|X|[ | ?)] <1}. The Orlicz norm ||Z]|; of random
variable Z is defined by

|Z]|4 = inf{C >0: E[®(Z/C)] < 1}.

A constant bound on ||Z||, constrains the rate of decrease for the tail probabilities by the inequality
P(|Z| > t) <1/®(t/C) if C = ||Z||4. For example, choosing the Orlicz function ®(t) = £ exp(t?) results in
bounds by subgaussian tails decreasing like exp(—Ct?), for some constant C.

We next introduce the tail inequalities that use a standard chaining argument to control uniform convergence
over 7 € IT and appropriate reparametrizations of the weight functions. First we define the following function
classes conditional on all the data, (Xi.,,71.n,Y1.n). For 7, we consider a shifted function class with an

envelope function: let f;(w) = (7(T; | X;) — mo(T | X:))Y: where
F(Xlzanlznyyl:n) = {(fl(ﬂ-)7 ey fn(ﬂ')): e H}

Next we introduce function classes for the weight functions: the minimax-regret achieving functions W € Wr(w)

may also be written as compositions of the nominal weight functions with a function wu,
Wou(r) =a, (z) +u(y(r(t| ) — mo(t]2))(b; (x) — a; (x)),

where u € U (), the class of nondecreasing functions in the index y(m(t | z) — mo(t | x)) for a fixed policy ,

defined as the following:
U (r) = {u(z,t,y) : R [0,1] :u(y(n(t | x) — mo(t] x))) is monotonic nondecreasing } .

Analogously, we let u = Uyren UY () denote the set of nondecreasing functions on the same index, but now

ranging over « € II. Clearly, optimizing over W ois equivalent to optimizing over u -
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COROLLARY EC.1. LetU = Urenn U (7). Then, for any w eI,
m—1 me1
R, (ﬂ;ﬁr) = Z sup Rffo)(ﬁ;W(u)), ﬁm (wﬂi) = Z sup Rffo) (7 W (u)).
t—0 ueld" =0 uell,
This characterization is a consequence of Proposition 2 and its proof, which studies the linear change of
variables from W to u.
For this section, we consider maximal inequalities for the function classes for the enveloped policy class F
and policy-optimal weight functions. Let ¢; € {—1,+1}, be iid Rademacher variables (symmetric Bernoulli

random variables with value —1,41 with probability %), distributed independently of all else.

LEMMA EC.2 (Uniform convergence of policy function 7 over envelope class F). Let
f(m) <||F|ly £C be a bound on the envelope function for f € F. Then for n large enough, there exists a
universal constant K that depends only on the VC-major dimension of II, such that with probability >1—6,

> (im) ~ L))

<onormy | 0el/) (EC.1)

n

sup
feF

Proof. We first bound the deviations uniformly over the policy class and introduce the following empirical
processes,

M=wpld

n

Bl

(fi(m) —E[f(m)]) eifi(m)| -

i=1 =1

By a standard symmetrization argument, applying Jensen’s inequality for the convex function ® of the

symmetrized process (e.g. Theorem 2.2 of Pollard (1990)), we may bound the Orlicz norm of the maxima of

the empirical process by the symmetrized process, conditional on the observed data:
E[®(M)] <E[®(2L)].

Taking Orlicz norms with ®(t) = éexp(tQ), we apply a tail inequality on the Orlicz norm of the symmetrized
process @ (2L), under the assumption of bounded outcomes. Applying Dudley’s inequality to the symmetrized
empirical process L, (e.g. Theorem 3.5 of Pollard (1990)), we have that

E. [exp(L2/J%)|D] <5 for J=9]F], / Vog(D(IF[l, ¢, F(X1.,)))dc. (EC.2)

Then, applying Theorem EC.1, we have that there exists a universal constant K (depending only on the

VC-major dimension of the policy class), such that

log D(||Fll, ¢, F(X 1o, Tion)) < K @

)211/(1)4»2)

d¢ < VK2 = K. By Markov’s

The corresponding Dudley entropy integral is bounded by fol K (%

inequality, we have that
1
P (L > t> < 5exp(—t?n?/||L||3) = 5exp(—t*n/J?C?),
n

so that therefore,

1 9/2CK™M,/log(%/s)
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LEMMA EC.3 (Uniform convergence of weight functions u(y(n(t|z)—mo(t|z))) over U (r)).
With probability > 1 — p, we have that

> ulYi(w(T; | Xi) = mo(T3 | X)) = Efu(Y (x(T | X) = m0(T | X)))]

i=1

27 log(Y/»)

1
sup — <9

welT (m) T

Proof. We define the maxima of the empirical process (and its symmetrization), H, S, for the weight

function u € U" (), which maximizes over u for a fixed 7

0= ) U(Yi(ﬂ(TilXi)—m(TiX,-)))—E[U(Y(W(TIX)—wo(TIX)))]’
S= ESMUFIZ ) ZeiU(Yi(W(Ti | Xi) = mo (T | X3)))

Taking Orlicz norms and symmetrizing as in the proof of Lemma EC.2, we have that E[®(H)] <E[®(25)].
We show that the entropy integral (log of the covering numbers) is bounded using the VC-hull property of
the class of non-decreasing functions taking values on [0, 1] ultimately is VC-hull but not VC-subgraph Van
Der Vaart and Wellner (1996). U™ () is in fact included in the symmetric convex hull of Z, U" (7) C conv(Z).
(This follows since taking differences of indicator thresholds recovers any interval, e.g. Example 3.6.14 of Giné
and Nickl (2016)). We apply Theorem EC.1 (relating the log-covering numbers to the entropy integral for
VC-hull classes and their generating VC-subgraph classes), and using a result from Sec. 3 of Van Der Vaart

et al. (1996) to extract an explicit bound for this class of functions:

log D(C,U™ (1) (X1, Trons Yion)) < %bg(%»

The Dudley entropy integral is in turn bounded by fol \ /%log(%)dé < +/27. Next, we apply Theorem 3.5 of

Pollard (1990), in order to bound mgf E [exp (éi%)] < 5 such that we can use the subgaussian tail bound

P [%S > t] <5exp (—%n). Therefore, with probability > 1 — p, we have that
1
1539 2mlog(Y/p)
n n
O

An analogous result holds for the restriction of the process to a specific treatment partition t.

COROLLARY EC.2. With probability > 1 — p, we have that

D uYi(w(Ti | Xi) = mo(T; | X))IT, = ] = Blu(Y ((T | X) — 70(T | X)I[T =]}
i=1

Next, we use the previous results to obtain a uniform convergence result for the minimax weight functions

2mlog(Y/»)

sup — <9

well (m) T

when we optimize jointly over policy functions 7 and weight functions u(y(w(t|x) —mo(t|x))) €U . Under
Proposition 2, the weight function class remains monotone, even under composition with a VC-major policy

class: however the dimension of the resulting class is not explicit from the stability result.

LeMMA EC.4 (Uniform convergence of u(y(n(t|z) —m(t|z))) over er). With probability > 1 — p,
for some universal constant K, which depends only on the VC-major dimension of the composition function

class in Proposition 2 v, we have that
1 n
sup — | Y u(Yi(w(Ti | Xi) = mo(Ti | X)) = Elu(Y (n(T | X) = 70(T' | X)))]

u€ar n i=1

oL, [0
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Proof. We first apply Lemma EC.1 (a stability result for the composition of monotone function classes
with VC-major classes) under Assumption 3. Then, applying Theorem EC.1, there exists a universal constant
K™, which depends only on the VC-major dimension v of the composition function class in Proposition 2,

such that:

2v

— 1Y\ vt2
logD(Cqu(Xlzn7T1:na}/1:11)) S K <C>

The result follows by the typical chaining argument (e.g. Lemma EC.3), but instead bounding the Dudley
entropy integral by fo \V K (1<) Gl d¢ < VK2,

In the main text, we encapsulate dependence on K and v as the universal constant K.

B.2. Proof of Theorem 2

Proof of Theorem 2 The proof of uniform convergence over m € II, W € W' follows by decomposing the
regret, then applying the tail inequalities of the previous section.
Regret Decomposition The following lemma allows us to study the minimax regret via uniform convergence

arguments.

LEmMma EC.5.
sup h(y) —supg(y) <sup{h(y) —g(y)} (EC.3)

yeS y€eS y€eS

Proof. To see this, consider y; € argmaxh(y),ys € argmaxg(y) and y* € argmaxh(y) — g(y): then

h(yy) —9(ys) <h(y) —g(yi) <hy") —g(y”)

O

We use Proposition 2 and Lemma EC.5 in the following minimax regret decomposition where mcr = i:

sup { sup R, (m,W)— sup R, (m, W)}

mell | Wwewr () Wewr (r)

sup { sup R,ro (m,W)— sup R, (m, W)}
mell | wew" (x) WeWw' (x)
< sup R,U (m, W) = R (m, W)
rEH,WGWF(W)
< sup {RWCR (ﬂ— W) RWCR (Wa W)} + sup {cha (7T0, W) - Rﬂ'CR (7‘—07 W)}

TGH,WEWF(W) WEWF(TA‘())

8

Then, using subadditivity of the supremum, that W' is a product uncertainty set, and the elementary

decomposition § — £ = a% + #=%, we further decompose the minimax regret:
sup {R""CR (7‘-7 W) - RWCR (7T, W)}
rell,WeW' (r)
< sw — E.[(n(T | X) = YWIT=t]) E[(x(T|X)— ) YWI[T =t]]
B WGH,WGWF(-K) " E,[WIT =t]] E[WI[T = t]]

~ (B, —E)((x(T | X) - H)YWIT =1])
E[L[T =] W]

< sup
r€M,WeW' () t—0
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R (T ] X) = LYWIT =H))) (E, - E)(WIT =1))
E,[WI[T =1 E[L[T = W]

+ sup
WEH,WGWF(W) t=0
m—1
< swp (B, —E)(n(T|X) = Ym)YW)+[B| ) sup |(E, —E)(WI[T =1))|

rell,WeW' (x) t—0 wew' (1)
) @
The last inequality follows by applying submultiplicativity of the supremum (for absolute values), and

since E[WI[T =t]] = 1. The upper bound sup E"[(W(T]Lxﬁgvf%;igH[T:t]])

< B follows since this

rell,WeW' (n)
term simply evaluates the minimax regret over WF(H): due to weight normalization, it is deterministically
bounded by B under Assumption 1. We now apply the tail inequalities of the previous section to the maximal
processes of D), @), @), in this order.

D Reducing a bound on product function class to the individual function classes. Recall the weight
functions are re-parametrized with respect to u: throughout this analysis, for brevity, we denote this by

Wi (u(r)): .
Wi(u(m)) = az, (X) + (b7, (X:) — ag, (Xa) yur, (Yi(n(T; | Xi) — —))-

Now define (Q,P) for the quantities for the empirical process for the product function class and its

symmetrized version:

n

, P= sup Zelfz(w)W,(u(ﬂ)))‘

n

Q= sup > (filmWi(u(r))) = Regp(m, W)

rer,wewt (n) |i=1 fer,wew! (n) |i=1

By a symmetrization argument (Theorem 2.2 of Pollard (1990)), we have that

E®(Q) <E[®(2P)]
We now reformulate the maximal inequality over the product function class in terms of Orlicz norms on
each function class F, W separately, using the fact that observation fWW = i(f +W)?—1(f —W)?). For the
weight function W;(u(r)), we will use the contraction map A(s) = /2max, b(z)-min, a(=) min(1, s?). We then
decompose the terms including the product of f, W to the sums of squares of f, W, optimize over W € WF
rather than W € W' (r), and then apply a contraction result in order to use results on convergence over

mell,ue U . We next apply inequality 5.5. of Pollard (1990), which decomposes the maximal inequality over
the addition of function classes, E.®( sup |e-(f+W)|) < sE.® (2sup |e- f|) +iE.® <2 sup |e-W/|

FeF Wt (m) ")

E[®(2P)]
<E.® < sup 1 le- (f(m)+ (a" + (" — ar)u))2|> +E.® ( sup 1 e (f(m) = (a" + (" — aF)u))2’>

FeF W (n) FeF W (x)

1 1

<E.® ( sup |=e- (f(m) £ (b" —a)u)? ) +-E.® ( sup  2e-a” (f(m) £ (b" — ar)u)|>

FeF W (x) 2 FeF W (=)

1

<3E.® | 8su € fi +-E®(4—su € fi

( fEJP-‘ ; il > 2 < feE‘ Z Jilm )

1

Zeu (1] X) = —)

The last inequality follows frorn a Lipschitz contraction result (see e.g. Theorem 5.7 of Pollard (1990)). From

> ety <Ti|xi>—;>>‘)

i=1

+ 3E.® (8 F—f sup

uEM

E.® 4*11—*
)-1—2 ( ( I‘supr

ueU

the above decomposition, it remains to apply the tail inequalities of lemmas EC.2 to EC.4 and a contraction

argument separately for the function classes on F, u .
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For n large enough, with probability greater than 1— p;, where p; = £,

E[®(2P)] <18(12+1/)(BK" +2%(F _ %)Kn) %

® We next bound the maximal deviations of the term

m—1
1
sup |—
i—o weur (1) |7

S T, =W (t, X,,Y;) - E[I[T = t]W (£, X,Y)]

Note that studying uniform convergence of @), ), we can restrict attention to nondecreasing weights which
are nondecreasing in a fixed policy, U" (1). We apply the tail inequality of Lemma EC.3 with a contraction
argument, and obtain a bound on the maxima of the absolute value deviation by an argument of Remark
8.1.5 of Vershynin (2018): note that the zero function is an element of the class of non-decreasing functions
on R, and apply Dudley’s inequality to the increment process ‘f)t — O‘. Choosing p, = 32, and taking a union
bound over the event that each bound holds for each treatment partition ¢, we obtain the high probability
bound that

m—1 1
n

18m1/u(T' — L)1/log(15/p)
\/ﬁ

sup <

=0 ueul'(1)

ST =W (¢, X,,Y;) —E[I[T =W (t, X,Y)]

Rie (w0, W(u(mo0))) — B (0, W (u(mo)))
of Lemma EC.3, such that for n large enough, , with probability greater than 1 — p,, where p, = £,

@ Lastly, we bound sup,,cyr () , follows from the tail inequality

18B1/u(T — L)+/log(15/)
vn

Putting together the above bounds on terms @), @), we have that with probability > 1 —p,:

sup
ueldl (mo)

B (M0, W ((m0))) = R (0, W (u(0))) | <

sup ﬁﬂo (msWE) — Ry (myWh)

mell

log(*5™/»)

<18(12+v Y (BK" +v 1T -T"Y)(2K" + B +m)) -

B.3. Proof of Theorem 1

Proof of Theorem 1 We analyze uniform convergence for the true propensity weights, assumed to be in
the uncertainty set, W* € U. We use the tail inequalities of lemma EC.2, as well as standard Hoeffding

inequalities for the sample expectations, with the true inverse propensity weights W (X;,Y;). Define
D; =E,[(n(t| X) = Ym)W*I[T =t]].
First consider an analogous regret decomposition as in the proof of Theorem 2:

sup{J:LTO (m,W*) =R, (m,W*)}

well

< SEE{RWCR(W, W*) = Ry (m, W)} + (I%WCR(WO, W*) = Ry (0, W*))
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Note that the second term can be bounded by application of Hoeffding’s inequality, such that with probability
Z 1- D3,

? log(2
R (W) By (70, W) < 2| 2 7)

Next, we bound the regret deviation uniformly over :
Sup{Rﬂ'cR (7{', W*) - Rﬂ'cR (7'(', W*)}
well

<supt Z TlX )WY_RWO(WW*H%Z(?T(THXJ 2 WY, E[Dr,] - Dr,

rell M Ti] , i ]E[‘DTz] DTi
. 1 B <~ 1E[Dy,] - Dy,
< — T, | Xi) — —)W]Y; - ’ V2w b
—i‘;ﬁ{nzf”“' Y

We apply Lemma EC.2 (e.g. a standard chaining argument with bounded envelope function WY < B/.) to
bound the first term. Therefore, we have that with high probability greater than ps, the first term is bounded
by:

1 1 * * 9B log(5/p2)
sup{n;(w(:mxi) %)Wi Y; = Ry (1, W )} <o\

mwell n

We then bound the second term, £ 3, :L]E Dr; : instead of summing the second term over treatments ¢,

observe that for n, =% I[T, =t],

1E[Ds,] - Dr, 1 | D —1‘
B/VzgT =5 > ni—p—
i i t=0

We proceed conditionally on the event that “t € [p,,23p,], V¢t €{0,...,m — 1}, where p, =P(T =t) is the

marginal probability of treatment. By Hoeffding’s inequality, P ’— — pt| >p:/2) < 2exp(—%u2 pn), so it
suffices to choose p4 € [0,1] such that 2,/ M <p?/2,vt€{0,.. — 1} (after taking a union bound

over the m treatment groups). Next, we bound | B, 1], : by Hoeffding’s inequality,
P(’Dt — 1’ > ¢) < 2exp(—2v2€’n)

For p; € [0,1] such that %\/log(;%pl) < 1 then with probability at least 1 — py, ﬁ% < 2 and @ <
2,/ %Nt €{0,...,m—1} (again taking a union bound over ¢t € {0,...,m —1}). Now combining the
above tail inequalities and applying the union bound, we have that for py, ps,ps,ps = g for p > 0, with high

probability greater than 1 — p,

5 B log(g/m) B\f V/10g(2%/) \/log(sm/m)
R W*) — W)l < —
ilelg{ o (7, W) = By (m, W)} < v 2n vn 1/ 2n
1 9 \/210g(max(8m,20)/5)

< (B(1+ S K(v+2))+3) -

Lastly, the proof follows by noting that by assumption of well-specification, W; € W;, so there exists
¥, >0,¥t € T such that 2= € W;, and we have that therefore R, (m, W*) <supyy-cyy Bx, (7, W*). And, in

the statement, we have further folded all v-dependent constants into one.
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B.4. Proof of Proposition 4

Proof of Proposition 4 We prove that the budgeted uncertainty set solution has bounded entropy integral
by first taking a partial Lagrangian dual with respect to the budget constraint, then invoking strong duality to
study a partial maximization: we show the solution can be reparametrized to instead range over the space of
nondecreasing functions on [0, 1], U, for the fixed optimal n*,1)*. We then proceed to argue that the structural
result implies, using the equivalence of the linearized fractional program and the fractional program, that we
may then correspondingly optimize over the values of 7,1, and the space of nondecreasing functions. This
implies that it is sufficient to restrict the optimization to the set of nondecreasing functions (which satisfy
the budget constraint), and we may optimize over a set of restricted complexity. This, for example, allows us
to leverage the same stability results as in the proof of Theorem 2 to obtain the same regret guarantees.

We first analyze the linearized budgeted linear program in Section 6.1 (that is, post-Charnes-Cooper
transformation) for é(r; WEA), Throughout, we presume that I' is some fixed input and write a, b for a*,b".

We also analyze the problem within a single treatment component, and reindex i =1,...,n to be counting

conditional on a treatment component.

n

@(ﬂ W};A) = MaXy>0,w>0,d Z w;T;
i=1
n n

st > di <Ay, D> wi=1

i=1 i=1

ap <w; <bsyy Vi=1,...,n
d;>w, —Wep Yi=1,...,n
d;>Wip—w, Yi=1,...,n
In the following, we condense the linearized representation for the absolute value variable d; and write

d;, = ‘wi - Wﬂ/f‘ for brevity. First, we take the Lagrangian partial dual, dualizing the normalized budget
constraint ) . d; < A with Lagrange multiplier :

é(r;WE’A) mmmax{ZwT +n(Ayp — Zd a¢<w<b¢,2w—ld—‘w Ww‘}

n>0 w,

w;—aip

We consider a partial maximization, and substitute with the transformation u; = = o ey WE [0,1]. Define

m(u,,n) Zr a;)u; + va;) +n (A — Zd

{Zw u—i—wa—ld—‘w Wiw,oguigl,i: ,...m}

so that
QW™ =min  max  m(u,,n)

1n>0 t>0,ueS(y)
By a standard min-max theorem, we may interchange the min and maximum, and by strong duality (with the
Slater point of u such that w;(u) = W), there exists a saddle point pair (u*,%*),n* that are best-responses to
each other such that é(r; WIA) = m(u*,v*,n*). We argue further that é(r; WEA) = max, e () m(u, *,n*);

e.g. we may fix a partial best response of (u,1*) and n*, and recover the optimal solution when we
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optimize over u. (We show this by contradiction: Suppose not: that 4* € arg max, m(u,*,n*) is such that
m(a*,v*,n*) >m(u*,*,n*). This contradicts strong duality. On the contrary, m(a*,¥*,n*) <m(u*,*,n*)
is not possible since u* is feasible for ¥)*,n* and therefore achieves a better objective value; so this contradicts

definition of @* € argmax, m(u,¥*,n*).) Therefore, by the preceding argument,

Q rWEM = max m(u, vt n*

QW) = max. m(uv,m)
We further simplify and drop terms from the parametric objective m(u,*,n*) that are constant given n*,¢*
and therefore do not vary with u, such that we recover the globally optimal u* by optimizing the reformulated

objective m/(u,¥*,n*):

m'(u, ", n") = Zn(w*(bz —a;)u;) —n" Zdz)

u* € argmax m’(u, ", n*)
ueS(Y*)

We next prove that we can further reparametrize optimization of the objective function m’'(u,v*,n*) over

u € S(¢*) to the class of u vectors that is nondecreasing in r,
U ={u:R~ [0,1],u monotonically nondecreasing}.

We prove the following technical result, which establishes a structural result on the globally optimal u* (1), 7)

which establishes that is of bounded complexity.

LEmMMA EC.6 (Nondecreasing parametrization of optimal u for budgeted uncertainty set).
Fiz 1, > 0: then the correspondingly optimal rescaled weight function u*(v,n), defined as the solution to the

optimization problem,
u*(,n) € argmax{t) Z(bz —a;) (ri —nsgn(w;(u) > Ww)) w;: 0<u<l, Z?ﬂ(bi —a;)u; + Zai =1},
is non-decreasing in the coefficient index vector r. Therefore, u*(1,n) is nondecreasing in r for all 1, n.

Proof of Lemma EC.6 By the preceding arguments, we have established the optimal subproblem solution
can be written as the following program:
Q ?WF’A: i b; — i(z‘* i >W ) i
QrsW,™) J&%f?ﬁ?%gzi:d’( a;) (i — nsgn(wi(u) > W) | u

0<u<l1
Zw(bi—ai)uizl—Zai

The idea is that given the optimal dual variable n* and scaling factor ¢*, the problem reduces to a similar
problem as the fractional knapsack problem: it is sufficient to sort first on the multipliers r;; then fill the

knapsack lexicographically in order of distance ’wl(u) — Ww* (since the n* penalty is fixed and identical

for all units). We will prove the reparametrization over S(¢*) NU by contradiction. Suppose not: that the
optimal solution, u* had indices 4,¢" such that r; > r;, but u; < u;;. We enumerate the following cases that

exhaust the possible orderings of u;, uy relative to Wp*, Wip*:



ecl4 e-companion to Kallus and Zhou: Minimazx-Optimal Policy Learning Under Unobserved Confounding

o w;(u;) < Wiw*,wi/(ui/) < Wytp* or w; (u;) > W™, wyr (ug) > Wp*: For any same-ordered set we could
generate a contradiction by increasing u; without generating a change in sign that changes the n* coefficient.

o w;(u;) > Wih*, wy (uy) < Witp*: increasing u; cannot change sign of n*.

o w;(u;)= W,1*: We need only consider a simultaneous perturbation increasing u; and moving u; such
that d; (u;) is decreasing; either such a perturbation increases w; and overall increases the objective, or
decreases u; (which is offset by the increase due to r; > 7}, and offsets the increase in d;(u;).
|

Note that the characterization of Lemma EC.6, which states that the optimal 1, n-parametrized solution
u*(1,m) is nondecreasing in r, in fact characterizes the structure of the optimal set of u(y,n) for all ¥,n
since the index for monotonicity, r, is independent of the parameters ¢, 7. Of course, the particular optimal
solution u*(v¢,n) may change in 1, 7. As a consequence,

QWi = max  m(u, ", ")

ueS (Y*)NU

Combining this structural result with the preceding arguments, we establish that we can equivalently search
over scalars ¥,n >0, and u € S(¢) NU.

Q ;WFyA = i ( - i > W ) i

QurW,*) = max max r;ggZ?ﬁ r; —nsgn(w;(u) > W) ) u

0<u<l1
Zw(bz —a;)u;=1-— Zai

We note that by the equivalence of the linear-fractional programs and linearized program, e.g. via the

“) on the one hand and the scalarized w= W1, =3 W,u = ;“(;ff) on the other

hand, (and the implied transformations on d), our structural result that it is equivalent to optimize over

primal variables W, U = (Vl:/

u(1p,n) nondecreasing implies that U* (¢, n) = (w 2 U €[0,1] is also a monotonically nondecreasing function
in r. (Multiplying by the scalar 1) > 0 simply 1nduces an isomorphism to the same set of monotonically
nondecreasing functions in r). Using this final transformation, we show that our structural result holds also
for the original primal problem.

@(T;Wf‘A)maX{EZUé b —a) izr PIAL }

To contextualize this characterization, we remark that this is weaker than Theorem 3 as this does not provide
us with an algorithmic solution: nonetheless, proving this result that it is sufficient to optimize over U, even
in the primal nonconvex fractional formulation, is sufficient to establish uniform convergence. Finally, we
specialize the analysis to the setting for our estimator, where r; = 7(T; | X;) — mo(T; | X;)Y;, which introduces
a dependence on 7(X;). (Note that the dependence is only on X through the function , which is of restricted
complexity.) Since we only required the VC-major property of u(r), applying Lemma EC.1 is sufficient to
verify that the VC-major property holds when we also range the policy 7 € II.
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B.5. Proof of Proposition 5

Proof of Proposition 5 The proof is similar to that of Proposition 6: we study sensitivity analysis in the
dual of the linearized linear program, in order to isolate an additive approximation error term of the sample
budget constraint from its population counterpart; we control the latter uniformly over the space of weights
by our previous tail inequality. Since we optimize in the sample based on an sample expectation estimate of

the L1 budget constraint, we recall the definitions of WA (P,) and WA (P):

WE’A(IP’,I){WGRZ: s.t. |I|Z|W Wi <A, aF <W, <bFVz}

1€l

WEA(P) = {W ER": st. E[|W(T,X,Y)—W(T,X)||T=t] <A, af <W, < \ﬁ}

Now, we use Proposition 4 to equivalently parametrize the optimization over the set of weight functions
which include the nondecreasing component u(y(n(t | ) — mo(t | z))), and introduce the corresponding

nondecreasing sample-budgeted uncertainty set, WF’A (P,):

e W(t,z,y) = a (z) +u(y(r(t| z) —mo(t]2))) - (b; () —a; (),
W S (mP) = Wt,z,y): w(y(r(t | x) —mo(t]x))): R—[0,1] is monotonic nondecreasing,
‘Tlt‘ ZiEZt ‘W(Tlea}/l) - W(E,X“ Y;)' S At
In analogy to Corollary 1, we may define the union over the policy class WF’A(P,L) = UﬂenWF’A(ﬂ';Pn). The
next corollary, a consequence of the nondecreasing optimal solution characterization of Proposition 4 states

that we recover the optimal regret by optimizing over the restricted class of budgeted weights.

COROLLARY EC.3.

m—1
Ry (mWrA®,)) =Y sup  RY(mW)

t=0 WEWF’A(Pn)

We show that ﬁm(ﬂ';WF’A(Pn)) and ﬁﬂo(w;W}:’A P

(P)) are close for the two policies of interest
b

in the minimax regret bound: the sample-optimal 7 := 7(II, WIA(P,), 7o) and population-optimal
7 € arginfen R, (m; WA (P)) policies. The result will follow by applying this bound with the triangle
inequality.

In the following, we denote r; = Y;(w(T; | X;) — mo(T; | X)) for brevity, and apply the Charnes cooper
transformation. Define @ = u1) as the corresponding transformation for u in the change of variables W =
a—+ (b— a)u, and note that this preserves monotonicity of @ for all 1. Denote the uncertainty set on w, and

implicitly, nondecreasing u as S(w, ), @;):

Yowi=1; ¢Taf§w<waT,V2—1
< ~. _ _aer +( 5 )U/Z)VZ_I
S(w, v, 6 m) = w(y(mw(t|x) —mo(t|x))) monotomcally nondecreasmg
Py >0,V

g(w, w7 ’l]) - Uﬂ-el'[g(wa % a; 7T)

Ry (m; WHA ()

. WIT, = 1] oS
—max{ —Z W 7 0, GS}
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m—1
:max{z Zrl—wiﬂ[Ti:t]: (w, v, 1) € S(w, 1, ) Z ’wl wT At,Vt}
t=0 @ i€Lyt
m—1
= min max {ZerH +Z77t P\ — Z‘w — W, }

1t 20,V (w,4,4) €S (w,,a)

1€Ty
m—1
= max Zer]I )+ ) nr(Pr)(¥elh — Z‘w — W)
w,Y,G€S(w, P, ) i t=0 i€Zy

for optimal dual variables 7} (PP, ), by strong LP duality (existence of the saddle point). Similarly, for the

corresponding optimal dual variable n; (P) for the population budget-constrained uncertainty set,

Ry (m;WHA(P,))

=  max {erwﬂ t]—|—an(P)(tht—IE[|w(T7X,Y)—W(T,X)z/;t|T:t]<Atwt)}

w, Y, G€S(w,P,h)
By Lemma EC.5, we combine objectives and obtain a lower bound since we optimize over the same feasible

set:
EWU(F-WF’A( n)) = Ry (m; WA (P))

<maxthAt 7; (Bn) —1; (P)) + max(n; (B ZZ\w — Wi —E[lw(T,X,Y) = W(T, X)¢| | T = 1])

wYpe t=0 €Ty
m—1 m—1 ~
< max o > A (Po) —n; () +max(n] (P),n; () Y (D \w — ;Wi | = ElJw(T, X, Y) = W(T, X)y;| | T =1))
w t=0 t=0 i€l
Note that v, € [1/ 1] by definition. Next, we argue that the optimal dual variables are bounded by first

noting that the optlmal primal solution is finite and bounded on [B, —B] by the self-normalized property of
the estimator and Assumption 1. Moreover, the constraints on W, for a fixed I", imply bounds on how far
feasible W can be from their nominal values. So, we have a bound which the optimal dual variables must
satisfy. Let

1971

= max( T Z max(W; — al', b5 — W,), E[max(W — o, b — W)))
1€Ty

denote the maximal total deviation of weights, induced by the uncertainty set on WT. Let

achieve the minimal and maximal feasible rescaled primal objectives, respectively. Now, we have the bounds
that S°7tr + 3, raw, > —B and Y. i A, + Y, W, < B which admits a naive componentwise bound
that n; > —B =Y rw,,n; < Bm%it :\:‘“ Vt.

Therefore, since n; > 0, we obtain the following bound:

,Ziri@ B Z’r‘

min, A,

62V_1BF

7 < max( mln A AT
t

Applying this bound on 7n*:

2BTv ! maxl/pt ZAt+ max Z Z‘wi—thNVZ

weS(y* )t 0 ey

~E[lw(T,X,Y) = W(T,X):| | T =1)))

@
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It remains to study uniform convergence of ) when we optimize over w in the set of restricted complexity
(recall that monotonicity over u is equivalent to monotonicity over @; or we may equivalently reparametrize
in W for the fixed scaling ¢). We do so by a Lipschitz contraction argument and applying our tail inequality
from Lemma EC.4. Note that the absolute value function is globally 1-Lipschitz; and the envelope function on
W (u) is bounded by (b—a)u <v~'(I'—=T"'). Now, by Lipschitz contraction (Theorem 5.7 of Pollard (1990)),
applying Lemma EC.4, and taking a union bound over the number of treatments, we obtain the final bound

that, with high probability > 1 —p,

By (1 WEA(P,,)) = Ry (3 WA (B)

_ m—1
20~ BT (InaXt Ype ) g A F18mE T (T T IOg(5m/p)>
n

~min, A A1 n

The result follows by applying this bound twice, at the sample-optimal and population-optimal policies, and
taking a union bound over the event of this bound holding with high probability and the previous minimax

regret bound of Theorem 2, and the triangle inequality. (]

B.6. Proof of Proposition 6.

Proof of Proposition 6. In the following, we first consider the optimization problem within a single
treatment partition, reindexing ¢ =1,...,n to enumerate the elements of a generic treatment partition. The
lemma follows by applying the same analysis to each treatment partition separately. We aim to bound the
approximation error incurred by optimizing over an uncertainty set derived from estimated propensities,
é;(X) which may differ from the oracle values €,(X). Recall the weight bounds derived from the oracle
nominal propensities, with W = 1/z,(z), are a =1+ %(W —1),b=14T(W —1); for this section, we define

5%,8% as the perturbations of the sample weights from the oracle bounds a, b:

. 1 .
ool =14 T (Yer, () —1) — a;, 00" = 14T (Yer, (o) — 1) — b,

Observe that the dual of the primal program,

sup{Zwlyz. (a;+6%) <w;, < (b; +62), sz—l} (EC.4)

for a fixed 1 scaling, and a generic multiplier r, is the program:

1 a b . — . . . ) —
A,ui%fv>0{A+w.<_Z (a; +6%) u,—l—z i +0;) >.)\ u; +v; >,,Vi 1n} (EC.5)

and since u,v > 0, we again observe (as in the proof of Theorem 3) that by complementary slackness,
v=(ri —Ni,u=(A—r;).. We make the corresponding substitution and proceed to define the partial
Lagrangian relaxation. Denote g5, 5, (¢; A, u,v), as the objective function with given ¢, and 6%, 6" perturbations

to the weights:

: b
Au>0fv>og[;a5b(1p,)\uv) u;%,fwo{)‘—i_w'(_z(a +HO) (A= ++Z i+ 07 (i = A+ >}

(3
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As a consequence of Lemma EC.5, |inf f —infg| < sup|f — g|. Furthermore, we may optimize over the
restrictions of the dual variables to compact sets: since A is a quantile of the coefficients, A € [min, r;, max; r;].

We also have that ¢ € [, L] under Assumption 2 (strong overlap), and the constraint that Y, w; =1, so

that 1 -3, (b; +67) <32, w; <9~ 3 (a; + 7).

We invoke strong LP duality which holds with bounded optimal value (assuming bounded outcomes); strict
feasibility and boundedness implies that the problem cannot be primal infeasible or primal unbounded. Let
{0% 5y (Ao pyus 4,05 )} € argmin gsa s (15 A, u, v). Therefore, compactness of the feasible region gives that the
optimal primal and dual variables, {1} ,, (A ,, w5 4 Vs ) b5 {060, (X6.05 U6.05 V6.0)}> are also pairs of optimal
best responses for the min/max partial Lagrangian duals of the perturbed and nominal problem. In the

following, let S ={(\,u,v): A€ [-B,B],u€|0,2B],v € [0,2B]} denote the compact restriction.

‘RWO(TF,W)—RWO(TF,VAV) = sup{ inf ggay(;b(w;)\,u,v)}—sup{ inf goo(w';)\,u,v)}’

>0 A,u>0,v>0 >0 A,u>0,v>0

=| inf sup = gsa g0 (V5 A u,v) inf sup  goo(¥'; N, u',v") (EC.6)
(Mu,v)ES we[n’un] ’ ()\’ u’ w')eSs e [%’Vln

= Sup inf Goas (¥; A, u,v) p —  sup inf  goo(W'; N, u',v") (EC.7)
we[ ] (A u,w)e w/E[%,ﬁ] (N ,u’w')es

< sup inf  gse oo (Y5 A u,0)— Inf  goo(9; N, u,0") (EC.8)
Ye{Pge P, ) (A\u,v)eS (N, u' w')es

S max ‘95(1,517(1/};;/\2,“2,”;) _900(¢;;A27u271};> (ECQ)

4,k€{00,ab}
In the above, the equality of Equation (EC.6) follows since without loss of generality, we can restrict attention
to bounded feasible regions for the variables. In Equation (EC.7), we swap the order of the sup and inf since
strong duality holds with equality. In Equation (EC.8), restricting the supremum over 1 to the best responses
Yoo, Vi, doesn’t change the optimal value; that A*,u*,v* and ¢* are best responses is a consequence of von
Neumann’s minimax theorem, since g is bilinear in its arguments ¢ and A, u,v. Equation (EC.9) holds since
A5.05UH 0, V5 o Were optimal for go o (resp., for gsa s») and we expand the feasible set.

Combining gsa s» and go,0, we can now bound the perturbation incurred based on possible values of ¢*, \*:

( ZWW*-M+2W@—&u>

<  max ¢ (16°/l, + ||6°[],) (2max ;) since the optimal A* is bounded
vel{dy 50t i

< 2maxry (|6, +[10°]],)

o n

= (max Y +4r)2 Y

= max
7,k€{00,ab}

S
é(X;)  e(Xy)

The bound on the range for ¢ follows since for ¥ € {15 o}, we have that 1) < max{m7 Z%} <4

since the bounds «; + a; and «; are inverse probabilities. We simply apply the above argument for each
group, under the product uncertainty set assumption. Define the treatment-conditional partial dual objective,
computed for data from treatment partition T'=t¢, as gsa s» (¥; A, u,v;t). We apply the above bound for every

treatment partition T = ¢, which holds deterministically for all 7, with the multiplier r = (7 — mp)Y".

Ry (70, WE) = Ry (m, WE)
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m—1 1

wp SOEEX) - molt [ XYWIT =] K[| X) — molt | X)YWIT =]

Wewr (er) E.[WIT =t]] wewr(e) E[WIT =1]]

S| B0 om XNYWIT=d] B X) - mo(t | X)YWI[T 1]

3

IN

-
I
o

W (-5t €W (er) E,[WI[T =t]] W (-5t €W () E,[WI[T =t]]
(EC.10)

3
L

Sup{ inf Ogaa,sb(w;k,u,v;t)}sup{ inf 900(1/)/§A7U7U§t)}‘

Au>0,v> ’ A,u>0,v>0
: »>0 = P’ >0

Il
=]

n

BN+ Y)Y

n
i=1

1 1

en (X)) (X))

Here, EC.10 follows by the product set structure of the uncertainty set and application of the triangle

inequality.

B.7. Proof of Proposition 7

Proof of Proposition 7. Given convex & C R™, notice that its conic hull is K = {Zle ou s keNja; >
0,u; € S} =,5((¥S). Let 7 € R". Given that S has a non-empty interior, a Charnes-Cooper transformation
followed by strong duality yields

n n n
Zizl Tl .
sup =5;—— = sup E riu; = sup E riu; = inf .
u€eS i=1 Wi u/YeS, v>0, = urg0, = AZg*T
i =1 imq ui=1

The statement of the proposition proceeds by applying this for each treatment level ¢. [J

Appendix C: Optimization Algorithm Details

C.1. Subgradient Approach Refinements

We describe some additional changes to the subgradient method optimization procedure of 6.2 which improve
the optimization by specializing to the unique case of our problem. Further refinements are possible with
e.g. homotopy methods for LPs; we leave this to future work. In the case that we are optimizing over a
series of increasing I' parameters, 1 =Ty <I'; <... <T',,, we can use the nested property of the corresponding
uncertainty sets to provide additional checks on the optimization.

1. We include a warm start for optimization for I'yy; with I'y as one of the random initializations: therefore
we are guaranteed an initialization that does well for similar T

2. For each proposed optimal policy returned by the optimization, which we denote as 7(T') for a policy
optimized over W', we check the achieved objective value of previous policies, R(ﬁ'(l"k),l"i),i < k. If for
some i, R(7(T'},),T;) < R(7(T'}),T%), we set the policy to the previous policy, 7} = 77.
We find empirically that including these refinements stabilizes the optimization when optimizing over a nested
series of I' parameters, as we anticipate a decision-maker would do in practice, given a feasible range of

plausible T" values.
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C.2. Optimal Confounding-Robust Trees

We next consider the function class consisting of axis-aligned decision tree policies where each leaf is
assigned a constant probability of treatment. Decision tree policies are advantageous due to their simplicity
and interpretability. Our optimal confounding-robust tree (OCRT) presented below determines the best
confounding-robust decision tree via global optimization using mixed-integer optimization. Our approach is
to combine the dual linear program formulation of ﬁﬂo (m;WE) in eq. (12) with a mixed-integer formulation
of this class of decision trees, following the formulation of Bertsimas and Dunn (2017), along with a special
heuristic to find a good warm start.

A decision tree (with maximal splits) of a fixed depth D can be represented by an array labeled by a
set of nodes, split into a set of branching nodes Kz and leaf nodes K. The space of decision tree policies
is parametrized by © = {{aw,, Bx, }rx,exc s+ {Ck rex, }, Where ay, , Bi, € RP parametrize the split at branching
node ky, which directs units to the left branch if aTx < 8, and to the right branch otherwise. The policy
assignment probability is parametrized by ¢, € [0,1] for k, € K. We consider axis-aligned splits such that
ay, is a unit vector.

We let the binary assignment variables z;; track assignment of data points i to leaves k € Ky, subject to
the requirement that every instance is assigned to a leaf node according to the results of axis-aligned splits
abe < B, , for splits occurring at k, € K branch nodes. The binary variables d, track whether a split occurs
at node k, € K. The binary variable [, tracks whether a leaf is empty or not. The policy optimization
determines both the partitions of the covariates governing assignment to terminal leaf nodes and the variables
¢y, for k € Kp, governing probability of treatment assignment in the leaf nodes. We denote par(k) as the parent
of node k, A(k) as the set of all ancestors of node k, and the subsets Ay, (k) U Ar(k) = A(k) denote the sets of
ancestor nodes where the instance was split to the left or right, respectively. In this section, we assume that
the covariates are rescaled such that each covariate lies in [0, 1].

We introduce additional constraints to encode our dual objective in the optimal classification tree framework.
We define the policy assignment probability for treatment T'=t, P} =5, - zircr, where ¢, is the policy
assignment probability of leaf node k € KO, of assigning treatment ¢, and z;;, describes whether or not instance
1 is assigned to leaf node k, enforced with the additional set of auxiliary big-M constraints for the product of

a binary variable and continuous variable; for each set of such product variables Pf.

Dip <Ziks Dip<Ch; Dip>Cotzia—1 Vi=1,....m;VteT,kekK,
Pl=>"p, Vae A Vi=1,...,n
kEKr,
m—1
t
ck:]' kE/CL
t=
Pix €[0,1] VteT,Vi=1,...,n, k€K,
¢, €10,1] VteT,VkeKy,

P e[0,1] VeT,Vi=1,...,n
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The combined formulation for policy optimization with confounding-robust optimal trees is as follows:

m—1
min E At
t=0

st. v; —u; + A, > Yi(PT —7h7) Vi€,
> bl +alu; >0, vieT
1€Ty
Pon<ae o< pla>chtan—1  WEET, Vi=1,... nkeky,
Pl=Y " pl, VteT, Vi=1,...,n
keKy,
m—1
=1 kek,
t=0
¢, €1[0,1] VteT,VkeKy
al (x;+€) <b, — (14 €mnaz)(1—2zi1) Vi=1,...,n,Vk € Kg,¥m € Ag(k)
ZkE;CLZikzl VkeKg
Yoy Zik 2 Noinly Vi=1,...,n
Z?:ﬂljt:dt
0<b, <d, VkeKg
dtgdpar(k) VkEICB\{l}
lU(k:) > d(par(k)) ke ’CB \ 1
by < dpar(m) Vm € Tp,t € [D(k,),Ul(ks)]
lk dear(t) Vk‘E/CL
Zi, 1, €{0,1} i=1,....,n,Vke K,
ajk,dkE{O,l} j:l,...,p,Vk‘EICB
Piy €[0,1] VeT,Vi=1,...,nkek,
¢, €1[0,1] VteT,VkeKy
P! el0,1] VteT,Vi=1,...,n
u,v >0

(EC.11a)

(EC.11b)
(EC.11c)

(EC.11d)
(EC.11e)

(EC.11f)

(EC.11g)
(EC.11h)

(EC.11i)

(EC.11j)
(EC.11k)

(EC.111)
(EC.11m)
(EC.11n)
(EC.110)
(EC.11p)
(EC.11q)
(EC.11r)
(EC.11s)
(EC.11t)
(EC.11u)
(EC.11v)
)

(EC.11w

Constraints (EC.11e, EC.11d) set the policy assignment variable P} € [0, 1], which is the sum of products

P}, = zicx over leaf nodes. Our objective is specified via the dual formulation, and constraints (EC.11b,

EC.11c) encode the constraints from the dual of the inner maximization subproblem. Constraints (EC.11h,

EC.11i) enforce that if a node is in a leaf (as indicated by z;), it satisfies the splits at ancestor nodes.

Constraint (EC.11j) enforces that each instance is in a leaf node, while constraint EC.11k enforces a size

constraint on leaf membership. Constraints (EC.111, EC.11n, EC.11m) enforce consistency constraints between

d, indicating whether a split occurs at leaf node k, and split variables a;x,by. {D(k)}rex, denotes the set of
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Algorithm 2 Greedy Recursive Partitioning (Partition)

1: Input: partition Sy ; = {(X;,,T},,Yi,)}, depth A, preliminary assignment 74-1 € [m]"
2: for d € [p] do (find best partition index):
3: [i] < Get the sorted indices of ({X;4})

4: i5,v; < Find the best dimension and threshold to split z;+ < Tix g
5: 05 revs Vjrep < Find the best dimension and threshold to split ;« > Tix g

6: j* - argmin;if, i* i, 0 (i*).d 2@ +1).4

7 m(X) & xp <O if 0 <vj,,, else 25 >0

8: if (continue recursing) then:

9: 5L Xjoi#), Sk < Xi=y s

10: update 7y, the candidate treatment assignment

11: I, « Partition(S., 7, A+ 1), [y« Partition(Sg, 79, A+ 1)
return (7(X) , I, Iy )

leaf nodes of smallest index which can be reached from splits at k, and similarly {U(k)}rex,, denotes the
set of reachable leaf nodes of largest index. Constraints (EC.11o0, EC.11p, EC.11q) enforce that leaves are
non-empty only if splits do occur in the relevant ancestor nodes.

For the mixed-integer linear program, we provide a warm start for the optimization via a recursive
partitioning-based approach which incrementally optimizes directly the robust risk, over iterative refinements

of either the constant all-treat or all-control policy, described in Sec. C.3 of the EC.

C.3. Recursive Partitioning: MIP Warm Start

We provide a heuristic recursive-partitioning based scheme for optimizing policy risk over the space of
limited-depth decision trees recursively, analogous to CART’s recursive partitioning approach (Breiman et al.
1984). Such an approach is used to obtain a warm start for the MIP of the optimal confounding-robust tree.
The algorithm initializes by assigning the same treatment 7y to all, and iteratively refines the treatment
assignment by recursive partitioning, seeking univariate splits which minimize the minimax risk. The candidate
split threshold for each covariate is determined by iteratively re-evaluating the minimax risk for incremental
changes to the policy, maintaining the invariant that the base policy is set by the leaves above a node in the
tree. Using specialized data structures such as B-trees allows for O(log(N)) efficient updates for maintaining
and updating the sorted list of multipliers Y;T;(m; — mp), and manipulating pre-computed cumulative sums of
the initial sorted order allows for efficient re-computation of the optimization solution. We note that such an
approach is possible only for the unbudgeted uncertainty set U!, since incorporating the uncertainty budget
would couple the risk across tree levels. In comparison to other approaches using tree-based approaches for
estimating causal effects (Wager and Athey 2017b) or for personalization (Kallus 2017a), which consider
splits based on impurities related to the expected mean squared error of causal effects on a separate sample

of data from that used to estimate the causal effects within leaves, or determine the optimal treatment, our
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recursive partitioning heuristic simultaneously determines the partition and the policy treatment assignment
within the partition. In making greedy splits, changes in the objective function are assessed as a result of
changing the policy assignment within Sy ;, and the optimal split location and sense (I[a™X < b] or I[a™X > b])
are determined by changes in the policy assignment within S ;. However, in general, the optimal such
policy assignment, determined incrementally from the assignments {S;_1,;}ie7, , depends additionally on the

assigned policy for other nodes at the same level as well.
Appendix D: WHI Case Study details

The selected list of covariates for personalization is as follows (using the name/description from the WHI data
dictionary): Time since menopause, Systolic blood pressure (baseline), Age, BMI, BMI baseline, Diastolic blood
pressure baseline, Number of falls , Number of pregnancies, Angina ever (yes), Aortic aneurysm ever (Y), Atrial
fibrillation ever (Y), Bilateral oophorectomy (Y), Coronary bypass surgery ever (Y), Cigarettes/day (1-4),
Cigarettes/day (15-24), Cigarettes/day (25-34), Cigarettes/day (35-44), Cigarettes/day (45+), Cigarettes/day
(5-14), Cigarettes/day (<1), Diabetes treated (Y), DVT ever (Y), Ethnic Asian/Pacific Islander, Ethnic
Black, Ethnic Hispanic, Ethnic Unknown, Ethnic White,High cholesterol (Y), Myocardial infarction ever (Y),
Stroke ever (Y).
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Policy regret for WHI, under different )\ scalarizations

Table EC.1

A log(T")=0.025 0.05 0.075 0.1 0.12 0.14 0.16 0.18 0.2 0.225 0.25 0.3 035 04 05 075 1.0 1.5 20
-0.00 0.36 0.29 0.31 0.10 0.11 0.14 0.16 0.12 0.11 0.04 -0.01 -0.06 -0.07 -0.10 0.00 0.00 -0.01 -0.00 0.00
-0.11 0.41 0.32 0.28 -0.09 -0.07 -0.00 0.01 0.02 0.01 -0.02 -0.12 -0.15 -0.17 -0.19 -0.03 -0.03 -0.04 -0.05 -0.06
-0.21 0.41 0.36 0.37 0.05 0.06 -0.01 -0.03 -0.01 0.01 0.02 -0.15 -0.15 -0.18 -0.20 -0.02 -0.03 -0.03 -0.03 -0.06
-0.32 0.39 0.32 0.32 0.36 0.28 0.20 0.22 0.23 0.24 0.19 0.03 0.01 -0.02 -0.02 -0.01 -0.00 -0.00 -0.01 -0.05
-0.43 0.38 0.32 0.32 0.23 -0.03 -0.07 -0.05 -0.05 -0.03 -0.07 -0.18 -0.19 -0.21 -0.23 -0.01 0.00 0.00 -0.02 -0.05
-0.54 036 0.24 0.24 025 021 0.25 0.24 0.23 024 0.19 0.08 0.07 -0.13 -0.14 -0.02 -0.01 -0.01 -0.03 -0.03
-0.64 0.46 048 0.50 0.33 0.14 0.15 -0.11 -0.11 -0.10 -0.13 -0.20 -0.22 -0.25 -0.23 -0.03 -0.04 -0.04 -0.06 -0.08
-0.75 0.74 0.8 081 0.71 0.61 0.63 0.40 0.41 0.44 -0.08 -0.16 -0.18 -0.20 -0.19 -0.02 -0.02 -0.02 -0.03 -0.06
-0.86 0.68 0.63 0.62 0.56 047 052 0.31 031 0.34 -0.10 -0.11 -0.14 -0.17 -0.14 -0.01 -0.02 -0.02 -0.02 -0.05
-0.96 0.92 097 1.00 1.02 092 092 0.69 0.70 0.73 -0.11 -0.13 -0.16 -0.17 -0.14 -0.01 -0.02 -0.03 -0.04 -0.05
-1.07 0.83 0.85 096 1.01 096 0.99 0.76 0.79 0.60 -0.10 -0.12 -0.12 -0.13 -0.12 -0.04 -0.03 -0.04 -0.05 -0.05
-1.18 0.77 0.84 0.96 1.03 096 097 0.73 0.74 0.7r8 0.10 0.06 0.05 -0.12 -0.10 -0.01 -0.01 -0.00 -0.02 -0.03
-1.29 083 094 105 1.12 1.14 1.17 1.20 1.15 1.09 0.58 0.58 0.60 0.32 0.05 0.06 0.08 0.08 0.04 0.00
-1.39 0.88 1.04 1.17 128 133 138 1.16 1.17 1.19 0.24 0.23 0.23 0.24 -0.02 0.05 0.06 0.06 0.01 -0.01
-1.50 0.82 0.96 1.07 1.18 1.23 1.28 1.23 1.24 1.17 0.65 0.67 0.27 0.16 -0.05 -0.00 0.01 0.01 -0.02 -0.01
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Figure EC.1 Density comparison of odds ratios induced by training propensities with dropped covariates (one per
line, in order). x-axis is the odds ratio, while y-axis (for each subplot) is a density plot; fixed y-scale y € [0, 10] for all
subplots. Note that most of the probability mass is within I" € [0.8,1.2], with the exception of a few covariates with

wider distributions of informativity.
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