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We study the problem of learning personalized decision policies from observational data while accounting

for possible unobserved confounding. Previous approaches, which assume unconfoundedness, i.e., that no

unobserved confounders affect both the treatment assignment as well as outcome, can lead to policies that

introduce harm rather than benefit when some unobserved confounding is present, as is generally the case

with observational data. Instead, since policy value and regret may not be point-identifiable, we study a

method that minimizes the worst-case estimated regret of a candidate policy against a baseline policy over

an uncertainty set for propensity weights that controls the extent of unobserved confounding. We prove

generalization guarantees that ensure our policy will be safe when applied in practice and will in fact obtain

the best-possible uniform control on the range of all possible population regrets that agree with the possible

extent of confounding. We develop efficient algorithmic solutions to compute this minimax-optimal policy.

Finally, we assess and compare our methods on synthetic and semi-synthetic data. In particular, we consider

a case study on personalizing hormone replacement therapy based on observational data, where we validate

our results on a randomized experiment. We demonstrate that hidden confounding can hinder existing

policy learning approaches and lead to unwarranted harm, while our robust approach guarantees safety and

focuses on well-evidenced improvement, a necessity for making personalized treatment policies learned from

observational data reliable in practice.

1. Introduction

The problem of learning personalized decision policies to study “what works and for whom” in

areas such as medicine, e-commerce, and civics often endeavors to draw insights from increasingly

rich and plentiful observational data, such as electronic medical records (EMRs), since data from

randomized controlled experiments may be scarce, costly, or unethical to acquire. A variety of methods

have been proposed to address the corresponding problem of policy learning from observational

data (Beygelzimer and Langford 2009, Dudik et al. 2014, Kallus 2017a,b, Kallus and Zhou 2018b,
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Kitagawa and Tetenov 2018, Wager and Athey 2017a). These methods, as well as approaches

to predict conditional-average treatment effects from observational data (Künzel et al. 2017, Nie

and Wager 2017, Shalit et al. 2017, Wager and Athey 2017b), operate under the controversial

assumption of unconfoundedness. Stated informally, such an assumption requires that the data

are sufficiently informative such that there remain no unobserved confounders that jointly affect

treatment assignment and individual response (Rubin 1974), effectively requiring that assignment is

as if at random once we control for observables. This key assumption may be always made to hold ex

ante by directly controlling the treatment assignment policy as in a randomized controlled experiment,

but in other domains of key interest such as personalized medicine where EMRs are increasingly

being analyzed ex post, unconfoundedness is an assumption that may never truly fully hold in fact.

Even in randomized controlled trials, in practice, challenges such as compliance, censoring, or even

site selection bias may lead to confounding.

Assuming unconfoundedness, also called ignorability, conditional exogeneity, or selection on observ-

ables, is controversial because it is fundamentally unverifiable since the counterfactual distribution is

never identified from the data (Imbens and Rubin 2015). Thus, insights from observational studies,

which passively study treatment-outcome data without directly intervening on treatment are always

vulnerable to this fundamental critique. For example, studying drug efficacy by assessing outcomes

of those prescribed the drug during the course of normal clinical practice may make a drug look

less clinically effective if those who were prescribed the drug were sicker to begin with and therefore

would have had worse outcomes regardless. Conversely, if the drug was correctly prescribed only to

the patients who would most benefit from it, it may make the drug appear to be falsely effective for

all patients. These issues can potentially be alleviated by controlling for more baseline factors that

may have affected treatment choices but they can never really be fully eliminated in practice.

Conclusions drawn from healthcare databases such as claims data are particularly vulnerable to

unobserved confounding because although they record administrative interactions and diagnostic

codes, they are uninformative about medical histories, notes on patient severity, observations, and

monitoring of clinical outcomes, i.e., the key clinical information which may drive a physician’s

treatment choices. EMRs provide great promise for enabling richer personalized medicine from

observational data because they record the entire patient treatment and diagnostic history, past

medical history and comorbidities, as well as fine-grained information regarding patient response

such as vital signs (Hoffman and Williams 2011). The growing adoption of richer EMRs can both

provide higher precision for personalized treatment and render unconfoundedness more plausible,

since the data includes more of the information regarding patient history and outcomes that informs

physician decision-making, yet unconfoundedness, an ideal stylized assumption, still may never be

fully satisfied in practice.
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1.1. Unobserved Confounding: the Example of the Women’s Health Initiative
Parallel Clinical Trial and Observational Study

The challenges of observational data are of course not new to the modern era of data-driven

decision-making, but have been widely recognized. One high-profile example is the case of the

parallel Women’s Health Initiative (WHI) observational study and clinical trial, which illustrates how

confounding factors can lead to dramatic discrepancies in drawing clinically relevant prescriptions

from randomized trial versus observational data. The parallel WHI observational study and clinical

trials studied whether hormone replacement therapy (HRT) had therapeutic benefits for chronic

disease prevention. While HRT was known to be clinically effective for vasomotor symptoms of

menopause, earlier observational epidemiological studies additionally suggested a protective benefit

against coronary heart disease (CHD) which led to the increasing clinical practice of prescribing

HRT in menopause for preventive purposes (without clinical trial evidence) (Pedersen and Ottesen

2003). The parallel WHI observational study and clinical trial were designed to evaluate the efficacy

of HRT in a preventive context on chronic disease, such as coronary heart disease (CHD) and breast

cancer, among other clinical endpoints. Ultimately, the WHI clinical trial dramatically repudiated

these purported therapeutic benefits. In fact, while the observational study suggested a protective

benefit of HRT against CHD, showing a 40-50% reduction in CHD incidence, the HRT arm of the

clinical trial had to be stopped early due to a dangerously elevated incidence of CHD (Prentice

et al. 2005). After the WHI study, the new evidence that arose not only dramatically changed the

standard of care, spurring an 80% reduction in the prescription of HRT, but also sparked a broader

methodological debate about the clinical credibility of observational studies (Lawlor et al. 2004).

Later in Section 7.2, we build a case-study with semi-synthetic data from the observational study

and clinical trial to illustrate potential harms of policy learning from realistically confounded data.

This case study, as well as others, illustrate the challenges of unobserved confounders that would

continue to plague richer data-driven decision-making strategies such as personalized policy learning.

We briefly overview the range of possible unobserved confounders which were posited to reconcile

the different findings from WHI. The observational study may have been confounded by plausible,

well-recognized confounding phenomena, healthy user bias due to self-selection and confounding

by indication due to expert-selection, which pose general challenges to the validity of research

on observational health databases, and which may induce correlation in either direction between

treatment selection and outcomes (Brookhart et al. 2010). Such possible confounding factors are

inherent in healthcare data in which physicians determined treatment assignment to manage health

outcomes in the first place. Healthy user bias may stem from differing lifestyle factors in the population

of women self-selecting into HRT: general health-seeking behaviors correlated with selection into

treatment, such as exercise or maintaining heart-healthy diets, are correlated with better expected
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outcomes related to CHD on average. These same lifestyle factors tend to reduce artherosclerotic

risk and risk of CHDs, but are unobserved confounders for self-enrollment into HRT. Conversely,

the study may have also been confounded by indication or severity, where the presence of clinical

activities such as prescription of HRT is correlated with, or indicates, greater initial symptom severity,

which may lead to attenuation in the perceived reduction in vasomotor symptoms.

1.2. Unobserved Confounding in Other Problem Settings

We discuss the relevance of unobserved confounders in other managerial settings to highlight

the broader relevance of unobserved confounding. (For discussion of causal inference models in

operations management, see Ho et al. (2017).) Unobserved confounders accompany the growing use

of transactional-level data either due to confounding introduced by previous managerial decisions (in

analogy to provider expertise in healthcare), or private information of individuals whose interactions

comprise a dataset (in analogy to self-selection). Operational decisions were historically made to

improve firm outcomes: previous decisions incorporate managerial discretion or expertise that is

correlated with outcomes of interest, introducing unobserved confounding. Gordon et al. (2019) find

that conclusions from large advertising experiments at Facebook and observational counterparts

on advertising effectiveness may differ in general, and conduct sensitivity analysis. A randomized

trial of the effectiveness of search ads on eBay (Blake et al. 2015) revealed the spurious efficacy

of advertising, based on observational studies of user search queries, which did not account for

unobserved intent or customer loyalty.

1.3. Contributions

Because unconfoundedness may fail to hold, existing policy learning methods that operate under

this assumption can lead to personalized decision policies that seek to exploit individual-level effects

that are not really there, may intervene where not necessary, and may in fact lead to net harm

rather than net good. Such dangers constitute obvious impediments to the use of policy learning to

enhance decision making in such sensitive applications as medicine, public policy, and civics, where

reliable and safe algorithms are critical to implementation. Clearly, a policy that could potentially

introduce additional harm, toxicity, or risk to patients compared to current standards of care is

an unacceptable replacement, and an algorithm that could potentially give rise to such a policy is

unusable in medical and other sensitive settings.

To address the deficiencies of policy learning that requires untenable assumptions of unconfound-

edness, in this paper we develop a framework for minimax-optimal policy learning which ensures

that the personalized decision policy derived from observational data, which inevitably will have

some unobserved confounding, will do no worse than a current policy such as the current standard

of care and, in fact, will do better if the data can indeed support it. We do so by requiring that the
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learned policy improve upon the baseline no matter the direction of potential unobserved confounding

which generated the data. Thus, we calibrate personalized decision policies to address sensitivity

to realistic violations of the unconfoundedness assumption. For the purposes of informing reliable

and personalized decision-making that leverages modern machine learning, our work highlights that

statistical point identification of individual-level causal effects, which previous approaches crucially

rely on, may not at all be necessary for successfully learning effective policies that reliably improve

on unpersonalized standards of care, but accounting for the lack of point identification is necessary.

Functionally, our approach is to optimize a policy to achieve the best worst-case improvement

relative to a baseline treatment assignment policy (such as treat all or treat none), where the

improvement is measured using a weighted average of outcomes and weights which take values in an

uncertainty set around the nominal, or observed inverse propensity weights (IPW). This generalizes

the popular class of IPW-based approaches to policy learning, which optimize an unbiased estimator

for policy value under unconfoundedness (Beygelzimer and Langford 2009, Kitagawa and Tetenov

2018, Li et al. 2011, Swaminathan and Joachims 2015a,b). Unlike standard approaches, in our

approach the choice of baseline is material and changes the resulting policy chosen by our method.

This framing supports reliable decision-making in practice, as often a practitioner is seeking evidence

of substantial improvement upon the standard of care or a default option, and/or the intervention

under consideration introduces risk of toxicity or adverse effects and should not be applied without

strong evidence.

Our contributions are as follows. We provide a framework for performing minimax-optimal policy

learning that is robust in the face of unobserved confounding by using a robust optimization

formulation. Our framework allows for the specification of data-driven uncertainty sets based on

a sensitivity parameter describing a pointwise bound on the odds ratio between true and nominal

(observed) propensities as well as uncertainty sets with a global budget-of-uncertainty parameter.

Whereas previous approaches for sensitivity analysis in causal inference focus on evaluating the range

of inferential procedures (e.g. effect estimation or hypothesis tests), we focus on the question of

learning minimax-optimal decision policies in the presence of unmeasured confounding. Sensitivity

models in causal inference introduce ambiguity sets in the space of inverse propensity weights

which do not vanish with increasing data. Thus, learning decision policies under sensitivity models

introduces analytical challenges in ensuring convergence. We prove a uniform convergence result

both over the space of policies of restricted complexity and over the possible confounded data-

generating distributions in our uncertainty set: therefore, our approach is asymptotically optimal

for the population minimax regret. These results also imply an appealing improvement guarantee

that shows that, up to vanishing factors that depend on the complexity of the policy class, our

approach will not do worse than the baseline and, moreover, will do better, as can be easily validated
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by simply evaluating the objective value of our optimization problem. Leveraging the structure of

our optimization problem and characterizing the inner subproblem, we provide a set of efficient

algorithms for performing robust policy optimization over parameterized policy classes and over

decision trees. We assess performance on a synthetic example that illustrates the possible benefits of

our approach and the effect of the uncertainty parameters. We then show, in a case study drawing

on the unique simultaneous WHI observational study and clinical trial, that in regimes with realistic

confounding, for a variety of possible treatment effect profiles, our approach can lead to improvement

upon a baseline while learning from confounded data causes harm. This case study allows us to

uniquely learn from observational data with unobserved confounding, yet assess out of sample

performance on an unconfounded clinical trial.1

2. Problem Statement and Preliminaries

We first summarize the setup. We consider policy learning from observational data consisting of

tuples of random variables {(Xi, Ti, Yi) : i = 1, . . . , n}, comprising of covariates Xi ∈ X , assigned

treatment level out of m discrete treatments Ti ∈ {0, . . . ,m− 1}, and real-valued outcomes Yi ∈R.

We suppose that these constitute iid (independent and identically distributed) observations from a

population and we drop subscripts to denote a generic draw from this population. We allow m≥ 2,

so that we accommodate the case of multiple, discrete treatment levels. We let Yi(0), . . . , Yi(m− 1)

denote the potential outcomes of applying each treatment option, respectively, and we assume that

Yi = Yi(Ti) so that the observed outcome corresponds to the potential outcome of the observed

treatment.2. We let En denote the empirical expectation, i.e. taking a sample average over the data.

We define the index set for treatment value t as It = {i≤ n : Ti = t}. We use the convention that

the outcomes Yi corresponds to losses so that lower outcomes are better.

We denote the nominal propensity function by ẽt(x) = P (T = t |X = x) and the nominal general-

ized propensity score by ẽTi(Xi). This can be estimated directly from the data using a probabilistic

classification model such as logistic regression or a neural network. When it is estimated, we denote

1 The present paper builds upon an earlier paper by the authors (Kallus and Zhou 2018a). The method proposed
herein is distinct and uses per-treatment weight normalization, which provides sharp regret bounds in both the binary-
and multiple-treatment settings and enables the extension to multiple treatments. For this new method we provide
new theoretical guarantees on minimax optimality, or that the policy we learn performs similarly to the one that
provides the best-possible uniform control on the range of possible true regrets of the policy, and we extend previous
theoretical guarantees to this new method. We provide a new generic conic-optimization-based formulation of the
optimization problem that underlies the method. We provide practical tools for calibrating the sensitivity parameter
in our policy learning setting. And, we introduce a new case study on hormone replacement therapy using data from
the Women’s Health Initiative parallel observational study and clinical trial.
2 The equation Yi = Yi(Ti) captures two important features. One is that the observed outcomes are consistent with
the hypothetical potential outcomes. Another is that the outcome of an individual only depends on the treatment
assignment of that individual and there is no interference between units. This two assumptions together are also
known as the stable unit treatment value assumption (Rubin 1980).
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the estimated nominal propensity function by êt(x). Since we do not assume unconfoundedness, the

nominal propensity is insufficient to account for confounding. We therefore additionally define the

true propensity function as et(x, y) = P (T = t |X = x,Y (t) = y) and the true generalized propensity

score as eT (X,Y ). Note that these cannot be estimated from the data. Unconfoundedness (weak

ignorability) is the assumption that ẽt(x) = et(x, y) as functions (i.e., I [T = t]⊥⊥ Y (t) |X). Here, we

do not assume unconfoundedness and will generally have that et(x) 6= et(x, y).

We consider evaluating and learning a (possibly) randomized policy mapping covariates to the

probability of assigning treatment, π : (t, x) ∈ {0, . . . ,m− 1} × X 7→ [0,1], where ∆m denotes the

m-simplex. Given a policy π, we use the notation π(t | x) to denote the probability π assigns to

treatment t when observing covariates x. It is also convenient to also define the random treatment

variable Zπ that, given X, is independent of all else, and has the distribution P (Zπ = t |X) =

π(t |X). The policy value of π is V (π) = E
[∑m−1

t=0 π(t |X)Y (t)
]

= E [Y (Zπ)]. As is common for

policy learning (e.g., Kallus 2017b, Wager and Athey 2017a), we focus on a restricted policy class

Π ⊆ [X →∆m]. Examples include deterministic linear policies, πα0:m−1,β0:m−1
(t(x) | x) = 1 where

t(x) ∈ arg maxt=0,...,m−1αt + βᵀt x; logistic policies, πα0:m−1,β0:m−1
(t | x)∝ exp(αt + βᵀt x); or decision

trees of a bounded depth, which assign any probability vector to each leaf of the tree.

3. Related Work

Our work builds upon several strands of literatures, notably policy learning from observational data

as well as sensitivity analysis in causal inference.

Causal inference for personalization from observational data under unconfoundedness.

The key difficulty in learning interventional effects from observational data is that the outcome

Yi(Ti) is only observed for the treatment actually administered historically to the unit, Ti, whose

assignment can itself be correlated with the potential outcomes, obfuscating differences in them.

Since the data is observational and the treatment assignment procedure was not under the control of

the experimenter, the distribution of covariates may be systematically different between treatment

and control groups due to self selection of the individuals into treatments, medical imperatives

trading off treatment risk vs. patient severity, or business imperatives to offer discounts or target

advertising not completely at random. Thus, the systematic differences in covariates in the population

P (X = x,Y = y | T = 1) , P (X = x,Y = y | T = 0), also known as covariate shift, make the treated

and untreated populations incomparable for the purpose of assessing effect.

When all covariates needed to ensure unconfoundedness are assumed to be observed, i.e, ẽt(x) =

et(x, y), then a variety of approaches for learning personalized intervention policies that maximize

causal effect have been proposed. These fall under regression-based strategies (Bertsimas et al. 2016,

Qian and Murphy 2011), reweighting-based strategies (Beygelzimer and Langford 2009, Kallus 2017a,
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Kitagawa and Tetenov 2018, Swaminathan and Joachims 2015b), or doubly robust combinations

thereof (Dudik et al. 2014, Wager and Athey 2017a). Regression-based strategies estimate the

conditional average outcomes, E[Y (t) |X], which under unconfoundedness are equal to E[Y |X,T = t],

a regression of outcome on covariates in the t-treated group. These estimates are either used directly

to treat by picking the smallest value (known as direct comparison) or to score policies and pick the

best in a restricted class (known as the direct method). For binary treatments, we can directly fit the

difference E[Y (1)−Y (0) |X], known as the conditional average treatment effect (CATE) (Wager and

Athey 2017b). If the regression functions are ill-specified, we are not guaranteed to find the best policy,

even if the class is amenable to the estimation method (e.g., the best linear policy does not arise

from comparing the best linear CATE estimator to zero). Without unconfoundedness, the regression

functions or CATE are not identifiable from the data (parametrically or non-parametrically) and

these methods have no guarantees.

Reweighting-based strategies use inverse propensity weighting (IPW) (Beygelzimer and Langford

2009, Kallus 2017a, Kitagawa and Tetenov 2018, Swaminathan and Joachims 2015b) or covariate-

balancing weights (Kallus 2017b) to change measure from the distribution induced by a historical

logging policy to that induced by any new policy π. Specifically, these methods use the fact (Li et al.

2011) that, under unconfoundedness, V̂ IPW(π) is unbiased for V (π; ẽT ), where

V̂ IPW(π; ẽT ) =
m−1∑
t=0

En
[
π(t |X)I [T = t]Y

ẽt(X)

]
(1)

Optimizing V̂ IPW(π) for deterministic policies can be phrased as a weighted classification problem

(Beygelzimer and Langford 2009). Dudik et al. (2014) suggest to augment eq. (1) by using the

doubly-robust estimator (Robins et al. 1994), which centers the outcomes using a regression estimate.

Wager and Athey (2017a) show that since this estimate is semiparametrically efficient when using

cross-fold fitting, as shown by Chernozhukov et al. (2016), this leads to better regret bounds. Since

dividing by propensities can lead to extreme weights and high variance estimates, clipping the

probabilities are typically necessary for good performance (Swaminathan and Joachims 2015a, Wang

et al. 2017) or the use of weights that directly optimize for balance (Kallus 2017b). With or without

any of those fixes, if there are unobserved confounders, then, neither a policy’s value nor the optimal

policy are identifiable, and any of these methods may lead to learned policies that may well introduce

more harm than good. Under unconfoundedness, such reweighting-based methods are notable for

being able to find best-in-class policies regardless of specification of an outcome model (or with

outcome models learned at sub-parametric rates; Wager and Athey 2017a). Specifically, they focus

directly on the policy learning problem rather than a prediction problem and on finding a policy

that performs as the best in a given class. This leads to strong generalization guarantees (Kallus
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2017b, Kitagawa and Tetenov 2018, Wager and Athey 2017a) and can also allow one to incorporate

domain-specific constraints that favor simple prescriptive decision policies that are interpretable,

implementable, and/or satisfy operational constraints, such as scorecards or decision-trees (Ustun

and Rudin 2015). These constraints and approaches for training optimal constrained policies can be

composed directly with the policy optimization problem by restricting the policy class. Because of

these unique properties, our approach will also be based on a reweighting approach that directly

optimizes a policy rather than a predictor.

The literature on optimal policy learning in econometrics has also considered a minimax regret

criterion as summarized in Hirano and Porter (2019). Manski (2005, 2008) consider the optimal

decision policy obtained by minimax regret bounds on conditional average outcomes, which arise

from partial identification bounds on arbitrary confounding from the unidentified counterfactual

probabilities: this approach is highly conservative and does not use available information on selection

based on observables (namely, ẽt(x) which exists despite additional unobserved confounding.). Stoye

(2009, 2012) consider minimax regret from a decision-theoretic point of view, where a closed form is

available under limiting asymptotic assumptions on an experimental sampling design generating

treatment assignments under a binary or Gaussian assumption on outcome models. In contrast to

these lines of work, we are minimax-optimal with respect to a data-driven uncertainty set around

the estimable inverse propensity weights, to assess reasonable violations of unconfoundedness, and

our minimax-regret guarantees focus on uniform convergence over a policy class and a data-driven

sensitivity model.

Policy improvement. A separate literature within reinforcement learning, unrelated to causal

inference, considers the idea of safe policy improvement by forming an uncertainty set around the

presumed unknown transition probabilities between states as in Thomas et al. (2015) or forming

a trust region for safe policy exploration via concentration inequalities on estimates of policy risk

as in Petrik et al. (2016). None of these consider the issue of confounding in the underlying action

generation policy (the analogous propensity score) or observational data. This general approach of

safely improving upon another policy using a robust or minimax formulation is related to the use of

a baseline policy in our method.

Sensitivity analysis. Sensitivity analysis in causal inference tests the robustness of inferences

about an average treatment effect made based on observational data to the violations of assumptions

such as unconfoundedness. In contrast, our work focuses on personalized policy learning in the

presence of unobserved confounding from an infinite family of potential policies. Some approaches

from sensitivity analysis for assessing unconfoundedness require auxiliary data or additional structural

assumptions, which we do not assume here (Imbens and Rubin 2015). Other approaches consider

how large the unobserved confounding must be to invalidate the conclusions of statistical inference,
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and typically consider assumptions restricting the strength of unobserved confounding, either on the

selection process, or on the outcome model. For example, sensitivity analysis would assess the range

of extremal p-values on the hypothesis of no effect for randomization inference, depending on the

value of Γ so that consequent binary conclusions can be couched in terms of the level of unobserved

confounding required to overturn a nominal conclusion (Fogarty and Small 2016, Hasegawa and

Small 2017, Rosenbaum 2002). Our approach borrows the marginal sensitivity model from sensitivity

analysis (Tan 2012), assuming bounds on the strength of unobserved confounding on selection into

treatment, and focuses on the implications for personalized treatment decisions.

The Rosenbaum model for sensitivity analysis assesses the robustness of randomization inference

to the presence of unobserved confounding by considering a uniform bound Γ on the odds ratio

between et(x, y) and et(x, y′), i.e., between the treatment propensities of any two units with equal

covariates (Rosenbaum 2002). The closely related marginal sensitivity model, introduced by Tan

(2012), considers a uniform bound Γ on the odds-ratio between the nominal propensity et(x) and the

true propensity et(x, y). Zhao et al. (2019) provides further discussion on the relationship between

the two sensitivity models. They are generally different and incomparable for equal values of Γ. The

value of Γ can be calibrated against the discrepancies induced by omitting observed variables; then

determining Γ can be phrased in terms of whether one thinks one has omitted a variable that could

have increased or decreased the probability of treatment by as much as, say, gender or age can in

the observed data (Hsu and Small 2013).

In the sampling literature, the Hájek estimator for population mean (Hájek 1971) is an extension of

the classic Horvitz-Thompson estimator (Horvitz and Thompson 1952) that adds weight normalization.

The objective of the minimax game we define between policy optimizer and possible confounding is a

Hájek estimator for the policy value. Aronow and Lee (2012) derive sharp bounds on the estimator

arising from a uniform bound on the sampling weights, showing a closed-form for the solution for

a uniform bound on the sampling probabilities. Zhao et al. (2019) consider bounds on the Hájek

estimator, but impose a parametric model on the treatment assignment probability. Miratrix et al.

(2018) consider tightening the bounds from the Hájek estimator by adding shape constraints, such

as log-concavity, on the cumulative distribution of outcomes. Masten and Poirier (2018) consider

sup-norm bounds on propensity differences and show sharp partial identification of bounds for CATE

and ATE by integrating partially identified bounds on the conditional quantile treatment effect. In

contrast to the sensitivity analysis literature in causal inference, we focus on the implications of

sensitivity analysis for learning a robust personalized policy function: minimax policy learning poses

additional analytical challenges in ensuring convergence of data-driven robust policies.
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4. Policy Learning That Is Robust to Unobserved Confounding

We now present our framework for minimax-optimal confounding-robust policy learning under

unobserved confounding. Our approach minimizes a bound on policy regret against a specified

baseline policy π0, Rπ0
(π) = V (π)−V (π0). Our bound is achieved by maximizing a reweighting-based

regret estimate over an uncertainty set around the nominal propensities. This ensures that we cannot

do any worse than π0 and may in fact do better, even if the data is confounded.

The baseline policy π0 can be any fixed policy that we want to make sure not to do worse than

or deviate from unnecessarily. This is usually the current standard of care, established from prior

evidence, and we would not want any algorithmic solution to personalization to introduce any harm

relative to current standards. Generally, this is the policy that always assigns control, π0(0 |X) = 1.

Alternatively, if reliable clinical guidelines exist for some limited personalization, then π0(t |X)

represents the non-constant function that encodes these.

4.1. Confounding-Robust Policy Learning by Optimizing Minimax Regret

If we had oracle access to the true inverse propensities W ∗
i = 1/eTi(Xi, Yi) we could form the correct

IPW estimate by replacing nominal with true propensities in eq. (1). We may go a step further and,

recognizing that E[W ∗I [T = t]] = 1, use the empirical sum of true propensities as a control variate

by normalizing our IPW estimate by them. This gives rise to the Hájek regret estimator

R̂∗π0
(π) = R̂π0

(π;W ∗), where

R̂π0
(π;W ) =

m−1∑
t=0

R̂(t)
π0

(π;W ), R̂(t)
π0

(π;W ) =
En[(π(t |X)−π0(t |X))I [T = t]YW ]

En[W I [T = t]]

These estimators introduce the denominator E[W ∗
i I [T = t]] as a ratio control variate within each

treatment group. It follows by Slutsky’s theorem that these estimates remain consistent (if we know

W ∗
i ). Note that the choice of π0 amounts to a constant shift to R̂∗π0

(π) and does not change which

policy π minimizes the regret estimate. This will not be true of our bound, where the choice of π0

will be material to the success of the method.

Since the oracle weights W ∗
i are unknown, we instead minimize the worst-case possible value of

our regret estimate, by ranging over the space of possible values for W ∗
i that are consistent with the

observed data and our assumptions about the confounded data-generating process. Specifically, we

restrict the extent to which unobserved confounding may affect assignment probabilities.

We first consider an uncertainty set motivated by the odds-ratio bounds of the marginal sensitivity

model, which restricts how far the weights can vary pointwise from the nominal propensities Tan

(2012). Given a sensitivity parameter Γ ≥ 1, the marginal sensitivity model posits the following

restriction:

Γ−1 ≤ (1− ẽT (X))eT (X,Y )

ẽT (X)(1− eT (X,Y ))
≤ Γ. (2)
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The choice of Γ can be calibrated using, e.g., the method of Hsu and Small (2013), and we discuss

other approaches in Section 8. Note that Γ = 1 corresponds to unconfoundedness (weak ignorability)

and Γ =∞ to no restriction at all.

The restriction in eq. (2) leads to an uncertainty set for the true inverse propensity weights of

each unit centered around the nominal inverse propensity weights,3 W̃i = 1/ẽTi(Xi):

W ∗
1:n ∈WΓ

n =
{
W ∈Rn : aΓ

i ≤Wi ≤ bΓ
i , ∀i= 1, . . . , n

}
, where (3)

aΓ
i = 1 + Γ−1 · (W̃i− 1), bΓ

i = 1 + Γ · (W̃i− 1).

We assume for now that W̃i is known and phrase our method in terms of it. In practice, when ẽt(x)

is unknown, we suggest to estimate it (e.g., using regression) and plug in the corresponding estimates

of W̃i in their place. In Section 5.3, we will show that this approach is asymptotically equivalent and

provide explicit finite-sample bounds.

Given this uncertainty set, we obtain the following bound on the empirical regret Hájek estimator:

R̂π0
(π;WΓ

n ) = sup
W∈WΓ

n

R̂π0
(π;W ). (4)

We then propose to choose the policy π in our class Π to minimize this regret bound, i.e.,

π̂(Π,WΓ
n , π0), where

π̂(Π,WΓ
n , π0)∈ arg min

π∈Π

R̂π0
(π;WΓ

n ) (5)

We emphasize that different components of the framework such as weight normalization and

estimation error change the population minimax-optimal policy, in contrast to the policy learning

setting with unconfoundedness, where these components only affect finite-sample considerations.

In particular, for our worst-case regret objective R̂π0
(π;WΓ

n ), weight normalization is crucial for

only enforcing robustness against consequential realizations of confounding that affect the relative

weighting of outcomes. Any mode of the confounding that affects all weights similarly should

have no effect on policy choice. Even if we do not know W ∗
i , we know that they must satisfy the

population moment conditions E[W ∗I[T = t]] = 1,∀t ∈ T , so any realization that violates that is

impossible. Moreover, different baseline policies π0 structurally change the solution to the adversarial

subproblem by shifting the contribution of the loss term YiI[Ti = t](π(Ti | Xi) − π0(Ti | Xi)) to

emphasize improvement upon different baselines. In particular, if the baseline policy is in the policy

class Π, it already achieves 0 regret; thus, minimizing regret necessitates learning a policy that must

offer some benefits in terms of decreased loss regardless of confounding.

3 The representation in eq. (3) is obtained by simply solving for 1/ẽT in each of the two inequalities in eq. (2)
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4.2. The Population Minimax-Optimal Policy

In the above, we showed that our approach minimizes an upper bound on an estimate for the policy

regret. We can also similarly define a population-level bound and consider the population-level

minimax-optimal policy. Specifically, we can translate the marginal sensitivity model, eq. (2), to an

uncertainty set about the population random variable W ∗ = 1/eT (X,Y ):

WΓ = {W (t, x, y) : aΓ
t (x)≤W (t, x, y)≤ bΓ

t (x) ∀t≤m− 1, x∈X , y ∈R}, where

aΓ
t (x) = 1 + Γ−1 · (1/ẽt(x)− 1), bΓ

t (x) = 1 + Γ · (1/ẽt(x)− 1).

Notice that WΓ
n = {(W (T1,X1, Y1), . . . , W (Tn,Xn, Yn) :W ∈WΓ} can be understood as the restric-

tion of the above to the data. The corresponding bound on the population-level regret is Rπ0
(π;WΓ),

where

Rπ0
(π;W) = sup

W∈W
Rπ0

(π;W ), where

Rπ0
(π;W ) =

m−1∑
t=0

R(t)
π0

(π;W ), R(t)
π0

(π;W ) =
E[(π(t |X)−π0(t |X))I [T = t]Y ·W (T,X,Y )]

E[I [T = t]W (T,X,Y )]
.

Note that Rπ0
(π) =Rπ0

(π;W ∗). In words, Rπ0
(π;WΓ) is the largest-possible true regret of π relative

to π0 over all possible distributions that agree with the observable data-generating distribution of

(X,T,Y ) and with the restrictions of the marginal sensitivity model. That is, every potentially-

possible regret of π is bounded by this quantity and this quantity is also tight in that there exist

distributions agreeing with the data and the assumptions that are arbitrarily close to it. The

denominator in Rπ0
(π;W ) ensures that we adhere to the requirement that E[I [T = t]W ∗] = 1.4

In fact, the interval generated by the smallest-possible and largest-possible regret is sharp in that

it is equal to the closure of all possible regrets under the marginal sensitivity model of eq. (2). We

summarize this side observation as follows:

Proposition 1 (Sharpness). WΓ is an uncertainty set for the marginal sensitivity model

(eq. (2)) with parameter value Γ.

{Rπ0
(π;W ) : W ∈WΓ}= [infW∈WΓ Rπ0

(π;W ), supW∈WΓ Rπ0
(π;W )] .

We can correspondingly conceive of what would be the minimax-optimal policy at the population

level, i.e., π∗(Π,WΓ, π0), where

π∗(Π,WΓ, π0)∈ arg min
π∈Π

Rπ0
(π;WΓ) (6)

4 As an uncertainty set over the joint distribution P (T,X,Y (0), . . . , Y (m− 1)) this would correspond to{
P : ψt/b

Γ
t (x)≤ P (T = t |X = x,Y (t) = y)≤ψt/aΓ

t (x) ∀t≤m− 1, ψ ∈Rm+ , P is a probability distribution
}
.
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This minimax-optimal policy is the one that would obtain the best-possible uniform control over

all possible regrets under any possible realization of the true distribution of outcomes that agrees

with the observable data-generating distribution of (X,T,Y ) and with the restrictions of the

marginal sensitivity model. This feature makes it an attractive target to aim for in the absence of

unconfoundedness.

4.3. Extension: Budgeted Uncertainty Sets

Our approach can flexibly accommodate additional modeling assumptions beyond the odds-ratio

bounds, which was motivated by sensitivity analysis. We illustrate via an example of a total-

variation bounded uncertainty set how to extend our framework to accommodate additional modeling

assumptions. In the subsequent sections we show that this alternative uncertainty set enjoys similar

minimax optimality and tractability guarantees as the approach above.

The pointwise interval odds-ratio uncertainty set, eq. (3), might be pessimistic in ensuring

robustness against every possible worst-case realization of unobserved confounding for each unit,

which may be plausible under individual self-selection into treatment, whereas concerns about

unobserved confounding might instead be limited to “exceptions”, e.g. individuals with specific

unobserved subgroup risk factors, as has also been recognized by Fogarty and Hasegawa (2019),

Hasegawa and Small (2017) in the context of classic sensitivity analysis.

Specifically, we construct the uncertainty set

WΓ,Λ
n =

{
W ∈RIt :

1
|It|

∑
i∈It |Wi− W̃i| ≤Λt ∀t,
aΓ
i ≤Wi ≤ bΓ

i ∀i

}

with the population counterpart,

WΓ,Λ =

{
W (t, x, y) :

E[|W (T,X,Y )− W̃ (T,X)| | T = t]≤Λt ∀t,
aΓ
t (x)≤W (t, x, y)≤ bΓ

t (x) ∀t≤m− 1, x∈X , y ∈R

}

When plugged into eq. (5), this provides an alternative policy choice criterion that is less conservative.

To make the choice of parameters easier, we suggest to calibrate Λt as a fraction, ρ< 1, of the total

deviation already allowed by WΓ
n . Specifically, Λt = ρ 1

|It|

∑
i∈It max(W̃i− aΓ

i , b
Γ
i − W̃i).5

5. Analysis, Improvement Guarantees, and Minimax Optimality

Before discussing how we actually algorithmically compute π, we next introduce finite-sample

statistical guarantees on the performance of our approach. We first prove a finite-sample improvement

guarantee that provides that the policy we learn is assured to induce no harm, as long as the

sensitivity model is well-specified. We then prove a uniform convergence result simultaneously over

5 Enforcing the uncertainty budget separately within each treatment partition is crucial for computationally tractable
policy learning and evaluation, as we discuss in Section 6.
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both the space of policies, Π, and the space of possible weights that agree with our sensitivity model,

WΓ. As a consequence of this uniform convergence, we obtain a bound on the minimax regret that

converges to the population optimum. In our analysis, in Sections 5.1 and 5.2, we assume the nominal

propensities ẽt(x) are known so that the nominal inverse weights W̃i are known. In Section 5.3, we

extend all of our results to the case of estimated nominal propensities, where we instead plug in

the estimate êt(x) of ẽt(x). In particular, we analyze how our results change when we solve the

optimization problem with some êt(x) instead of ẽt(x), which provides a bound in terms of the

estimation error, which generally vanishes as we collect more data.

For both of these bounds we assume that both outcomes and true propensities are bounded.

Assumption 1 (Bounded outcomes). Outcomes are bounded, i.e. |Y | ≤B.

Assumption 2 (Overlap). Strong overlap holds with respect to the true propensity: there exists

ν > 0 such that et(x, y)≥ ν ∀t∈ {0, . . . ,m− 1}, x∈X , y ∈Y

Moreover, both of these bounds depend on the flexibility of our policy class: it is critical that

we search over a flexible but not completely unrestricted class in order to be assured improvement.

We express the flexibility of Π using the notion of the Vapnik-Chervonenkis (VC) major dimension,

which we define below (see Dudley 1987, p. 1309).

Definition 1. Given a ground set G and set of maps F ⊆ [G →R], the VC-major dimension of

F is the largest number v ∈N such that there exists g1, . . . , gv ∈ G with

{(I [f(g1)> θ] , . . . , I [f(gv)> θ]) : f ∈F , θ ∈R}= {0,1}v. (7)

If eq. (7) holds then we say that the superlevel sets of F shatter g1, . . . , gv, which means that any

subset of the points belong exclusively to some superlevel set of some f ∈F and its complement to

the corresponding sublevel set. The more complex a class is, the larger the point sets it can shatter.

Thus, VC dimension is a natural expression of function class complexity or flexibility.

We will express the flexibility of Π in terms of its VC-major dimension as a set of functions from

(t, x)∈ {0, . . . ,m− 1}×X to [0,1].

Assumption 3. The policy class Π, as a class of functions {0, . . . ,m− 1} × X → [0,1], has a

finite VC-major dimension.

Assumption 3 holds for all multi-treatment policy classes we consider, including linear, logistic, and

tree policies with bounded depth. Note that our treatment differs from multi-class classifiers as we

treat (t, x) as the ground set. It is nonetheless immediate to see that the VC-major dimension of both

linear and logistic policies is at most (m− 1)(d+ 1). Moreover, for binary decision trees of depth no

more than D, if each inner node can be a query xi ≤ θ for any i= 1, . . . , d and θ= θi1, . . . , θiK and
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each leaf node is assigned its own probability vector in ∆m, then the VC dimension of this class is at

most 2D(m− 1) log2(dK + 2), as can been seen by following the arguments of Golea et al. (1998)

and seeing this a direct sum of 2D leaf functions, each consisting of D− 1 conjunctions.

5.1. Improvement Guarantee

We next prove that, if we appropriately bounded the potential hidden confounding, then the

optimal value of our minimax-optimal worst-case empirical regret objective R̂π0
(π̂;Wn) (as defined in

Equation (4)) is asymptotically an upper bound on the true population regret of π̂, Rπ0
(π̂(Π,Wn, π0)).

The result is in fact a finite-sample result that gives precisely a bound on how much the latter

might exceed the former due to finite-sample errors – terms that vanish as n grows, even if there is

unobserved confounding.

Our guarantee relating the sample minimax regret (defined in Equation (4)) to the population

optimal regret, for any π, is then as follows:

Theorem 1 (Improvement bound). Suppose Assumptions 1, 2, and 3 hold. Suppose, more-

over, that W ∗
1:n ∈Wn. Then, for a constant KΠ which only depends on the VC-major dimension of

Π, we have that with probability at least 1− δ:

Rπ0
(π̂(Π,Wn, π0))≤ R̂π0

(π̂(Π,Wn, π0);Wn) +
1

ν
(BKΠ + 3)

√
2 log(8m∨20/δ)

n
. (8)

Theorem 1 says that the true population regret of the policy we learn, π̂(Π,Wn, π0), when we

implement it in practice, is bounded by the objective value that the policy minimizes, plus vanishing

terms. These vanishing terms, that is, the second term on the right hand side of eq. (8), vanish at a

rate of O(n−1/2) and have sub-Gaussian tails, regardless of any unobserved confounding. Notice that,

as long as π0 ∈Π, which can be ensured by design, then we have that our objective is nonpositive,

R̂π0
(π;Wn)≤ 0. Therefore, this means that we never do worse than π0 (i.e., do harm), up to vanishing

terms. Additionally, if our objective is sufficiently negative, which we can check by just evaluating it,

then we are assured some strict improvement. Since we are able to guarantee this without being

able to identify or estimate any causal effect due to the unobserved confounding, Theorem 1 exactly

captures the special appeal of our approach.

Our result above is generic for any uncertainty set Wn; it only requires that it be well-specified.

Note that for both of the uncertainty sets we propose in Section 4, the specification of the population

sensitivity model (W ∗ ∈W) implies W ∗
1:n ∈Wn, as the latter is simply the restriction of the former

to the data. In the next section we further show that we can obtain the minimax-optimal regret

in these sensitivity models. These results, however, will depend on the uncertainty set and their

complexity being manageable.
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5.2. Minimax-Optimality

In the previous section we argued that our policy is assured (almost) no harm. A remaining question is

whether it achieves the most improvement while doing no harm: whether or not, over all distributions

that agree with our sensitivity model, it obtains the best possible uniform control on policy regret.

That is, since unconfoundedness does not hold, each policy may incur a range of possible regrets,

depending on the true distribution of outcomes, which we cannot pin down even with infinite data.

The best safe policy uniformly minimizes all of these potential regrets simultaneously and is the

minimax-optimal policy π∗(Π,W, π0) defined in eq. 6. We next show our policy is not only safe but

also achieves the same uniform regret control asymptotically. In fact, we will give a finite-sample

bound on our uniform regret control.

Controlling the complexity of the sensitivity model. Recall that our policy, π̂(Π,W, π0), is defined

as the minimum over π of the maximum over W of R̂π0
(π;W ). Therefore, one approach may be

to establish the uniform convergence of R̂π0
(π;W ) to Rπ0

(π;W ) over all policies and all weight

functions in the sensitivity model. However, for the uncertainty sets we propose, this will fail. For

example, the weight functions in WΓ are far too many (isomorphic to all bounded functions) to

expect such uniform convergence. Instead, as has been observed in similar sensitivity models with

linear-fractional structure Aronow and Lee (2012), Miratrix et al. (2018), Zhao et al. (2019), we first

observe that we need only consider a special subclass of weight functions, which will in fact have

bounded functional complexity.

Proposition 2 (Monotone weight solution for WΓ). Let

WΓ
(π) =

{
W (t, x, y) :

W (t, x, y) = aΓ
t (x) +u(y(π(t | x)−π0(t | x))) · (bΓ

t (x)− aΓ
t (x)),

u : R→ [0,1] is monotonic nondecreasing

}
,

WΓ

n(π) = {(W (T1,X1, Y1), . . . , W (Tn,Xn, Yn) :W ∈WΓ
(π)}.

Then, for any π,

Rπ0
(π;WΓ) =

m−1∑
t=0

sup
W∈WΓ

(π)

R(t)
π0

(π;W ), R̂π0
(π;WΓ

n ) =
m−1∑
t=0

sup
W∈WΓ

n(π)

R̂(t)
π0

(π;W ).

This result is due to the special optimization characterization we present later in Theorem 3, which

uses linear-fractional optimization to show that the solution takes a monotonic, thresholding form.

Corollary 1. Let WΓ
=
⋃
π∈ΠW

Γ
(π),WΓ

n =
⋃
π∈ΠW

Γ

n(π). Then, for any π ∈Π,

Rπ0
(π;WΓ) =

m−1∑
t=0

sup
W∈WΓ

R(t)
π0

(π;W ), R̂π0
(π;WΓ

n ) =
m−1∑
t=0

sup
W∈WΓ

n

R̂(t)
π0

(π;W ).
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Corollary 1 shows that, when searching for policies in Π to obtain uniform control on regret, it

suffices to consider weight functions in WΓ
, which is a subset of WΓ. Again, this result crucially

relies on the optimization structure of our problem.

Importantly, this subset, WΓ
, has much more structure and, in contrast to WΓ, has bounded

complexity.

Proposition 3. Suppose Assumption 3 holds. Then WΓ
has a finite VC-major dimension.

Proposition 3 leverages the stability of VC-major classes (see Van Der Vaart and Wellner 1996,

Lemma 2.6.19 and Dudley 1987, Proposition 4.2). Note that monotone functions are not a VC class

in the usual sense of having VC subgraphs, but they are VC-hull (Giné and Nickl 2016, Example

3.6.14).

Using Corollary 1 and Proposition 3, we can obtain the following uniform convergence:

Theorem 2. Suppose Assumptions 1, 2, and 3 hold. Then, for a constant KΠ that depends only

on the VC-major dimension of Π, we have that, with probability at least 1− δ:

sup
π∈Π

∣∣∣R̂π0
(π;WΓ

n )−Rπ0
(π;WΓ)

∣∣∣≤ 36(12 + ν−1)(BKΠ + ν−1(Γ−Γ−1)(KΠ +B+m))

√
log(15m/p)

n

Relative to Theorem 1, the additional dependence on m arises due to the flexibility of WΓ where,

per Proposition 2, we may effectively choose a different monotone function u for each treatment

level t= 0, . . . ,m− 1.

As a corollary to Theorem 2 we obtain a finite-sample bound on our minimax suboptimality, which

ensures asymptotic minimax optimality:

Corollary 2 (Minimax regret bounds for WΓ). Suppose Assumptions 1, 2, and 3 hold.

Then, with probability at least 1− δ, we have that

Rπ0
(π̂(Π,WΓ

n , π0);WΓ)

≤ inf
π∈Π

Rπ0
(π;WΓ) + 36(12 + ν−1)(BKΠ + ν−1(Γ−Γ−1)(KΠ +B+m))

√
log(15m/δ)

n

It is important to note that, in contrast to Theorem 1, this result depends crucially on the structure

of WΓ. The key question is how flexible is the set of worst-case weight functions for any policy.

While our budgeted uncertainty set, WΓ,Λ, is also too flexible to expect uniform convergence over

it, we can make similar arguments, focusing only on the set of worst-case weights: they satisfy a

nondecreasing property similar to that of Proposition 2, despite the additional constraint.
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Proposition 4 (Monotone weight solution for WΓ,Λ). Let

WΓ,Λ
(π;P) =

W (t, x, y) :

W (t, x, y) = aΓ
t (x) +u(y(π(t | x)−π0(t | x))) · (bΓ

t (x)− aΓ
t (x)),

u(y(π(t | x)−π0(t | x))) : R→ [0,1] is monotonic nondecreasing,

EP[|W (T,X,Y )− W̃ (T,X)| | T = t]≤Λt ∀t

 ,

WΓ,Λ

n (π;P) = {(W (T1,X1, Y1), . . . , W (Tn,Xn, Yn) :W ∈WΓ,Λ
(π;P)}.

Then, for any π :X →∆m,

Rπ0
(π;WΓ,Λ) =

m−1∑
t=0

sup
W∈WΓ,Λ

(π;P)

R(t)
π0

(π;W ), R̂π0
(π;WΓ,Λ

n ) =
m−1∑
t=0

sup
W∈WΓ,Λ

n (π;Pn)

R̂(t)
π0

(π;W ),

where P denotes the population distribution of T,X,Y and Pn the corresponding empirical distribu-

tion.

These arguments require proving structural properties of the optimal solution under this budgeted

uncertainty set, which allow us to use the same stability arguments for various compositions of

VC-major classes. We remark that the structural results for the budgeted uncertainty set are weaker

than that of the unbudgeted one (Theorem 3), where we also obtain efficient algorithms. We quote

the final regret bound and refer the reader to the supplement for details.

Proposition 5 (Minimax regret bounds for WΓ,Λ). Suppose Assumptions 1, 2, and 3 hold.

Then, for a constant KΠ that depends only on the VC-major dimension of Π, we have that, with

probability at least 1− δ:

Rπ0
(π̂(Π,WΓ,Λ

n , π0);WΓ,Λ)

≤ inf
π∈Π

Rπ0
(π;WΓ,Λ) + 36(12 + ν−1)(BKΠ + ν−1(Γ−Γ−1)((m

2BΓν−1

mintΛt ∧ 1
+ 1)KΠ +B+m))

√
log(30m/δ)

n

+
1

n

2mν−2BΓmaxtΛt

mintΛt ∧ 1

5.3. Estimated Propensity Scores

All of the above results are presented for the case of known nominal propensities, ẽt(x), that is, when

WΓ, which is centered at the nominal inverse propensity weights W̃i, is known. If, as is the case for

an observational study, the nominal propensities need to be estimated from data, we optimize over

WΓ
n as an approximation to WΓ. We next show that the use of estimated nominal propensities êt(x)

results in an additive approximation error.

Proposition 6 (Bounded perturbations). Let Ŵi = 1/êTi(Xi) and

ŴΓ
n =

{
W ∈Rn : âΓ

i ≤Wi ≤ b̂Γ
i , ∀i= 1, . . . , n

}
, where âΓ

i = 1 + Γ−1(Ŵi− 1), b̂Γ
i = 1 + Γ(Ŵi− 1).

Then, under Assumption 1, for any π :X →∆m,∣∣∣R̂π0
(π,ŴΓ

n )− R̂π0
(π,WΓ

n )
∣∣∣≤ 2B(Γ + Γ−1)

1

n

n∑
i=1

∣∣∣∣ 1

êTi(Xi)
− 1

ẽTi(Xi)

∣∣∣∣ (9)
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Proposition 6 is a consequence of the linear-fractional optimization structure of the worst-case

regret over weights inWΓ
n . The proof leverages a partial Lagrangian dual of the optimization problem

and studies sensitivity to plugged-in nominal propensities in the dual. Note that by additionally

assuming strong overlap in the nominal propensities, we can bound errors in the inverse propensities

in terms of errors in the propensity function itself, which we can in turn bound using standard

finite-sample guarantees for learning conditional expectations (Bartlett et al. 2005). Note that

the bound in eq. (9) would scale as these bounds. It remains an important direction for future

research to obtain bounds of the form of eq. (9) that have a multiplicative-bias property, allowing

for slower-than-n−1/2 estimation of propensities without deteriorating the overall n−1/2 rate, as in

Wager and Athey (2017a).

Since Proposition 6 holds deterministically and for all policies, including the sample-optimal policy,

it immediately shows that the policy we get by optimizing our worst-case empirical regret with

estimated nominal propensities, π̂(Π,Ŵn, π0), is actually near-optimal in objective relative to the

worst-case empirical regret we would obtain with true nominal propensities, that is, R̂π0
(π,WΓ).

Therefore, all previous results for our method similarly hold for π̂(Π,Ŵn, π0) with the addition of

two times the right-hand side of eq. (9) to any previous bound. In particular, for the improvement

guarantee for the case of WΓ, we need only ensure that W ∗ ∈WΓ, which is implied by the validity

of the marginal sensitivity model; we do not need to ensure that W ∗
n ∈ ŴΓ

n , which may be a random

event depending on our estimation.

6. Algorithms for Optimizing Robust Policies

We next discuss how to algorithmically solve the policy optimization problem in eq. (5) and actually

find the sample minimax-optimal policy, π̂. In the main text, we focus on differentiable parametrized

policy classes, F = {πθ( · ) : θ ∈Θ} such that πθ(t | x) is differentiable with respect to θ, such as

logistic policies. We will use a subgradient method to find the robust policy. In the appendix,

we also discuss optimization over decision-tree based policies, using a mixed-integer optimization

formulation. In both cases, our solution will depend on a characterization of the inner worst-case

regret subproblem.

We first discuss how to solve the worst-case regret subproblem for a fixed policy, which we will

then use to develop our algorithms.

6.1. Dual Formulation of Worst-Case Regret

The minimization in eq. (5) involves an inner supremum, namely R̂π0
(π;WΓ

n ). Moreover, this

supremum over weights W does not on the face of it appear to be a convex problem. However, a

standard transformation will reveal its convexity. We next proceed to characterize this supremum,
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formulate it as a linear program, and, by dualizing it, provide an efficient line-search procedure for

finding the pessimal weights.

For compactness and generality, we address the optimization problem Q̂t(r;W) parameterized

by an arbitrary reward vector r ∈Rn, where

Q̂t(r;W) = max
W∈W

∑n

i=1 riW (Ti,Xi, Yi)I[Ti = t]∑n

i=1W (Ti,Xi, Yi)I[Ti = t]
. (10)

To recover R̂π0
(π;WΓ

n ), we would simply compute, with ri = (π(Ti |Xi)−π0(Ti |Xi))Yi,

R̂π0
(π;WΓ

n ) =
m−1∑
t=0

Q̂t(r ;WΓ
n ).

For the remainder of this subsection, we discuss solving the program generically for the r-weighted

linear fractional objective Q(r;W), without discussion of multiple treatment partitions. In doing

so, we reindex n. First we consider WΓ
n . Since WΓ

n involves only linear constraints on W , eq. (10)

for W =WΓ
n is a linear fractional program. We can reformulate it as a linear program by applying

the Charnes-Cooper transformation (Charnes and Cooper 1962), requiring weights to sum to 1, and

rescaling the pointwise bounds by a nonnegative scale factor ψ. We obtain the following equivalent

linear program in a scaling factor and normalized weight variables, ψ= 1∑n
i Wi

;w=Wψ:

Q̂(r;WΓ
n ) = maxψ≥0,w≥0

n∑
i=1

riwi

s.t.
n∑
i=1

wi = 1

ψaΓ
i ≤wi ≤ψbΓ

i ∀ i= 1, . . . , n

(11)

The dual problem to eq. (11) has dual variables λ ∈ R for the weight normalization constraint

and u, v ∈Rn+ for the lower bound and upper bound constraints on weights, respectively. By linear

programming duality, we then have that

Q̂(r;WΓ
n ) = minu≥0,v≥0,λ λ

s.t. − vᵀbΓ +uᵀaΓ ≥ 0

vi−ui +λ≥ ri ∀ i= 1, . . . , n

(12)

We use this to show that solving the inner subproblem requires only sorting the data and a ternary

search to optimize a unimodal function. This generalizes the result of Aronow and Lee (2012) for

arbitrary pointwise bounds on the weights. Crucially, the algorithmically efficient solution will allow

for faster subproblem solutions when optimizing our regret bound over policies in a given policy

class.
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Theorem 3 (Normalized optimization solution). Let (i) denote the ordering such that

r(1) ≤ r(2) ≤ · · · ≤ r(n). Then, Q̂(r;WΓ
n ) = λ(k∗), where k∗ = inf{k = 1, . . . , n+ 1 : λ(k) < λ(k− 1)}

and

λ(k) =

∑
i<ka

Γ
(i)r(i) +

∑
i≥kb

Γ
(i)r(i)∑

i<ka
Γ
(i) +

∑
i≥kb

Γ
(i)

. (13)

Specifically, we have that Q̂(r;WΓ
n ) =

∑n
i=1 riW

†
i∑n

i=1W
†
i

where W †
(i) = aΓ

(i) if i < k∗ and W †
(i) = bΓ

(i) if i≥ k∗.

Moreover, λ(k) is a discrete concave unimodal function.

Next we consider a budgeted uncertainty set, Q̂(r;WΓ,Λ
n ). Write an extended formulation for WΓ,Λ

n

using only linear constraints:

WΓ,Λ
n =

{
W ∈Rn+ : ∃d s.t.

n∑
i=1

di ≤Λ, di ≥Wi− W̃i, di ≥ W̃i−Wi, a
Γ
i ≤Wi ≤ bΓ

i ∀i

}

This immediately shows that Q̂(r;WΓ,Λ
n ) remains a fractional linear program. Indeed, a similar

Charnes-Cooper transformation as used above yields a non-fractional linear programming formula-

tion:

Q̂(r;WΓ,Λ
n ) = maxψ>0,w≥0,d

n∑
i=1

wiri

s.t.
n∑
i=1

di ≤Λψ,
n∑
i=1

wi = 1

aΓ
i ψ≤wi ≤ bΓ

i ψ ∀ i= 1, . . . , n

di ≥wi− W̃iψ ∀ i= 1, . . . , n

di ≥ W̃iψ−wi ∀ i= 1, . . . , n

The corresponding dual problem is:

Q̂(r;WΓ,Λ
n ) = ming≥0,h≥0,u≥0,v≥0,ν≥0,λ λ

s.t. vi−ui + gi−hi +λ≥ ri ∀ i= 1, . . . , n

vi ≥ gi +hi ∀ i= 1, . . . , n

− bᵀv+ aᵀu−Λν+ gᵀW̃ +hᵀW̃ ≥ 0

As Q̂(r;WΓ,Λ
n ) remains a linear program, we can easily solve it using off-the-shelf solvers, even if it

does not admit as simple of a solution as Q̂(r;WΓ
n ) does.

6.2. Optimizing Parametric and Differentiable Policies

In the main text, we consider iterative optimization to optimize over a parametrized policy class

Π = {πθ(·, ·) : θ ∈ Θ}, where the parameter space Θ is convex (usually Θ = Rm), and πθ(t | x) is

differentiable with respect to the parameter θ. In the appendix, we discuss global optimization

approaches for policy learning, for example over the interpretable policy class of optimal trees. We



Kallus and Zhou: Minimax-Optimal Policy Learning Under Unobserved Confounding
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 23

Algorithm 1 Subgradient Method
1: Input: step size η0, step-schedule exponent κ∈ (0,1], initial iterate θ0, number of iterations N

2: for k= 0, . . . ,N − 1 do:

3: ηk← η0t
−κ . Update step size

4: `k,W ← max
W∈W

, ∈ arg max
W∈W

∑n

i=1
Wi∑

i∈ITi
Wi

(πθk(Ti |Xi)−π0(Ti |Xi))Yi . Solve inner

subproblem for θt

5: θk+1←ProjectionΘ(θk− ηk · g(θk;W )) . Move in subgradient direction

6: return 1
n

∑N

t=1 θt

suppose that ∇θπθ(t | x) is given as an evaluation oracle. An example is logistic policies for binary

treatments where it is sufficient to only parametrize for assigning T = 1, πα,β(1 |X) = σ(α+βᵀX)

and Θ = Rd+1. Since σ′(z) = σ(z)(1−σ(z)), evaluating derivatives is simple.

Our gradient-based procedure leverages that we can solve the inner subproblem to full optimality

in the sample. Note that Q̂(r;W) is convex in r since it is a maximum over linear functions in r.

Correspondingly, its subdifferential at r is given by the argmax set, where
∑

i∈IT
W denotes the

vector of normalizing weights corresponding to the observed treatment pattern T :

∂rQ̂(r;W) =

 W∑
i∈IT

W
:W ∈W ,

n∑
i=1

Wi∑
i∈In

Ti

Wi

ri ≥ Q̂(r;W).


If we set ri(θ) = (πθ(Ti | Xi) − π0(Ti | Xi))Yi, so that Q̂(r(θ);W) = R̂π0

(πθ(·);W), then ∂ri(θ)

∂θj
=

Yi
∂πθ(Ti|Xi)

∂θj
. Although F (θ) := R̂π0

(πθ;W) may not be convex in θ, this suggests a subgradient

descent approach. Let

g(θ;W ) =∇θ
n∑
i=1

Wi∑n

j∈ITi
Wj

(πθ(Ti |Xi)−π0(Ti |Xi))Yi =
n∑
i=1

Wi∑n

j∈ITi
Wj

Yi∇θπθ(Ti |Xi)

Note that whenever ∂rQ̂(r(θ);W) = { W∑
i∈IT

W
} is a singleton then g(θ;W ) is in fact a gradient of

F (θ).

At each step, our algorithm starts with a current value of θ, then proceeds by finding the weights

W that realize R̂π0
(π(· ;θ) by using an efficient method as in the previous section, and then takes

a step in the direction of −g(θ;W ). Using this method, we can optimize policies, over both the

unbudgeted uncertainty set WΓ
n and the budgeted uncertainty set WΓ,Λ

n . We return the averaged

θ parameter for each initialization; and we ultimately average the parameter achieving the best

over multiple restarts. Our method is summarized in Alg. 1. In Section C.1 of the Appendix, we

include further algorithmic refinements to this subgradient procedure that leverage the special nested

structure of the uncertainty sets. We find that these refinements help empirically in stabilizing the

optimization when we compute minimax-optimal policies for multiple values of Γ, as we anticipate a

decision-maker would, over reasonable plausible ranges of Γ.
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6.3. Optimizing Over Other Policy Classes

We next discuss how our approach can be extended to other, more general policy classes, if we have a

representation of the constraint π ∈Π that is compatible with conic or integer programming solvers.

Proposition 7. Suppose Wn = {W1:n : (Wi)i:Ti=t ∈Wn,t ∀t= 0, . . . ,m− 1} takes a product form

over treatments and that Wn,t is convex with a non-empty relative interior. Let Πn = {(π(T1 |

X1), . . . , π(Tn |Xn)) : π ∈Π}. Then,

min
π∈Π

R̂π0
(π;Wn) = inf

{
m−1∑
t=0

λt : p∈Πn, (λ−Yi(pi−π0(Ti |Xi)))i:Ti=t ∈W
∗
n,t ∀t,

}
where S∗ = {p : uTp≤ 0 ∀u∈ S} denotes the dual cone of a set S.

Aside from the constraint p∈Πn, Proposition 7 provides a convex conic formulation of our optimiza-

tion problem. If, as for our two proposed uncertainty sets, Wn is polyhedral, then this formulation is

linear. The specific policy parametrization is formulated in the constraint p∈Πn. For the case of

sparse linear policies (Ustun and Rudin 2015) and fixed-depth decision trees (Bertsimas and Dunn

2017, Kallus 2017a), existing such formulations based on integer optimization exist and can be used

to adapt our approach to such policy classes. In the appendix, we provide a more detailed treatment

for the case of decision trees.

7. Empirical Results

In this section we present empirical results on two experiments to investigate the benefit of robustness

to unobserved confounding. Our first experiment is a simple synthetic example that we use to

illustrate the different methods in a controlled setting. Our second experiment develops a case-study,

drawing on the data from the parallel WHI observational study and clinical trial. There, harm

would be done by unwarranted aggressive intervention by personalized policy learning led astray by

confounding. Our minimax-optimal approach is able to avoid such harm, and still offer improvements

over baseline by personalizing care, for a variety of possible reward scalarizations of reductions in

high blood pressure against known clinical benefits.

7.1. Simulated Data

7.1.1. Binary Treatments We first consider a simple linear model specification demonstrating

the possible effects of significant confounding on inverse-propensity weighted estimators. We generate

our data as follows, from a true propensity model based on an unobserved confounder, U , which is a

function of the potential outcomes:

ξ ∼Bern(1/2), X ∼N((2T − 1)µx, I5), U = I[Y (1)<Y (0)]

Y (t) = βᵀx+ I[T = 1]βᵀtreatx+αI[T = 1] + η+ ηξ+ ε
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Figure 1 Out of sample policy regret on simulated data in Sec. 7.1

The constant treatment effect is α= 2.5 with the linear interaction βtreat = [−1.5,1,−1.5,1,0.5].

The covariate mean is µx = [−1, .5,−1,0,−1]. The noise term ξ affects outcomes with coefficients

η =−2, ω = 1, in addition to a uniform noise term ε∼N(0,1) which is the same for both treatments.

We let the nominal propensities be logistic in X, ẽ(X) = σ(βᵀX) with β = [0, .75,−.5,0,−1,0], and

we generate Ti for each unit according to the true propensity score e(X,U), which we set to

e(Xi,Ui) =
4 + 5Ui + ẽ(Xi)(2− 5Ui)

6ẽ(Xi)
.

In particular, this makes e(Xi,Ui) realize the upper bound in eq. (2) for Γ = 1.5 when Ui = 1 and

the lower bound otherwise. Recall Ui = 1 exactly when treatment with t= 1 is better than treatment

with t= 0; therefore, we can interpret the confounding relationship as doctors giving the treatment

option that is better for the patient, based, however, on factors that were not recorded in the data.

We compare the policies learned by a variety of methods. We consider two commonplace standard

methods that assume unconfoundedness: the logistic policy minimizing the IPW estimate with

nominal propensities and the direct comparison policy gotten by estimating CATE using causal

forests and comparing it to zero (GRF; Wager and Athey 2017b). We compare these to two variants

of our methods using the never-treat baseline policy, π0(0 | x) = 1: our confounding-robust logistic

policy using the unbudgeted uncertainty set (CRLogit) and our confounding-robust logistic policy

using the budgeted uncertainty set (CRLogit L1) and multipliers ρ= 0.5,0.25. For each of these we

vary the parameter Γ in {0.1,0.2,0.3, . . . ,1.8,1.9,2,3,4,5}. For logistic policies, we run 15 random

restarts of Alg. 1 with a step-schedule of κ= 0.5 and return the one with the best robust objective

value, unless the best robust objective value is positive, in which case we just return π0, which is

feasible.

For each of 50 replications, we generate an observational dataset of n= 200 according to the above

model, run each of the above mentioned methods to learn a policy, and compute the true value of
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Figure 2 Out of sample policy regret on simulated data, three treatments in Sec. 7.1

each learned policy (by using the known counterfactuals, which we generated). We report the value

as the regret relative to the value of π0. We plot the results in Fig. 1, showing the mean regret over

replications along with the standard error (shaded regions). We highlight that the worse performance

of IPW and GRF does not imply an issue with the algorithms themselves but rather with relying on

the assumption of unconfoundedness when it in fact fails to hold.

7.1.2. Multiple Treatments For comparison, we include an example with multiple (three)

treatments. We parametrize the policy class with a multinomial logistic probability model (a direct

extension of the binary treatment case), e.g. π(t |X) = exp(β>t X)∑m−1
t=0 exp(β>t X)

. Our simulation setup is similar

to the case for binary treatments. We define the outcome models. In the simulation setup, one

treatment arm, T = 1, is high-variance due to heterogeneous treatment effects and also greater

confounding (which increases variance in propensity scores). The unobserved confounding affects the

high-variance treatment, T = 1, while now X is generated uniformly on [−3,3] for all covariates, to

reduce variability.

ξ ∼Bern(1/2), X ∼Unif(−3,3)5, U = I[Y (1)<Y (0)]

Y (t) = βᵀt x+ ηξ+ ε+
m−1∑
t′=1

I[t= t′](βᵀt′,treatx+αt′ + ηt′ξ)

We parametrize the simulation by vectors of confounding effect and average treatment effect, η=

(0,−2,0), α= (0,2,0.5), linear effects β = (0, .5,−0.5,0,0), β0 =~0, β1 = 0.75(−1.,0.5,−1.,1.,0.5), β2 =

~0, and confounding effects β0,treat =~0, β1,treat = (0,1.5,−1,0,−2), β2,treat = (0,0,0.5,0,0.5). We include

the results in Figure 2. We generate 50 replications from this data generating process with n= 200,

and evaluate on a large generated test set with known counterfactuals. However, the additional

parametrization (scaling with the number of treatments) leads to a noisier optimization process by

the method of Alg. 1; we leave further refining the optimization for future investigation.
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7.2. Assessment with Clinical Data: Women’s Health Initiative Trial

We next develop a case study on the parallel Women’s Health Initiative (WHI) clinical trial and

observational study. We now revisit the real data, under a hypothetical scenario where treatment

provides some benefit (in both the observational study and clinical trial), introducing semi-synthetic

outcomes which scalarize actual clinical outcomes with a treatment effect “bonus” reflecting known

ancillary benefits. We consider binary treatment vs. control, where T = 1 indicates treatment with

hormone replacement therapy (HRT). Since we vary over a range of possible scalarizations, our

focus here is not on drawing specific clinical or substantive conclusions, but rather illustrating the

behavior of the method in a variety of treatment effect profiles, and illustrating that for a variety of

parameters, our approach will lead to some degree of improvement while confounded methods would

introduce harm.

7.2.1. Policy Learning and HRT We motivate our policy learning setting noting that mod-

ern clinical guidelines, included in Bakour and Williamson (2015), recognize that “when HRT is

individually tailored, women gain maximum advantages and the risks are minimised.” For example,

heterogeneity of treatment effect in age was posited in the clinical literature6. For all women, the

improvement of vasomotor symptoms was significant, but ultimately the greater risks of adverse

events outweighed the clinical benefits for older women. Since the clinical trial itself did not include

many younger women for whom treatment could be beneficial, the clinically relevant policy learning

question is determining the optimal tailoring of targeted treatments such that the clinical benefits of

HRT do not also incur substantial increase in risk of CHD and other adverse events.

7.2.2. WHI Case Study Evaluation Setup and Outcome Measures

Dataset details. We restrict attention to a complete-case subset of the WHI clinical-trial data

(n = 13594) and a complete-case subset of the observational study (n = 48458), obtained after

dropping the cardiac arrest covariate (which is mostly missing). T = 1 denotes treatment with

combined estrogen-plus-progestin hormone replacement therapy. An estimate (using GRF Athey

et al. (2019)) of the ATE on the blood pressure outcome, as measured on the clinical trial, is 0.64

with 0.26 standard error, while from the observational study, the estimate is −0.94 with standard

error 0.38: wrongly deciding based on the observational study would introduce overall harm.

6 Clinical explanations for heterogeneity in age suggested that estrogen may slow down early artherosclerosis, the
formation of plaques in arteries, and have favorable endothelial effects in women with recent onset in menopause.
However, unlike other options such as statin therapies which help prevent CHD at any age and stage of disease, HRT
may actually worsen already-established plaques and thus increase the frequency of coronary events in older women
(see Manson et al. 2013, Rossouw et al. 2013).
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Outcome variable. We define our outcome variable to account for cardiovascular health as well as

the clinical benefits of HRT for menopause symptoms, and we range over the potential combinations

of these to study the changing behavior of our method. Specifically, letting S denote systolic blood

pressure and given λ< 0, we define our outcome as

Y = S+Tλ.

We vary λ in a grid on [0,−1.5]. Every λ generates a new dataset, on which we learn policies from

the observational study using our framework, varying the sensitivity parameter Γ, and estimate the

outcomes of these learned policies on the actual randomized WHI clinical trial data. In training on

the observational dataset, nominal propensities are estimated using logistic regression. We assess

our methods and appropriate baselines, which learn from the confounded observational data, and

evaluate their performance on the clinical trial dataset, with constant treatment arm randomization

probabilities. This demonstrates the range of possible behaviors as treatment becomes overall more

or less beneficial and offers a sensitivity analysis of our method to different scalarizations of clinical

benefits with the blood pressure outcome.

Clinical trial evaluation. Without access to the true counterfactual outcomes for patients, we

evaluate the performance of policies out of sample by using an unnormalized Horvitz-Thompson

estimator on the held-out truly-randomized data from the WHI clinical trial. As reported above,

treatment was randomized at 1/2 probability; p0, p1 denotes the observed treatment probabilities for

T = 0,1. Correspondingly, our out-of-sample estimate of policy regret relative to a control baseline,

π0(0 | x) = 1, is given by7

R̂test
π0

(π) =
1

n

n∑
i=1

Yi
pTi

(I[Ti = 0](π(0 |Xi)− 1) + I[Ti = 1]π(1 |Xi))

7.2.3. WHI Case Study Policy Learning Results We compare our method (CRLogit) to

two benchmark methods for policy learning that do assume unconfoundedness: the logistic policy

minimizing the IPW estimate with nominal propensities (IPW) and the same with policy value

estimates gotten by estimating CATE using causal forests (GRF Lin; Athey et al. 2019). In Figure 3

we display a (favorable) treatment effect scalarization, λ = −0.64, where our policy, for certain

values of the sensitivity parameter, indeed finds benefit, while linear policies using only estimated

propensity scores or confounded outcome regression (IPW and RF lin.) still incur relative harm

relative to the all-control baseline.

7 Note that the actual realized fraction treated in the dataset are 0.502 so the estimate is also nearly equal to the
corresponding Hájek estimator.
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Figure 3 Plots of out of sample regret on WHI case study data for a single treatment effect scalarization, λ=−0.64
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Figure 4 Plots of out of sample regret, sensitivity analysis on scalarizations of WHI data, varying λ

Of course, whether or not our approach finds relative improvement (or if the robust approach is

overly conservative), depends on the exact treatment effect scalarization parameter λ. In Figure 4,

we include a comprehensive comparison of the relative performance of our approach, IPW, and the

control baseline, for a various levels of λ. (We report full numerics in Table EC.1 in the appendix.)

For moderate regions of benefit (λ∈ [−0.11,−1]), confounded policies perform poorly, overtreating

and inducing harm, while our approach recovers regions of improvement (where the blue line is
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treated with probability π(1 |X)> 0.5 (Sec. 7.2)
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Figure 5 WHI Case Study: Policy properties (% of patients treated, average age of those treated)

below the dotted line of 0 regret). For larger values of treatment benefit, the improvement in

regret diminishes, while a robust approaches that defaults to baseline still achieves improvement.

In Figure 5a, we interpret the range of policies by plotting the percentage of individuals treated

under each log(Γ) value on the x-axis, ranging over scalarization parameters λ (on the y-axis). In

Figure 5b, we plot the average age conditional on being treated with probability greater than 0.5

under a confounding-robust policy. For regions of moderate improvement, the confounding-robust

policies tend to treat younger patients on average. (Artifacts arise when assessing age conditional on

treating very few people).

8. Practical Considerations in Calibrating Uncertainty Sets

In the above we demonstrated the performance of our method as we vary the parameter Γ controlling

the amount of allowed confounding. For practitioners, a remaining important question is how to

choose an appropriate range for Γ: we review recommendations from traditional sensitivity analysis

and then propose an approach specifically designed for the policy learning problem.

8.1. Comparison to Observed Covariates and Treatment Selection

As mentioned in Sections 3 and 4.1, one broad strategy for calibrating a sensitivity model benchmarks

the level of unobserved confounding relative to the informativeness of observed covariates for selection

into treatment (Hsu and Small 2013). For example, we can compute the effect of omitting each

observed covariate on the odds ratio of the propensity score. A decision-maker could use domain

knowledge to assess whether there are plausible unobserved confounders that could have as large an

effect as the observed one, suggesting a plausible upper bound on Γ. While in traditional sensitivity

analysis this suggests how large Γ one should consider in testing the robustness of one’s inferences,

in the context of policy learning, this suggests what amount of confounding should one be concerned
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Figure 6 Calibration plot for WHI case study: for each parameter choice Γ, the curve shows the possible estimated

worst-case regret when confounding may be as large as Γ′, as we vary Γ′.

with protecting against to ensure no harm. In the next section, we discuss how to combine this

strategy with calibration plots, which we develop, to make an informed choice about which Γ to

choose for training a policy.

To illustrate this benchmarking in the WHI case study, we plot the odds ratios induced by dropping

different variables in Section D in the Appendix. This shows that, aside from variables such as age

that are highly predictive of treatment selection, the induced odds ratios are safely bounded by Γ

somewhere in range of 0.8 to 1.2. Therefore, if we believe our omitted confounders cannot be as

informative as age, we should consider the safety of our policy for confounding levels as large as Γ in

the range of 0.8 to 1.2.

8.2. Calibration Plots

Next, we propose a tool to visualize the trade-offs between choosing too-high or too-low a value

for Γ. Choosing too-high Γ leads to better uniform control on regret on a larger range of potential

confounding, but may be conservative if the actual confounding was in fact controlled by a smaller Γ,

while too-low a value of Γ achieves worse uniform control over a larger range of potential confounding.

We propose to analyze this by re-evaluating, for all policies learned using some parameter Γ, that is,

R̂π0
(π̂(Π,WΓ

n , π0);WΓ′
n ), its corresponding estimated worst-case regret over a different uncertainty

set WΓ′
n .

Specifically, we propose to visualize this in a calibration plot produced thus:

• Fix a sequence of Γ values, Γ1, . . . ,ΓK .

• For every k ∈ {1, . . . ,K}, train a confounding-robust policy under parameter Γk, π̂k =

π̂(Π,WΓ
n , π0).

• For every k, k′ ∈ {1, . . . ,K}, evaluate the minimax regret estimate under parameter Γk′ , R̂k,k′ =

R̂π0
(π̂k;W

Γk′
n ).

• For each k, plot R̂k,k′ against Γk.

An example of such a calibration plot for our WHI case study is given in Figure 6.
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First, this plot shows how the regret of a policy trained with one Γ may grow and possibly become

positive if the true confounding may correspond to a larger Γ′ > Γ. In the example of Figure 6,

for very small Γ = 1.05, we see that the policy (which essentially assumes unconfoundedness) may

incur large regret for even small values of Γ in the range of 1.1 to 1.2. Since these values are smaller

than the ranges of Γ we found by considering the informativeness of observed variables, if we may

have omitted a variable as important as these, we may be concerned about the safety of policies

learned using such small values of Γ. Second, as we increase Γ we find that we obtain uniform

control on regret even for confounding corresponding to larger Γ′. We may, however, pay in terms

of performance if confounding were in fact smaller. We can assess this using the plot, which shows

us the deterioration in performance for smaller levels of confounding, Γ′ < Γ, relative to policies

that are trained with lower Γ, potentially even policies that are trained assuming unconfoundedness

(Γ = 1). In the example of Figure 6, we find that using Γ = 1.14 may offer safe control on regret for

Γ′ up to 1.2, ensuring no harm in the ranges deemed of potential concern, while it would cause only

minimal inefficiencies if confounding were really smaller relative to policies that would somehow

exploit this fact. Thus, calibration plots allow one to assess the trade-offs of safety and performance

and choose a policy that best fits the requirements of the application domain.

9. Conclusion

In this paper, we addressed the problem of learning personalized intervention policies from observa-

tional data with unobserved confounding. Standard methods can be corrupted by this confounding

and lead to harm compared to current standards of care, a concern of utmost importance in sensitive

applications such as medicine, public policy, and civics. We therefore develop a framework for

minimax-optimal policy learning under unobserved confounding, which optimizes personalization

policies in view of possible unobserved confounding in observational data, allowing for more reliable

and credible policy evaluation and learning. Our approach optimizes the minimax regret achieved

by a candidate personalized decision policy against a baseline policy. We generalize the class of

IPW-based estimators and construct uncertainty sets centered at the nominal IPW weights that can

be calibrated by approaches for sensitivity analysis in causal inference. A future line of investigation

is a confounding-robust variant based on the doubly robust estimator of policy value.

We prove a strong statistical guarantee that, if the uncertainty set is well-specified, our approach is

guaranteed to do no worse than the standard of care so that it can be safely implemented, and possibly

offer improvement if the data can support it. Specifically, the result proved a finite-sample guarantee

that can be checked. We leverage the optimization structure of weight-normalized estimators of the

policy value to perform policy optimization efficiently by subgradient descent on the robust risk

and we provide uniform convergence bounds showing that our approach achieves the population
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level minimax-optimal regret. Assessments on synthetic and clinical data demonstrate the benefits of

minimax-optimal policy learning, which can recommend personalized treatment while maintaining

strong guarantees on performance relative to baseline preferences. These tools allow an analyst to

find reliable and personalized policies that can safely offer improvements even if there is unobserved

confounding and to assess the different plausible levels of confounding on the performance of a robust

personalized decision policies. We believe this development is absolutely crucial for the practical

adoption of algorithms for personalization that work on the ever growing repositories of observational

data, which are the future of algorithmic decision making due to their size and richness.
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Supplemental Material for

Minimax-Optimal Policy Learning Under Unobserved Confounding

Appendix A: Proofs for optimization structure

Proof of the equivalence of programs (10) and (11). We can easily verify that a feasible solution for one

problem is feasible for the other: for a feasible solution W to (FP), we can generate a feasible solution to (LP)

as wi = Wi∑
iWi

,ψ = 1∑
iWi

with the same objective value. In the other direction, we can generate a feasible

solution to (11) from a feasible fractional program (10) solution W,ψ if we take Wi = wi
ψ
. This solution has

the same objective value since
∑

i
wi = 1. �

Proof of Thm. 3. We analyze the program using complementary slackness, which will yield an algorithm

for finding a solution that generalizes that of Aronow and Lee (2012). At optimality only one of the

primal weight bound constraints, (for nontrivial bounds aΓ < bΓ), wi ≤ ψbΓi or ψaΓ
i ≤wi will be tight. For

the nonbinding primal constraints, at the optimal solution, by complementary slackness the corresponding

dual variable ui or vi will be 0. Since at least n + 1 constraints are active in the dual, the constraint∑
i−bivi + aiui ≥ 0 is also active. So the optimal solution to the dual will satisfy:

minλ

s.t. λ≥ ri +ui− vi, ∀i∈ 1, . . . , n∑
i

−bΓi vi + aΓ
i ui = 0

By non-negativity of ui, vi, note that ui > 0 if ri < λ and vi > 0 if ri > λ such that ui = max(0, λ− ri) and

vi = max(0, ri−λ). Additionally, feasible objective values satisfy λ≤maxi Yi and λ≥mini Yi. Let (k) denote

the kth index of the increasing order statistics, an ordering where r(1) ≤ r(2)≤ · · · ≤ r(n). Then at optimality,

there exists some index (k) where Y(k) < λ ≤ Y(k+1). We can subsitute in the solution from the binding

constraints λ= ri +ui− vi and obtain the following equality which holds at optimality:

ψ
∑

i:(i)<(k)

aΓ
(i)(λ− r(i))−ψ

∑
i:(i)≥(k)

bΓ(i)(r(i)−λ) = 0

Rearranging, we have that

λ(k) =

∑
i:(i)<(k)

aΓ
(i)r(i) +

∑
i:(i)≥(k)

bΓ(i)r(i)∑
i:(i)<(k)

aΓ
(i) +

∑
i:(i)≥(k)

b(i)

Therefore, we only need to check the possible objective values λ(k) for k= 1, . . . , n. The primal solution is eas-

ily recovered from the dual solution: for r(i), take w(i) =
aΓ

(i)I{(i)≤k}+b
Γ
(i)I{(i)>k}∑

i:(i)<(k)

aΓ
(i)

+
∑

i:(i)≥(k)

bΓ
(i)

and t=
∑

i:(i)<(k)

aΓ
(i) +

∑
i:(i)≥(k)

bΓ(i).

Consider the parametric restriction of the primal program, where it is parametrized by the sum of weights

ψ: the value function is concave in ψ and concave in the discrete restriction of ψ to the values it takes at

the solutions of λ(k), ψ(k), and ψ(k) is increasing in k. So the optimal such λ occurs with the order statistic

threshold at (k) for k∗ = inf{k= 1, . . . , n+ 1 : λ(k+ 1)<λ(k)}.
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Lastly, we discuss the case where Y may be discrete, or if it is distributed as a mixture of a continuous

density and atoms. Our characterization of the optimization solution as monotonic and also a function of the

sort order on Y implicitly assumes that outcomes Y are generated from a continuous density, so that Yi = Yj

with probability 0. Our analysis, too, requires this. We show that in the case where tiebreaking among Y is

required, there is a natural lexicographic order. Let (1), ...(i)...(n) denote the ordering that is lexicographically

increasing in (Y(i), b(i)− a(i)): when outcomes Y are discrete, the appropriate sort order includes the weights

b(i)− a(i). Denote the coefficients as ri and b(i)− a(i). Suppose that for a given sort order, the optimum is

achieved at λ(k). We show that the lexicographic sort order, sorting first in y and then increasing in r∆,

preserves the unimodality property. Suppose yk is the same for some interval [k, k+ j]: we want to show that

the discrepancy λ(k)−λ(j) is increasing in i, i≤ j. Denote n(k) =
∑

i≤k riat(Xi)Yi +
∑

i≥k+1 ribt(Xi)Yi and

d(k) =
∑

i≤k riat(Xi) +
∑

i≥k+1 ribt(Xi). Then,

λ(k)−λ(k+ 1) =
n(k)

d(k)
− n(k)−∆yk+1rk+1

d(k)−∆k+1rk+1

=
n(k)(d(k)−∆k+1rk+1)− (n(k)−∆k+1yk+1rk+1)d(k)

d(k)(d(k)−∆k+1rk+1)

= λ(k)
∆k+1rk+1

d(k)− rk+1∆k+1

− ∆k+1yk+1rk+1

d(k)−∆k+1rk+1

=
λ(k)− yk+1

d(k)

rk+1∆k+1
− 1

We show that if this difference changes sign, it continues to decrease: if λ(k)≤ λ(k− 1), and if yk = yk+1, then

λ(k+ 1)<λ(k). By the above analysis, telescoping the finite difference λ(k)−λ(k+ 1),

λ(k)−λ(j) =

j∑
i=1

λ(k+ i)− y(k+i+1)

d(k+i)

r(k+i+1)∆(k+i+1)
− 1

=
λ(k)− yk+j

d(k)

rk+j∆k+j
− 1

so that where y(k) = y(k+j), λ(k)−λ(j) is decreasing as rk+j∆k+j increases.

Proof of Proposition 2 We show via a similar argument to Theorem 3 that the linear program under

the one-to-one change of variable Wi = a(Xi) + (b(Xi)− a(Xi))ui, where ui ∈ [0,1], has a similar solution

structure in the variable ui: that the optimal weights u∗i satisfy that u∗i = u(Yi(π(Ti |Xi)−π0(Ti |Xi))) for

some function u :Y → [0,1] such that u(u(π(t | x)−π0(t | x))) is nondecreasing in y(π(t | x)−π0(t | x)). Define

vectors α,β such that αi = Yi(π(Ti |Xi)−π0(Ti |Xi))(b(Xi)−a(Xi))I[Ti = t] and βi = (b(Xi)−a(Xi))I[Ti = t],

and constants c=
∑n

i:Ti=t
a(Xi)Yi(π(Ti |Xi)−π0(Ti |Xi)), d=

∑n

i:Ti=t
a(Xi).

max
U

α>u+ c

β>u+ d

s.t. 0≤ u≤ 1

By applying the Charnes-Cooper transformation with ũ= u
β>u+d

and ṽ = 1
β>u+d

, the linear-fractional program

above is equivalent to the following linear program:

max
ũ,v

α>ũ+ cṽ

s.t. 0≤ u≤ ṽ

β>ũ+ ṽd= 1, ṽ≥ 0
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where the solution for ũ, ṽ yields a solution for the original program: ũi is such that ui = ũi
ṽ
.

Let the dual variables pi ≥ 0 be associated with the primal constraints ũi ≤ ṽ (corresponding to ui ≤ 1),

qi ≥ 0 associated with ũi ≥ 0 (corresponding to ui ≥ 0), and λ associated with the constraint β>ũ+ dṽ= 1.

The dual problem is:

min
λ,p,q
{λ : p− q+λβ = α,−1>p+λd≥ c, pi ≥ 0, qi ≥ 0}

By complementary slackness, at most one of pi or qi is nonzero. For brevity, let ri = Yi(π(Ti |Xi)−π0(Ti |
Xi))I[Ti = t]. Rearranging the first set of equality constraints gives pi− qi = I[Ti = t](b(Xi)− a(Xi))(ri)−λ),

which implies that

pi = I[Ti = t](b(Xi)− a(Xi)) max(ri−λ,0), qi = I[Ti = t](b(Xi)− a(Xi)) max(λ− ri,0)

Since the constraint −~1>p+λd≥ c is tight at optimality (otherwise there exists smaller yet feasible λ that

achives lower objective of the dual program),∑
i

I[Ti = t](b(Xi)− a(Xi)) max(ri−λ,0) =
∑
i

I[Ti = t]a(Xi)(ri−λ)

This rules out both λ>maxi ri and λ<mini ri, thus r(k) <λ≤ r(k+1) for some k where r(1), r(2), . . . , r(n) are

the order statistics of the sample outcomes. This means that qi > 0 can happen only when ri ≤ r(k), i.e., ui = 0;

and pi > 0 can happen only when i > k+ 1, i.e., ui = 1. Applying this, we may rewrite the above expression to

recover that the optimal λ must be one of λ(k). This proves that the structure of the optimal solution is such

that there exists a nondecreasing function u :R→ [0,1] such that ui = u(Yi(π(Ti |Xi)−π0(Ti |Xi))I[Ti = t])

attains the upper bound. �

Proof of Proposition 1, sharpness of minimax policy regret. It suffices to show that every element in the

interval is achieved by some W ∈WΓ and the converse: every W ∈WΓ achieves an element of the partially

identified interval. The latter follows from the definition of the endpoints as inf
W∈WΓ

Rπ0
(π;W ), sup

W∈WΓ

Rπ0
(π;W ):

every W ′ ∈W is feasible so that Rπ0
(π;W ′) is in the partially identified interval for every feasible W ′. We

then use convexity of the partially identified interval and the linear reformulation of the fractional linear

program to show that every element in the interval is achieved by some W ∈W . Consider a generic element r

in the partially identified interval; by convexity, it can be expressed as the convex combination of the extreme

points of the interval, r = λ inf
W∈WΓ

Rπ0
(π;W ) + (1− λ) sup

W∈WΓ

Rπ0
(π;W ). Let W ∗,W

∗
be the weight vectors

achieving the supremum and infimum, respectively:

W ∗ ∈ arg min
W∈WΓ

Rπ0
(π;W ),W

∗ ∈ arg max
W∈WΓ

Rπ0
(π;W )

We then pass to the equivalent representation of regret in terms of normalized weights w(·, ·, t) = W (·,·,t)
E[W (·,·,t)I[T=t]]

.

Define the corresponding normalized weights w̃∗(·, ·, t), w̃∗(·, ·, t), and analogous normalization factors t, t,

w̃∗(·, ·, t) =
W ∗

E[W ∗ | T = t]

Observe that by linearity of expectation and linearity of the objective function (with respect to normalized

weights), r is realizable by the same convex combination of the minimizing/maximizing weights:

r= λE[Y (π(X)−π0(X))w̃(X,T,Y )] + (1−λ)E[Y (π(X)−π0(X))w̃(X,T,Y )]

= E[Y (π(X)−π0(X))(λw̃+ (1−λ)w̃)]
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It then remains to argue that (λw̃(·, ·, t)+(1−λ)w̃(·, ·, t))∈ψtWΓ
t ,∀t∈ [0, . . . ,m−1], with the conic relaxation

factor ta = λψ
t
+ (1−λ)ψt: this follows by convexity of ψtWΓ

t . Whenever the uncertainty sets are linearly

representable, convex combinations of elements of feasible elements of the set w̃, w̃ additionally satisfy the

linear inequality or equality constraints of φaW . (e.g. the equality constraint E[I [T = t]w(·, ·, t)] = 1.). Again

by linearity, we have that the bounds constraints are satisfied with ψt = λψ
t

+ (1− λ)ψt. The claim of

sharpness follows.

Appendix B: Proofs of Uniform Convergence Guarantees

B.1. Uniform convergence: tail inequalities

In this subsection, we introduce definitions and stability results from empirical process theory in order to

keep the argument self-contained, and provide maximal inequalities for the function classes of interest: Π, and

reparametrizations of the optimal weight functions, WΓ,WΓ
. We will work with the packing and covering

numbers of Π and the spaces of weight functions, and then relate these to bounds on the VC-major dimension

of the policy class. For a subset S of some metric space, the packing number D(ε,S) is the largest number of

points we can take in S that are not within ε distance of one another, and the covering number N(ε,S) is the

smallest number of points we need to take in S so that every other point is within ε of one of these (Pollard

1990).8 First we introduce the stability results from empirical process theory which will yield bounds on the

covering numbers for the function classes of interest. We define the class of VC-hull functions, broader than

VC-subgraph and related to VC-major, but which result in bounded Dudley entropy integrals.

Definition EC.1 (VC-hull class). Define conv(F), the convex hull of F :

conv(F) = {
∑
f∈F

λff : f ∈F ,
∑
f

λf = 1, λf ≥ 0, λ 6= 0 for finitely many f}

conv(F) is the pointwise sequential closure of the convex hull of F : f ∈ conv(F) if there exist fn ∈ conv(F)

such that fn(x)→ f(x) for all x in the domain of f , as n→∞. If the class (F) is VC-subgraph, then conv(F)

is a VC hull class of functions.

A bounded VC-major class is a VC-hull class. Since VC-hull classes are defined with respect to the sequential

closure of the convex hull (conv(F)) of another function class F , we frequently refer to F as the generating

VC-subgraph class for its corresponding VC-hull class. VC-hull classes provide a constructive definition for a

VC-major class in relation to a VC-subgraph class, and satisfy the following bound on the entropy integral of

the covering numbers:

Theorem EC.1 (Theorem 2.6.9 of Van Der Vaart and Wellner (1996); Ball and Pajor (1990)).

Suppose there is a class of functions F , with measurable square integral envelope F with bounded second

moments, that is VC-subgraph of dimension V , such that D(ε‖F‖2 ,F ,‖·‖2)≤C
(

1
ε

)V
. Then, for conv(F),

the closure of the convex hull of F (e.g. the VC-hull class that is generated by F), there exists a universal

constant K depending on C and V only such that

logD(ε‖F‖2 ,F ,‖·‖2)≤K
(

1

ε

)2V/(V+2)

8 The packing and covering numbers are closely related by the inequality N(ε, t0)≤D(ε, T0)≤N(ε/2, t0).
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Working with VC-major (equivalently, VC-hull) classes allows us to use stronger stability results such as the

following stability result on the stability of composition of the class of monotone functions and VC-major

function classes, though at the expense of introducing a universal constant in the Dudley entropy integral.

Lemma EC.1 (Proposition 4.2 of Dudley (1987)). If H is a VC-major class for the generating class

C, and Und denotes the set of all nondecreasing functions from R 7→ [0,1], and

F ..= {u ◦h : h∈H, u∈ Und},

then F is a major class for the monotone derived class D of C. Therefore if H is a VC-major class, so is F .

These stability results allow us to prove, e.g. Proposition 3, that it is sufficient to restrict to optimizing

over the set of worst-case weights (with additional structure).

Proof of Proposition 3 The result follows from Proposition 2 by applying Lemma EC.1. �

We introduce the uniform convergence setup we use to provide tail inequalities. We will apply a standard

chaining argument with Orlicz norms and introduce some notations from standard references, e.g. Pollard

(1990), Vershynin (2018), Wainwright (2019). A function φ : [0,∞)→ [0,∞) is an Orlicz function if φ is

convex, increasing, and satisfies φ(0) = 0, φ(x)→∞ as x→∞. For a given Orlicz function φ, the Orlicz norm

of a random variable X is defined as ‖X‖φ = inf{t > 0: E[Φ(‖X‖ | t)]≤ 1}. The Orlicz norm ‖Z‖Φ of random

variable Z is defined by

‖Z‖Φ = inf{C > 0: E[Φ(Z/C)]≤ 1}.

A constant bound on ‖Z‖Φ constrains the rate of decrease for the tail probabilities by the inequality

P(|Z| ≥ t)≤ 1/Φ(t/C) if C = ‖Z‖Φ. For example, choosing the Orlicz function Φ(t) = 1
5

exp(t2) results in

bounds by subgaussian tails decreasing like exp(−Ct2), for some constant C.

We next introduce the tail inequalities that use a standard chaining argument to control uniform convergence

over π ∈Π and appropriate reparametrizations of the weight functions. First we define the following function

classes conditional on all the data, (X1:n, T1:n, Y1:n). For π, we consider a shifted function class with an

envelope function: let fi(π) = (π(Ti |Xi)−π0(Ti |Xi))Yi where

F(X1:n, T1:n, Y1:n) = {(f1(π), . . . , fn(π)) : π ∈Π}.

Next we introduce function classes for the weight functions: the minimax-regret achieving functions W ∈WΓ
(π)

may also be written as compositions of the nominal weight functions with a function u,

W ◦u(π) = aΓ
t (x) +u(y(π(t | x)−π0(t | x)))(bΓt (x)− aΓ

t (x)),

where u∈ UΓ(π), the class of nondecreasing functions in the index y(π(t | x)−π0(t | x)) for a fixed policy π,

defined as the following:

UΓ(π) =
{
u(x, t, y) : R 7→ [0,1] : u(y(π(t | x)−π0(t | x))) is monotonic nondecreasing

}
.

Analogously, we let UΓ
=∪π∈Π UΓ(π) denote the set of nondecreasing functions on the same index, but now

ranging over π ∈Π. Clearly, optimizing over W
Γ
is equivalent to optimizing over UΓ

:
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Corollary EC.1. Let UΓ
=∪π∈Π UΓ(π). Then, for any π ∈Π,

Rπ0
(π;UΓ

) =
m−1∑
t=0

sup
u∈UΓ

R(t)
π0

(π;W (u)), R̂π0
(π;UΓ

n) =
m−1∑
t=0

sup
u∈UΓ

n

R̂(t)
π0

(π;W (u)).

This characterization is a consequence of Proposition 2 and its proof, which studies the linear change of

variables from W to u.

For this section, we consider maximal inequalities for the function classes for the enveloped policy class F
and policy-optimal weight functions. Let εi ∈ {−1,+1}, be iid Rademacher variables (symmetric Bernoulli

random variables with value −1,+1 with probability 1
2
), distributed independently of all else.

Lemma EC.2 (Uniform convergence of policy function π over envelope class F). Let

f(π)≤ ‖F‖2 ≤C be a bound on the envelope function for f ∈ F . Then for n large enough, there exists a

universal constant KΠ that depends only on the VC-major dimension of Π, such that with probability > 1− δ,

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

(fi(π)−E[f(π)])

∣∣∣∣∣≤ 9/2CKΠ

√
log(5/δ)

n
(EC.1)

Proof. We first bound the deviations uniformly over the policy class and introduce the following empirical

processes,

M = sup
f∈F

∣∣∣∣∣
n∑
i=1

(fi(π)−E[f(π)])

∣∣∣∣∣ , L= sup
f∈F

∣∣∣∣∣
n∑
i=1

εifi(π)

∣∣∣∣∣ .
By a standard symmetrization argument, applying Jensen’s inequality for the convex function Φ of the

symmetrized process (e.g. Theorem 2.2 of Pollard (1990)), we may bound the Orlicz norm of the maxima of

the empirical process by the symmetrized process, conditional on the observed data:

E[Φ(M)]≤E[Φ(2L)].

Taking Orlicz norms with Φ(t) = 1
5

exp(t2), we apply a tail inequality on the Orlicz norm of the symmetrized

process Φ (2L), under the assumption of bounded outcomes. Applying Dudley’s inequality to the symmetrized

empirical process L, (e.g. Theorem 3.5 of Pollard (1990)), we have that

Eε
[
exp(L2/J2) | D

]
≤ 5 for J = 9‖F‖2

∫ 1

0

√
log(D(‖F‖2 ζ,F(X1:n)))dζ. (EC.2)

Then, applying Theorem EC.1, we have that there exists a universal constant KΠ (depending only on the

VC-major dimension of the policy class), such that

logD(‖F‖2 ζ,F(X1:n, T1:n))≤K
(

1

ζ

) 2v
v+2

.

The corresponding Dudley entropy integral is bounded by
∫ 1

0

√
K
(

1
ζ

)2v/(v+2)

dζ ≤
√
K v+2

2
=KΠ. By Markov’s

inequality, we have that

P
(

1

n
L> t

)
≤ 5 exp(−t2n2/‖L‖22) = 5 exp(−t2n/J2C2),

so that therefore,
1

n
M ≤

9/2CKΠ
√

log(5/δ)√
n

.

�
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Lemma EC.3 (Uniform convergence of weight functions u(y(π(t | x)−π0(t | x))) over UΓ(π)).

With probability ≥ 1− p, we have that

sup
u∈UΓ(π)

1

n

∣∣∣∣∣
n∑
i=1

u(Yi(π(Ti |Xi)−π0(Ti |Xi)))−E[u(Y (π(T |X)−π0(T |X)))]

∣∣∣∣∣≤ 9

√
2π log(1/p)

n

Proof. We define the maxima of the empirical process (and its symmetrization), H,S, for the weight

function u∈ UΓ(π), which maximizes over u for a fixed π:

H = sup
u∈UΓ(π)

∣∣∣∣∣
n∑
i=1

u(Yi(π(Ti |Xi)−π0(Ti |Xi)))−E[u(Y (π(T |X)−π0(T |X)))]

∣∣∣∣∣
S = sup

u∈UΓ(π)

∣∣∣∣∣
n∑
i=1

εiu(Yi(π(Ti |Xi)−π0(Ti |Xi)))

∣∣∣∣∣
Taking Orlicz norms and symmetrizing as in the proof of Lemma EC.2, we have that E[Φ(H)]≤E[Φ(2S)].

We show that the entropy integral (log of the covering numbers) is bounded using the VC-hull property of

the class of non-decreasing functions taking values on [0,1] ultimately is VC-hull but not VC-subgraph Van

Der Vaart and Wellner (1996). UΓ(π) is in fact included in the symmetric convex hull of I, UΓ(π)⊆ conv(I).

(This follows since taking differences of indicator thresholds recovers any interval, e.g. Example 3.6.14 of Giné

and Nickl (2016)). We apply Theorem EC.1 (relating the log-covering numbers to the entropy integral for

VC-hull classes and their generating VC-subgraph classes), and using a result from Sec. 3 of Van Der Vaart

et al. (1996) to extract an explicit bound for this class of functions:

logD(ζ,UΓ(π)(X1:n, T1:n, Y1:n))≤ 1

ζ
log(

1

ζ
).

The Dudley entropy integral is in turn bounded by
∫ 1

0

√
1
ζ

log( 1
ζ
)dζ ≤

√
2π. Next, we apply Theorem 3.5 of

Pollard (1990), in order to bound mgf E
[
exp

(
1
81

1
2π

S2

n

)]
≤ 5 such that we can use the subgaussian tail bound

P
[

1
n
S ≥ t

]
≤ 5 exp

(
− t2

162π
n
)
. Therefore, with probability ≥ 1− p, we have that

1

n
S ≤ 9

√
2π log(1/p)

n

�

An analogous result holds for the restriction of the process to a specific treatment partition t.

Corollary EC.2. With probability ≥ 1− p, we have that

sup
u∈UΓ(π)

1

n

∣∣∣∣∣
n∑
i=1

u(Yi(π(Ti |Xi)−π0(Ti |Xi)))I[Ti = t]−E[u(Y (π(T |X)−π0(T |X)))I[T = t]]

∣∣∣∣∣≤ 9

√
2π log(1/p)

n

Next, we use the previous results to obtain a uniform convergence result for the minimax weight functions

when we optimize jointly over policy functions π and weight functions u(y(π(t | x)−π0(t | x)))∈ UΓ
. Under

Proposition 2, the weight function class remains monotone, even under composition with a VC-major policy

class: however the dimension of the resulting class is not explicit from the stability result.

Lemma EC.4 (Uniform convergence of u(y(π(t | x)−π0(t | x))) over UΓ
). With probability ≥ 1 − p,

for some universal constant K, which depends only on the VC-major dimension of the composition function

class in Proposition 2 v, we have that

sup
u∈UΓ

1

n

∣∣∣∣∣
n∑
i=1

u(Yi(π(Ti |Xi)−π0(Ti |Xi)))−E[u(Y (π(T |X)−π0(T |X)))]

∣∣∣∣∣≤ 9/2
√
K
v+ 2

2

√
log(1/p)

n
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Proof. We first apply Lemma EC.1 (a stability result for the composition of monotone function classes

with VC-major classes) under Assumption 3. Then, applying Theorem EC.1, there exists a universal constant

KΠ, which depends only on the VC-major dimension v of the composition function class in Proposition 2,

such that:

logD(ζ,UΓ
(X1:n, T1:n, Y1:n))≤K

(
1

ζ

) 2v
v+2

The result follows by the typical chaining argument (e.g. Lemma EC.3), but instead bounding the Dudley

entropy integral by
∫ 1

0

√
K (1/ζ)

2v
v+2 dζ ≤

√
K v+2

2
. �

In the main text, we encapsulate dependence on K and v as the universal constant KΠ.

B.2. Proof of Theorem 2

Proof of Theorem 2 The proof of uniform convergence over π ∈Π,W ∈WΓ
follows by decomposing the

regret, then applying the tail inequalities of the previous section.

Regret Decomposition The following lemma allows us to study the minimax regret via uniform convergence

arguments.

Lemma EC.5.

sup
y∈S

h(y)− sup
y∈S

g(y)≤ sup
y∈S
{h(y)− g(y)} (EC.3)

Proof. To see this, consider y∗1 ∈ arg maxh(y), y∗2 ∈ arg maxg(y) and y∗ ∈ arg maxh(y)− g(y): then

h(y∗1)− g(y∗2)≤ h(y∗1)− g(y∗1)≤ h(y∗)− g(y∗)

�

We use Proposition 2 and Lemma EC.5 in the following minimax regret decomposition where πCR = 1
m
:

sup
π∈Π

{
sup

W∈WΓ(π)

R̂π0
(π,W )− sup

W∈WΓ(π)

Rπ0
(π,W )

}

sup
π∈Π

{
sup

W∈WΓ(π)

R̂π0
(π,W )− sup

W∈WΓ(π)

Rπ0
(π,W )

}
≤ sup
π∈Π,W∈WΓ(π)

R̂π0
(π,W )−Rπ0

(π,W )

≤ sup
π∈Π,W∈WΓ(π)

{R̂πCR
(π,W )−RπCR

(π,W )}+ sup
W∈WΓ(π0)

{R̂πCR
(π0,W )−RπCR

(π0,W )}︸ ︷︷ ︸
3©

Then, using subadditivity of the supremum, that WΓ is a product uncertainty set, and the elementary

decomposition a
b
− c

d
= a b−d

bd
+ a−c

d
, we further decompose the minimax regret:

sup
π∈Π,W∈WΓ(π)

{R̂πCR
(π,W )−RπCR

(π,W )}

≤ sup
π∈Π,W∈WΓ(π)

{
m−1∑
t=0

En[(π(T |X)− 1
m

)YW I[T = t]])

En[W I[T = t]]
−

E[(π(T |X)− 1
m

)YW I[T = t]]

E[W I[T = t]]

}

≤ sup
π∈Π,W∈WΓ(π)

m−1∑
t=0

(En−E)((π(T |X)− 1
m

)YW I[T = t])

E[I [T = t]W ]
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+ sup
π∈Π,W∈WΓ(π)

m−1∑
t=0

En[(π(T |X)− 1
m

)YW I[T = t]])

En[W I[T = t]]

(En−E)(W I[T = t])

E[I [T = t]W ]

≤ sup
π∈Π,W∈WΓ(π)

(En−E)((π(T |X)− 1/m)YW )︸ ︷︷ ︸
1©

+ |B|
m−1∑
t=0

sup
W∈WΓ(1)

|(En−E)(W I[T = t])|︸ ︷︷ ︸
2©

The last inequality follows by applying submultiplicativity of the supremum (for absolute values), and

since E[W I[T = t]] = 1. The upper bound sup
π∈Π,W∈WΓ(π)

∣∣∣En[(π(T |X)− 1
m

)YW I[T=t]])

En[W I[T=t]]

∣∣∣ ≤ B follows since this

term simply evaluates the minimax regret over WΓ
(Π): due to weight normalization, it is deterministically

bounded by B under Assumption 1. We now apply the tail inequalities of the previous section to the maximal

processes of 1©, 2©, 3©, in this order.

1© Reducing a bound on product function class to the individual function classes. Recall the weight

functions are re-parametrized with respect to u: throughout this analysis, for brevity, we denote this by

Wi(u(π)):

Wi(u(π)) = aΓ
Ti

(Xi) + (bΓTi(Xi)− aΓ
Ti

(Xi))uTi(Yi(π(Ti |Xi)−
1

m
)).

Now define (Q,P ) for the quantities for the empirical process for the product function class and its

symmetrized version:

Q= sup
f∈F,W∈WΓ(π)

∣∣∣∣∣
n∑
i=1

(fi(π)Wi(u(π)))−RπCR(π,W ))

∣∣∣∣∣ , P = sup
f∈F,W∈WΓ(π)

∣∣∣∣∣
n∑
i=1

εifi(π)Wi(u(π)))

∣∣∣∣∣
By a symmetrization argument (Theorem 2.2 of Pollard (1990)), we have that

EΦ(Q)≤E[Φ(2P )]

We now reformulate the maximal inequality over the product function class in terms of Orlicz norms on

each function class F ,WΓ
separately, using the fact that observation fW = 1

4
(f +W )2− 1

4
(f −W )2). For the

weight function Wi(u(π)), we will use the contraction map λ(s) = 1/2maxx b(x)−minx a(x) min(1, s2). We then

decompose the terms including the product of f,W to the sums of squares of f,W , optimize over W ∈WΓ

rather than W ∈WΓ(π), and then apply a contraction result in order to use results on convergence over

π ∈Π, u∈ UΓ
. We next apply inequality 5.5. of Pollard (1990), which decomposes the maximal inequality over

the addition of function classes, EεΦ( sup
f∈F,WΓ(π)

|ε · (f +W )|)≤ 1
2
EεΦ

(
2sup
f∈F
|ε · f |

)
+ 1

2
EεΦ

(
2 sup
WΓ(π)

|ε ·W |

)
.

E[Φ(2P )]

≤EεΦ

(
sup

f∈F,WΓ(π)

1

2

∣∣ε · (f(π) + (aΓ + (bΓ− aΓ)u))2
∣∣)+EεΦ

(
sup

f∈F,WΓ(π)

1

2

∣∣ε · (f(π)− (aΓ + (bΓ− aΓ)u))2
∣∣)

≤EεΦ

(
sup

f∈F,WΓ(π)

∣∣∣∣12ε · (f(π)± (bΓ− aΓ)u)2

∣∣∣∣
)

+
1

2
EεΦ

(
sup

f∈F,WΓ(π)

2
∣∣ε · aΓ(f(π)± (bΓ− aΓ)u)

∣∣)

≤ 3EεΦ

(
8 sup
f∈F

∣∣∣∣∣
n∑
i=1

εifi(π)

∣∣∣∣∣
)

+
1

2
EεΦ

(
4

1

ν
sup
f∈F

∣∣∣∣∣
n∑
i=1

εifi(π)

∣∣∣∣∣
)

+ 3EεΦ

(
8

1

ν
(Γ− 1

Γ
) sup
u∈UΓ

∣∣∣∣∣
n∑
i=1

εiu(Yi(π(Ti |Xi)−
1

m
))

∣∣∣∣∣
)

+
1

2
EεΦ

(
4

1

ν2
(Γ− 1

Γ
) sup
u∈UΓ

∣∣∣∣∣
n∑
i=1

εiu(Yi(π(Ti |Xi)−
1

m
))

∣∣∣∣∣
)

The last inequality follows from a Lipschitz contraction result (see e.g. Theorem 5.7 of Pollard (1990)). From

the above decomposition, it remains to apply the tail inequalities of lemmas EC.2 to EC.4 and a contraction

argument separately for the function classes on F ,UΓ
.
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For n large enough, with probability greater than 1− p1, where p1 = p

6
,

E[Φ(2P )]≤ 18(12 + 1/ν)(BKΠ + 2
1

ν
(Γ− 1

Γ
)KΠ)

√
log(30/p)

n

2© We next bound the maximal deviations of the term

m−1∑
t=0

sup
u∈UΓ(1)

∣∣∣∣∣ 1n∑
i

I[Ti = t]W (t,Xi, Yi)−E[I[T = t]W (t,X,Y )]

∣∣∣∣∣ .
Note that studying uniform convergence of 2©, 3©, we can restrict attention to nondecreasing weights which

are nondecreasing in a fixed policy, UΓ(1). We apply the tail inequality of Lemma EC.3 with a contraction

argument, and obtain a bound on the maxima of the absolute value deviation by an argument of Remark

8.1.5 of Vershynin (2018): note that the zero function is an element of the class of non-decreasing functions

on R, and apply Dudley’s inequality to the increment process
∣∣∣D̂t− 0

∣∣∣. Choosing p2 = p

3m
, and taking a union

bound over the event that each bound holds for each treatment partition t, we obtain the high probability

bound that
m−1∑
t=0

sup
u∈UΓ(1)

∣∣∣∣∣ 1n∑
i

I[Ti = t]W (t,Xi, Yi)−E[I[T = t]W (t,X,Y )]

∣∣∣∣∣≤ 18m1/ν(Γ− 1
Γ

)
√

log(15m/p)
√
n

3© Lastly, we bound supu∈UΓ(π0)

∣∣∣R̂πCR(π0,W (u(π0)))−RπCR(π0,W (u(π0)))
∣∣∣ , follows from the tail inequality

of Lemma EC.3, such that for n large enough, , with probability greater than 1− p2, where p2 = p

3
,

sup
u∈UΓ(π0)

∣∣∣R̂πCR(π0,W (u(π0)))−RπCR(π0,W (u(π0)))
∣∣∣≤ 18B1/ν(Γ− 1

Γ
)
√

log(15/p)
√
n

Putting together the above bounds on terms 1©, 2©, 3© we have that with probability ≥ 1− p,:

sup
π∈Π

∣∣∣R̂π0
(π;WΓ

n )−Rπ0
(π;WΓ)

∣∣∣
≤ 18(12 + ν−1)(BKΠ + ν−1(Γ−Γ−1)(2KΠ +B+m))

√
log(15m/p)

n

�

B.3. Proof of Theorem 1

Proof of Theorem 1 We analyze uniform convergence for the true propensity weights, assumed to be in

the uncertainty set, W ∗ ∈ U . We use the tail inequalities of lemma EC.2, as well as standard Hoeffding

inequalities for the sample expectations, with the true inverse propensity weights W ∗
t (Xi, Yi). Define

D̂∗t = En[(π(t |X)− 1/m)W ∗I [T = t]].

First consider an analogous regret decomposition as in the proof of Theorem 2:

sup
π∈Π
{R̂π0

(π,W ∗)−Rπ0
(π,W ∗)}

≤ sup
π∈Π
{R̂πCR

(π,W ∗)−RπCR
(π,W ∗)}+

(
R̂πCR

(π0,W
∗)−RπCR

(π0,W
∗)
)
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Note that the second term can be bounded by application of Hoeffding’s inequality, such that with probability

≥ 1− p3, ∣∣∣R̂πCR(π0,W
∗)−RπCR(π0,W

∗)
∣∣∣≤ B/ν

√
log(2/p3)

2n

Next, we bound the regret deviation uniformly over π:

sup
π∈Π
{R̂πCR

(π,W ∗)−RπCR
(π,W ∗)}

≤ sup
π∈Π

1

n

∑
i

(π(Ti |Xi)− 1
m

)W ∗
i Yi

E[D̂Ti ]
−Rπ0

(π,W ∗) +
1

n

∑
i

(π(Ti |Xi)− 1
m

)W ∗
i Yi

E[D̂Ti ]

E[D̂Ti ]− D̂Ti

D̂Ti

≤ sup
π∈Π

{
1

n

∑
i

(π(Ti |Xi)−
1

m
)W ∗

i Yi−Rπ0
(π,W ∗)

}
+
B

ν

∑
i

1

n

E[D̂Ti ]− D̂Ti

D̂Ti

We apply Lemma EC.2 (e.g. a standard chaining argument with bounded envelope function WY ≤ B/ν) to

bound the first term. Therefore, we have that with high probability greater than p2, the first term is bounded

by:

sup
π∈Π

{
1

n

∑
i

(π(Ti |Xi)−
1

m
)W ∗

i Yi−Rπ0
(π,W ∗)

}
≤ 9B

2ν

√
log(5/p2)

n
.

We then bound the second term, B
ν

∑
i

1
n

E[D̂Ti ]−D̂Ti
D̂Ti

: instead of summing the second term over treatments t,

observe that for nt =
∑

i I[Ti = t],

B/ν
∑
i

1

n

E[D̂Ti ]− D̂Ti

D̂Ti

= B/ν
1

n

m−1∑
t=0

nt

∣∣∣D̂t− 1
∣∣∣

D̂t

We proceed conditionally on the event that nt
n
∈ [ 1

2
ρt,

3
2
ρt], ∀t∈ {0, . . . ,m− 1}, where ρt = P(T = t) is the

marginal probability of treatment. By Hoeffding’s inequality, P(
∣∣nt
n
− ρt

∣∣ ≥ ρt/2) ≤ 2exp(− 1
2
ν2ρ2

tn), so it

suffices to choose p4 ∈ [0,1] such that 1
ν

√
log(2m/p4)

2n
≤ ρ2

t /2,∀t ∈ {0, . . . ,m− 1} (after taking a union bound

over the m treatment groups). Next, we bound |D̂t−1|
D̂t

: by Hoeffding’s inequality,

P(
∣∣∣D̂t− 1

∣∣∣≥ ε)≤ 2 exp(−2ν2ε2n)

For p1 ∈ [0,1] such that 1
ν

√
log(2m/p1)

2n
≤ 1 then with probability at least 1 − p1, 1

D̂t
≤ 2 and |(1−D̂t)|

D̂t
≤

2
ν

√
log(2/mp1)

2n
,∀t∈ {0, . . . ,m− 1} (again taking a union bound over t∈ {0, . . . ,m− 1}). Now combining the

above tail inequalities and applying the union bound, we have that for p1, p2, p3, p4 = δ
4
for p > 0, with high

probability greater than 1− p,

sup
π∈Π
{R̂π0

(π,W ∗)−Rπ0
(π,W ∗)} ≤ B

ν

√
log(8/p3)

2n
+ 36

B
√
v

ν

√
log(20/p)√

n
+

3

ν

√
log(8m/p1)

2n

≤ 1

ν
(B(1 +

9

2
K(v+ 2)) + 3)

√
2 log(max(8m,20)/δ)

n

Lastly, the proof follows by noting that by assumption of well-specification, W ∗
t ∈ Wt, so there exists

ψt > 0,∀t ∈ T such that W∗t
ψt
∈Wt, and we have that therefore R̂π0

(π,W ∗)≤ supW∗∈W R̂π0
(π,W ∗). And, in

the statement, we have further folded all v-dependent constants into one.
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B.4. Proof of Proposition 4

Proof of Proposition 4 We prove that the budgeted uncertainty set solution has bounded entropy integral

by first taking a partial Lagrangian dual with respect to the budget constraint, then invoking strong duality to

study a partial maximization: we show the solution can be reparametrized to instead range over the space of

nondecreasing functions on [0,1], U , for the fixed optimal η∗,ψ∗. We then proceed to argue that the structural

result implies, using the equivalence of the linearized fractional program and the fractional program, that we

may then correspondingly optimize over the values of η,ψ, and the space of nondecreasing functions. This

implies that it is sufficient to restrict the optimization to the set of nondecreasing functions (which satisfy

the budget constraint), and we may optimize over a set of restricted complexity. This, for example, allows us

to leverage the same stability results as in the proof of Theorem 2 to obtain the same regret guarantees.

We first analyze the linearized budgeted linear program in Section 6.1 (that is, post-Charnes-Cooper

transformation) for Q̂(r;WΓ,Λ
n ). Throughout, we presume that Γ is some fixed input and write a, b for aΓ, bΓ.

We also analyze the problem within a single treatment component, and reindex i= 1, . . . , n to be counting

conditional on a treatment component.

Q̂(r;WΓ,Λ
n ) = maxψ≥0,w≥0,d

n∑
i=1

wiri

s.t.
n∑
i=1

di ≤Λψ,

n∑
i=1

wi = 1

aiψ≤wi ≤ biψ ∀ i= 1, . . . , n

di ≥wi− W̃iψ ∀ i= 1, . . . , n

di ≥ W̃iψ−wi ∀ i= 1, . . . , n

In the following, we condense the linearized representation for the absolute value variable di and write

di =
∣∣∣wi− W̃iψ

∣∣∣ for brevity. First, we take the Lagrangian partial dual, dualizing the normalized budget

constraint
∑

i di ≤Λψ with Lagrange multiplier η:

Q̂(r;WΓ,Λ
n ) = min

η≥0
max
w,d,ψ
{
∑
i

wiri + η(Λψ−
∑
i

di) : aψ≤w≤ bψ,
∑
i

wi = 1, di =
∣∣∣wi− W̃iψ

∣∣∣}
We consider a partial maximization, and substitute with the transformation ui = wi−aiψ

ψ(bi−ai)
, u∈ [0,1]. Define

m(u,ψ, η) ..=
∑
i

ri(ψ(bi− ai)ui +ψai) + η∗(Λψ−
∑
i

di)

S(ψ) ..=

{∑
i

ψ(bi− ai)ui +ψai = 1, di =
∣∣∣wi(u)− W̃iψ

∣∣∣ ,0≤ ui ≤ 1, i= 1, . . . , n

}
so that

Q̂(r;WΓ,Λ
n ) = min

η≥0
max

t>0,u∈S(ψ)
m(u,ψ, η)

By a standard min-max theorem, we may interchange the min and maximum, and by strong duality (with the

Slater point of u such that wi(u) = W̃ψ), there exists a saddle point pair (u∗,ψ∗), η∗ that are best-responses to

each other such that Q̂(r;WΓ,Λ
n ) =m(u∗, v∗, η∗). We argue further that Q̂(r;WΓ,Λ

n ) = maxu∈S(ψ∗)m(u,ψ∗, η∗);

e.g. we may fix a partial best response of (u,ψ∗) and η∗, and recover the optimal solution when we
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optimize over u. (We show this by contradiction: Suppose not: that ũ∗ ∈ arg maxum(u,ψ∗, η∗) is such that

m(ũ∗,ψ∗, η∗)>m(u∗,ψ∗, η∗). This contradicts strong duality. On the contrary, m(ũ∗,ψ∗, η∗)<m(u∗,ψ∗, η∗)

is not possible since u∗ is feasible for ψ∗, η∗ and therefore achieves a better objective value; so this contradicts

definition of ũ∗ ∈ arg maxum(u,ψ∗, η∗).) Therefore, by the preceding argument,

Q̂(r;WΓ,Λ
n ) = max

u∈S(ψ∗)
m(u,ψ∗, η∗)

We further simplify and drop terms from the parametric objective m(u,ψ∗, η∗) that are constant given η∗,ψ∗

and therefore do not vary with u, such that we recover the globally optimal u∗ by optimizing the reformulated

objective m′(u,ψ∗, η∗):

m′(u,ψ∗, η∗) ..=
∑
i

ri(ψ
∗(bi− ai)ui)− η∗

∑
i

di)

u∗ ∈ arg max
u∈S(ψ∗)

m′(u,ψ∗, η∗)

We next prove that we can further reparametrize optimization of the objective function m′(u,ψ∗, η∗) over

u∈ S(ψ∗) to the class of u vectors that is nondecreasing in r,

U = {u : R 7→ [0,1], u monotonically nondecreasing}.

We prove the following technical result, which establishes a structural result on the globally optimal u∗(ψ,η)

which establishes that is of bounded complexity.

Lemma EC.6 (Nondecreasing parametrization of optimal u for budgeted uncertainty set).

Fix ψ,η≥ 0: then the correspondingly optimal rescaled weight function u∗(ψ,η), defined as the solution to the

optimization problem,

u∗(ψ,η)∈ arg max{ψ
∑
i

(bi− ai)
(
ri− η sgn(wi(u)> W̃ψ)

)
ui : 0≤ u≤ 1,

∑
i

ψ(bi− ai)ui +
∑
i

ai = 1},

is non-decreasing in the coefficient index vector r. Therefore, u∗(ψ,η) is nondecreasing in r for all ψ,η.

Proof of Lemma EC.6 By the preceding arguments, we have established the optimal subproblem solution

can be written as the following program:

Q̂(r;WΓ,Λ
n ) = max

u∈S(ψ)
max
ψ>0

min
η≥0

∑
i

ψ(bi− ai)
(
ri− η sgn(wi(u)> W̃ψ)

)
ui

0≤ u≤ 1∑
i

ψ(bi− ai)ui = 1−
∑
i

ai

The idea is that given the optimal dual variable η∗ and scaling factor ψ∗, the problem reduces to a similar

problem as the fractional knapsack problem: it is sufficient to sort first on the multipliers ri; then fill the

knapsack lexicographically in order of distance
∣∣∣wi(u)− W̃ψ∗

∣∣∣ (since the η∗ penalty is fixed and identical

for all units). We will prove the reparametrization over S(ψ∗)∩U by contradiction. Suppose not: that the

optimal solution, u∗ had indices i, i′ such that ri > ri′ but ui <ui′ . We enumerate the following cases that

exhaust the possible orderings of ui, ui′ relative to W̃iψ
∗, W̃i′ψ

∗:
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• wi(ui)< W̃iψ
∗,wi′(ui′)< W̃i′ψ

∗ or wi(ui)> W̃iψ
∗,wi′(ui′)> W̃i′ψ

∗: For any same-ordered set we could

generate a contradiction by increasing ui without generating a change in sign that changes the η∗ coefficient.

• wi(ui)> W̃iψ
∗,wi′(ui′)< W̃i′ψ

∗: increasing ui cannot change sign of η∗.

• wi(ui) = W̃iψ
∗: We need only consider a simultaneous perturbation increasing ui and moving ui′ such

that di′(ui′) is decreasing; either such a perturbation increases ui′ and overall increases the objective, or

decreases ui′ (which is offset by the increase due to ri > r′i, and offsets the increase in di(ui).

�

Note that the characterization of Lemma EC.6, which states that the optimal ψ,η-parametrized solution

u∗(ψ,η) is nondecreasing in r, in fact characterizes the structure of the optimal set of u(ψ,η) for all ψ,η

since the index for monotonicity, r, is independent of the parameters ψ,η. Of course, the particular optimal

solution u∗(ψ,η) may change in ψ,η. As a consequence,

Q̂(r;WΓ,Λ
n ) = max

u∈S(ψ∗)∩U
m(u,ψ∗, η∗)

Combining this structural result with the preceding arguments, we establish that we can equivalently search

over scalars ψ,η > 0, and u∈ S(ψ)∩U .

Q̂(r;WΓ,Λ
n ) = max

u∈S(ψ)∩U
max
ψ>0

min
η≥0

∑
i

ψ(bi− ai)
(
ri− η sgn(wi(u)> W̃ψ)

)
ui

0≤ u≤ 1∑
i

ψ(bi− ai)ui = 1−
∑
i

ai

We note that by the equivalence of the linear-fractional programs and linearized program, e.g. via the

primal variables W,U = W−a
(b−a) on the one hand and the scalarized w=Wψ,ψ =

∑
iW,u= w−aψ

ψ(b−a) on the other

hand, (and the implied transformations on d), our structural result that it is equivalent to optimize over

u(ψ,η) nondecreasing implies that U∗(ψ,η) = u∗(ψ,η)

ψ
,U ∈ [0,1] is also a monotonically nondecreasing function

in r. (Multiplying by the scalar ψ > 0 simply induces an isomorphism to the same set of monotonically

nondecreasing functions in r). Using this final transformation, we show that our structural result holds also

for the original primal problem.

Q̂(r;WΓ,Λ
n ) = max

U∈U

{∑
iUi(bi− ai)ri + airi∑
iUi(bi− ai) + ai

:
∑

di(Ui)≤Λ

}
To contextualize this characterization, we remark that this is weaker than Theorem 3 as this does not provide

us with an algorithmic solution: nonetheless, proving this result that it is sufficient to optimize over U , even

in the primal nonconvex fractional formulation, is sufficient to establish uniform convergence. Finally, we

specialize the analysis to the setting for our estimator, where ri = π(Ti |Xi)−π0(Ti |Xi)Yi, which introduces

a dependence on π(Xi). (Note that the dependence is only on X through the function π, which is of restricted

complexity.) Since we only required the VC-major property of u(r), applying Lemma EC.1 is sufficient to

verify that the VC-major property holds when we also range the policy π ∈Π.
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B.5. Proof of Proposition 5

Proof of Proposition 5 The proof is similar to that of Proposition 6: we study sensitivity analysis in the

dual of the linearized linear program, in order to isolate an additive approximation error term of the sample

budget constraint from its population counterpart; we control the latter uniformly over the space of weights

by our previous tail inequality. Since we optimize in the sample based on an sample expectation estimate of

the L1 budget constraint, we recall the definitions of WΓ,Λ
n (Pn) and WΓ,Λ

n (P):

WΓ,Λ
n (Pn) =

{
W ∈Rn+ : s.t.

1

|It|
∑
i∈It

|Wi− W̃i| ≤Λt, a
Γ
i ≤Wi ≤ bΓi ∀i

}
WΓ,Λ

n (P) =
{
W ∈Rn+ : s.t. E[|W (T,X,Y )− W̃ (T,X)| | T = t]≤Λt, a

Γ
i ≤Wi ≤ bΓi ∀i

}
Now, we use Proposition 4 to equivalently parametrize the optimization over the set of weight functions

which include the nondecreasing component u(y(π(t | x) − π0(t | x))), and introduce the corresponding

nondecreasing sample-budgeted uncertainty set, WΓ,Λ

n (Pn):

WΓ,Λ
(π;Pn) =

W (t, x, y) :

W (t, x, y) = aΓ
t (x) +u(y(π(t | x)−π0(t | x))) · (bΓt (x)− aΓ

t (x)),
u(y(π(t | x)−π0(t | x))) : R→ [0,1] is monotonic nondecreasing,

1
|It|

∑
i∈It |W (Ti,Xi, Yi)− W̃ (Ti,Xi, Yi)| ≤Λt


In analogy to Corollary 1, we may define the union over the policy class WΓ,Λ

(Pn) =∪π∈ΠW
Γ,Λ

(π;Pn). The

next corollary, a consequence of the nondecreasing optimal solution characterization of Proposition 4 states

that we recover the optimal regret by optimizing over the restricted class of budgeted weights.

Corollary EC.3.

R̂π0
(π;WΓ,Λ(Pn)) =

m−1∑
t=0

sup
W∈WΓ,Λ(Pn)

R̂(t)
π0

(π;W )

We show that R̂π0
(π;WΓ,Λ(Pn)) and R̂π0

(π;WΓ,Λ
n (P)) are close for the two policies of interest

in the minimax regret bound: the sample-optimal π̂ ..= π̂(Π,WΓ,Λ
n (Pn), π0) and population-optimal

π∗ ∈ arg infπ∈ΠRπ0
(π;WΓ,Λ(P)) policies. The result will follow by applying this bound with the triangle

inequality.

In the following, we denote ri = Yi(π(Ti |Xi)− π0(Ti |Xi)) for brevity, and apply the Charnes cooper

transformation. Define ũ= uψ as the corresponding transformation for u in the change of variables W =

a+ (b− a)u, and note that this preserves monotonicity of ũ for all ψ. Denote the uncertainty set on w,ψ and

implicitly, nondecreasing u as S(w,ψ, ũ;π):

S(w,ψ, ũ;π) =


∑

iwi = 1; ψTia
Γ
i ≤w≤ bΓi ψTi ,∀i= 1, . . . , n

w= aΓ
i ψTi + (bΓi − aΓ

i )ũi,∀i= 1, . . . , n
ũ(y(π(t | x)−π0(t | x))) monotonically nondecreasing

ψt ≥ 0,∀t


S(w,ψ, ũ) =∪π∈ΠS(w,ψ, ũ;π)

R̂π0
(π;WΓ,Λ(Pn))

= max

{
m−1∑
t=0

∑
i riWiI[Ti = t]∑
iWiI[Ti = t]

: w,ψ, ũ∈ S

}
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= max

{
m−1∑
t=0

∑
i

riwiI[Ti = t] : (w,ψ, ũ)∈ S(w,ψ, ũ),
∑
i∈It

∣∣∣wi−ψTiW̃i

∣∣∣≤ψTiΛt,∀t

}

= min
ηt≥0,∀t

max
(w,ψ,ũ)∈S(w,ψ,ũ)

{
m−1∑
t=0

∑
i

riwiI[Ti = t] +
m−1∑
t=0

ηt(ψtΛt−
∑
i∈It

∣∣∣wi−ψtW̃i

∣∣∣)}

= max
w,ψ,ũ∈S(w,ψ,ũ)

{
m−1∑
t=0

∑
i

riwiI[Ti = t] +
m−1∑
t=0

η∗t (Pn)(ψtΛt−
∑
i∈It

∣∣∣wi−ψtW̃i

∣∣∣)}
for optimal dual variables η∗t (Pn), by strong LP duality (existence of the saddle point). Similarly, for the

corresponding optimal dual variable η∗t (P) for the population budget-constrained uncertainty set,

R̂π0
(π;WΓ,Λ(Pn))

= max
w,ψ,ũ∈S(w,ψ,ũ)

{
m−1∑
t=0

∑
i

riwiI[Ti = t] +
m−1∑
t=0

η∗t (P)(ψtΛt−E[|w(T,X,Y )− W̃ (T,X)ψt| | T = t]≤Λtψt)

}
By Lemma EC.5, we combine objectives and obtain a lower bound since we optimize over the same feasible

set:

Rπ0
(π;WΓ,Λ

n (Pn))−Rπ0
(π;WΓ,Λ

n (P))

≤ max
w,ψ∈S

ψt

m−1∑
t=0

Λt(η
∗
t (Pn)− η∗t (P)) + max(η∗t (P), η∗t (Pn))

m−1∑
t=0

(
∑
i∈It

∣∣∣wi−ψtW̃i

∣∣∣−E[|w(T,X,Y )− W̃ (T,X)ψt| | T = t])

≤ max
w∈S(ψ∗)

ψ∗t

m−1∑
t=0

Λt(η
∗
t (Pn)− η∗t (P)) + max(η∗t (P), η∗t (Pn))

m−1∑
t=0

(
∑
i∈It

∣∣∣wi−ψ∗t W̃i

∣∣∣−E[|w(T,X,Y )− W̃ (T,X)ψ∗t | | T = t])

Note that ψt ∈ 1
nt

[ν,1] by definition. Next, we argue that the optimal dual variables are bounded by first

noting that the optimal primal solution is finite and bounded on [B,−B] by the self-normalized property of

the estimator and Assumption 1. Moreover, the constraints on W , for a fixed Γ, imply bounds on how far

feasible W can be from their nominal values. So, we have a bound which the optimal dual variables must

satisfy. Let

Λt = max(
1

|It|
∑
i∈It

max(W̃i− aΓ
i , b

Γ
i − W̃i),E[max(Ŵ − aΓ, bΓ− Ŵ )])

denote the maximal total deviation of weights, induced by the uncertainty set on WΓ. Let

wi =ψTi(b
Γ
i I[ri < 0] + aΓ

i I[ri > 0]),wi =ψTi(b
Γ
i I[ri > 0] + aΓ

i I[ri < 0])

achieve the minimal and maximal feasible rescaled primal objectives, respectively. Now, we have the bounds

that
∑m−1

t=0 η∗t +
∑

i riwi ≥−B and
∑m−1

t=0 η∗tΛt +
∑

i riwi ≤B which admits a naive componentwise bound

that η∗t ≥−B−
∑

i riwi, η
∗
t ≤

B−
∑
i riwi

mintΛt
,∀t.

Therefore, since η∗t ≥ 0, we obtain the following bound:

ηt ≤max(

∣∣∣∣B−∑i riwi

mintΛt

∣∣∣∣ ,
∣∣∣∣∣−B−∑

i

riwi

∣∣∣∣∣)≤ e2ν−1BΓ

mintΛt ∧ 1
.

Applying this bound on η∗:

2BΓν−1(max
t

1/pt
1

n

m−1∑
t=0

Λt + max
w∈S(ψ∗)

m−1∑
t=0

(
∑
i∈It

∣∣∣wi−ψtW̃i

∣∣∣−E[|w(T,X,Y )− W̃ (T,X)ψt| | T = t])︸ ︷︷ ︸
1©

)
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It remains to study uniform convergence of 1© when we optimize over w in the set of restricted complexity

(recall that monotonicity over u is equivalent to monotonicity over ũ; or we may equivalently reparametrize

in W for the fixed scaling ψ). We do so by a Lipschitz contraction argument and applying our tail inequality

from Lemma EC.4. Note that the absolute value function is globally 1-Lipschitz; and the envelope function on

W (u) is bounded by (b− a)u≤ ν−1(Γ−Γ−1). Now, by Lipschitz contraction (Theorem 5.7 of Pollard (1990)),

applying Lemma EC.4, and taking a union bound over the number of treatments, we obtain the final bound

that, with high probability ≥ 1− p,

R̂π0
(π;WΓ,Λ(Pn))− R̂π0

(π;WΓ,Λ(P))

≤ 2ν−1BΓ

mintΛt ∧ 1

(
maxt 1/pt

∑m−1
t=0 Λt

n
+ 18mKΠν−1(Γ−Γ−1)

√
log(5m/p)

n

)
The result follows by applying this bound twice, at the sample-optimal and population-optimal policies, and

taking a union bound over the event of this bound holding with high probability and the previous minimax

regret bound of Theorem 2, and the triangle inequality. �

B.6. Proof of Proposition 6.

Proof of Proposition 6. In the following, we first consider the optimization problem within a single

treatment partition, reindexing i= 1, . . . , n to enumerate the elements of a generic treatment partition. The

lemma follows by applying the same analysis to each treatment partition separately. We aim to bound the

approximation error incurred by optimizing over an uncertainty set derived from estimated propensities,

êt(X) which may differ from the oracle values ẽt(X). Recall the weight bounds derived from the oracle

nominal propensities, with W̃ = 1/ẽt(x), are a= 1 + 1
Γ

(W̃ − 1), b= 1 + Γ(W̃ − 1); for this section, we define

δai , δ
b
i as the perturbations of the sample weights from the oracle bounds a, b:

δ̂a,Γi = 1 +
1

Γ
(1/êTi (x)− 1)− ai, δ̂b,Γi = 1 + Γ (1/êTi (x)− 1)− bi

Observe that the dual of the primal program,

sup
w

{∑
i

wiyi :ψ · (ai + δai )≤wi ≤ψ · (bi + δbi ),
∑
i

wi = 1

}
(EC.4)

for a fixed ψ scaling, and a generic multiplier r, is the program:

inf
λ,u≥0,v≥0

{
λ+ψ ·

(
−
∑
i

(ai + δai )ui +
∑
i

(bi + δbi )vi

)
: λ−ui + vi ≥i,∀i= 1...n

}
(EC.5)

and since u, v ≥ 0, we again observe (as in the proof of Theorem 3) that by complementary slackness,

v = (ri − λ)+, u = (λ − ri)+. We make the corresponding substitution and proceed to define the partial

Lagrangian relaxation. Denote gδa,δb(ψ;λ,u, v), as the objective function with given ψ, and δa, δb perturbations

to the weights:

inf
λ,u≥0,v≥0

gδa,δb(ψ;λ,u, v) = inf
λ,u≥0,v≥0

{
λ+ψ ·

(
−
∑
i

(ai + δai )(λ− ri)+ +
∑
i

(bi + δbi )(ri−λ)+

)}
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As a consequence of Lemma EC.5, |inf f − inf g| ≤ sup |f − g|. Furthermore, we may optimize over the

restrictions of the dual variables to compact sets: since λ is a quantile of the coefficients, λ∈ [mini ri,maxi ri].

We also have that ψ ∈ [ 1
n
, 1
νn

] under Assumption 2 (strong overlap), and the constraint that
∑

i
wi = 1, so

that ψ ·
∑

i
(bi + δbi )≤

∑
i
wi ≤ψ ·

∑
i
(ai + δai ).

We invoke strong LP duality which holds with bounded optimal value (assuming bounded outcomes); strict

feasibility and boundedness implies that the problem cannot be primal infeasible or primal unbounded. Let

{ψ∗a,b, (λ∗a,b, u∗a,b, v∗a,b)} ∈ arg mingδa,δb(ψ;λ,u, v). Therefore, compactness of the feasible region gives that the

optimal primal and dual variables, {ψ∗a,b, (λ∗a,b, u∗a,b, v∗a,b)}, {ψ∗0,0, (λ∗0,0, u∗0,0, v∗0,0)}, are also pairs of optimal

best responses for the min/max partial Lagrangian duals of the perturbed and nominal problem. In the

following, let S = {(λ,u, v) : λ∈ [−B,B], u∈ [0,2B], v ∈ [0,2B]} denote the compact restriction.∣∣∣Rπ0
(π,W̃)−Rπ0

(π,Ŵ)
∣∣∣= ∣∣∣∣sup

ψ>0

{
inf

λ,u≥0,v≥0
gδa,δb(ψ;λ,u, v)

}
− sup
ψ′>0

{
inf

λ,u≥0,v≥0
g00(ψ′;λ,u, v)

}∣∣∣∣
=

∣∣∣∣∣ inf
(λ,u,v)∈S

{
sup

ψ∈[ 1
n
, 1
νn

]

gδa,δb(ψ;λ,u, v)

}
− inf

(λ′,u′,v′)∈S

{
sup

ψ′∈[ 1
n
, 1
νn

]

g00(ψ′;λ′, u′, v′)

}∣∣∣∣∣ (EC.6)

=

∣∣∣∣∣ sup
ψ∈[ 1

n
, 1
νn

]

{
inf

(λ,u,v)∈S
gδa,δb(ψ;λ,u, v)

}
− sup
ψ′∈[ 1

n
, 1
νn

]

{
inf

(λ′,u′,v′)∈S
g00(ψ′;λ′, u′, v′)

}∣∣∣∣∣ (EC.7)

≤ sup
ψ∈{ψ∗00,ψ

∗
ab
}

∣∣∣∣ inf
(λ,u,v)∈S

gδa,δb(ψ;λ,u, v)− inf
(λ′,u′,v′)∈S

g00(ψ;λ′, u′, v′)

∣∣∣∣ (EC.8)

≤ max
j,k∈{00,ab}

∣∣gδa,δb(ψ∗j ;λ∗k, u
∗
k, v
∗
k)− g00(ψ∗j ;λ∗k, u

∗
k, v
∗
k)
∣∣ (EC.9)

In the above, the equality of Equation (EC.6) follows since without loss of generality, we can restrict attention

to bounded feasible regions for the variables. In Equation (EC.7), we swap the order of the sup and inf since

strong duality holds with equality. In Equation (EC.8), restricting the supremum over ψ to the best responses

ψ∗00,ψ
∗
ab doesn’t change the optimal value; that λ∗, u∗, v∗ and ψ∗ are best responses is a consequence of von

Neumann’s minimax theorem, since g is bilinear in its arguments ψ and λ,u, v. Equation (EC.9) holds since

λ∗0,0, u
∗
0,0, v

∗
0,0 were optimal for g0,0 (resp., for gδa,δb) and we expand the feasible set.

Combining gδa,δb and g0,0, we can now bound the perturbation incurred based on possible values of ψ∗, λ∗:

= max
j,k∈{00,ab}

∣∣∣∣∣ψ∗j ·
(
−
∑
i

δai (λ∗k− ri)+ +
∑
i

δbi (ri−λ∗k)+

)∣∣∣∣∣
≤ max
ψ∈{ψ∗

a,b
,ψ∗0,0}

ψ · (‖δa‖1 +
∥∥δb∥∥

1
)(2 max

i
ri) since the optimal λ∗ is bounded

≤
2 max ri(‖δa‖1 + ‖δb‖1)

n

= (max
i
Yi)(Γ + 1/Γ)

1

n

∑
i

∣∣∣∣ 1

êt(Xi)
− 1

ẽt(Xi)

∣∣∣∣
The bound on the range for ψ follows since for ψ ∈ {ψ∗a,b,ψ∗0,0}, we have that ψ≤max{ 1∑

i(ai+δ
a
i

)
, 1∑

i ai
} ≤ 1

n

since the bounds αi + ai and αi are inverse probabilities. We simply apply the above argument for each

group, under the product uncertainty set assumption. Define the treatment-conditional partial dual objective,

computed for data from treatment partition T = t, as gδa,δb(ψ;λ,u, v; t). We apply the above bound for every

treatment partition T = t, which holds deterministically for all π, with the multiplier r= (π−π0)Y .

R̂π0
(π,W̃Γ

n )− R̂π0
(π,ŴΓ

n )
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=

∣∣∣∣∣ sup
W∈WΓ(ẽT )

m−1∑
t=0

En[(π(t |X)−π0(t |X))YW I [T = t]]

En[W I [T = t]]
− sup
W∈WΓ(ê)

m−1∑
t=0

En[(π(t |X)−π0(t |X))YW I [T = t]]

En[W I [T = t]]

∣∣∣∣∣
≤
m−1∑
t=0

∣∣∣∣∣ sup
W (·,·;t)∈WΓ

t (ẽT )

En[(π(t |X)−π0(t |X))YW I [T = t]]

En[W I [T = t]]
− sup
W (·,·;t)∈WΓ

t (ê)

En[(π(t |X)−π0(t |X))YW I [T = t]]

En[W I [T = t]]

∣∣∣∣∣
(EC.10)

=
m−1∑
t=0

∣∣∣∣sup
ψ>0

{
inf

λ,u≥0,v≥0
gδa,δb(ψ;λ,u, v; t)

}
− sup
ψ′>0

{
inf

λ,u≥0,v≥0
g00(ψ′;λ,u, v; t)

}∣∣∣∣
= 2B(Γ + 1/Γ)

1

n

n∑
i=1

∣∣∣∣ 1

êTi(Xi)
− 1

ẽ∗Ti(Xi)

∣∣∣∣
Here, EC.10 follows by the product set structure of the uncertainty set and application of the triangle

inequality.

B.7. Proof of Proposition 7

Proof of Proposition 7. Given convex S ⊆Rn, notice that its conic hull is K = {
∑k

i=1αiui : k ∈N, αi ≥

0, ui ∈ S}=
⋃
ψ≥0(ψS). Let r ∈Rn. Given that S has a non-empty interior, a Charnes-Cooper transformation

followed by strong duality yields

sup
u∈S

∑n

i=1 riui∑n

i=1 ui
= sup
u/ψ∈S,ψ≥0,∑n

i=1 ui=1

n∑
i=1

riui = sup
u�K0,∑n
i=1 ui=1

n∑
i=1

riui = inf
λ�K∗r

λ.

The statement of the proposition proceeds by applying this for each treatment level t. �

Appendix C: Optimization Algorithm Details

C.1. Subgradient Approach Refinements

We describe some additional changes to the subgradient method optimization procedure of 6.2 which improve

the optimization by specializing to the unique case of our problem. Further refinements are possible with

e.g. homotopy methods for LPs; we leave this to future work. In the case that we are optimizing over a

series of increasing Γ parameters, 1 = Γ0 < Γ1 < ... < Γm, we can use the nested property of the corresponding

uncertainty sets to provide additional checks on the optimization.

1. We include a warm start for optimization for Γk+1 with Γk as one of the random initializations: therefore

we are guaranteed an initialization that does well for similar Γ.

2. For each proposed optimal policy returned by the optimization, which we denote as π̄(Γk) for a policy

optimized over WΓk
n , we check the achieved objective value of previous policies, R̄(π̄(Γk),Γi), i < k. If for

some i, R̄(π̄(Γk),Γi)< R̄(π̄(Γk),Γk), we set the policy to the previous policy, π∗k = π∗i .

We find empirically that including these refinements stabilizes the optimization when optimizing over a nested

series of Γ parameters, as we anticipate a decision-maker would do in practice, given a feasible range of

plausible Γ values.
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C.2. Optimal Confounding-Robust Trees

We next consider the function class consisting of axis-aligned decision tree policies where each leaf is

assigned a constant probability of treatment. Decision tree policies are advantageous due to their simplicity

and interpretability. Our optimal confounding-robust tree (OCRT) presented below determines the best

confounding-robust decision tree via global optimization using mixed-integer optimization. Our approach is

to combine the dual linear program formulation of R̂π0
(π;WΓ

n ) in eq. (12) with a mixed-integer formulation

of this class of decision trees, following the formulation of Bertsimas and Dunn (2017), along with a special

heuristic to find a good warm start.

A decision tree (with maximal splits) of a fixed depth D can be represented by an array labeled by a

set of nodes, split into a set of branching nodes KB and leaf nodes KL. The space of decision tree policies

is parametrized by Θ = {{αkb , βkb}kb∈KB ,{ck}k∈KL}, where αkb , βkb ∈Rp parametrize the split at branching

node kb, which directs units to the left branch if αᵀx < β, and to the right branch otherwise. The policy

assignment probability is parametrized by ckb ∈ [0,1] for kb ∈KL. We consider axis-aligned splits such that

αkb is a unit vector.

We let the binary assignment variables zik track assignment of data points i to leaves k ∈KL subject to

the requirement that every instance is assigned to a leaf node according to the results of axis-aligned splits

αᵀkbx< βkb , for splits occurring at kb ∈KB branch nodes. The binary variables dk track whether a split occurs

at node kb ∈ KB. The binary variable lk tracks whether a leaf is empty or not. The policy optimization

determines both the partitions of the covariates governing assignment to terminal leaf nodes and the variables

ck for k ∈KL governing probability of treatment assignment in the leaf nodes. We denote par(k) as the parent

of node k, A(k) as the set of all ancestors of node k, and the subsets AL(k)∪AR(k) =A(k) denote the sets of

ancestor nodes where the instance was split to the left or right, respectively. In this section, we assume that

the covariates are rescaled such that each covariate lies in [0,1].

We introduce additional constraints to encode our dual objective in the optimal classification tree framework.

We define the policy assignment probability for treatment T = t, P t
i =

∑
k∈KL

zikc
t
k where ctk is the policy

assignment probability of leaf node k ∈KL of assigning treatment t, and zik describes whether or not instance

i is assigned to leaf node k, enforced with the additional set of auxiliary big-M constraints for the product of

a binary variable and continuous variable; for each set of such product variables P t
i .

pti,k ≤ zik; pti,k ≤ ctk; pti,k ≥ ctk + zik− 1 ∀i= 1, . . . , n;∀t∈ T , k ∈KL

P t
i =

∑
k∈KL

pti,k ∀a∈A, ∀i= 1, . . . , n

m−1∑
t=0

ctk = 1 k ∈KL

pti,k ∈ [0,1] ∀t∈ T , ∀i= 1, . . . , n, k ∈KL

ctk ∈ [0,1] ∀t∈ T , ∀k ∈KL

P t
i ∈ [0,1] ∀t∈ T , ∀i= 1, . . . , n
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The combined formulation for policy optimization with confounding-robust optimal trees is as follows:

min
m−1∑
t=0

λt (EC.11a)

s.t. vi−ui +λTi ≥ Yi(P
Ti
i −π

Ti
0 ) ,∀i∈ It (EC.11b)∑

i∈It

−bΓi vi + aΓ
i ui ≥ 0, ∀t∈ T (EC.11c)

pti,k ≤ zit; pti,k ≤ ctk; pti,k ≥ ctk + zik− 1 ∀t∈ T , ∀i= 1, . . . , n, k ∈KL, (EC.11d)

P t
i =

∑
k∈KL

pti,k ∀t∈ T , ∀i= 1, . . . , n (EC.11e)

m−1∑
t=0

ctk = 1 k ∈KL (EC.11f)

ctk ∈ [0,1] ∀t∈ T , ∀k ∈KL (EC.11g)

aᵀm(xi + ε)≤ bm + (1− zik) ∀i= 1, . . . , n,∀k ∈KB,∀m∈AL(k) (EC.11h)

aᵀm(xi + ε)≤ bm− (1 + εmax)(1− zik) ∀i= 1, . . . , n,∀k ∈KB,∀m∈AR(k) (EC.11i)∑
k∈KL

zik = 1 ∀k ∈KB (EC.11j)∑n

i=1 zik ≥Nminlt ∀i= 1, . . . , n (EC.11k)∑p

j=1ajt = dt (EC.11l)

0≤ bk ≤ dk ∀k ∈KB (EC.11m)

dt ≤ dpar(k) ∀k ∈KB \ {1} (EC.11n)

lU(k) ≥ d(par(k)) k ∈KB \ 1 (EC.11o)

lk ≤ dpar(m) ∀m∈ TB, t∈ [D(kb),U(kb)] (EC.11p)

lk ≥ dpar(t) ∀k ∈KL (EC.11q)

zik, lk ∈ {0,1} i= 1, . . . , n,∀k ∈KL (EC.11r)

ajk, dk ∈ {0,1} j = 1, . . . , p,∀k ∈KB (EC.11s)

pti,k ∈ [0,1] ∀t∈ T , ∀i= 1, . . . , n, k ∈KL (EC.11t)

ctk ∈ [0,1] ∀t∈ T , ∀k ∈KL (EC.11u)

P t
i ∈ [0,1] ∀t∈ T , ∀i= 1, . . . , n (EC.11v)

u, v≥ 0 (EC.11w)

Constraints (EC.11e, EC.11d) set the policy assignment variable P t
i ∈ [0,1], which is the sum of products

pti,k = zikck over leaf nodes. Our objective is specified via the dual formulation, and constraints (EC.11b,

EC.11c) encode the constraints from the dual of the inner maximization subproblem. Constraints (EC.11h,

EC.11i) enforce that if a node is in a leaf (as indicated by zik), it satisfies the splits at ancestor nodes.

Constraint (EC.11j) enforces that each instance is in a leaf node, while constraint EC.11k enforces a size

constraint on leaf membership. Constraints (EC.11l, EC.11n, EC.11m) enforce consistency constraints between

d, indicating whether a split occurs at leaf node k, and split variables ajk, bk. {D(k)}k∈KB denotes the set of
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Algorithm 2 Greedy Recursive Partitioning (Partition)

1: Input: partition SL,l = {(Xi1 , Ti1 , Yi1)}, depth ∆, preliminary assignment τ∆−1 ∈ [m]n

2: for d∈ [p] do (find best partition index):

3: [i]← Get the sorted indices of ({Xi,d})

4: i∗j , v
∗
j ← Find the best dimension and threshold to split xj∗ <xi∗j ,j∗

5: i∗j,rev, v
∗
j,rev← Find the best dimension and threshold to split xj∗ >xi∗j ,j∗

6: j∗← arg minj i
∗
j , i∗← i∗j∗ , θ∗← X(i∗),j∗+X(i∗+1),j∗

2

7: π(X) ← xj∗ ≤ θ∗ if v∗j < v∗j,rev else xj∗ ≥ θ∗

8: if (continue recursing) then:

9: SL←X[0:i∗], SR←X[i∗:|S|]

10: update τ0, the candidate treatment assignment

11: Π̂L← Partition(SL, τ
′,∆ + 1), Π̂R← Partition(SR, τ0,∆ + 1)

return (π(X) , Π̂L, Π̂R )

leaf nodes of smallest index which can be reached from splits at k, and similarly {U(k)}k∈KB denotes the

set of reachable leaf nodes of largest index. Constraints (EC.11o, EC.11p, EC.11q) enforce that leaves are

non-empty only if splits do occur in the relevant ancestor nodes.

For the mixed-integer linear program, we provide a warm start for the optimization via a recursive

partitioning-based approach which incrementally optimizes directly the robust risk, over iterative refinements

of either the constant all-treat or all-control policy, described in Sec. C.3 of the EC.

C.3. Recursive Partitioning: MIP Warm Start

We provide a heuristic recursive-partitioning based scheme for optimizing policy risk over the space of

limited-depth decision trees recursively, analogous to CART’s recursive partitioning approach (Breiman et al.

1984). Such an approach is used to obtain a warm start for the MIP of the optimal confounding-robust tree.

The algorithm initializes by assigning the same treatment τ0 to all, and iteratively refines the treatment

assignment by recursive partitioning, seeking univariate splits which minimize the minimax risk. The candidate

split threshold for each covariate is determined by iteratively re-evaluating the minimax risk for incremental

changes to the policy, maintaining the invariant that the base policy is set by the leaves above a node in the

tree. Using specialized data structures such as B-trees allows for O(log(N)) efficient updates for maintaining

and updating the sorted list of multipliers YiTi(πi−π0), and manipulating pre-computed cumulative sums of

the initial sorted order allows for efficient re-computation of the optimization solution. We note that such an

approach is possible only for the unbudgeted uncertainty set UΓ
n , since incorporating the uncertainty budget

would couple the risk across tree levels. In comparison to other approaches using tree-based approaches for

estimating causal effects (Wager and Athey 2017b) or for personalization (Kallus 2017a), which consider

splits based on impurities related to the expected mean squared error of causal effects on a separate sample

of data from that used to estimate the causal effects within leaves, or determine the optimal treatment, our
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recursive partitioning heuristic simultaneously determines the partition and the policy treatment assignment

within the partition. In making greedy splits, changes in the objective function are assessed as a result of

changing the policy assignment within SL,l, and the optimal split location and sense (I[aᵀX < b] or I[aᵀX > b])

are determined by changes in the policy assignment within SL,l. However, in general, the optimal such

policy assignment, determined incrementally from the assignments {SL−1,l}l∈TL , depends additionally on the

assigned policy for other nodes at the same level as well.

Appendix D: WHI Case Study details

The selected list of covariates for personalization is as follows (using the name/description from the WHI data

dictionary): Time since menopause, Systolic blood pressure (baseline), Age, BMI, BMI baseline, Diastolic blood

pressure baseline, Number of falls , Number of pregnancies, Angina ever (yes), Aortic aneurysm ever (Y), Atrial

fibrillation ever (Y), Bilateral oophorectomy (Y), Coronary bypass surgery ever (Y), Cigarettes/day (1-4),

Cigarettes/day (15-24), Cigarettes/day (25-34), Cigarettes/day (35-44), Cigarettes/day (45+), Cigarettes/day

(5-14), Cigarettes/day (<1), Diabetes treated (Y), DVT ever (Y), Ethnic Asian/Pacific Islander, Ethnic

Black, Ethnic Hispanic, Ethnic Unknown, Ethnic White,High cholesterol (Y), Myocardial infarction ever (Y),

Stroke ever (Y).
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Table EC.1 Policy regret for WHI, under different λ scalarizations

λ
log

(Γ
)

=
0
.025

0.05
0.075

0.1
0.12

0.14
0.16

0.18
0.2

0.225
0.25

0.3
0.35

0.4
0.5

0.75
1.0

1.5
2.0

-0.00
0.36

0.29
0.31

0.10
0.11

0.14
0.16

0.12
0.11

0.04
-0.01

-0.06
-0.07

-0.10
0.00

0.00
-0.01

-0.00
0.00

-0.11
0.41

0.32
0.28

-0.09
-0.07

-0.00
0.01

0.02
0.01

-0.02
-0.12

-0.15
-0.17

-0.19
-0.03

-0.03
-0.04

-0.05
-0.06

-0.21
0.41

0.36
0.37

0.05
0.06

-0.01
-0.03

-0.01
0.01

0.02
-0.15

-0.15
-0.18

-0.20
-0.02

-0.03
-0.03

-0.03
-0.06

-0.32
0.39

0.32
0.32

0.36
0.28

0.20
0.22

0.23
0.24

0.19
0.03

0.01
-0.02

-0.02
-0.01

-0.00
-0.00

-0.01
-0.05

-0.43
0.38

0.32
0.32

0.23
-0.03

-0.07
-0.05

-0.05
-0.03

-0.07
-0.18

-0.19
-0.21

-0.23
-0.01

0.00
0.00

-0.02
-0.05

-0.54
0.36

0.24
0.24

0.25
0.21

0.25
0.24

0.23
0.24

0.19
0.08

0.07
-0.13

-0.14
-0.02

-0.01
-0.01

-0.03
-0.03

-0.64
0.46

0.48
0.50

0.33
0.14

0.15
-0.11

-0.11
-0.10

-0.13
-0.20

-0.22
-0.25

-0.23
-0.03

-0.04
-0.04

-0.06
-0.08

-0.75
0.74

0.78
0.81

0.71
0.61

0.63
0.40

0.41
0.44

-0.08
-0.16

-0.18
-0.20

-0.19
-0.02

-0.02
-0.02

-0.03
-0.06

-0.86
0.68

0.63
0.62

0.56
0.47

0.52
0.31

0.31
0.34

-0.10
-0.11

-0.14
-0.17

-0.14
-0.01

-0.02
-0.02

-0.02
-0.05

-0.96
0.92

0.97
1.00

1.02
0.92

0.92
0.69

0.70
0.73

-0.11
-0.13

-0.16
-0.17

-0.14
-0.01

-0.02
-0.03

-0.04
-0.05

-1.07
0.83

0.85
0.96

1.01
0.96

0.99
0.76

0.79
0.60

-0.10
-0.12

-0.12
-0.13

-0.12
-0.04

-0.03
-0.04

-0.05
-0.05

-1.18
0.77

0.84
0.96

1.03
0.96

0.97
0.73

0.74
0.78

0.10
0.06

0.05
-0.12

-0.10
-0.01

-0.01
-0.00

-0.02
-0.03

-1.29
0.83

0.94
1.05

1.12
1.14

1.17
1.20

1.15
1.09

0.58
0.58

0.60
0.32

0.05
0.06

0.08
0.08

0.04
0.00

-1.39
0.88

1.04
1.17

1.28
1.33

1.38
1.16

1.17
1.19

0.24
0.23

0.23
0.24

-0.02
0.05

0.06
0.06

0.01
-0.01

-1.50
0.82

0.96
1.07

1.18
1.23

1.28
1.23

1.24
1.17

0.65
0.67

0.27
0.16

-0.05
-0.00

0.01
0.01

-0.02
-0.01
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Figure EC.1 Density comparison of odds ratios induced by training propensities with dropped covariates (one per

line, in order). x-axis is the odds ratio, while y-axis (for each subplot) is a density plot; fixed y-scale y ∈ [0,10] for all

subplots. Note that most of the probability mass is within Γ∈ [0.8,1.2], with the exception of a few covariates with

wider distributions of informativity.
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