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Abstract

Existing image-to-image transformation approaches pri-

marily focus on synthesizing visually pleasing data. Gener-

ating images with correct identity labels is challenging yet

much less explored. It is even more challenging to deal with

image transformation tasks with large deformation in poses,

viewpoints, or scales while preserving the identity, such as

face rotation and object viewpoint morphing. In this pa-

per, we aim at transforming an image with a fine-grained

category to synthesize new images that preserve the iden-

tity of the input image, which can thereby benefit the sub-

sequent fine-grained image recognition and few-shot learn-

ing tasks. The generated images, transformed with large

geometric deformation, do not necessarily need to be of

high visual quality but are required to maintain as much

identity information as possible. To this end, we adopt a

model based on generative adversarial networks to disen-

tangle the identity related and unrelated factors of an im-

age. In order to preserve the fine-grained contextual de-

tails of the input image during the deformable transforma-

tion, a constrained nonalignment connection method is pro-

posed to construct learnable highways between intermedi-

ate convolution blocks in the generator. Moreover, an adap-

tive identity modulation mechanism is proposed to transfer

the identity information into the output image effectively.

Extensive experiments on the CompCars and Multi-PIE

datasets demonstrate that our model preserves the identity

of the generated images much better than the state-of-the-

art image-to-image transformation models, and as a result

significantly boosts the visual recognition performance in

fine-grained few-shot learning.

1. Introduction

Image-to-image transformation is an important field of

visual synthesis and has many successful applications [23,

50, 46, 19, 53]. A critical application of image-to-image

transformation is to synthesize new images that can ben-

efit the visual recognition systems. For example, synthe-

sized images can augment the original training data, and

subsequently boost the performance of image classification

tasks [1, 45, 52]. Synthesized images that well preserve the

categorical information of the input image have been suc-

cessfully applied to boost face verification [49, 3], person

re-identification [31] and so on.

In this paper, we focus on fine-grained image-to-image

transformation towards visual recognition, i.e., transform-

ing an image with a fine-grained category to synthesize new

images that preserve the identity of the input image, so that

the new samples can be used to boost the performance of

recognition systems. We pay special attention to transfor-

mations with large geometric deformations in object pose,

viewpoint, and scale, e.g., face rotation [17], caricature gen-

eration [28] and object attribute editing [2, 25] without ruin-

ing the class/identity. For the ultimate goal of recognition,

the generated images are not necessarily required to be of

high visual quality. However, they should be correctly clas-

sified even under the scenarios of fine-grained generation.

Achieving such a goal is difficult, since images from differ-

ent fine-grained categories may exhibit only subtle differ-

ences. Transforming an image with geometric deformations

can easily change the category of the image.

Conventional image-to-image transformation ap-

proaches primarily focus on synthesizing visually pleasing

images. However, models that perform well in gener-

ating visually pleasing data do not necessarily generate

identity-preserved data, thus may not benefit the subsequent

recognition tasks. The problem is even more severe in

fine-grained recognition because the differences between

categories are inherently subtle. A possible reason is that

existing generative models are not specifically designed for

fine-grained image synthesis with identity preservation and

visual recognition in mind.

Specifically, the performance of existing generators may

be limited for the following reasons. 1) Typical genera-

tors for image-to-image transformation adopt an encoder-

decoder architecture. The encoder maps the image to a

condensed latent feature representation, which is then trans-

formed into a new image by the decoder. During encoding,
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the latent feature fails to preserve the fine-grained contex-

tual details of the input image, which contain rich identity

information. An alternative way to preserve the contex-

tual details is using skip-connections [36, 15] to link fea-

ture blocks in the encoder and decoder. However, skip-

connections can connect only pixels of the same spatial lo-

cation in the feature blocks. It may fail on transformations

with geometric deformations where there is no pixel-wise

spatial correspondence between the input and output. 2) In

a generator with a typical encoder-decoder architecture, the

output image is decoded from the latent feature with long-

range non-linear mappings. During decoding, the identity

information contained in the latent feature can be weakened

or even missing [25]. As a consequence, the identity of the

output image is not well preserved.

To address the deformable transformation problem while

maintaining contextual details, we propose a constrained

nonalignment connection method to build flexible high-

ways from the encoder feature blocks to the decoder feature

blocks. With learnable attention weights, each feature point

in a decoder block can non-locally match and connect to

the most relevant feature points within a neighborhood sub-

region of an encoder block. As such, rich contextual details

from the encoder blocks can be transferred to the output im-

age during the deformable transformation.

To address the second problem, we propose an adaptive

identity modulation method which can effectively decode

the latent feature and preserve identity information. Specif-

ically, we embed the identity feature into each convolution

block of the decoder with an adaptive conditional Batch

Normalization. The identity information can then be incor-

porated into features at different spatial resolutions and can

be transferred into the output image more effectively.

In order to generate images that better preserve the iden-

tity, we adopt a generative adversarial network (GAN) [12]

based framework to disentangle the identity-related factors

from the unrelated factors. We apply our proposed model to

two large-scale fine-grained object datasets, i.e., the Com-

pCars car dataset [47] and the Multi-PIE face dataset [13].

Given an image with a fine-grained category, we alter the

viewpoint of the image to generate new images, which are

required to preserve the identity of the input image. These

generated images can benefit the few-shot learning task

[38, 11] when they are used for data augmentation.

Our primary contributions are summarized as follows.

• We propose a constrained nonalignment connection

method to preserve rich contextual details from the in-

put image.

• We propose an adaptive identity modulation mecha-

nism to effectively decode the identity feature to the

output image so that the identity is better preserved.

• Our model outperforms the state-of-the-art generative

models in terms of preserving the identity and boosting

the performance of fine-grained few-shot learning.

2. Related Work

Generative Image-to-Image Transformation. Existing

works have adopted conditional GANs [33] for image-

to-image transformation tasks, such as image inpainting

[50, 46], super-resolution [26], and general-purpose image-

to-image translation tasks [21, 54]. Many models mainly

handle scenarios where the input image and output image

have pixel-wise spatial correspondence, and tend to fail on

geometric transformation tasks, which are specifically ad-

dressed by our work. Recent works have made attempts

on geometric transformation tasks, including object rotation

and deformation learning with spatial transformer networks

[22] and deformable convolution [9], face viewpoint rota-

tion [41, 18], person generation with different poses [31, 30]

and vehicle generation with different viewpoints [55, 32].

However, existing works primarily aim at synthesizing

data of high visual quality [24, 25, 4, 51, 42]. They are not

specifically designed to preserve the identity of the gener-

ated images, especially under the scenarios of fine-grained

image transformation, which is our primary goal. For exam-

ple, StyleGAN [25] and PG-GAN [24] can generate high-

quality faces, but the faces have no identity labels. Several

works can synthesize fine-grained categorical images [2].

However, they are directly conditioned on category labels,

which thereby cannot generalize to new categories.

Our work differs from the conventional image transfor-

mation works in the following aspects. 1) Our primary goal

is to synthesize images with a correct identity so that the

generated images can benefit the subsequent fine-grained

recognition tasks. Our model is specifically designed for

preserving the fine-grained details that can benefit identity

preservation. We emphasize that high visual quality is not

necessarily required for identity preservation. 2) We ad-

dress the task of image-to-image transformation with large

geometric deformations. There is no pixel-wise correspon-

dence between the input and the output images. 3) Our

model can generalize to unseen categories. Therefore it can

benefit the few-shot learning task by augmenting the data in

new categories.

Non-Local Networks. Our proposed constrained nonalign-

ment connection is related to non-local networks. The idea

of non-local optimization has been proposed and used in

many traditional vision tasks, such as filtering and denois-

ing [5, 8]. Recently, such an idea has been extended to

neural networks to compute the long-range dependencies

within feature maps, such as non-local neural networks

[43, 29, 7] and self-attention GAN [51]. Our model dif-

fers from the existing non-local structure in two aspects.

First, we compute non-local attention between different fea-

ture maps to construct information highways in a deep gen-
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Figure 1. An overview of our model. In the generator, we use constrained nonalignment connections to preserve fine-grained contextual

details from the input image, and use adaptive identity modulation to strengthen the identity information in the decoder. The discriminator

outputs both the identity and attribute labels of a real or generated image (CLS: classifier).

erator, while existing models typically calculate attention

within the same feature, i.e., self-attention. Second, con-

ventional non-local structures usually calculate the attention

in the whole searching space, which may be challenging to

optimize. On the contrary, our proposed constrained non-

alignment connection reduces the non-local searching scope

to capture the feature correspondences more effectively.

Network Modulation. Network modulation is a technique

that modulates the behavior of network layers with a given

conditioning feature [10]. It has been proved effective in

several tasks [48, 44, 35, 39, 6, 25]. It is typically realized

by mapping the conditioning feature to the hidden variables

of a layer, such as the re-scale factors of Batch Normaliza-

tion [10] or Instance Normalization [25]. In our work, a

novel modulation method is proposed to regularize the con-

volution layers by adaptively integrating the identity feature

and the convolutional feature maps.

3. Our Approach

As shown in Fig. 1, our model is composed of a gen-

erator G and a discriminator D. The generator takes an

image I , random noise z and a condition code C as inputs,

and generates a new image If . C is a vector encoding an at-

tribute of an image, such as viewpoint or pose. The discrim-

inator predicts both the identity and attribute class probabil-

ities of an image. The identity of If is required to be the

same as that of input image I , i.e., identity preservation.

3.1. Generator

Our generator adopts an encoder-decoder architecture,

i.e., G = {Enc,Dec}. The encoder Enc maps the input

image to an identity feature vector fid = Enc(I), which is

then concatenated with noise z and target attribute code C

to form the latent vector fl = cat[fid, z, C]. The latent vec-

tor is then decoded by the decoder Dec to the output image

If = Dec(fl). To preserve the contextual details of the in-

put image during deformable transformation, we propose a

constrained nonalignment connection CNC(X,Y ) that can

X

1x1 conv

1x1 conv Attention α
F

Z

Y

neighborhood

softmax

1x1 conv neighborhood

V

K

Q

Figure 2. Structure of constrained nonalignment connection. ⊗
denotes matrix multiplication. ⊕ denotes concatenation.

link the intermediate feature map X in the encoder and fea-

ture map Y in the decoder with non-local attention maps. To

better preserve the identity, we propose an adaptive identity

modulation method to effectively embed the identity feature

fid into the convolution blocks of the decoder.

3.1.1 Constrained Nonalignment Connection

Fig. 2 shows the structure of our constrained nonalign-

ment connection. Consider an intermediate feature map

X ∈ R
CX×HX×WX in the encoder and an intermediate

feature map Y ∈ R
CY ×HY ×WY in the decoder. (We ig-

nore the batch size for simplicity.) Feature Y may lose

fine-grained contextual details that are complementary for

identity preservation during layers of mapping in the gener-

ator [15]. To address this issue, we selectively link Y and

X with a non-local attention map, so that the attended fea-

ture Z contains rich contextual details from X . At the same

time, the generator still learns a correct geometric transfor-

mation.

Specifically, we first reshape the feature X to the shape

CX ×NX , where NX = HX ×WX . Similarly, we obtain

the reshaped feature Y ∈ R
CY ×NY . We then use several

1 × 1 convolutions to project X into key K ∈ R
Ch×CX ,

value V ∈ R
Ch×CX and Y into query Q ∈ R

Ch×CY , so

that they are in the same feature space.

Next, for each spatial location p in Q, we use the fea-

ture point Qp to attend to the feature points in K and ob-
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Figure 3. Illustration of constrained non-local matching between

query Q and key K. Each feature point in Q can non-locally match

over all the spatial locations inside a neighborhood region of K.

tain a non-local attention map αp. Conventional non-local

networks typically calculate the attention map by matching

Qp with features of all the spatial locations in K, which is

both time-consuming and difficult to optimize. Consider-

ing a point in the input image, in most situations, after the

geometric transformation, the spatial location of that point

is usually changed within a certain neighborhood region

around the point. Inspired by this observation, we propose

a constrained non-local matching between the query Q and

the key K. As shown in Fig. 3, for each spatial location

p in Q, we define a corresponding neighborhood region in

K as Np, which is a square area with its center at location

p. We define the radius of the neighborhood with a hyper-

parameter r, then the spatial size of the neighborhood region

is (2r + 1) × (2r + 1). For each location p, we extract all

the features in neighborhood Np from feature K, denoted

as KNp
∈ R

Ch×(2r+1)(2r+1), then use Qp to attend to KNp

and calculate the constrained non-local attention as

αp = QT
p KNp

. (1)

We normalize αp using the softmax function so that the

weights are summed to 1. Feature at location p of the at-

tended feature Z is the weighted sum over all the feature

points in neighborhood Np of the value V , formulated as

Zp =
∑

i∈Np
αi
pV

i
Np

. We then concatenate the attended

feature with the original feature Y , to obtain the final fused

feature F = [Y, Z].

3.1.2 Adaptive Identity Modulation

In the decoder, directly mapping the latent feature to an im-

age with layers of convolution may not be optimal. During

the long-range mapping, the identity information may be

weakened [15, 25] or missing. To address this problem, we

propose an adaptive identity modulation method to transfer

identity information to the output image effectively.

Specifically, we embed the identity feature into the con-

volution blocks, so that feature maps at each spatial reso-

lution can perceive and utilize the identity knowledge. To

this end, we adopt conditional batch normalization [10] to

modulate the convolution layers [10, 34] with identity fea-

ture fid. Given a mini-batch of features {Bi,:,:,:}
N
i=1 in a

convolution layer, we first normalize each feature Bi with

Batch Normalization (BN) [20]

B̂i =
Bi − E[B:,c,:,:]

√

var[B:,c,:,:] + ǫ
, (2)

where Bi is the feature map of the i-th sample in the batch,

ǫ is a constant for numerical stability. In the vanilla BN, we

re-scale the feature with two learnable parameters γ and β.

In order to better decode the identity feature, we adopt

a conditional Batch Normalization (CBN) to learn the re-

scale parameters γ and β on condition of the identity feature

fid. Then in each convolution block, we have

B̃i = γ(fid)B̂i + β(fid), (3)

where γ(fid) and β(fid) are functions of fid.

In traditional CBN, the re-scale parameters γ and β usu-

ally depend only on the conditioning feature. However, we

argue that different feature maps should perceive the condi-

tioning feature in different ways. Features in different con-

volution layers exhibit different functionalities and may pay

different attention to the conditioning feature. In order to

adaptively perceive and integrate the conditioning feature,

we re-formulate γ and β to be conditioned on both the fea-

ture map to be modulated and the conditioning feature:

B̃i = γ(fid, Bi)B̂i + β(fid, Bi), (4)

where γ(fid, Bi) and β(fid, Bi) are functions of fid and

Bi.

Specifically, we first calculate the average feature Bf of

Bi over spatial locations, i.e., Bf = 1
H×W

∑

h,w Bi,:,h,w.

Then we calculate an attention using Bf , formulated as

attB = τ(Bf ), where τ can be realized with a MLP com-

posed of several dense layers with the activation of the last

layer to be Sigmoid. We obtain the attended feature as:

fatt
id = fid ⊙ attB , (5)

where ⊙ denotes element-wise multiplication. As such, the

identity feature is adaptively selected by the feature map Bi.

The attended identity feature fatt
id is then mapped to γ

and β with two MLPs. By embedding the identity features

into convolution layers on condition of the features to be

modulated, the identity-related information can be better in-

tegrated by the decoder. The detailed structure of our adap-

tive identity modulation is in the supplementary materials.

3.2. Discriminator and Objective Functions

To encourage the model to generate identity-preserved

images, our discriminator D adopts a similar architecture

as ACGAN [33]. D is composed of several convolution

blocks, followed by an identity classification layer Di, and

an attribute classification layer Da.
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We denote yta as the target attribute label, which can be

encoded into the one-hot code C. During training, the iden-

tity label yi and the attribute label ya of the input image I

are provided to train the classifier in D, where 1 ≤ yi ≤ Ni

and 1 ≤ ya ≤ Na. Ni and Na are the number of identity

and attribute categories in the training data, respectively.

Upon training the discriminator, we assign the ground-

truth identity label of the fake image If as Ni + 1. In this

way, the discriminator can not only classify the real image

but also distinguish the real image from the fake one. We

use the following objective to optimize D:

max
D

J(G,D) = E[logDi
yi
(I)] + E[logDi

Ni+1(G(I))]

+ λE[logDa
ya
(I)],

(6)

where J is the value function, Di
k and Da

k are the k-th el-

ement in Di and Da, respectively. λ is a hyper-parameter

to balance the weight of identity classification and attribute

classification.

When training the generator, we encourage the generated

image to have the same identity label yi as the input image

as well as the target attribute label yta by optimizing the fol-

lowing objective:

max
G

J(G,D) = E[logDi
yi
(G(I))] + λE[logDa

yt
a
(G(I))].

(7)

4. Experiments

We evaluate our model on two challenging datasets,

CompCars dataset [47] and Multi-PIE dataset [13]. Com-

pCars dataset contains over 1,700 categories of car models

and 100,000 images. Multi-PIE dataset contains face im-

ages of 337 identities. Both datasets are quite large for

fine-grained image generation and few shot learning. We

perform viewpoint morphing on both datasets. Given an

image, a target viewpoint, and random noise, our goal is to

generate new images belonging to the same identity/model

category as the input image with the target viewpoint. We

conduct two types of experiments. The first one is identity

preservation. In this experiment, we derive a classifier on

the real images, which are then used to classify the gener-

ated images. The second type is few-shot learning. In this

experiment, we use the generated images to augment the

training data and test how the generative models can benefit

the performance of the few-shot classifier.

4.1. Experiment Settings

Dataset. For Multi-PIE dataset, following the setting

in [41], we use 337 subjects with neutral expression and

9 poses within ±60 degree. The first 200 subjects form

an auxiliary set, which is used for training the generative

models. The rest 137 subjects form a standard set, which

is used to conduct visual recognition experiments. We crop

and align the faces and resize each image to 96× 96.

The car images in the CompCars [47] dataset contain

several viewpoints, including frontal, frontal left side, rear

view, rear side, side, and other views. Note that the same car

model can have totally different colors. Since the rear views

may contribute less to the identification of the car model,

we remove all the images with rear views and keep only

images with the following five viewpoints: frontal, frontal

left, frontal right, left side, and right side. We also remove

minor categories containing less than 10 samples. All the

images are resized to 224 × 224. Similar to the setting in

Multi-PIE, we split the filtered dataset into an auxiliary set

which contains images of 1, 181 car models, and a standard

set which contains images of another 296 car models. These

two sets are disjoint in terms of model category.

Existing Models to Compare. We compare our model

with the state-of-the-art models DR-GAN [41], CR-GAN

[40] and Two-step [14], which also aim at generating fine-

grained objects given a target attribute as the condition. For

a fair comparison, we adjust the generator of each model to

have a comparable amount of parameters. Note that there

are other models for image-to-image transformation. How-

ever, many of them need pose masks or landmarks as guid-

ance [28, 31], which differs from our setting. Therefore, it

is not appropriate to compare them with our model. We also

do not compare our model with StyleGAN [25], PG-GAN

[24], or other similar models since they are unconditional

models that cannot generate categorical images.

Evaluation Metric. Since our task is visual recognition ori-

ented image transformation, we primarily evaluate the iden-

tity preservation performance of each model and report clas-

sification accuracy on identity preservation and few-shot

learning experiments. We do not use FID [16] or Incep-

tion Score [37] to quantify the generated images since they

are mainly used to evaluate the visual quality of images.

Implementation Details. Our model is optimized with

Adam optimizer. The learning rate is 0.0002, and the batch

size is 64. On CompCars dataset, in each training cycle,

we train one step for the generator and one step for the dis-

criminator. The target viewpoint code C is a 5 × 1 one-hot

vector. We empirically choose the radius of neighborhood

r = 7 for feature maps with size 28 × 28 and r = 14 for

feature maps with size 56× 56. We set λ to be 5. On Multi-

PIE dataset, we train four steps for the generator and one

step for the discriminator in each training cycle. The target

viewpoint code is a 9 × 1 one-hot vector. We empirically

choose the radius of neighborhood r = 6 for feature maps

with size 24×24. The noise vector has a size of 128×1.We

set λ as 1.

4.2. Identity Preservation

In this section, we evaluate the identity preservation abil-

ity of each generative model on both CompCars and Multi-

PIE datasets. On each dataset, we first train each model on
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Figure 4. Classification accuracy on the generated images from

CompCars dataset with 20, 50, 80, 120 and 200 categories.

the whole auxiliary set to learn the viewpoint transforma-

tion. We also train a Resnet18 [15] model on the auxiliary

set, then use its features of the last pooling layer as the rep-

resentation for identity classification experiments.

On CompCars dataset, we select Nc car models from all

the 296 classes in the standard set and choose all the images

in the selected Nc classes to form the dataset on which the

classification experiment will be conducted. We randomly

split the selected dataset as train and test sets with a ratio of

8 : 2. Note that the train and test sets contain images from

all the Nc classes. We train a KNN classifier on the train

set with the Resnet18 model as the feature extractor. Fol-

lowing that, for each image in the test set, we transform it

with the generative model, which outputs five images, one

per specific target viewpoint. We then use the KNN classi-

fier to classify all the generated images and report the top-1

and top-5 accuracies of each model. We choose the KNN

classifier because it is parameter-free so that it can directly

reveal the separability of the generated samples.

Fig. 4 shows the results of each model. We select Nc to

be 20, 50, 80, 120 and 200. Our full model with both CNC

and AIM significantly outperforms the existing models by

a large margin (over 5% accuracy gain under all settings),

showing that our model can better preserve the identity of

the generated images.

We conduct a similar identity preservation experiment on

Multi-PIE dataset, except that we select Nc to be 20, 50, 80
and 120 from 137 classes in the standard set and generate

9 fake images (viewpoints ranging from −60 degree to 60
degree) from each input test image. Fig. 5 shows the clas-
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Figure 5. Classification accuracy on the generated images from

Multi-PIE dataset with 20, 50, 80 and 120 categories.

sification results of each model on the generated face data.

Our model again outperforms the existing models, further

demonstrating the superiority of our model.

To make a more thorough analysis of the results, we

investigate each model by showing their visual results

straightforwardly, as shown in Fig. 6 on CompCars dataset

and Fig. 7 on Multi-PIE dataset.

Seen from Fig. 6, DR-GAN, CR-GAN and our model

can generate sharp images, while Two-Step can only gener-

ate blurry images. Although images generated by CR-GAN

look realistic, the key regions that identify a car (such as

bumper and lights) are quite different from the input image,

showing that their identity is not well preserved. This ob-

servation is consistent with the classification performance

in Fig. 4. The results further indicate that high-quality im-

ages do not necessarily stand for identity-preserved images.

Our model can generate fine-grained details that are almost

in accordance with the input image. Note that in some situ-

ations, our model fails to capture all the details of the input

car. It is because we are dealing with fine-grained image

transformation with large deformation, which is very chal-

lenging. Moreover, cars in our dataset contain many details,

making the task more difficult to accomplish. Even though,

images generated by our model still preserve many more

details than all the existing methods, demonstrating the ef-

fectiveness of our model.

Fig. 7 shows an exemplar case from Multi-PIE dataset.

We input the same image to the generative models, out-

putting images with nine different viewpoints. DR-GAN,

CR-GAN and Two-Step fail to preserve the identity very
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Figure 6. Exemplar images generated by different models on Com-

pCars dataset. In each column, from the top to the bottom are:

input image, and results of our model, DR-GAN [41], CR-GAN

[40], Two-Step [14], respectively. Since all the models generate

the correct viewpoints, we do not show the viewpoints here.

well. On the contrary, our model can generate images

whose identity is almost the same as the input image, with

as many details preserved as possible, demonstrating the ef-

fectiveness of our model in identity preservation.

4.3. Few­shot Learning

In this section, we evaluate how well each generative

model can boost the performance of the fine-grained few-

shot learning task [27] when used as a data augmenta-

tion method. Experiments are conducted on the CompCars

dataset. Similar to the identity preservation experiment, we

train the generative models on the whole auxiliary set.

We randomly select Nc car models from all the 296
model classes in the standard set. Then we select images of

the Nc classes to form a selected dataset on which we will

conduct the few-shot learning experiment. We randomly se-

lect s images from each car model (Nc car models in total)

to form the few-shot train set, and use all the rest images as

the test set. Under such a setting, the few-shot classification

task can be named as “Nc way s shot” few-shot learning.

In this experiment, we adopt Resnet18 as the classifier 1

for few-shot learning. We first train the classifier only on the

train set, which is then used to classify the images in the test

set. Different from the setting in the identity preservation

experiment, we classify the real images instead of the fake

images. We then input the images in the train set to the

generative model and generate 20 fake images per image

in the few-shot train set and set their identity labels to be

the same as the input image. To generate diverse images,

we interpolate between different viewpoint codes and input

the new code to the generator as the target viewpoint. The

generated images are used to augment the train set.

We then retrain the Resnet18 on the augmented train set

and classify images in the original test set. Note that when

1the last layer of Resnet18 is modified to Nc nodes.

Figure 7. Exemplar images generated by different models on

Multi-PIE dataset. From left to the right: input image, generated

images with 9 different viewpoints. Please pay attention to the

details such as face shape, hair and mouth.

Model 20w-5s % 20w-10s %

w/o augment 29.77 55.86

augment + Two-Step 32.04 52.53

augment + CR-GAN 27.61 39.67

augment + DR-GAN 47.85 60.01

augment + Ours 52.44 66.93
Table 1. Classification accuracy of few-shot learning under differ-

ent settings on CompCars dataset. “mw-ns” means m way n shot

learning. “w/o” denotes “without”.

training the Resnet18 classifier with the augmented data,

we also input the real/fake label to the Resnet18, so that the

model can balance the importance of generated data and real

data. Specifically, when training the Resnet18 with a real

image, we also input the label 1 (a 1-bit vector concatenated

with the feature of global pooling layer in Resnet18) to the

model. When training the Resnet18 with a fake image, we

input label 0 to the model. During testing, since the test

images are all real images, we input the label 1 along with

the image to the classifier, to obtain the prediction.

We report the few-shot learning results boosted by dif-

ferent generative models under Nc classes, where Nc = 20
in our experiment. As shown in Table 1, without any aug-

mented data, training on limited real samples leads to poor

performance on the test data. Using the generated images

by our model or DR-GAN to augment data can significantly

boost the performance of the classifier, indicating that it is

an effective way to boost the few-shot learning by augment-

ing the data with generative models. Our model yields much

better performance than DR-GAN. Interestingly, since the

images generated by CR-GAN and Two-Step do not well

preserve the identity, using them to augment data does not

benefit the few-shot classification. The results indicate that

generators with better identity preservation ability lead to

more significant improvements in few-shot learning, while

weak generators can even hurt the performance.

4.4. Ablation Study

We further analyze how each part of our model con-

tributes to the overall performance. Specifically, we con-

duct the identity preservation experiment with the follow-

ing versions of our model on CompCars dataset: 1) The
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Model 20c-top1 % 20c-top5 % 50c-top1 % 50c-top5 % 80c-top1 % 80c-top5 %

vanilla 48.59 75.82 36.20 57.52 27.27 48.20

vanilla + Deformable Conv [9] 49.75 76.08 37.26 58.53 28.82 48.81

vanilla + Global-NC(56) 50.37 76.25 37.45 58.21 29.23 49.39

vanilla + CNC(56) 52.45 78.31 39.42 60.52 31.38 52.88

vanilla + Global-NC(28) 53.12 77.08 38.30 59.12 30.40 52.13

vanilla + CNC(28) 55.05 80.16 42.24 63.49 34.68 56.09

vanilla + CNC(28) + IM (Eq. (3)) 55.47 81.22 42.35 64.73 34.92 56.80

vanilla + CNC(28) + AIM (Eq. (4)) 56.13 81.65 43.87 65.04 35.30 57.46
Table 2. Identity preservation experiment results with different versions of our model on CompCars dataset. Experiments are done with

20, 50, and 80 categories from the standard set. We report both top-1 and top-5 accuracies.

Figure 8. Images generated by U-net (top) and our model (bottom).

The first column shows the input image, and the rest columns are

images generated with five different viewpoints as condition. Our

model generates images with correct viewpoints while U-net fails

to accomplish the task.

vanilla model without constrained nonalignment connection

(CNC) nor adaptive identity modulation (AIM). The vanilla

model shares a similar architecture as DR-GAN. The gen-

erator has an encoder-decoder architecture (removing all

the AIMs and CNCs), while the discriminator remains the

same as our full model. 2) The vanilla model with de-

formable convolution [9] applied on the 28 × 28 feature

block instead of the original convolution. 3) Model with un-

constrained nonalignment connection, denoted as “Global-

NC”. Global-NC is a variant of CNC which modifies Eq.

(1) to search over all the spatial locations in K, instead of

merely searching a neighborhood region. 4) Model with

only CNC. 5) Our model with CNC and Identity Modula-

tion using Eq. (3). 6) Our full model with both CNC and

AIM using Eq. (4). The discriminator and the loss func-

tions remain unchanged. We also study how the location of

CNC influences the final performance. Therefore, we use

CNC/Global-NC to connect convolution blocks with differ-

ent spatial sizes. Specifically, as the structure of the en-

coder and the decoder in our model is symmetrical to each

other, we choose to connect one block in the encoder with

the corresponding symmetrical block in the decoder. We

apply CNC and Global-NC on feature maps with a 28× 28
or 56× 56 spatial resolution.

Results are shown in Table 2. Compared to the vanilla

model, using deformable convolution benefits the perfor-

mance. However, our model with CNC still outperforms

deformable convolution. CNC significantly improves the

performance of the model compared to Global-NC model

and vanilla model by a large margin, demonstrating its ef-

fectiveness. Applying CNC to different feature blocks can

influence the performance of the model. AIM also makes

significant contributions to improving the identity preser-

vation ability of the model. AIM also consistently outper-

forms IM (Eq. (3)).

CNC versus Skip-Connection. We further analyze how

constrained nonalignment connection is crucial to the suc-

cess of fine-grained image transformation with large geo-

metric deformation. On CompCars dataset, we compare our

model with a counterpart, which uses a U-net as the gener-

ator with skip-connections to link the encoder and decoder.

The other settings of the U-net model remain the same as

our model. Fig. 8 shows the images generated by our model

and the U-net model. Unsurprisingly, U-net model ignores

the target viewpoint condition and generates images that are

almost the same as the input image without changing the

views. Note that duplicating the input image can easily

preserve the identity of the input image, but will not pro-

vide useful information for the visual recognition systems.

On the contrary, our model can generate identity-preserved

images with correct viewpoints, demonstrating the superi-

ority of the our constrained nonalignment connection over

skip-connection.

5. Conclusion

We study fine-grained image-to-image transformation

with the goal of generating identity-preserved images that

can boost the performance of visual recognition and few-

shot learning. In particular, we adopt a GAN-based model

that learns to encode an image to an output image with

different viewpoints as conditions. To better maintain the

fine-grained details and preserve the identity, we propose

constrained nonalignment connection and adaptive identity

modulation, which are demonstrated effective in our exten-

sive experiments on the large-scale fine-grained CompCars

and Multi-PIE datasets. Our model outperforms the state-

of-the-art image transformation methods in identity preser-

vation and data augmentation for few-shot learning tasks.
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