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MONOPOLES AND LANDAU-GINZBURG MODELS I

DONGHAO WANG

ABSTRACT. The end point of this series of papers is to construct the monopole Floer ho-
mology for 3-manifolds with torus boundary. In the first paper, we explain the idea from
the standpoint of gauged Landau-Ginzburg models and address a few model problems
related to the compactness of moduli spaces, using a Bochner-type formula associated
to the gauged Witten equations.
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2 DONGHAO WANG

Part 1. Introduction
1. INTRODUCTION

1.1. Motivations in Floer Homology. The Seiberg-Witten Floer homology of a closed
oriented 3-manifold Y is defined by Kronheimer-Mrowka [KMO07] and has greatly influenced
the study of 3-dimensional topology. The underlying idea is to construct an infinite dimen-
sional Morse theory: solutions to the 3-dimensional Seiberg-Witten equations on Y are
critical points of the Chern-Simons-Dirac functional £, and solutions to the 4-dimensional
equations on R; x Y are viewed as negative gradient flowlines of L.

The purpose of this series of papers is to generalize their construction and define the
Seiberg-Witten Floer homology HM . (Y') for an oriented 3-manifold (Y,dY) with torus
boundary, which has the potential to recover the knot Floer homology of a knot K < S,
both the hat-version and the minus-version as special cases. In the first paper, we focus
on the geometric aspect and explain its relations with gauged Landau-Ginzburg models,
which were first introduced by Witten [Wit93] in his formulation of gauged linear sigmal
model (see Subsection 1.3 below). This change of standpoints allows us to prove two
fundamental results (Theorem 1.2 & 1.3 below) that lead eventually to the compactness
theorem of the Seiberg-Witten moduli spaces. The actual construction of the monopole
Floer homology of (Y, dY), including the compactness theorem and many other analytic
details, will be postponed to the second paper of this series [Wan20).

One reason to develop a relative version of Floer theory for 3-manifolds with boundaries
is to give a gluing formula for the absolute version. The second reason is to define invariants
for knots and links inside S3. These goals are accomplished in the framework of Heegaard
Floer Homology, via the construction of bordered Floer homology [LOTO8] by Lipshitz-
Ozsvéath-Thurston and knot Floer homology by Ozsvath-Szabé [OS04] and independently
Rasmussen [Ras03]. See [Manl6] for a nice survey on their constructions. A long term
goal of our program is to interpret their works in the context of gauge theory and hopefully
provide new insights for future research.

It has been long believed [Man16, P.1] that the knot Floer homology of (S3, K) en-
codes something about the Seiberg-Witten equations on R; times the knot complement
S3\N(K). One may approach this heuristic using the Floer homology constructed in the
second paper, which applies to any knot (or link) complements. The conjectural relation
(see [Wan20] for more details) is as follows

HM ., (Y) v~ HFK, (S3, K) if Y = S3\N(K),
HM ,(Y) v HFK, (5%, K) or KHM (5%, K) if Y = S\N(K um),

where m is a meridian of K < S3. In the second case, we will describe a conjectural
self-gluing formula of HM ,(Y) in Subsection 2.3 that explains this reduction.

Some constructions of knot Floer homology that uses gauge theory already exist in the
literature. It is hoped that the analytic tools introduced in this series of papers can also
help extend the existing theory in some directions. Let us give a brief summary:
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e In [KM10], Kronheimer-Mrowka defined the monopole knot Floer homology KHM .
using the sutured manifolds technique developed by Juhdsz [Juh06, Juh08], as the
counterpart of [FK in Heegaard Floer homology. In the same paper, they intro-
duced the instanton knot Floer homology whose applications include a new proof of
Property P for knots. The rough idea is to close up the boundary of the knot com-
plement S*\N(K) (treated as a balanced sutured manifold) and obtain a closed
oriented 3-manifold whose monopole Floer homology is already defined. We will
come back to this approach and explain its relation with our work in Subsection
2.3;

e Most recently, it is shown that the sutured monopole Floer homology is a functor
from the sutured cobordism category [Lil8], and Li [Lil19] proposed a construction
of HFK™ in the Seiberg-Witten theory using a direct system of sutures on the knot
complement;

e In [KM11la], Kronheimer-Mrowka introduced the singular instanton Floer homol-
ogy and proved that the Khovanov homology detects the unknot. See also [KM11b].
The idea is to treat (S3, K) as a bi-fold, whose metric is singular along the knot
K with a cone angle 7.

On the other hand, Nguyen [Ngul2, Ngul8] studied the monopole equations on the
manifold with boundary (Y,0Y") directly and developed analytic foundations for a Floer
theory with the Lagrangian boundary condition on JY. We will work instead with a
complete Riemannian manifold, as we explain in the next subsection.

1.2. Summary of Results. To give the statement of our main theorems, let us now
describe the setup. Given a compact oriented 3-manifold Y with torus boundary oY = X,
let gy be a Riemannian metric that is cylindrical near ¥ and gy = gy‘z. Then ¥ =
11y <i<m i is a disjoint union of 2-tori. Instead of Y, we look at the monopole equations
on the complete Riemannian manifold:

Y =Y ]][0,0), x &
b))

For most results in this paper, there is no need to assume that gy, is flat. At this point, a
suitable perturbation along the cylindrical end [0,00)s x X is required so that Lemma 1.1
below is valid, which is crucial for a Floer theory. It relies on a pair (A, ) where

e \e Q,ll(E, iR) is an imaginary valued harmonic 1-form on ¥;
e € Q}%(Z, iR) is an imaginary valued harmonic 2-form on ¥, i.e. p = ZT’Zl djdvols;,
for some constants ¢; € iR.

Finally, we use the 2-form w := p + ds A A to perturb the Seiberg-Witten equations on
[0,00)s x 3. See (10.1) for the explicit formulae on Ry x ¥ and (7.1) on the 4-manifold
C x X. As we will focus on the cylindrical end of Y in this paper, it does no harm to
assume that X is connected from now on. We are only interested in spin® structures with
c1(ST)[X] = 0. The construction is inspired by the following lemma by Meng-Taubes:
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Lemma 1.1 ([MT96]). For any metric gs on ¥ and any pair (A, p) # (0,0), there exists
a unique Rg-translation invariant solution (up to gauge) to the perturbed Seiberg- Witten
equations (10.1) on the 3-manifold Ry x X. Moreover, this solution is irreducible.

Any finite energy solutions on Y will approximate this unique solution along the cylin-
drical end [0,00)s x 3. As critical points of the perturbed Chern-Simons-Dirac functional
L,,, they become non-degenerate after further perturbations and form a compact moduli
space of dimension 0. ~

Now consider the moduli space of finite energy monopoles on the 4-manifold R; x Y
which possesses a planar end Hi x Y. The upper half plane

H2 := R, x [0,00)s

is furnished with the Euclidean metric. The convention here is to use t for the time
coordinate and s for the spatial coordinate on cylindrical the end of Y. To define the
Floer differential ¢ and prove that 0> = 0 on the Floer complex, the moduli space must
have the right compactification. The failure may arise from the cylindrical end of Y.
For a sequence of solutions on Ry x f/, some amount of energy might slide off along the
cylindrical ends of Y and give rise to finite energy solutions on C x X.

This is the first problem that we address. This phenomenon is precluded by the next
theorem; the 4-manifold R; x Y is non-compact in two directions, but the energy can slide
off only in the time direction.

Theorem 1.2. For any metric gz and any A # 0, any finite energy solution to the
perturbed Seiberg- Witten equations (7.1) on C x X, the so-called point-like solution, is ir-
reducible and gauge equivalent to the unique C-translation invariant solution whose energy
18 zero.

In this sense, we say that point-like solutions on C x ¥ are trivial. This result contrasts
immensely with the case of the unperturbed equations. Let us give a brief summary:

e For a higher genus surface ¥ with g(i‘,) > 1, point-likes solutions on C x % can
be non-trivial. They are classified completely in terms of some algebraic data, see
[Wan18];

e When (A, 1) = (0,0), point-like solutions on C x ¥ are reducible and correspond
to flat U(1)-connections on X;

e When A = 0 and g # 0, the moduli space is isomorphic to [];-, Sym?C, i.e.
the vortex moduli space on C in the sense of [Tau80]. It is not regular unless
d = 0. Indeed, the expected dimension is always 0 for any connected component,
cf. Example 5.9.

Thg second problem we address is the exponential decay in the spatial direction on
R; x Y, and we state the result for the planar end Hi x 3. For any n € Z and R € [1, ),
define Q, g:=[n—1,n+1] x [R—1,R+ 1] =« H2 and let
(1.1) Ean (’Y; Qn,R)

be the analytic energy of the configuration v on the 4-manifold €2, g x 3, called the local
energy functional of 7. See Definition 8.2 for the precise expression. This non-negative
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quantity is gauge invariant, and bounds the L2-norm of + (up to gauge) on Q, r x X and
also the L%—norms in the interior of €, g x ¥ for any £ > 1 when + is a solution.

Theorem 1.3. If A # 0 € Q}L(E,ZR), then there exist constants €, > 0 depending only
on (gs, A, ) with the following significance. Suppose ~y solves the perturbed Seiberg- Witten
equations on H2 x 2 and Eun (v, Qn.r) < € for anyn € Z and R > 1, then

&m('W Qn,R) < e_CR'

From Theorem 1.3, one can easily deduce the decay of Lz—norms for a solution . Note
that the spatial direction (s — o0) is not the direction of downward gradient flowlines
of the functional £, so Theorem 1.3 is not a consequence of the standard theory, e.g.
[KMO7, Section 13].

The proofs of Theorem 1.2 and 1.3 rely on Proposition 1.4 below which relates the
Seiberg-Witten equations on C x ¥ with the gauged Witten equations of an infinite di-
mensional gauged Landau-Ginzburg model, as we explain in the next subsection.

1.3. Gauged Landau-Ginzburg Models. The gauged Witten equations were first in-
troduced by Witten in his formulation of gauged linear sigma model [Wit93] as a physics
theory that explains the so-called Landau-Ginzburg/Calabi-Yau correspondence. Its math-
ematical foundation is recently developed by Tian-Xu in a series of papers [TX18a, TX18b],
in which case the domain is a compact Riemann surface with punctures. We would like
to refer readers to their nice introduction for necessary background. Since our focus is
slightly different, we give a short discussion below with emphasize on the Picard-Lefschetz
theory.

When the dimension is finite and the structure group G = {e} is trivial, a Landau-
Ginzburg model is a pair (M, W) where

e M is a complete non-compact Kéahler manifold, and
e W =L+iH: M — C is a holomorphic function, called the superpotential.

The Landau-Ginzburg Model (M, W) is called Morse if L := Re W is a Morse function
on M, so (M, W) defines a Lefschetz fibration. In the viewpoint of symplectic topology,
one may define its Fukaya-Seidel category A in the sense of [Sei08] using Lagrangian
Floer cohomology. Each compact Lagrangian submanifold £y < M should be assigned a
A-module over A. The construction is based on the Floer equation

(1.2) orP + JosP +VH =0,

where H :=Im W and P : R; x[0, 1]y — M is a J-holomorphic curve subject to Lagrangian
boundary conditions. We wish to generalize this picture in two directions. Here is the
first one:

(1) the structure group G is abelian, but non-trivial.

In this case, the action of G on M is Hamiltonian with a moment map u : M — g
and the superpotential W is G-invariant. Readers are referred to Definition 3.1 for other
requirements on a gauged Landau-Ginzburg model. The right replacement of (1.2) is the
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gauged Witten equations:

(13) —*2FA+,M :5;
' VaP+JVEP+VH =0,

where A is a connection on the trivial G-bundle @ over R; x [0,1]s and 5e g. The map
P is now regarded as a section of the trivial bundle Q xg M. The right replacement of
the Morse condition is a notion of stability, cf. Definition 3.6. The local energy functional
(1.1) in this context is defined as

(1.4) Ean(A, P;Q g) = f |Fal? + | — 6> + |VAP)? + |VH]%.

Qn,R

for any Q, r Hi In particular, &,,(A, P;Q, r) = 0 implies that up to gauge, A = d
and P is a constant map defined on €2, g taking values in u~1(8) N Crit(H).
Here is the second generalization that we make:

(2) the gauged Landau-Ginzburg model (M, W, G) can be infinite dimensional.

The proofs of Theorem 1.2 and 1.3 start with their counterparts for finite dimensional
Landau-Ginzburg models (as toy problems) and are concluded by the following observa-
tion.

Proposition 1.4 (Proposition 7.4 & 7.5). There is an infinite dimensional gauged Landau-
Ginzburg model (M(X), Wy, G(X)) associated to (X, gs, \) whose gauged Witten equations
on C recover the Seiberg- Witten equations on C x X. When A # 0, this Landau-Ginzburg
model is stable in the sense of Definition 3.6, and the superpotential W has infinitely
many critical values, which form a lattice inside C.

Remark 1.5. The perturbations A and p play very different roles from the standpoint of
the gauged Witten equations (1.3): X is used to perturb the superpotential Wy, while u

is used to perturb the moment map equation in (1.3) by changing Se g. O

The first clause of Proposition 1.4 does apply to a high genus surface 3, but only when
g(X) = 1 and X\ # 0, the gauged Landau-Ginzburg model we obtain is stable. Roughly
speaking, Theorem 1.2 and 1.3 hold in general for any gauged Landau-Ginzburg model
with a stable superpotential. The only difference in the infinite dimensional case is that
the metric of M depends on the Sobolev completions, and we have to specify the correct
norms involved in our estimates. The plot-line of proofs are summarized in the table

below:

dim < o0 dim = o0
G = {e} G # {e} the Seiberg-Witten equations on C x ¥ or H? x ¥
Lemma 2.7 | Theorem 5.1 Theorem 8.1 (Theorem 1.2)
Lemma 2.5 | Theorem 6.1 Theorem 9.1 (Theorem 1.3)

For instance, when M = C,G = S' and W = 0, the gauged Witten equations (1.3)
defined on C = Ry x R, come down to the vortex equations in the sense of [Tau80] (with
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d=1/2):

. 1 1
(1.5) { #9iFa + 3|P]* =3,

0AP =

where A = d + a is a U(1)-connection on C and P : C — C is a complex valued function.
This example is not stable in the sense of Definition 3.6, and Theorem 5.1 fails, by [Tau80,
Theorem 1]. Nevertheless, Theorem 6.1 still holds, which states that the local energy
functional &y, (A, P; €, r) defined by (1.4) has exponential decay as R — co. This decay
is also point-wise, so it recovers a theorem of Jaffe-Taubes:

Theorem 1.6 ([JT80], P.59, Theorem 1.4). Let (A, P) be a smooth finite energy solution
to the vortex equations (1.5). Given any € > 0, there exists C' = C(e, A, P) < o such that

1
0 < #9iby = 5(1 —|P]?) < Ce—(1-OVEZ+s?

The proof of Theorem 6.1 uses the maximum principle and a Bochner-type formula
(Lemma 6.4) for the energy density functional of (A, P), which was first proved by Taubes
in the special case of the vortex equations in [JT80, Proposition 6.1]. See Remark B.10
for more details.

The example above is more or less degenerate, since the superpotential W is identically
zero. Usually one can take any Hamiltonian function to perturb the Floer equation (1.2),
but when it is the imaginary part of a holomorphic function W, both (1.2) and (1.3)
possess richer structures. Analytically this is encoded in the Bochner-type formula in
Lemma 6.4. Geometrically this is related to Fukaya-Seidel categories, as we discuss in the
next subsection and Section 2.

1.4. Fukaya-Seidel Categories and Floer Homology. As explained in the beginning
of Subsection 1.3, each Landau-Ginzburg model (under additional conditions) should be
assigned an A -category. To generalize this Picard-Lefschetz theory to the infinite di-
mensional gauged Landau-Ginzburg model in Proposition 1.4, one may work with infinite
dimensional Lagrangian submanifolds, but there is another alternative: can we define
Lagrangian Floer cohomology without actually mentioning Lagrangian submanifolds?

When G = {e} and dim M < oo, this idea can be partly realized when the Lagrangian
submanifold Ly is a Lefschetz thimble, i.e. the stable (or unstable) submanifold of a critical
point ¢ € Crit(ReW). Instead of a stripe R; x [0, 1], we look at J-holomorphic curves
defined on the upper (or lower) half plane:

P:H2 =Ry x [0,00)5 —» M

subject to the Floer equation (1.2) and Lagrangian boundary condition on R; x {0}. The
study of Fukaya-Seidel category of Landau-Ginzburg models via this approach has been
pioneered by Haydys [Hayl5] and Gaiotto-Moore-Witten [GMW15]. See also [FJY18,
GMW17, KKS16]. We will give a brief sketch of their proposal in Section 2. The primary
application in their cases is when

M = SL(2,C) connections on a closed 3-manifold Y,

W = the complex valued Chern-Simons functional,
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so the gauged Witten equations go over to the Haydys-Witten equations on the 5-manifold
C x Y. This idea even goes back to the seminal paper [DT98] by Donaldson and Thomas,
in which case

M = the space of d-operators on a complex vector bundle E — ),

W = the holomorphic Chern-Simons functional,

for a compact Calabi-Yau 3-fold ), and one recovers the Spin(7)-instanton equation on
C x Y. The Seiberg-Witten equations should serve as the field test for their programs
in higher dimensions, as the compactness does not cause an issue here. Although it is
not pursued in the present work, it would be an interesting future direction to develop a
bordered monopole Floer theory along this line.

Since we will not come back to Landau-Ginzburg models in the second paper of this
series, we will explain in Subsection 2.3, how the monopole Floer homology of (Y, dY") fits
into this general picture.

1.5. Organization. Section 2 is a continuation of this introduction, in which we explain
a variant of Lagrangian Floer cohomology, following the work of Haydys [Hayl5] and
Gaiotto-Moore-Witten [GMW15]. This variant will allow generalization to the infinite
dimensional setting. Instead of holomorphic strips, we look at “holomorphic upper half
planes” with boundary condition only on the one side. It is intended to be a general
overview; no proofs will be presented.

In Part 2, we study gauged Landau-Ginzburg models on a finite dimensional Kahler
manifold. The focus is on the geometric insights that motivate definitions and proofs in
the infinite dimensional setting. In Section 3 and 4, we define gauged Landau-Ginzburg
models and study the gauged Witten equations on the upper half plane Hi Point-like
solutions are solutions on the complex plane C with finite analytic energy. It is shown in
Section 5 that point-like solutions are trivial provided that W is a stable superpotential.
In Section 6, we prove an exponential decay result using a Bochner-type formula for the
energy density functional.

In the last part of this paper, we introduce the Fundamental Landau-Ginzburg Model
associated to a 2-torus X and prove Theorem 1.2 and 1.3 by generalizing Theorem 5.1 and
6.1 from Part 2.

Acknowledgments. The author is extremely grateful to his advisor, Tom Mrowka,
for his patient help and constant encouragement throughout this project. The author
would like to thank Tim Large and Paul Seidel for several discussions and for providing
the critical references, and also Ao Sun for teaching him the elegant proof of maximum
principle. This material is based upon work supported by the National Science Foundation
under Grant No.1808794.

2. A GENERAL OVERVIEW

In this section, we explain a variant of Lagrangian Floer cohomology defined using holo-
morphic upper half planes, following [Hay15] and [GMW15]. To make it more consistent
with the literature, we will work with cohomology instead of homology in this section.
This variant serves as a toy model for the monopole Floer homology of a 3-manifold
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(Y,0Y) with torus boundary, as we sketched in the introduction. More details will be
given in Subsection 2.3. This analogy is only used as an inspiration or a guideline for
future research; it is not our intention to relate these two theories in a precise way.

Analytically, the perturbed Seiberg-Witten equations on H2 x ¥ and the Floer equation
(2.5) on HZ share many common features. Lemma 2.7 and Lemma 2.5 below are the
counterparts of Theorem 1.2 and 1.3 in this toy model. Their proofs are postponed to the
next part, where the corresponding results (Theorem 5.1 and 6.1) are stated and proved
for the gauged Witten equations.

2.1. A Variant of Lagrangian Floer Cohomology. Recall that a Landau-Ginzburg
Model is a pair (M, W) where

e (M,w,J,g) is a non-compact complete Kéhler manifold with complex structure J
and Kahler metric h := g — iw. The underlying Riemannian metric is g, while w
is the symplectic form.

e W : M — C is a holomorphic function, called the superpotential.

Since M is Kahler, J is parallel. Write W = L + iH with L = ReW and H = Im W.
Then the Cauchy-Riemann equation (dWW)%! = 0 comes down to

(2.1) VL + JVH =0,

i.e. the gradient VL is the Hamiltonian vector field of H.

A Landau-Ginzburg model (M, W) is said to be Morse if all critical points of L are
non-generate. We always assume (M, W) is Morse in this section. Let Crit(L) be the set
of critical points of L. Taking the covariant derivative of (2.1) yields:

(2.2) Hess L + J o Hess H = 0.
Since Hess H is a symmetric operator and J is skew-symmetric, (2.2) implies that
(2.3) JoHessL +HessLoJ =0.

For any ¢ € Crit(L), let Hqir c T,M be the positive (negative) spectral subspace of
Hess, L. Then (2.3) implies J(H;) = HF. In particular, the index of ¢ is (n,n) if
dimg M = 2n. Let U, and S, be the unstable and stable submanifolds of ¢, i.e.

Uj={xeM:3p:(—w0,0]s > M,dsp+ VL =0,p(0) = :E,sli}laoop =q},
Sq={reM:3p:[0,00)s > M,dsp+ VL =0,p(0) = x,sli_{qc}op = q}.
U, and S, are called Lefschetz thimbles of (W, q).
Lemma 2.1. U, and S, are Lagrangian submanifolds of (M,w).

Lemma 2.1 may have been well-known for a long time, but its significance was only
realized after the works of Donaldson [Don99] and Seidel [Sei03]; see [Sei08, Remark
16.10].

Assumption 2.2. To simplify our exposition in this section, we make the following as-
sumptions.
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e (M,w) is an exact symplectic manifold, i.e. w = df); is an exact 2-form; the
primitive 0, € Q(M) is a smooth 1-form;
e L has a unique critical point on M; let Crit(L) = {q};
e The superpotential W : M — C is not assumed to be proper. Instead, we assume
that [VW|?: M — [0,0) is a proper map. o
Example 2.3. Let M = (C",z1,--+ ,z,) and W = zf +---+2z2. The unique critical point
q is the origin. O
Take a pair of compact Lagrangian submanifolds (Lo, £1) < M; assume they intersect
transversely. Let CF*(Lg, £1) be the Fao-vector space freely generated by the intersection
ﬁ() (@) ,Cl:
CF*(Lo,L1)= @ Fa-y.

ye[ﬁomﬁl

The differential ¢ on CF* (L, £1) is defined by counting J-holomorphic strips of Maslov

index 1, subject to Lagrangian boundary conditions. They are smooth maps
P:Ry x[0,1]s > M

satisfying the equation
(2.4) 0¢P + JosP =0,
along with the boundary conditions P(-,0) € Ly and P(-,1) € £1. At this point, some
assumptions on M and (Lo, £1) are required to ensure that ¢ is well defined after suitable
perturbations, but let us skip these technical steps here.

Equation (2.4) can be perturbed by a Hamiltonian function. In our case, we use the
imaginary part of W:

(2.5) oyP + JosP+VH =0.
The co-chain complex CF*(Ly, £1) is then generated by Hamiltonian chords, which are
smooth maps p : [0,1]s — M satisfying relations
p(0) € Lo,p(1) € L1,J0sp+ VH = 0.
Using the Cauchy-Riemann equation (2.1), the last condition is equivalent to
(2.6) 0=J(@sp+ VL),s e [0,1]s.

i.e. pis a downward gradient flowline of L.

One obtains the Lagrangian Floer cohomology HF*(Ly, £1) by taking the cohomology
of (CF*(Ly,L1),0). The underlying idea is an infinite dimensional Morse theory. The
configuration space is the loop space

C™([0,1], M; Lo, L1) := {p: [0,1]s = M : p smooth, p(0) € Lo, p(1) € L1},

and the Morse function defined on C* ([0, 1], M; Ly, L1) is the perturbed symplectic action
functional:

An(p) = Ap) + j[ L Hopa)ds
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A path p is a critical point of A if and only if p is a Hamiltonian chord. For an Ry-family
of paths {p}er = C™([0,1], M; Lo, L), it forms a down-ward gradient flowline of Agy
precisely when P(t,s) = p(s) solves the equation (2.5) on Ry x [0, 1]s.

We would like to generalize this setup for certain non-compact Lagrangian submanifolds,
in particular for the unstable and stable submanifolds U = U, and S = §,. This can not
be done in general; some asymptotic behaviors of £; at infinity are required to make
the cohomology group well-defined. We do not intend to make these conditions precise;
instead, we give a few incomplete axiomatic properties:

(1) There are two classes of non-compact Lagrangian submanifolds: the unstable type
and the stable type. Denote them by C,, and Cg respectively.

(2) Uy € Cyy, and Sy € Cysy, where U, and S, are Lefschetz thimbles of g.

(3) For any Ly € Cyy, and Lg € Cg;, L = Re W is bounded above on Ly and below on
Lg. Ly only intersect Lg within a compact region of M.

(4) The Lagrangian Floer cohomology HF* (L7, L) is well-defined, assuming transver-
sality, by counting Hamiltonian chords and solutions of (2.5).

Our goal now is to give an alternative construction of HF*(Lys, S,) and HF*(Sy, Ly7).
We focus on the first case. Suppose Ly is exact, so the primitive 0ps|z, = dh for some
real valued function h : Ly — R. The chain group CF*(Ly/, S;) is generated by the finite
set Ly 0 Sq. Each z € Ly n S, corresponds to a path p : [0,00)s — M such that

0sp+ VL =0, p(0) =z, lim p(s) = g.
Comparing with (2.6), this motives us to look at the space
C*([0,00), M; L) :== {p:[0,00)s — M : p smooth, p(0) € Ly, linolO =q},
and consider the perturbed action functional:
Autp) = —hGO) + | 90+ Hop(5)ds.
0,00) s

The differential 0 is defined by counting solutions to (2.5) on the upper half plane Hi =
R; x [0,00)s with the boundary condition:

(2.7) P(-,0) € Ly, lingoP(t, s) =q.
S—>
To prove 02 = 0 in this context, it is important to know a compactness result. Since we
have omitted some assumptions, we state the result as a property instead of a proposition:

Property 2.4. For a fized unstable type Lagrangian submanifold Ly, there exists a func-
tion n : [0,00)s — Rsg such that lims_o n(s) = 0, and for any solution P : HX — M of
(2.5) subject to the boundary condition (2.7), we have

supd(P(t,s),q) < n(s),
teR

where d is the distance function of the Riemannian metric g.
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The upshot is that the convergence in the boundary condition (2.7) is also uniform for
all possible solutions P. In fact, this decay is exponential. The next lemma is the toy
model of Theorem 1.3 when G = {e} and dim M < c0.

Lemma 2.5. There exist constants e(M,W),((M,W) > 0 with following significance.
For any solution P : H2 — M such that d(Pi(t,s),q) < €,Y(t,s) € H2, we have

d(Py(t,s),q) < e Vs = 0.

The exponent ((M,W) is determined by the first positive eigenvalue of Hess, L. To
derive the exponential decay from Lemma 2.5, set Pi(t,s) = P(t,s + R) for some R » 0
in Property 2.4.

Remark 2.6. Apparently, Lemma 2.5 holds when P is time-independent, since in this
case {P(t,5)}se[0,00), 15 @ down-ward gradient flowline of L = Re W for any fixed ¢ € Ry
and L is a Morse function. It is not clear to the author whether {P(:,s)}c[0,c0) forms a
down-ward gradient flowline (in the spatial direction) of some functional in general. ¢

The proof of Property 2.4 relies on the following fact:

Lemma 2.7. Let P: C — M be a solution of (2.5) on the complex plane. If P(t,s) — q
as (t,s) — oo, then P = q.

Remark 2.8. As we will see later, for a gauged Landau-Ginzburg model, Lemma 2.7
is not true in general. An appropriate condition that ensures Lemma 2.7 is a notion of
stability, cf. Definition 3.6. O

Remark 2.9. We will prove Lemma 2.7 and Lemma 2.5 in the context of gauged Landau-
Ginzburg models in Part 2, c¢f. Theorem 5.1 and Theorem 6.1.

Property 2.4 is not true in general if L = Re W has multiple critical points on M. We
will address this issue for the Seiberg-Witten equations in the second paper, cf. [Wan20,
Theorem 5.3]. &

2.2. A Gluing Formula. In general, when L = Re W is allowed to have multiple critical
points (still finite), one may define the Fukaya-Seidel category of (M, W), an Ay -algebra A
generated by Lefschetz thimbles {Uy}gecrit(r) O {Sq}qecrit(r)- Moreover, for each Ly € Cup
and Lg € Cy4, we assign:

Ly v~~~ an Ax-right module over A,

Lg v an Ag-left module over A.
Their underlying co-chain complexes are given respectively by
(2.8) @ CF*(Ly, Sq) and @ CF*(Ug, Ls).
qeCrit(L) qeCrit(L)
A theorem of Seidel [Sei08, Corollary 18.27] then suggests a spectral sequence whose
Fi-page is

(2.9) @ HF*(Ly,S;) @ HF*(U,, Ly),
qeCrit(L)
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abutting to HF*(Ly, Lg) in the Fy-page. The underlying geometric picture was probably
observed first by Donaldson and elaborated later in the monograph [GMW15] by Gaiotto-
Moore-Witten. The Lagrangian Floer cohomology HF* (L, Lg) is defined by counting
holomorphic strips of width 1 with boundary conditions, but one can instead work with
strips of width R for arbitrarily large R > 0 and let R — 0.

This neck-stretching picture makes more sense with the perturbed equation (2.5), in
place of (2.4). In the limit R — o0, a holomorphic strip boils down to a few simpler pieces
which can be analyzed by the Ag-structures of (2.8). For instance, a differential on the
Ey-page comes from a holomorphic upper half plane in CF*(Ly, S;) and an intersection
point in U, n Lg, or the other way around. This explains why the Fj-page is a tensor
product. Higher multiplications in the Ay -structure give rise to higher differentials.

If the Ay -algebra A turns out to be trivial, then the spectral sequence collapses after
the Ei-page. There is one simple geometric condition that yields this triviality:

Lemma 2.10. If for any € € S*, the down-ward gradient flowline equation
dsp(s) + V(Re(e®W)) =0, p: Ry —» M
can only have constant solutions, then the Fukaya-Seidel category of (M, W) is trivial.

As we shall see in Corollary 10.4, this condition can be verified for the Seiberg-Witten
equations when the metric gs; is flat and § # 0.

Although this geometric intuition is enlightening to keep in mind, the analytic founda-
tion of the web-based formalism [GMW15] is still missing. To implement their proposal
for the Seiberg-Witten equations remains a challenging problem.

2.3. Relations with Gauge Theory. As noted in Subsection 1.4, our goal is to define
Lagrangian Floer cohomology without using boundary conditions, and we have achieved
this goal partly by considering holomorphic upper half planes. To deal with the other
boundary component, let us explain the origin of Ly and Lg in our primary applications.

Suppose we have a closed oriented 3-manifold Y separated by a homological essential
2-torus X:

Y = Yy #xYg and Im(H*(X;R) — HY(Y;R)) # 0.

Let M(X) be the infinite dimensional Kéhler manifold associated to ¥ in Proposition
1.4. The solution space of 3-dimensional Seiberg-Witten equations on Y7, by the work
of Nyugen [Ngul2], is infinite-dimensional, whose boundary values on ¥ form an infinite
dimensional Lagrangian submanifold of M (X). Denote it by L£y. One may construct
the other piece Lg from the 3-manifold Y. It becomes clear that the monopole Floer
cohomology HM™*(Y7) of Y7, as we sketched in Subsection 1.2, is the analogue of

© HF*(Ly,S,)

qeCrit L

defined using holomorphic upper half planes. By working with the extended 3-manifold
?L = YL H[O,OO)S X 2
b3

and the 4-manifold R; x ?L, we get rid of boundary conditions completely.
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To see the relation with the knot Floer cohomology, recall the construction from [KM10].
For any knot K < S3, take a meridian m < S3\K. The link complement

Y = SA\N(m u K).

is a 3-manifold with boundary 0Yx = ¥1 U Xo. Using any orientation reversing diffeomor-
phism ¢ : ¥ — 3y, we close up the boundaries of Yx and obtain a closed 3-manifold Y},.
Then define
KHM*(S®, K) := HM*(Y},).

The latter group HM™*(Y},) is the monopole Floer cohomology of Y} defined using a
suitable non-exact perturbation. It is shown in [KM10] that KHM*(S3, K) is independent
of the isotopy class of ¢ up to isomorphisms.

On the other hand, we can take HM*(Yk,0Yk) as a candidate of knot Floer ho-
mology, which is defined by attaching cylindrical ends to Yx. To see its relation with
KHM*(S3, K), regard ¢ as gluing two pieces:

YK and [—R, R]s X 21.

As R — o0, we stretch the metric in a neighborhood of ¥; in Y}, in analogy of the neck
stretching picture involved in the spectral sequence (2.9). In fact, Lemma 2.10 applies in
this case, so one may recover KHM*(S3, K) from HM* (Y, 0Yk) by a self-gluing formula.

As an ending remark for this expository section, the monopole Floer homology of 3-
manifolds with torus boundary to be defined in the second paper [Wan20] only gives
the underlying co-chain complexes (2.8). The construction of A -structures is left as an
interesting future project. The discussion of this subsection is mostly inspirational and
philosophical. It will require substantial new ideas to fully realize this picture.
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Part 2. Gauged Landau-Ginzburg Models

In this part, we generalize the setup from the previous section by allowing an abelian
group G act on the Kéhler manifold M. In this case, we obtain the gauged Witten
equations (4.1) as the replacement of the Floer equation (2.5). Theorem 5.1 and Theorem
6.1 are analogue of Theorem 1.2 and Theorem 1.3 in the finite dimensional case; their
proofs are presented in Section 5 and Section 6 respectively.

3. DEFINITIONS AND EXAMPLES

We generalize the setup from the previous section and introduced the notion of gauged
Landau-Ginzburg Models.

Definition 3.1. The quadruple (M, W, G, p) is called an (abelian) gauged Landau-Ginzburg
model if
(1) (M,w, J,g) is a complete non-compact Kahler manifold with complex structure J
and Kahler metric h := g — iw; g is the underlying Riemannian metric, and w the
symplectic form.
(2) (G,p) is a compact abelian Lie group acting on M holomorphically and isometri-
cally, i.e. for any g € G, the action p(g) : M — M is a holomorphic isometry;
(3) (G, p) is an Hamiltonian group action, and it admits a moment map:

p:M—g,

where g is the Lie algebra of G. Since G is abelian, p is G-invariant;
(4) The action of (G, p) extends to an action of the complex group (Gc,pc). pc :
Gc x M — M is holomorphic. pc does not preserve the Riemannian metric g in

general.
(5) W : M — C is a Gg-invariant holomorphic function called the superpotential.
Write W = L+ ¢H with L = ReW and H =ImW. O

Again, we assume (M,w) is an exact symplectic manifold, i.e. w = dfy; for some
Orr € QY(M). For any € € g, let ¢ be the vector field on M induced from the group action

(G, p):

~ B d te
) = o]
We adopt a non-standard (sign) convention of the moment map in this paper:
(3.1) HE)w = —dp1, €y.
Since w(-,-) = g(J-,-), (3.1) is equivalent to
(3.2) (Vi €)g = Vi £ = —J¢,

where Ve I'(M, TM ®g) is a g-valued vector field on M and (-, -)4 denotes a bi-invariant
metric of g.

Example 3.2. Let G = S',Gc = C*,M = C and W = 0. The group action is the
standard complex multiplication. Using our sign convention (3.2), the moment map is
p(z) = £|z|? for z € C. &
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Example 3.3. Let G = S',Gc = C*, M = S? and W = 0. Identify M with CP! =
C U {o0}. The action pc is the same as in Example 3.2. {0,00} is the fixed point set of
pc- &

Example 3.4. Let G = S',G¢c = C*, M = (C?,z,y) and W(z,y) = xy. W becomes
Ge-invariant if we set the action pc as

pe(u)(@,y) = (uz,u™'y),
for any u € C*. The moment map is p(z,y) = %(|z> — |y|?). %

Just as Assumption 2.2, we wish (W, u) to satisfy some good properties. The replace-
ment of the Morse condition for gauged Landau-Ginzburg models is a notion of stability.
There are two possible candidates; the second one turns out to be more useful.

Definition 3.5. A regular value §e g of the moment map p is called W-stable if the
restriction of L on

pH(6)/G
has a unique critical point and it is non-degenerate. Thus, before taking the quotient,
there exists a unique critical orbit O, of L such that O, = pu=1(d). &

Sisa regular value of the moment map p if and only if the infinitesimal action of G on
the fiber p ! (5 ) is free, so the quotient space is a genuine manifold (or orbifold in general).

However, from the viewpoint of Remark 2.8, having a W-stable regular value is not
good enough (see Example 5.8). Note that the critical set Crit(L) = {z € M : VL(x) = 0}
is closed and Gc-invariant.

Definition 3.6. The superpotential W is called stable if Crit(L) contains a unique free G-
orbit and L is Morse-Bott, i.e. for any x € Crit(L), ker Hess, L is precisely T,(Gc - x). &

In fact, any regular value §elm uC gis a W-stable if W is stable.

In Example 3.2, any ¢ € [0, c0) is W-stable, but W itself is not a stable superpotential.
Indeed, Crit(L) = M, and it contains two C*-orbits.

In Example 3.4, L has a unique critical point ¢ = (0,0) € C2. It is not W-stable. If
instead we let G = {e}, W is stable, and & = 0 is W-stable.

Let us provide a more interesting example.

Example 3.7 (The Fundamental Toy Model). Let G = S',G¢c = C*, M = (C3,z,y,b)
and Wy(z,y,b) = (xy — A\)b, where X\ € C is a fixed parameter. pc is defined by
pC(u)(‘Ta Y, b) = (uxa u_1y7 b)

for any u € C*. The moment map is p(z,y,b) = 5(|z|* — |y|?) and VL = (yb, 2b, 2y — \).
If A\ # 0, then Crit(L) = {b = 0,2y = A} containing a unique C*-orbit, and the
superpotential W is stable.
If X =0, then Crit(L) = Ay U Agp U Ay, where

Agy = {xz =0,y = 0}, etc.
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So W is not stable. § € iR is W-stable if and only if 6 + 0. For instance, take 6 € i - (0, c0).
If (x,5,b) € p=1(5), then x # 0, so

Crit(L) n 7' (8) = {(2,0,0) : 5l = 5} = Ay,

which contains a single free G-orbit. Moreover, we compute Hess L at (z,y,b) € M:

x’ 0 b 7\ [z
HessL |y |=10 0 z]|¥ |,
v g x 0/ \V
so L is Morse-Bott away from the origin. Note that the C*-orbit of (z,0,0) is not closed.
Its closure contains the origin. O

4. THE GAUGED WITTEN EQUATIONS

In this section, we introduce gauged Witten equations, the notion of analytic energy
and explain its relation with down-ward gradient flow of the gauged action functional Ag.
This serves as a toy model for the Floer theory to be studied in the second paper [Wan20)]
of this series. Some lemmas are stated and proved only for inspirations; they are not quite
related to the proof of Theorem 1.2 and 1.3 in the end.

4.1. The Gauged Action Functional. Let §e g be a W-stable regular value (in the
sense of Definition 3.5) of the moment map p : M — g and Ly < p~(8) be an G-
invariant unstable-type Lagrangian sub-manifold of M. Since § is W -stable, /fl(g) N
Crit(L) contains a unique G-orbit O,. Choose a reference point g € O,.
Assumption 4.1. Let us first summarize the assumptions we make in this section in
order to set up a Floer theory formally :

e the Kihler form w is exact, i.e. w = dfy; for some 6y, € Q' (M);

e since w|z,, = 0, the primitive 1-form 0, is closed on L. For convenience, assume

O0rr = dh is exact on Ly;
o e g is a W-stable regular value; &
Let Y = [0,00)5s and X = R; x Y = H2. Consider a smooth map P : X — M and a

connection A = d + a of the trivial principal G-bundle @ over X:

Q=XxdG.

Write the connection 1-form a as a;dt + asds with a;, a4 € F(Hi, g). The smooth map P
can be differentiated co-variantly with respect to A:

V{P:=V.P+a(V)

for any tangent vector V € TX. Here, a(V) is the induced tangent vector of a(V) € g.
We are interested in the gauged Witten equations on X = Hi with boundary values in
Ly:
—xg Fiy + no= gv
(4.1) VaP+JVEP+VH =0,
P (t, 0) € £U-
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The first equation is a moment map constraint. The second one is the .J-holomorphic
curve equation perturbed by the Hamiltonian H = ImW. When H = 0, this reduces to
the symplectic vortex equation. The gauged Witten equations (4.1) can be viewed as a
down-ward gradient flowline equation in an infinite dimensional space, as we explain now.

For either Z = Y or X, let A(Z) = d + I'o(Z,iT*Z ® g) be the space of smooth
connections with decay in the spatial direction. Here,

(4.2) To(Z,iT*Z®g) ={aeC®(Z,iT*Z®yg) : lingoa =0 and {a,ds) =0 at s = 0}.
A smooth map p: Z — M can be viewed as a section of the trivial M bundle over Z:
M=2ZxM=(ZxG)xgM.

Consider the space of smooth sections of M— Z subject to the Lagrangian boundary
condition and a decay condition at infinity:

Io(Z, M; Ly)={p:Z— M : p(0) € EU,sli_{Iolop(s) = q}.
A gauge transformation must converge to the identity element e of G as s — co:
G(Z) :=Mapy(Z,G) ={u:Y - G: lingou =eecG}.
The configuration space is C(Z) = A(Z) x I'y(Z, M; Ly) with G(Z) acting on by the

formula:
’LL(A,p) = (A - uilduv U - p)

Definition 4.2. The gauged action functional Ay is defined over C(Y) with Y = [0, +00),
as:

(43)  Au(d+a.p) = —h(p(0)) —j

pou+ [ Hop(s)ds + a5 - pop.
Y Y

where (a,8 — i opyg = {as, 5—u o pygds is understood as an 1-form on Y and s = dh on
Ly. ¢

For any v = (A,p) € C(Y), a tangent vector (da,dp) in T,C(Y') consists of a smooth
form da € T'y(Y,iT*Y ® g) and a vector field dp along the image p(Y):

op € To(Y,p*TM; Ly).

The tangent space 7,C(Y") inherits a G-invariant L-inner product from the Riemannian
metric g of M, with respect to which we compute the formal-gradient of Ag:

Proposition 4.3. grad Ag(d + a,p) = (5— [LOop, JVg‘sp +VH).

Proof. Let P : [0,1];xY — M be a smooth map such that P(0,s) = p(s), 6, P(0,s) = dp(s)
and limg_,o, P(,s) = ¢. Then v = (d + a + tda, P(t,-)) is a smooth variation of vy = ~.
Note that

(4.4)

Pru— j AP 00 — h(P(1,0)) — h(P(0,0)) + j POy — P*Ou,
[0,6]xY [0,¢]xY {t}xY {0}xY
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but also
f Pfw = f w(OpP, 0sP)dt'ds = —f dt’f g(0,P, JOsP)ds.
[0,]xY [0,]xY 04 Jy

Now consider the first variation of (4.3) along a tangent vector (dp,da):
d "
EAH(%)‘tZO = f g(6p, JOsP + VH)ds + (§a,6 — popyg —<{Vu,op® ay,.
Y
= f g(op, JV?SP + VH)ds + {5a,6 — p o P)g,
Y

where we used the relation VBASP = 0P+ J(V,as)g. O
Proposition 4.4. Ay is G(Y)-invariant.

Proof. Since elements of G(Y') are subject to the boundary condition lims_,o u = e, G(Y)
is contractible. It suffices to consider the infinitesimal action. The Lie algebra of G is

Lie(g) = To(Y,0) = {£: Y —g: lim {(s) = 0}
For £ € Lie(G), the tangent vector generated at v € C(Y) is
(4.5) dy(€) 1= (—0s€,8) = (=06, IV, &)).

It suffices to verify this vector is L2-orthogonal to grad Ag. For any path p € T'g(Y, M i Lo,

5 — pop(s) =0 for s =0 and co. Hence, the boundary terms involved in the integration
by parts below vanish:

L@— pop,—0s&) = — L@s(u op),§) = — L<Vu, dsp®E),

On the other hand, we use Lemma B.1 (5)(6) to compute:
| rvip e vH IO = | Tuareo. 0

Remark 4.5. In the expression (4.3), the first two terms come from the usual action
functional, motivated by the integration by parts (4.4). The third part comes from the
Hamiltonian perturbation. The last one is added by requiring Ag to be gauge-invariant.

%

Hence, the gauged Witten equations (4.1) can be formally written as
Orye + grad Ag (1) =0

if a; = 0 and 4 = (d + as(t,-)ds, P(t,-)) € C(Y). There is a classical notion of analytic
energy associated to any down-ward gradient flow equation:

© > Ean({11}) = — thl,n A () + lim Ap(ve) = | {(—0y, grad Ag (7))
0 t——0o0 Ry
1

= 5] |0iy 2 + | grad Ag ()] = 0.
R¢
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This formula is only valid when A is in the temporal gauge, i.e. when a; = 0. On the
contrary, the gauged Witten equations (4.1) are invariant under the larger gauge group
G(X) (recall that X = R; x Y). In fact, the left hand side of (4.1) defines a G(X)-
equivariant map:

8: : C(X) - FO(X7Q XG (TM@Q))7
called the gauged Witten map.

Definition 4.6. Let X = H2 = R; x [0,00),. For any (4, P) € C(X),let T = V4 P, S =
Vg‘SP and F' = — %9 Fq 0o PeT'(X,g). The analytic energy of (A, P) is defined as

(4.6) Eun(A, P) = f T2 4+ 7S + VH|? + |F|2 + |5 — . o
X

With this convention of notations understood, the equation (4.1) takes a more compact
form:

(4.7a) F+pu= S',
(4.7b) T+JS+VH =0,
(4.7¢) P(t,0) € Ly.

We are interested in the moduli space of solutions of (4.1) with finite analytic energy.
One may impose a gauge-fixing condition, produce an elliptic theory and finally construct
a Morse complex in this context. However, we will only carry out the proof in the infinite
dimensional setting for the Seiberg-Witten equations.

4.2. The Extended Hessian. Although we will only get into linear analysis in the second
paper [Wan20)] of this series, it is enlightening to first work out the extended Hessian of the
gauged action functional Ag here. The discussion below will be used in [Wan20, Section
11] where we compute the essential spectrum of the extended Hessian for the perturbed

Chern-Simons-Dirac functional on Y.
At any v = (A,p) € C(Y). the linearized gauge action

d, : Lie(G) = T'o(Y,g) = T,C(Y)
defined by the formula (4.5) has a formal adjoint:
a2 T,C(Y) — To(Y, g)
((0as)ds, dp) — 0s(das) + {JV u, dp).

By formally linearizing the expression in Proposition 4.3, we obtain the Hessian of Ay
at v:

DAy T,C(Y) = T,C(Y)
((das)ds,dp) — (=(Vp,0p), J(0s0p) — {V i, as)q + Hess H(p)).

The upshot is that these operators can be combined to form a larger operator, the
extended Hessian of Ap, which is essential self-adjoint:

— d*
Hess,, = 0 7)Y, e® (TY ®9)@p*TM) — L*(R,g® (T*Y @g) ®p*TM),
d, D,An
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and it is cast into the form o (0 + ﬁp(s)) with

0 1 0 ~ 0 0 Vi, )1, M
(4.8) o= (-1 0 0| and Dy, = 0 0 IV, ‘>Tp(s)M
0 0 J Vi, g IV, g Hess L

where we identify T*Y ®g with g by omitting the form ds. The operator Disa self-adjoint
bundle endomorphism over the vector bundle

m =g®gPTM — M.
Moreover, o acts on TM as an almost complex structure and anti-commutes with ﬁ, i.e.
o = —1d, oD + Do = 0.
The operator D is tied to the stability of W by the following observation:

Lemma 4.7. The super-potential W is stable in the sense of Definition 3.6 if and only
if Dy is invertible for any critical point q¢ € Crit(L) and Crit(L) contains a unique free
Gc-orbit.

These structures of the extended Hessians form the basis of linear analysis in [Wan20,
Section 11]. As a preview, the essential spectrum of Hess, will be

(=0, —A1] U [A1, +0)

where A is the first non-negative eigenvalue of ﬁq. In particular, Ife?s,y is Fredholm if
and only if A\; > 0. -

Finally, we end this section by a remark on the domain of Hess,. To make it self-adjoint,
a section (f, (das)ds,dp) in the domain must satisfy the boundary condition:

(£(0),das(0),0p(0)) e g {0} ®p*TLy at s =0,

which is a Lagrangian subspace with respect to o. This is the reason why we have imposed
the boundary condition

{a,ds) =0 at s = 0,
in the definition (4.2) of A(Z). Otherwise, d7 is not the formal adjoint of d,.

5. POINT-LIKE SOLUTIONS

In this section, we study finite energy solutions of (4.1) on the complex plane C, the
so-called point-like solutions in terms of [GMW15, Section 14.1]. Assuming W is a stable
superpotential, we will prove that all point-like solutions are trivial, i.e. they are gauge
equivalent to the constant solutions. Interesting solutions may occur if W is not stable,
cf. Example 5.8.

Let P : C — M be a smooth map and A be a smooth connection in the trivial principal
G-bundle C x G — C. We shall frequently use the abbreviations from Definition 4.6. The
main result of this section is the following:
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Theorem 5.1. Suppose (M, W, G, p) is a gauged Landau-Ginzburg model and W is stable

in the sense of Definition 3.6. Take any Se Imp < g. Suppose (A, P) is a solution of the
gauged Witten equations

(5.1) —*FA+,u=g,
‘ VaP+ JVEP+VH =0.

on C with E4, (A, P) < o0, and (A, P) is subject to the boundary condition
(5.2) lim P(t+is) —gq,

(t,8)—0

then (A, P) is gauge equivalent to the constant solution (Ag = d,P = q). Here q € Oy =
p=1(0) n Crit(L) is an arbitrary base point.

The proof is based on an interesting observation. Since W is holomorphic and P is
“J-holomorphic”, it is reasonable to ask if the composition:

wopr:CcH MY .
is still holomorphic. In fact, we have
Lemma 5.2. If (A, P) is a solution to the gauged Witten equations (5.1) on C, then
O(W o P) := (0; +i0s)(W o P) = —i|VH|?,
Proof. By the Cauchy-Riemann equation VL = —JVH and (5.1), we have
(W o P)=(VL+iVH, V4P + JV4P)=—i|VH[. 0

Remark 5.3. When A = d is the trivial connection and Vg‘tP =0, P(t,-) is a downward
gradient flowline of L. In this case, this lemma recovers the usual identity:

0s(L o P) = —|VLJ%
P(t,-) is also a Hamiltonian flow, so ds(H o P) = 0. &
We also need a more useful notion of energy:

Lemma 5.4. Under the conditions of Theorem 5.1, define

(5.3) Ean(A, P;C) = L IVAP)? +|VH? + |F|? + |6 — pul?.
Then Egn(A, P,C) = Eun(A, P) < .

Proof. Using the Cauchy-Riemann equation (2.1), we have

f |JS + VH|? :f 1S + VL|? :f IS+ VL + lim lim 2(S,VL)
C C C

t'—00 s’ —>00 [t/ '] x[—s,]

_ f S+ VL + Jim im Lo P(t,s) — Lo P(t,—s)).
C

—00 §'—00 [—t,¢']

By (5.2), the boundary term tends to zero as s’ — o0, 80 £, (A, P;C) = Eun (A, P). O
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Lemma 5.5. Under the assumption of Theorem 5.1, VL =0, so P(z) € Crit(L) for any
z=t+1s€C and W o P is a constant function on C.

Proof. As W is Morse-Bott, for some G-invariant neighborhood 2 of O, ¢ M and C > 0,
the estimate

(5.4) W (z) = W(q)l < CIVH ().

holds for any z € Q. By the boundary condition (5.2), for a large constant R(2) > 0,
P(z) e Qif |z] > R. As a result,

(5.5) |WoP(z) —W(q)| < C|VH(P(2))%.

when |z| > R. Write (W o P)(z) — W(q) = U + iV with U,V real. Then Lemma 5.2
implies that
U — 0,V = 0,0,V + 0,U = —|VH|]* <

Set K(z) = S Vdt + Uds. By the first equation above, this 1ntegral is independent of
the path we choose Therefore,

U=0,K,V =0K and AcK = (=02 - 0?)K = |VH|* >
Then the Morse-Bott inequality (5. 5) is equivalent to |VK| = [WoP — W(q)\ < CIAK]|.

Our goal is to show K = 0. Let Z(r) := SaB(o AK > 0. Take r > R(f2) and integrate
by parts:
0< E(r) :—f Z(T/)dr'—f AK = | ni- VK|
0 B(0,r) 0B(0,r)
< O( AK) < CE(r)".
oB(0,r)

Therefore, for any r > ro > R(f2),

(5.6) ( 0) < B(r)e e

Let r — co. Note that lim, ,, E(r) = {- \VHF &l (A, P) < oo. Hence, E(rg) =0,
and

AK = |VH?=0= W o P(z) = W(q). O

Remark 5.6. The proof of Lemma 5.5 does not require W to be stable. It suffices to
assume that W is Morse-Bott near O. &

Proof of Theorem 5.1. Since W is stable, the multiplication g — ¢ - ¢ defines a closed
embedding ¢ of G¢ into M. Let ji : Gc — g be the composition o ¢.

By Lemma 5.5, Im P < Im, so P(z) = g(z) - ¢ for a unique element g(z) € G¢.

We first deal with the case when G = S! and G¢c = C*. Since we are interested in
solutions modulo gauge, g(z) may be assumed to be real. Suppose g(z) = e*®) for some
a: C — R. The boundary condition (5.2) implies

lim a(z) = 0.

z2—00
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Moreover, the first equation of (5.1) implies A = d + i %2 da. Plugging this into the
second equation of (5.1), we obtain that

(5.7) iAca+ (u(e*? - q) — u(g)) = 0.

Suppose |a| attains its maximum at zg € C and 8 := a(zp) # 0. Then
)

(u(e” - q) = p(q),i8)g = —(Aca(z), B) <
We claim that for any 8 # 0, the inner product (u(e” - q) — u(q), iﬁ>g > 0. Indeed,

1 1
(u(e” - q) — p(q),iB)g = f (Orp(e? - q),iB)gdt = f V(e - q),iB)q|dt.
0 0

Since the base point ¢ generates a free Gg-orbit, the integrand is strictly positive. So
B = 0. The general case is dealt with in a similar manner. O

Let us end this section with a few examples.

Example 5.7. In our Fundamental Example 3.7, suppose A = r,r_, ¢ = (r,r—,0) and

§ = +(r3 —r2). In this case, the equation (5.7) becomes
1
Aca + 5(7& (e —1)+r2(1—e2) =0. &

Example 5.8. For Example 3.2, the gauged Witten equations come down to the vortex
equation on C (with ¢ = §):

0AP =0,
ix Fy+ (P2 —=1) =0.
By [Tau80], the moduli space M,, with &, = 27n is Sym" C for any n > 1, so Theorem

5.1 fails. W is not stable in this case, even though ¢ = % is W-stable. Note that M,, is
regular; its dimension agrees with the prediction of the index formula. O

(5.8)

Example 5.9. In Example 3.7, let A = 0 and 5 = % For a solution (A, P) of (5.1),
write P(z) = (z(2),y(2),b(z)). Lemma 5.5 and Remark 5.6 implies y(z) = b(z) = 0. The
equations are reduced to the previous example. However, in this case, the moduli space

M, is not regular. Its formal dimensions are always zero for any n > 0. &

6. EXPONENTIAL DECAY IN THE SPATIAL DIRECTION

In this section, we generalize Lemma 2.5 in the context of gauged Landau-Ginzburg
models, which is also the analogue of Theorem 1.3 in the finite dimensional case. We state
and prove the theorem for the energy density function.

Theorem 6.1. For any stable gauged Landau-Ginzburg model (M,W,G,p), there exist
e(M, W), (M, W) > 0 with following significance. Given a solution v = (A, P) € C(X) to
the gauged Witten equations (4.1) on the upper half plane X = Ry x [0,00)s, suppose the
point-wise estimate

U, (t,s) = |VAPP? + [VH? + |[F2+ |6 — pu> < e
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holds and any (t,s) € X. Then
U,(t,s) <e %, ¥s=0.
The function Uy : X — [0,00) is called the energy density function.

Fix a base point g € O, = u~1(8) n Crit(L). Then any configuration (4, P) € C(X) is
subject to the boundary condition

lim P(-,s) — q.

S§—00

In this case, the energy density U, provides an upper bound for the distance:
Uy = [VHP + |5 — p? = e [d(P(t,5), 0x) %,

so Theorem 6.1 implies Lemma 2.5 when G = {e} is trivial. U, is only a bounded function
on X. Its integral is not finite and does not yield the analytic energy &, in Definition
4.6. In fact, it is more relevant with the variant &, (A, P;C) defined in Lemma 5.4.

Remark 6.2. The analogue of Property 2.4 (the uniform L™ decay) continues to hold
for the gauged Witten equation, which can be improved into an exponential decay using
Theorem 6.1. However, if the superpotential W is allowed to have multiple critical G-
orbits, Property 2.4 is not automatic. We will come back to this issue in the second

paper. &

Proof of Theorem 6.1. By the gauged Witten equations (4.1), it suffices to show the ex-
ponential decay for the quantity

u(t,s) == [VAP|* + |F[2.
We use a lemma from Appendix A and verify its conditions:

Lemma 6.3 (Corollary A.2). Take ¢ > 0. Suppose u : H2 = Ry x [0,00)s — R is a
bounded C?-function on the upper half plane Hi such that

(U1) (AHz+ +u <0, and

(U2) u(t,0) < K for some K >0 and any t € Ry.
Then u(t,s) < Ke™%* for any (t,s) € H2.

(U2) follows from the assumption that u(t,s) < U,(t,s) < e. To verify (Ul), we find an
explicit formula of AHi u(s,t). It is convenient to define a bundle map:

D:TM -TM®&gdg
(p,v) — (Hess, H(v),{Vp,v),{JVu,v)),¥pe M,veT,M.

Lemma 6.4 (Corollary B.8). We have the following Bochner-type formula for AHiu(t, s):

1
0= §AH3(IVAP|2 HIFD) + T+ L+ I3+ 1+ 15
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where
I = |Hessg P +|VF|2, L =|D(VAP)>+ Vi, F)g|?, I3 =2AR(S,T)S,T),
I, ={(VrHessH)(VH),T) +{(VsHess H)(VH), S),
Is = 6(Hess u(JS), T ® F) — (Hess u(T), T ® F) — (Hess uu(S), S ® F).

and R is the Riemannian curvature tensor of M.

Remark 6.5. This identity was first proved by Taubes in [JT80, Proposition 6.1] for the
vortex equation on C, in which case M = C is furnished with the flat metric, W = 0 and
W= %|z\2, cf. Example 3.2. For more details, see Remark B.10. $

Let us digest the consequence of Lemma 6.4. I; > 0. I4 and I5 involve only trilinear
tensors:

(V.HessH(-), ) : TM®TMQTM — R,
(Hessp(+), ® ): TM®TM ®g — R.

Within a G-invariant neighborhood 2 of O, with compact closure, we may assume these
trilinear maps have uniformly bounded operator norms. Hence, whenever P(t,s) € (2,

L] + |Is] < Cu®>.
for some C' > 0. The same estimate holds for I3 with a different exponent of w:
|13 < Cu
Since the critical orbit O, is free,
(Vs Fygl? > G2

for a small number {; > 0 for any p € O, and F € g. The same estimate also holds for
any p € by possibly shrinking the open neighborhood {2.

Finally, since W is a stable superpotential, D, is injective for any p € O, (by the
Morse-Bott condition); so

[ Dp(0)[* > ¢ vl

for any v € T,M. The same estimate also holds for p € Q (by possibly shrinking ).
Hence, for ¢ = min{(1, (2},

2| = CPu
whenever P(s,t) € Q. By taking ¢ « 1 such that e +¢'/? < ¢2/2C. Lemma 6.4 then implies
1
O>§AHiu+C2u—C(u2+u3/2) (AHz + ).
Now apply Lemma 6.3 with K = e. O

Remark 6.6. The bundle maps D and {(Vpu,-) involved in Iy are components of the
operator D. The invertibility of D is essential to this proof. &
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Remark 6.7. Let us add a remark to explain the mysterious Bochner-type formula in
Lemma 6.4. The baby case is Example 2.3 in which the structure group G = {e} is trivial.
In that case, Hess H is a constant self-adjoint R-linear operator on C”, so

(VH), = Hess H(x), = € C".
Applying the operator (0; — Jds) to (4.7b), we obtain that
0 =0T + 0,5 + Hess H(T + JS) = —AP — (Hess H)?(P),
from which one can easily prove that the map P : Hi — C" along with its all higher
derivatives has exponential decay as s — o0. Example 3.2 is the other extreme where

W = 0 and p is quadratic. The proof of Lemma 7.7 is a tedious exercise in Riemannian
geometry, and is deferred to Appendix B. &
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Part 3. The Seiberg-Witten Equations on C x T?

In the third part of this paper, we study an infinite dimensional Landau-Ginzburg model
associated to a 2-torus ¥ = (T?, gx;) whose gauged Witten equations recover the Seiberg-
Witten equations on X = C x 3 or Hi x 3. We generalize Theorem 5.1 and 6.1 from the
previous part to this infinite dimensional case. The main difference is that the topology
of M depends on a Sobolev completion of smooth sections, and we need to specify the
correct norms used in the estimates. R

One main obstacle in defining a Floer homology for a 3-manifold Y with cylindrical ends
is a compactness issue, and its resolution relies on three key ingredients:

(K1) A uniform upper bound on the analytic energys;

(K2) Point-like solutions are trivial on C x X, namely, they have to be C-translation
invariant up to gauge.

(K3) Finite energy solutions on Ry x ¥ are trivial, namely, they have to be R,-translation
invariant up to gauge.

In order to achieve these properties, a suitable perturbation of the Seiberg-Witten
equations on either C x ¥ or Rg x 3 has to be perturbed by a 2-form w = p+ ds A A where

e A e Q}(X,iR) is a harmonic 1-form on %;
e e Q7 (%,4R) is a harmonic 2-form on 3.

However, most results in this part, except Section 10, do not require p to be harmonic.
One can take p = 5 - dvoly; to be any smooth 2-form on ¥ instead. While A is used to
perturb the superpotential Wy, u is used to perturb the moment map equation in (4.1).

The first property (K1) will be postponed to the second paper [Wan20] where we set
up the cobordism category properly. (K2) is achieved by Theorem 1.2. The proof uses
ideas from Section 5 and is accomplished in Section 8. As for (K3), we invoke a theorem
of Taubes, which will be explained in Section 10.

7. THE FUNDAMENTAL LANDAU-GINZBURG MODEL

In this section, we explain the construction of the fundamental Landau-Ginzburg model
(M(X), Wy, G(X)) associated to a Riemannian 2-torus (X, g»). When X # 0, we will verify
the superpotential W) is stable in the sense of Definition 3.6 and any Se g is W-stable in
the sense of Definition 3.5, cf. Proposition 7.5.

7.1. Review. Recall that a spin® structure s on a smooth 4-manifold X is a pair (Sx, p4)
where Sx = ST @ S~ is the spin bundle, and the bundle map py : T*X — Hom(Sx, Sx)
defines the Clifford multiplication. A configuration v = (A,®) € C(X,s) consists of
a smooth spin® connection A and a smooth section ® of ST. Let A! be the induced
connection on /\2 S*t. Let w be a closed 2-form on X and w™ denote its self-dual part.
The Seiberg-Witten equations perturbed by w are defined on C(X,s) by the formula:

(7.1) { Loa(F L) — (@0%)g — pa(w™) = 8
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where D} : T'(ST) — I'(S7) is the Dirac operator and (®®*)) = ®@* — 1|®|> @ Idg+
denotes the traceless part of the endomorphism ®®* : St — S*.
The gauge group G(X) = Map(X, S!) acts naturally on C(X,s) by the formula:

G(z)2u:C(X,s) — C(X,s), (A,®) — (A —u du,ud).

The monopole equations (7.1) is invariant under gauge transformations.

Let ¥ = (T2, gx) be the 2-torus with a Riemannian metric gs;, which is not necessarily
flat. In the special case when X = C x X is a product of complex manifolds, the equations
(7.1) can be understood more explicitly. In what follows, the 4-manifold X is equipped
with the product metric and the complex orientation.

Let dvolc and dwvoly, denote volume forms on C and X respectively. Then the 2-form
Wsym = dvolc + dvoly, makes X into a symplectic manifold. The spin bundle S* splits as
LT @®L™: they are F2i eigenspace of py (Wsym) S * — S*. The spin section ® decomposes
as (®,,®_) with &3 € I'(X, L*). We are only interested in the spin® structure on C x ¥
with

e (57)[5] = 0,

so both L™ and L~ are topologically trivial.
Let z = t + is be the coordinate function on C. The Clifford multiplication p = p4 :
T*X — Hom(S, S) can be constructed by setting:

—1id _ _
pa(dt) = <£Z 3) pa(ds) = (fl ‘Bl>: S @S St @S

where o1 = <(Z) Bz) ST =LtY® L™ — Lt ® L~ is the first Pauli matrix.
If we identify Lt ~ C and L™ =~ A”' 2, then
_ 0 —(v/2w"1) -
p3(w) = pa(dt) ™" - ps(w) = <\/§wo,1 ®- ( 0 ) > ST - 87,

for any x € ¥ and w € T, 2.

Remark 7.1. We will frequently work with Clifford multiplications in dimension 2,3 and
4, denoted by po, ps and py respectively. Identify C as R; x Ry, then they are related by
pa(w) = pa(dt) ™ pa(w), pa(v) = palds) ™" - ps(v) : S* — §*.
for any w € T*(Rs x X) and v € T*X. &

The symplectic form wgy,, is parallel, so is the decomposition ST = L* @ L~. Thus,
any spin® connection A must split as

_ (Va, 0
V- ( : W) .
We regard Lt and L~ as bundles over X, and they pull back to spin bundles over
X via the projection map X — X. Let By = (d, VLC) be the reference connection on
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C® /\0’1 T? — T2. We obtain a reference connection Ag on S* by setting

d d
Vao=Vg +—+—
Ao VB T T ds
One can easily check that Ay is a spin® connection. Any other spin® connection A differs
from Ay by an imaginary valued 1-form a € T'(X,iT*X). Their curvature tensors are
related by
Fy=Fy, +da®]ldg.

Using the product structure on X, the connection V 4 = (VE, Vi) is decomposed into
C-direction part and »-direction part. The curvature tensor F4 is decomposed accordingly
as:

Fy=Fy{+FS+Fp
where Fi' € I'(X,iT*X ® End(S)) is the mixed term. Similar decomposition applies to
the induced curvature form Fqr on A? ST = LT @ L™:

(7.2) Fye = Fdvols, + FSdvolc + F',
where F7} € I'(X,iQ(C) A Q!(X)). Our description of F4 then shows that

1
(7.3) Fyp = 5FZ§ ®Id.
and
Fy 0 iF% + 1K 0
> _ Ay —(27At T2 .
(7.4) F3 ( 0 FE) dvoly; ( 0 g %K) dvoly,.

where K is the Gaussian curvature of (T2, gs).

7.2. The Fundamental Landau-Ginzburg Model. We now provide another perspec-
tive on the Seiberg-Witten equations on C x ¥ in the language of Landau-Ginzburg
models and the gauged Witten equations. The fundamental Landau-Ginzburg model
(M(X),Wy,G(%2)) to be defined below will allow us to apply results from Part 2 to the
Seiberg-Witten equations on either C x X or Hi X .

The Kéahler manifold M (X) = C(X) is also the configuration space on X:
(Bo,0) + Q'(Z,iR)@T(E, LY @ L),

where By = (d, V) is the reference spin® connection on S* — X. A configuration x € M
is a triple (b, ¥, ,W_), where the sum By + b is viewed as a spin® connection on ¥ and

U= (U, ,¥_)eI'(3,S") is a spin section.
The complex structure of M is defined by the bundle map

i 0
I = Gz = s = (5 %))
while the Riemannian metric gp; of M is the flat L? metric:

<(61, \ifl), (62, \ifg)> = f2<61, 62> + Re<\1’1, \I’2>
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Let hjs be the Hermitian metric on M induced from J and gy,.

The abelian group acting on M is G(¥) = Map(T?, S!) with the usual action:

u(b, ¥) = (b — u tdu, ud).
Occasionally, we will use a smaller group G¢, the identity component of G, to develop the
theory. They fits into a short exact sequence:
u_ldu]
2mi

The Lie algebra of G(X) or G¢ is Lie(G) = I'(X,iR). Since J acts on I'(¥, L™) by the
conjugate of the standard complex structure, we say that G(2) acts on Q'(X,iR), (X, L")
and I'(X, L) by weights (0,1, —1).

The moment map p is given by

0-G°—->G¢5 HYT%Z) -0, n(u) =

1

b, 0) = = xx db+ (10 = [F_ ) + SK.
where the Gaussian curvature K is added for conventions. If v = (0b,d¢) is a tangent
vector at (db,0W¥), then we have
(7.5) (Vp,v) = — #x dsdb + i Re(id W, p3(ds)¥) € Lie(G),
(Vu, Jv) = d&6b + i Re(io ¥, ¥) € Lie(G).
The super-potential W is the Dirac functional. The Clifford multiplication on X:
p2 : T*Y — Hom(S*,S™),
defines a Dirac operator for each spin® connection B on St — X:
DE:T(3, 1) 5 I(3,T*S @ S*1) 2 T(%, §1).

This operator is self-adjoint and switches the parity, i.e.

0 D
Dg - <DE OB> TS, LT®L™) -T(Z,LTeL).

The super-potential Wy is then defined as
Wolb, ¥y, &) — L@;L,m _ L<@+,DB¢>.
The perturbation that we consider takes the form
Wb, W) = Wo — b, Aoy
where A € Q!(X,iR) and hy; is the Hermitian inner product.
The complex gauge group Gc = Map(X, C*) acts on M by the formula:
e®u(b, ) = (b + i *y dyo — u” tdu, e®uW e “ul_),
where u € G(X) and a : ¥ — R is real.
Lemma 7.2. The super potential Wy : M (X) — C is invariant under Gc.
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Proof of Lemma. It suffices to verify that e_aDg,(ea-) = Dg(-) if B’ = e® - B, or equiva-
lently
p2(da) + pa(i*x da) = 0: T(LY) - T'(L7).
If one restricts instead to sections of I'(L ™), then
p2(da) — po(i s da) = 0:T(L™) - T'(LT). O
As for the perturbed super-potential W),

e for W) to be invariant under G¢, A has to be co-closed;
e for W) to be invariant under the identity component G¢, A has to be harmonic;
e for W) to be invariant under Gc, A has to zero.

Assumption 7.3. We choose A # 0 € Q}l(E,iR) to be a harmonic form, so W) is only

invariant under G¢. &
Write Wy = L + iH. Then
(7.6) VL, ¥) = (py ' (08*)g — A, D0, DET,).

The equation VL = 0 has solutions if and only if A is a harmonic 1-form. When it is the
case, Crit(L) contains a unique G¢ orbit if and only if A # 0 (see Proposition 7.4 below).
This is the second reason why we insist Assumption 7.3. When A = 0, Crit(L) consists of
three classes of orbits corresponding respectively to

(U, £0,%_=0),(¥, =0,_#£0), (I, =0,¥_=0).
Consider the trivial principal bundle C x G(X) — C. A connection A is expressed as
A =d+ a(2)dt + as(2)ds
with a;,as € I'(C, Lie(G(X))) = I'(C x 3,iR).

Proposition 7.4. With the gauged Landau-Ginzburg model (M(X), Wy, G(X)) defined as
above, the associated gauged Witten equations over C is equivalent to the Seiberg- Witten
equations (7.1) on C x ¥ with w = ds A X\ — ddvols,. Let

P:C— M)
2 (b(2), ¥(2))
be a smooth map defined on C. Then the identification (A, ®) < (A, P) is made by taking
A—Ag=(A—d)+ (B(2) — Bo) = as(2)dt + as(2)ds + b(2),
d = U(2) on {z} x .

Proof. The J-holomorphic equation in (4.1) in our case becomes

i b *y) 0 i b
7o)+ (5 o) (72(5) 72
More concretely, it is

(7.7) (0#3 —dsay) + *2(556 —dxas + p;l(\ifi’*)n —A) =0,
(00 + ar ) + p3(ds) (05 + as¥ + DEY) = 0.
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The second equation gives rise to the Dirac operator D;{(D = 0, while the first equation
gives the off-diagonal part of the curvature equation:
1

SPa(Ejn — (B8%)1 — pa(w’) = 0

with w = ds A A — ddvols,. The diagonal part comes from the moment map equation in
(4.1):

— w¢ dg(apdt + agds) — #xdsh + %(@42 — ) + %K -y

Indeed, %Fft = ng—i/Zdeuolz and %th = dc(adt+agds) in terms of the decomposition
(7.2). O

7.3. Stability. Now we examine the stability of the superpotential W). Even though W)
is not Ge-invariant, VL = 0 is a Ge-invariant equation on M.

Proposition 7.5. Suppose A # 0 € Q}(X,iR). Then Crit(L) contains a unique free Gc-
orbit. For any § € Lie(G), p~(8) n Crit(L) consists of a unique G(X)-orbit. Moreover,
Wy is a Morse-Bott function. In this sense, we say that Wy is stable and any Se Lie(G)
15 W-stable.

Proof. The verification that W is Morse-Bott is postponed to Proposition 7.9. It concerns
only the linearized operator at the critical Ge-orbit. We focus on the other statements.
The equation VL = 0 implies:

(7.8) (p3 " (FI*) — A\, Dp¥_, Di¥ ) = 0.

In terms of the Hodge decomposition of Q!(X,iR), write
(7.9) b=>b'+b" 4 b2
with b exact, b harmonic and b? co-exact. The equation (7.8) is invariant under the
action of G, so we may kill b' and b? by an element e®*t* € G¢ with

ids,8 = b' and idsa = #xb?.

Since A # 0, |\| is non-vanishing everywhere, so are ¥, and ¥_ by the first equation of
(7.8). Hence, b" can be killed by a harmonic gauge transformation as well (the trivial
connection is the only flat connection on ¥ that supports non-trivial holomorphic global

sections), and ¥, has to be a constant function. Using the identification L* =~ C and
L~ =~ /\0’1 Y., a representative in the orbit can be written as

(bv \P“r? \ij*) = (07 17 \/5)‘071)‘
In general, a solution of the equation (7.2) is cast into the form:
e*- (0,1, \/5)\0’1) = (i *y dya, e, e_o‘\/i)\o’l).

up to the gauge action of G(3). Take any smooth function Se I'(%,iR). To show 5 is
W-stable, we have to find solutions of (7.2) in the fiber 4 =1(J), or equivalently, to solve
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the equation

1 1 =
(7.10) i(Asa + §(e2a —e 2 \?) + 3K) =9,

The strategy is to use the variational principle and show that the non-linear map:
n: Li<E7R) - Li72(27R)7
1

a—n(a) =Asa + 5(62(1 —e 22\

is a bijection for any k > 2. It suffices to prove the special case for k = 2; the rest will
follow from elliptic regularity. For any g € L?(X,R), define an energy functional as

Eq(a) = |n(a) — gl
If o achieves the infimum inf,;2 Ey(a), let f = n(ag) — g € L*(X). Then, for any
tangent vector v € L3(3,R) at the minimizer ag, we have

0= 0g(ap + tv) = (f, Asv + (62‘10 + e’2a°\A\2)v>.

Since the linearized operator Ay + (€2% + e=2%]|)\|2) is positive and self-adjoint on L3,
f = 0. To find such a minimizer g, let {a,,} = L be a sequence that minimizes &,(«),
i.e.

lim Eg(an) = C:gLf% Eg(a).
To show that {«,,} contains a weakly convergent subsequence, we need an a priori estimate:
Lemma 7.6. For any fized g € L*(X), there exists function ¢ : Ry — R, such that for
any a € L3, E,(a) < C implies lafzz < »(C).

Proof of Lemma. Tt suffices to prove the lemma for a particular g € L?(X). We do this for

1
g9 =g0:=5(1—AP).

However, in the computation below, we take g = gg — g1 where g; is an auxiliary function
to be fixed later. By direct computation, we have

(7.11)

1, o, 1 o
&) = In(@) = glF = [ 1Asa-+ g1+ 5 = 1)+ 51— AP

1
- j |Asa + 1> + Z|e°‘ — e 2e* + e AP + 2e%dal? + 2e %da @ M|?
2
+ f Redgy, (€® — e ) (e® + e YI\*)) + Redda, (1 — e 2¥)d|\|*).
)

The last term is bounded below by
(7.12) 2Re(e ™ da @\, (e — e )V = —le “da @ \? — |(e® — e ) VA2
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If we set g1 = (e* — e~ )|VA?/(e® + e~ ®|A?) in (7.11), then (7.11) and (7.12) imply
that

1
£,(a) > j [Asa+gaf? + gl — e Ple + PP
b

\%

1
| 3lasaP = lonf + alaPiaP.
%

using the fact that [e® — e~ | > 2|a| and e® + e~ ¥|A|? = 2|A|. Technically, g1 can not be
a-dependent. However, for this particular choice, there is a point-wise estimate

lg1] < [VA? max{1, |\ 72},

from which we deduce that
Epl@)+C=>c- HaHig

for some C' » 1 and 1 » ¢ > 0, since |\| is non-vanishing everywhere and
2
28g0(a) = Eg(a) = 2|g1]>- O

Remark 7.7. It is essential for this proof to have |A| non-vanishing. One can also prove
Lemma 7.6 using the Weitzenbock formula and the fact that A is harmonic. The equation
n(a) = g is a variant of the Kazdan-Warner equation. The third approach is then to apply
their general theory. o

Back to the proof of Proposition 7.5. Lemma 7.6 allows us to find a weakly convergent
subsequence among {a,}. Denote the limit as . Then

Eq(ap) < lin(l}O Eg(ay,) = inf Ey(a),

so the infimum is attained at o = . This proves n : L3 — L? is surjective. If n(a; +6a) =
77(041)7 then

1 1
Ayda + 5(6250‘ —1)e?™ 4 5(1 — 7Py 2 =

By the maximum principle, dao = 0 on 3, so 7 is injective. O

=

Remark 7.8. By Proposition 7.5, u~1(8) contains many G®-orbits. They are parametrized
by G/G¢ = m(G) = HY(Z,Z). ¢

7.4. The Morse-Bott Condition. In this subsection, we take up the task to verify that
Re(W,) is a Morse-Bott function on M, which completes the proof of Proposition 7.5.

Proposition 7.9. For the fundamental Landau-Ginzburg model (M, Wy,G(X)), L =
Re(W)) is Morse-Bott if X\ # 0 € Q}(3,iR). In particular, the Morse-Bott estimate
(5.4) continues to hold in our case.

Proof. Since M is a complex linear space, the tangent space at any x = (B,¥) € M is
identified with

H:=0NS,R)®T (S, LT @ L"),
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and let Hj be the completion of H with respect to the Lz 5 Dorm:

1(60,69)]7, = > J VRS + | VA6 T2,
k,B 0<j<k >
This family of norms on the tangent bundle of M (X) is equivariant under the gauge action
of G(X). The Lie algebra g of G(X) is T'(X, iR) and let g, = L2 (%, iR) be its L2-completions
for £ = 0,1. By Lemma 4.7, it suffices to prove the extended operator

R 0 0 Vs 1,
D, = 0 0 IV, Drm |81 @ g1 D Hi — g0 D go D Ho,
Vi, g IV, g Hess L

is invertible for any x = (B, ¥) € Crit(L). Since D, is self-adjoint and Fredholm by the
standard elliptic theory, it suffices to verify that D, is injective. Notice that the images of
<VILL, '>g7 <JVN7 .>ga DH = (<VN7 '>ga <JV,LL, '>g7 Hess L)

are pairwise orthogonal in go @ go @ Ho. The first two are injective, because the Ge-orbit
of k is free. We focus the last operator

D, : H1 — g0 ® go D Ho.

Suppose v = (55, o) € ker Dy, then the tangent vector v solves the following equations
by (7.5) and (7.8):

(7.13) — #x dx0b + i Re(idW, p3(ds)¥) = 0,
(7.14) d%0b + i Reio W, ¥) = 0,
(7.15) (SUT* + W) = 0,
(7.16) D%6W + pa(6b)¥ = 0.

The key observation is that the third equation (7.15) imposes an algebraic constraint
on the spinor §¥. Recall that entries of ¥ = (W, ,W_) are non-vanishing everywhere by
the proof of Proposition 7.5, so (7.15) implies that

(7.17) o0 = (WU, —h¥_) =if¥ + (a¥,, —al_),
for a complex valued function h = a +if : ¥ — C. By (7.16)(7.17) and the fact that
DE\IJ = 0, we have
p2(dh + db)¥ . =0, po(—dh + 0b)¥_ = 0.
Again, by the non-vanishing property of ¥,
6b = i(#xda — dB).

In other words, (56,5\11) is generated by the linearized action by Gc at k. By the gauge
fixing condition (7.14), 8 = 0. By (7.13), a = 0. O
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8. POINT-LIKE SOLUTIONS ARE TRIVIAL

With all machineries developed so far, we are now ready to study the monopole equa-
tions on C x T2. By [Wan18], for a higher genus Riemann surface 3, finite energy solutions
to the unperturbed equations on C x ¥ are not trivial in general and can be classified in
terms of some algebraic data. In our case, we show the other extreme:

Theorem 8.1. Take any smooth function 6 € Lie(G) = I(X,iR) and A # 0 € Q) (Z,0R).
Consider the fundamental Landau-Ginzburg model (M (3), Wy, G(X)) and the gauged Wit-
ten equations on the complex plane C:

(8.1) ) —_*FA%—/L:SZ
' VaP+JV5SP+VH =0.

where P : C — M(X) is a smooth map and A is a smooth connection in the trivial
G(X)-bundle. Suppose the analytic energy

(8.2) Eun(A, PiC) = f VAP 4 [VH[ + |F2 415 pf?
C

is finite, then (A, P) is gauge equivalent to a constant configuration, so Eun(A, P;C) = 0.

Proof. We follow the proof of Theorem 5.1. Let r, = (8, \I’QF, ¥%) be a representative in
the critical G-orbit in u~1(4), so

. 5 i -
(8.3) — wpdsb? + 5(|x1/3|2 — [0 ?) + K =0

Define a family of metrics on the quotient configuration space M(X)/G(X) using L3-
Sobolev norms:

d([#1], [K2]) = inf k1 — g - ka2

g€g k

We first verify the condition of Theorem 5.1 by showing that
(8.4) di([P(t, )], [K«]) = 0

as z =t +1is — oo for any k > 0. Note that &,,(A, P;C) coincides with the more classical
notion of analytic energy for the monopole equations, cf. [Wanl8, Lemma 2.1]:

_ 1 K -
Ean(A, P;C) = J J Z|FA,5|2 + V4P + [(2D*)g + pa(w ) + 5|<1>|2 + Re(FY:, 0,
CcJx

with w = ds A A — gdvolz. The equation even holds before integrating over C. Let
n = (ny,n2) € Z x Z < C and define

(Ap, ®p)(2,2) = (A, ®)(2 + n,x),Vz e Q:= B(0,10) and = € X.

Then {(A,, ®,)} is a family of solutions on Q x X with &, (A, Ppn; Q) — 0 asn — o0, where
Ean(A, ®;Q) is given by Definition 8.2. By the standard compactness theorem [KMO07,
Theorem 5.1.1], up to gauge transformations, any subsequence of {(A4,,®,)} contains a
further subsequence converging in C*-topology in the interior. Let (A, Py ) be the limit.
Since Eun (A, Pop; Q) = 0, it is gauge equivalent to a constant family of sy with A = d.
This proves (8.4).
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By Proposition 7.5 and Lemma 5.5, the superpotential W), is stable, and if (A, P) solves
the gauged Witten equation (8.1), then

VL(P(z)) = 0.

Because the superpotential W is stable, P(z) lies in the Q@:orbit Qf K. In terms of quge
decomposition (7.9), we apply the gauge fixing condition (b(z) —b°)! =0, i.e. b(z) — b is
co-closed for each z € C. It follows that

P(z) = e*@ g, = (10 + i #x dsa(z), e?@ TGO omal2)+i(z) GO )

for some smooth function a € I'(C x ¥, R) and ¢ : C — R. One may kill § by a further
gauge transformation, so we set 6 = 0 in the sequel. Write A = d + a,dt + asds. The first
equation of (8.1) then imply (comparing (7.7)):

((%5 — dEat) + *Z(asi) - dEas) = 07
(000 + ap) + py(ds) (60T + a,8) = 0,

80 a; = —i0sa, as = i0ya. Combining with (8.3), the moment map equation in (8.1) then
gives

1 . 1 .
(8.5) (Ac + Ax)a + §(e2“ — DY+ 5(1 —e 2P0 12 = 0.

By the boundary condition (8.4), [a(2)|c — 0 as z — oo. The maximum principle
then implies that a = 0, so (A, P) is gauge equivalent to the constant configuration
(P = ks, A=d). O

Theorem 8.1 will play an important role in the proof of compactness theorem in the
second paper. In practice, it is convenient to work with a weaker condition than the
finiteness of the total energy:

Ean(A, P;C) < 0.

To state the result, let I,, = [n — 2,n + 2]; € Ry. Choose a compact domain Qy <
Iy x [0,00)s with a smooth boundary such that

(8.6) In x [1,3] € Qo < Iy x [0,4].
Define €2, r to be the translated domain

(8.7) {(t,s): (t—n,s — R) e Qo} < I, x [0,0)s
for any n € Z and R > 0.

Definition 8.2. For any region 2 = C and any configuration v = (A4, P) or (A4, ®), define
the local energy functional of v over ) as

Ean(A, P; Q) = Ean(A, 0;9) = f IVaP|> +|VHP + [F|” + 1[5 — uf,
Q

1 K &
= u Z|FAt|2 + VAP + [(@D*)o + pa(w™)]* + 5IQI>I2 + Re(FJi, ). ¢
)
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Proposition 8.3. There exists a constant €, > 0 with the following significance. Under
the assumptions of Theorem 8.1, suppose instead that the local energy functional

gan<Aa P; Qn,R) < €x
when |n| + |R| » 1, then (A, P) is gauge equivalent to the constant configuration.

Apparently, Proposition 8.3 implies Theorem 8.1.

Proof. There are two ways to proceed. In the first approach, we apply Theorem 1.3 to show
the total analytic energy &£,,(A, P;C) is actually finite, since the local energy functional
Ean(A, P;Q, r) has exponential decay as |n| + |R| — c0. Then our proposition follows
from Theorem 8.1.

In the second approach, we adapt the proof of Theorem 8.1 to our situation. There are
three major modifications:

Step 1. If €, is small enough, then the Morse-Bott estimate (5.4) in the proof of Lemma
5.5 still holds for any P(z) when |z| » 1. This step requires the compactness theorem
[KMO7, Theorem 5.1.1].

Step 2. In the proof of Lemma 5.5, we concluded from (5.6) that if E(rp) > 0, then
E(r) = f |VH|?
B(0,r)

blows up exponentially as r — c0. In our case, since (A, P; Qy, g) is uniformly bounded

for all n € Z and R € R, E(r) can grow at most in the rate r2. We still arrive at a

contradiction, so VH = 0.

Step 3. Finally, using the stability of the superpotential W, we have to show the
equation (8.5) can only have the trivial solution o = 0. At this point, we only know « is
uniformly bounded on C x ¥ and we argue as follows. If oo : C x 3 — R is a solution of
(8.5), then

1
5(Ac+ Ar)a® <{(Ac + Ag)a, a)

1 . 1 .
= —§a(e2a — P92~ ol = e 2[00 2 < —?|al?

for some ¢ > 0. Let V(z) = S{z}xE a?, then V(z) is a bounded subharmonic function on
C:

(8.8) AcV(2) < =22V (2) <0,

so V(z) is constant. (8.8) implies that V(z) = 0. O

9. PROOF OF THEOREM 1.3

Now we present the proof of Theorem 1.3 by generalizing ideas from Section 6. In fact,
we do not need any assumptions on ¢ € g: it can be any smooth function on X.
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Theorem 9.1. There exists constants €, > 0 depending only the metric gs, A\ # 0 and
5 € T'(X,iR) with the following significance. Suppose a configuration v = (A, P) solves the
gauged Witten equations (8.1) on H2 and Eun(v; Un.r) < € for anyn € Z and r = 0, then

&m(’}’; Qn,R) < e_CR-

Here the subset Q, p = H2 is defined by (8.7).

Proof. We adapt the proof of Theorem 6.1 and follow the notations from Proposition
7.9. Let (M(X),W),G(2)) be the fundamental Landau-Ginzburg model introduced in

Subsection 7.2. For any k = (B, ¥) € M, recall that Hy, is the completion of the tangent

space T, M with respect to the Li 5 norm for any k£ > 0:

|65, 09) = Y. L VRSB + VRS,
’ 0<j<k
We claim that the trilinear tensors defined in the proof of Theorem 6.1:
(9.1 (V.HessH(-),): H1®@H1 @ H1 — R,
(Hess (), ®-): H1®H1 ® g1 — R,

are bounded operators. Indeed, take tangent vectors v; = (5&,5@0 e T,M for i =1,2.
Using (7.5) and (7.6), we compute that:

Hess L(v1) = (py H(U6TF + 60, 0%)g, DESU + pa(6by)T),
(VU2 Hess L)(Ul) = (p2_1(5\i’2(5\i1T + (5@1(5@;)0,/)2(562)5@1 + pg((ﬂ)l)(s\i’g),
(Hess pu(v1),v2) = i Re(idW1, p3(ds)dWs).

Hence, tensors in (9.1) are independent of v € M and involve only point-wise multipli-

cations of sections. Since L% B L3 in dimension 2 (with a uniform norm independent

of B), and the multiplication map L3 x L3 x L3 — L' is bounded, our claim follows.
Now we come to analyze the differential operators

Dy : H1 — Ho® go D go,
v= (567 5@) = (HeSS H(U)7 <V:u7 U>7 <Jv:u7 U>)7
and J(Vu, -y : g1 — Ho, {— (_d&f‘i’)-

Lemma 9.2. Suppose ks = (By, Wy) € M is a reference point in the critical orbit Oy =
pu=1(0) N Crit(L). Then for any e > 0, we can find an L2+51v neighborhood Q(e1) of ks (or
a G-invariant neighborhood of Oy) such that for any k = (B, V) € Q, ve T,M and € g,
we have

(9.2) [Da(0)L2m) = clvlzz  and IV, ]2 = cl€]

for some ¢ > 0.
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Proof of Lemma. If k = ry = (By, ¥y), then estimates (9.2) follow from the injectivity
of the (ixtended operator D, in the proof of Proposition 7.9. In general, let w = k — k4.
Then Dy(v) = Dy,v + I(w,v) for a bilinear operator I(-,-) involving only point-wise
multiplication, so

[1(w,v)]2 < [wlplvle < C@)wlplv]re
for any positive (p,q) with 1/p + 1/q¢ = 1/2. The constant C(p) arises from the Sobolev
embedding L% B L% where 2 < p,q < oo0. Similarly, we have

foliz, > lolsz , ~ C@lwlplolz
Thus, estimate (9.2) hold when |w|, « 1. 0

Back to the proof of Theorem 1.3. Now the proof of Theorem 6.1 can proceed with no
difficulty. Following the notations therein, define

u(2) = [VAP[2as) + [Fl32s) and w(z) = [VAP, + [F|2;,.

For any number nn > 0, by the compactness theorem [KMOZ, Theorem 5.2.1], there
exists a constant €(n) > 0 such that for any configuration v = (A, P) with

Eun(7, Q) = L u(2)dz < e(n),

we have the point-wise estimate
0<u(z) <w(z) <nVzeQ

for a smaller domain ), < Q. By taking n « 1, we ensures that P(z) € (4), where Q(4)
is the neighborhood obtained in Lemma 9.2 with ¢; = 4.

Now replace 2 by €2, r for any n € Z and R > 1. The Bochner-type formual in Lemma
6.4 then implies that
2

1 1
0> §AH3’LL + (210 — C’w3/2 = §AH§rU + ?w = (AH%r + 42),&7

1
2
for some ¢ > 0, and we use Lemma 6.3 to conclude. O

10. FINITE ENERGY SOLUTIONS ON R, x T?

In this section, we study the 3-dimensional Seiberg-Witten equations:

(10.1) { 303(Fpt) — (T*)o — /B;qu - gf

on the cylinder R, x ¥ with w = ds A A\ — ddvoly. Here, A # 0 € Q4 (¥) is a harmonic

1-form on ¥ and § € Lie(G) = T'(X,7R) is an imaginary valued function. In terms of
Landau-Ginzburg models, the equations (10.1) are equivalent to the downward gradient
flow equation of L = Re W:

d
(10.2) —-p(s) + VLop =0.
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,¥(s)) : R — M(X) is a smooth path in the Kihler manifold M (X). Tts

where p(s) = (b(s
10.1) can be seen by setting

relation with ( i
B:%—FBO—FB(S) and ¥ = ¥(s) on {s} x X.
We require the path p to have finite analytic energy:
(10.3) Eanlr) 1= | 10l + VL <0

Under (10.3), it is easily seen that the path p has a finite length and
qr = lim p(s)

s—+o0

lies in Crit(L). By the Cauchy-Riemann equation (2.1), (10.2) is also the Hamiltonian
flow equation for H = Im W). Hence, a flowline connecting g_ and ¢, can exist only if

(10.4) L(g-) = L(q+) and H(q-) = H(q+).
Proposition 10.1. When X € Q} (X) = H'(Z,iR) is not a multiple of any integral classes,
any finite energy solution of (10.1) has to be Ry-translation invariant, i.e p(s) = q— = q;.

Proof. By Proposition 7.5, g— and ¢ lie in the same G(X)-orbit, so g4 = u - ¢— for some
u:Y — S Hence,

Wala-) = Wa(as) = = [ ™ lduon,.

In particular, H(q—) — H(qy) = 4772([“71‘“] U [5=])[Z]. If A is not a multiple of an

27 27
integral class, this pairing can not be zero unless [“;:gu] = 0¢e HYX,Z). This implies
that

Ean(p) = 2(L(g-) — L(g+)) =0,
so the path p has to be R,-translation invariant. O

Remark 10.2. A solution of (10.1) can be viewed as an S'-invariant solution of the 4-
dimensional equations (7.1) on S! x R, x T2, When gy is flat, Proposition 10.1 follows
from a theorem of Taubes, see [Tau01, Proposition 4.4]. &

Taubes’ theorems provide another simple condition that precludes non-trivial solutions.

Proposition 10.3. [Tau01, Proposition 4.7] Suppose gx. is flat and Se Lie(G) is a constant
function on X, i.e. § =9 for some 6 € iR. If § # 0, then any finite energy solution of
(10.1) has to be Ry-translation invariant, i.e p(s) = q— = q4.

Proof. The proof is adapted from [Tau01l, P. 486-487]. The closed 2-form w = ds A A —
ddvoly, that is used to perturb the equations (10.1) is a parallel 2-form. Thus, the spin
bundle ST splits as

(10.5) LIeL,

with p3(w) acting on by a diagonal matrix

()
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where m = 4/|0]? + |A|? is a positive number. The splitting (10.5) is parallel. Let p(t) =
(b(t), ®(t)) be a solution of (10.2) on R, x ¥. Write ®(t) = v/2m(a(t), B(t)) with respect
to the decomposition (10.5). By Witten’s vanishing spinor argument [Wit94], 3 = 0. The
first equation of (10.1) becomes

1
§FBt = (1 - |o}w.

The curvature form Fp: is closed, so d(1 — |a]?) A w = 0. Alternatively, it says that
{d|a|?, *3w) = 0. The dual tangent vector of i *3w generates a flow on R, x ¥ along which
|| stays constant. Since § # 0, this flow translates the spatial coordinate s as time
varies. Since |a| — 1 as s — +0, |a| = 1. This completes the proof. O

When gy, is flat, 6 = 0 and A is a multiple of an integral class, there is a non-trivial
moduli space of flowlines for any pair (¢, ¢4+) subject to (10.4). They are pulled back
from vortices on the cylinder Ry x S'. These moduli spaces are not regular; their expected
dimensions are always zero from the index computation. For more details, see [Tau0l,
Section 4(d)(e)]. Here is an immediate corollary of Proposition 10.3.

Corollary 10.4. Suppose gx, is flat and § =6 € iR is a constant function on X. If § # 0,
then for any € € S, any down-ward gradient flowline of the functional Re(e®®Wy):
2sp(s) + V Re(eWy) = 0,
has to be a constant path.
Proof. This corollary follows from Proposition 10.3 by noting that
WD, Ty, T ) = Wo(b, Uy, e 0T ) 4 (be My, O
APPENDIX A. THE MAXIMUM PRINCIPLE

This appendix is meant to state a version of maximum principle, from which one can
easily deduce exponential decay. The author is greatly indebted to Ao Sun for teaching me
this elementary and enlightening proof (of Lemma A.1). Laplacian operators are assumed
to have positive spectra. In particular, over the complex plane,

Ac = —6? — 63.
This sign convention is adopted throughout this paper.

Proposition A.1. Take ¢ > 0. Suppose u : H2 = R; x [0,00)s — R is a bounded
C2-function on the upper half plane such that

(1) (Ac + ¢Hu <0, and

(2) u(t,0) <0 for any t € R;.
Then u(t,s) < 0 for any (t,s) € H2.

Proof. Choose a smooth cut-off function 9 : [0,00) — [0,00) such that
e ¥ =1on[0,1],
e )y =0o0n [2,00) and
e 0< <.
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Let ¢r : C — R such that ¢r(z) = ¢¥(|z|/R). Then
e pp=1, Vor =0 and Acor =0 for |z| < R;
e pp =0, Vor = 0 and Acor =0 for |z| > 2R;
e For some L > 0, [Vor| < }% and |Acor| < #.
Only the last property requires some explanation. In general, we have

_ L
(P L e N |
Acor = (ar¢R+|Z|aT¢R)_ ng(R) Bl (R)-

Suppose u(zg) > 0 for some zy € H%. Consider ug(z) := u(2)¢r(z—20). Then ug(z) =0
when |z — 29| > 2R and

’U,R(t,O) < 0.
Hence, max up is attained at some 2; in the interior of H2. Let N = |[u/s, so
(A1) 0 < u(z0) = ur(20) < ur(z1) < Nor(z1 — 20).

At z1 € Hi, we have

0 = (Vug)(z1) = (Vu - ¢r(21 — 20) + uVor(z1 — 20),
so Vu(z1) = —u(21)Vér(z1 — 20)/¢r(21 — 20). Then the relation Acu < —(?u gives:
0 < Acugr(z1) = ¢r(z1 — 20)(Acu) + uw(Acdr(z1 — 20)) — 2VPr(21 — 20) - Vu,
2|Vor|?

< u(=C%¢r + Acor + T)(Zl — 20).
R

However, this inequality is violated when R » 0 which yields a contradiction. By (A.1),
when R >» 1,

2|Vor|? L 2L N Culz) 9
— < —+ — - < — .
|Acor + . |(21 — 20) = w) S TN C“¢r(z1 — 20)
Moreover, u(z1) > 0. This completes the proof. O

Corollary A.2. Take ¢ > 0. Suppose u : H2 = R; x [0,00)s — R is a bounded C?-function
on the upper half plane such that

(1) (Ac +¢*u <0, and
(2) u(t,0) < My for some My >0 and any t € Ry.

Then u(t,s) < Mie=%* for any (t,s) € H2.

Proof. Let v(t,s) = Me™%°. Then (Ac + ¢?)v = 0 and v(t,0) = M for any t € R;. Apply
Proposition A.1 to u — v to conclude. O

There are analogous statements for a strip of finite length. Their proofs are similar and
omitted here.

Proposition A.3. Take ¢ > 0. Suppose u : Ry x [0,2R]s — R is a bounded C?-function
such that
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(1) (Ac + ¢Hu <0, and
(2) u(t,s) <0 for any t € Ry and s € {0,2R}.
Then u(t,s) <0 for any (t,s) € Ry x [0,2R]s.

Corollary A.4. Take ¢ > 0. Suppose u : R; x [0,2R]s — R is a bounded C?-function such
that

(1) (Ac +¢Hu <0, and

(2) u(t,s) < My for any t € Ry and s € {0,2R}.

Then u(t,s) < M - % for any (t,s) € Ry x [0,2R]s.

APPENDIX B. A BOCHNER-TYPE FORMULA

The purpose of this appendix is to summarize some useful formulae from Riemannian
geometry for a gauged Landau-Ginzburg model (M, W, G, p). In particular, we will prove a
Bochner-type formula for a generalized vortex (A, P) on H2. Some formulae become more
transparent when M is a complex linear space. Readers are recommended to skim these
formulae quickly when first reading and come back to their proofs when it is necessary.

B.1. Some Useful Formulae. Recall that (M,w, J,g) is a Kdhler manifold and G is a
compact abelian Lie group acting on M holomorphically and isometrically. (G, p) admits a
moment map p : M — g which is G-invariant. W = L+ iH is a G¢-invariant holomorphic
function on M, called the superpotential.

For any & € g, let & be the vector field on M induced from the action (G,p). The
convention of the moment map used in our paper is that

UE)w = —dlp, E)q

Since w(-, ) = g(J-, ), we will frequently use the following equivalent equation:

(B.1) €= IV, &g,
where Ve T'(M,TM ® g) is viewed as a g-valued vector field on M.

Lemma B.1. For a gauged Landau-Ginzburg model (M, W, G, p) as defined in Definition
3.1, we have the following identities:

(1) VL+ JVH = 0.

(2) Hess L + J o Hess H = 0.

(3) JoHess H+ Hess HoJ =0, i.e. the Hessian Hess H of H anti-commutes with J.

(4) JoHesspu =HesspolJ, i.e. the Hessian Hess i commutes with J.

(5) (VNu,VH) ={JVu,VH) = 0.

(6) (V&) =0 for any € € g.

Proof. The first identity (1) is the Cauchy-Riemann equation.

Since M is kéhler, the almost complex structure J is parallel, i.e. V.J = 0, so (2) follows
from (1) by taking the covariant derivative.

Both Hess L and Hess H are symmetric operators with respect to the metric g, so by
(2), we have

JoHess H = (JoHess H)T = (Hess H)T o JT = —Hess H o J.
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Since the metric g is G-invariant, for any £ € g, the Lie derivative of g is zero:
Egg = 0.

This implies that for any vector fields V, U, (Vy-&,U) +(Vy€, V) = 0. Using the defining
equation (B.1), we conclude that (JHess p, &)y is an anti-symmetric operator, so Hess p
commutes with J. This proves (4)

Finally, since H is G-invariant, (¢, VH) = 0. By (B.1), (JVu, VH) = 0. The other
identity in (5) follows from the G-invariance of L and the first identity (1).

(6) follows from the fact that p: M — g is G-invariant. O

A smooth connection A = d + a in the trivial principal bundle G x H%r — H%r allows
us to take covariant derivatives of a map P : H2 — M. It is also important to know
covariant derivatives of a vector field v along P (for each x € H2, v(z) is a tangent vector
at P(x) e M).

Recall that for any tangent vector (x,V)e T Hi, V{}P is defined by the property:

(B.2) VP = Lot pyny)
dt =0

where 7 : [0,1] — H2 is a path with v(0) = 2 and 4/(0) = V. The action of G extends to
the tangent bundle T'M of M:

prm(9)(p,v) = (p(9)p; p(g)xv).

If v is a vector field along P o 7(t), it is reasonable to define:
(B.3) Vitv = Vvépp(et'“(v))*v.

It is enlightening to find a concrete formula of V{}v without using the group action. By
the defining property of the moment map (B.1), we have

(B.4) VAP =V -P+a(V)=P(V)+ J(Vu,a(V)).
Lemma B.2. The covariant derivative of a vector field v equals:
Vito = Vp,yv + J(Hess u(v), a(V)).
where V p,yv denotes the covariant derivative with respect to the Levi-Civita connection.

Remark B.3. The correction term J(Hess p(v),a(V)) reflects the dependence on the
connection 1-form a. It is linear in a, v and V as expected. &

Proof. The formal proof is to linearize the equation (B.4) along the tangent vector v(z) €
Tp(y)M. Let us make this intuition precise. Consider a variation of P o~ along the vector
field v:

Q(r,t,8) = p(e" V) exp poy ) (s0(8)).



MONOPOLES AND LANDAU-GINZBURG MODELS I 47

When r = 0, Q(0,t,s) is a variation of the path P o «y(t). Indeed, Q(0,¢,0) = P o ().
When s = 0, the covariant derivative of P is defined as (comparing (B.2)):

%Q(t,t,o) L VP = %Q(O,t,o) + %Q(t,o,o)
= P(V) + JVu,a(V)).
Let Uy = %Q(t,t,s) and Uy = dilsQ(t,t,s). Then Uy = Us + Uy with
Us = (02Q)(,¢,5),Us = (1Q) (1, ¢, 5).

Uy = J{Vu,a(V)). When t = s = 0, U3 = P,V. Moreover, [Us,Us] = 0. By (B.4), we
have

t=0

Vito = Vi, Uy = Vi, Us + Vi, Us = Vp,vv + Vi,Us
t=s=0 t=s=0 t=s=0

= Vp,vv + JHess p(v),a(V)). O

The next lemma concerns the curvature tensor of V4. Since we are merely interested
in the manifold Hi, it suffices to work with vector fields ¢; and 0.

Lemma B.4. Write T = Vg‘tP and S = Vg‘SP for short. The following properties hold
for any configuration (A, P) and any vector field v along P:

(1) The connection V4 is equivariant under the gauge transformation u(A, P) = (A —

u”tdu,u - P), i.e.

uy (VA P) = VIXL/—(A)U(P), uy (Vitv) = VTXL/(A)U*U.

where uyv is the vector field along u(P).
(2) If v is induced from a G-invariant vector field on M, then V’a“sv = Vgv.
(3) (VAVE = VAP = J(Vu, Fa(0,05)) = —F where F = — x; Fa.
(4) For any vector fields v,w on Im P < M,

Os(v,wy = (Vi v,w) + (v, Vaw),

i.e. the connection VA is unitary.
(5) The curvature tensor of V4 is given by

(VavE —Vaviv = Ry(T, S)v + J(Hess u(v), Fa(0t, 05)).
where Ryy(-,-)- denotes the Riemannian curvature tensor on M.

Proof. The property (1) follows from the defining property (B.2) and (B.3) of V 4.
If v is induced from a G-variant vector field on M, then for any g € G, p(g)«v = v. By
(B.3),

Vitv = Vvép,o(et'“(v))*v = Vyapo.

This proves (2). For (3), if F4 = 0 near a point x € Hi, then we apply a gauge
transformation u so that the connection 1-form a¢ = 0 near z. Thus,

us(VAVE — VAVE)P = Vs,05u(P) — Vo, dpu(P) = 0.
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This shows the commutator is at least proportional to #F4. To work out the general case,
we apply (B.4) and Lemma B.2:

VAVAP =V,,pS + J{Hess u(S),a(d;))
= Vo,p0sP + VopJ(Vpu,a(ds)) + J(Hess u(S), a())
= Vo,pds P + J(Vpu, 0a(0s)) — (Hess u({V i, a(0s))), a(dr))
+ J(Hess (¢ P), a(0s)y + J(Hess u(0sP), a(d)).
At this point, we need the following fact. For any &,7n € g,
(Hess p({Vp, £),m) = (Hess u({Vp, m)), &)

This follows from the fact that Vg — Vg7 = [£,7] = [577/] = 0. This proves (3).

As for (4), we apply the gauge invariance of V4. Alternatively, one uses Lemma B.2
and the fact that

(B.5) (J Hess pu(v), w) + {(J Hess u(w),v) = 0.

since the metric g is G-invariant.

The expression of the curvature tensor (5) requires some work. Again, if Fy = 0, we
use the gauge invariance of V 4, and (5) follows from the definition of Rj;. The actually
proof is not very tidy. We follow the strategy of (3):

VaVav=VapViv+ J(Hessu(Viv),a(é))
= Vo,rVeo,pv + JVs, p{(Hess p(v),a(ds)) + J(Hess ,u(V?Sv), a(0%))
= Vo,rVo,pv + J(Hess p(v), 6:a(0s)) + J{(Va,p Hess ) (v),a(ds))
+ J(Hess 1(Vg,pv), a(ds)) + J(Hess u(Va, pv), a(0:))
+ J(Hess u({J Hess pu(v),a(0s))),a(d:))

There are six terms in the expression. The fourth and fifth ones will also occur in that
of V‘a“s Vg‘t v, so canceled out. The second term contributes to

J(Hess pu(v), Fa(%, 0s))-

The first one contributes to Rys(0; P, 0sP). To better organize the proof, we point out two
lemmas from which the identity (5) will follow. Note that

Ry(T, S) = Ry (0P, 05 P) = R (1P, a(05)) + R (a(0r), 0sP) + Rar(a(r), a(0s)).
We have to identify these terms in the expression of V?ﬁ V’;S v — V’;S V?ﬁ . O
Lemma B.5. For any £ € g and vector fields u,w on M, we have

Rar(w, E)u = (Vi (J Hess 1) (), €).
Proof of Lemma. Differentiating (B.5) yields that
(Vu(J Hess p)(v),w) + (Vy(J Hess p)(w),v) = 0.
The key observation is that for any vectors u, v, w, we have
(Rpr(u,v)w, JVpy = —(Vy(J Hess ) (v), w) — (V,(J Hess p) (w), u).
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Indeed, we use the symmetry of curvature tensor to compute:

(Rpr(u,v)w, JVpy = —(Rpr(u,v)JVu,w)y
= —(Vy(J Hess p)(v), w) + {V,(J Hess ) (u), w)
= —(Vu(J Hess p)(v), w) — {V,(J Hess p)(w), u).

This expression is unchanged if we permute (u,v,w). Using the symmetry
Ry (u,v)w + Ry(v,w)u + Ry (w,u)v =0
from Riemannian geometry, we conclude that
(Vu(J Hess ) (v), w) + {Vy,(J Hess ) (w), uy + (Vy(J Hess 1) (u), v) = 0.

In particular, this implies (R (u, v)w, JVu) = (Vy(J Hess p)(u),v). Finally, note that
£ ={(Vp,§ and

<RM (w7 g)“? U> = <RM (ua ’U)’LU, g> = <vw<‘] Hess ,u)(u), v §> O
Lemma B.6. For any £,n € g and any vector field v on M,

Rag(€,77)v = J(Hess u((J Hess u(v), 1)g), g — J(Hess u((J Hess u(v), €)g), m)g-

Proof of Lemma. This identity is equivalent to that
(B.6) (Raa (€, )0, w) = ~(Vuih, V) + Vo, Vauil).

Recall that Egg — 0 implies (V,&,w) = —(V,&,v). Hence, the right hand side of (B.6)
equals

I:= —(V,1, Vw£> + <Vv£’ Vi)
=~ (71, V&) + (7, Vo Vi) +w - (71, V&) — (if, Vi Vo)

Since Vgﬁ = vﬁé, we have
<vv57 ﬁ> = —<V,~7§~, U> = _<v§~ﬁ7 U> = <vvﬁ7 §>
Therefore, v - (i}, €Y = 2(V,£, 7). Moreover,

0 (1, V) + w0, Vo = — 30wl € + 2w (i, 6.

= Lo w1, =~ V.

Finally, we conclude that I = (R (v, w)&, 7y = (R (&, 7)v, w). O
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B.2. A Bochner-Type Formula. It will be convenient to introduce the operator D,, for
any p € M. For any tangent vector v € T, M, its image is defined as:

veT,M — Dy(v) := (Hess, H(v),{Vp,v),{Vu,Jv)) e T,M®gDg.

The family of operators D, forms a bundle map TM — TM @ g ® g, which is induced
from the Hamiltonian H and the moment map pu.

The Bochner’s formula [Pet16, P. 334] was originally stated for a harmonic function
u: M — R on a Riemannian manifold M. Tt computes the Laplacian of |Vul|?:

1
0= §AM|VU|2 + | Hess u|? + Ric(Vu, V).

We provide a formula in the same spirit for a generalized vortex on Hi, with D), playing
the role of Ric(+, -). The Laplacian operator Ajs or AH2+ is always assumed to have positive

spectrum. In particular,
AHi = — (0} + 02).

Theorem B.7. Write T' = Vg‘tP and S = Vg‘SP for short. For a solution (A, P) to the
gauged Witten equation (4.1) on H%, we have identities:

(1) The Laplacian %(‘AHi)‘TP = 2(02+ 32)|T* of |T|? is equal to
VAT + VTP + [Dp(T)* + (Ra(S,T)8,T)
+{(VrHess H)(VH),T) + (Hess u(2JS — T), T ® F).
(2) Similarly, %(‘AHi)‘S‘2 = (0% + 02)|S)? is equal to
VaSP +IVASE +IDp(S) + (Ru (T, S)T.S)
+{(VsHess H)(VH),S) + (Hess u(—2JT — S),S® F).
(3) The Laplacian %(‘AHi)‘F‘S of |F|3 is equal to
0P+ OF 2 + (T, Pyl + 2Hess u(J5), T ® F)

Define VAP = dt@T + ds® S and Hessy P as w,-®wj®VéV?jP for (e1,e2) = (0, 0s)
and (w1,w9) = (dt,ds).

Corollary B.8. We have the following identity for AH2+(|VAP|2 + |F|§)

0 = 582 (VPP + [F2) + | Hessa PP+ [VFP2 + [Dp(VAP)P + (T, Fgf
+ 2(R(S,T)S,T) + {((VrHess H)(VH),T) + {(VsHess H)(VH), S)
+ 6(Hess u(JS), T ® F) — (Hess u(T), T ® F) — (Hess u(.5), S ® F').
One thinks of —(VgtT + Vﬁs S) as the connection Laplacian of P. Let us define
—~AP:=V4AVLP +V4aVAP =VLT + V4 S.
We start with a useful formula of AyP.
Lemma B.9. —A4P = JF + Hess H(VH).
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Proof. Apply the operator —Vgt +J Vg‘s to the equation (4.7b). Using the fact that Hess H
anti-commutes with J (Lemma B.1 (3)) and Lemma B.4 (2)(3), we have

0= (-V5 +JVLNT + JS + VH)
= (VAT + V4 S) — J[VAS — VAT] — Hess H(T + JS)
= AAP + J(F) + Hess H(VH). O

Remark B.10. It is enlightening to work out Lemma B.9 and Theorem B.7 concretely
in some special cases. In Example 3.2, we have M = C,(W =0 and y = %|z|2. The metric
on C is flat, and we identify T, M with C for each z € M. Hence,

Viu(z) =2®i and Hesspu = 1¢ ® .

Take § = % € iR = g. In this case, the equation (4.1) recovers the vortex equation on

Hic(@:
04P =
—*xFat+p =

where A is a unitary connection and ® : H2 — C is a smooth function. In this case,
Lemma B.9 says

[an}

POl

Ap® = (F, i)y

which follows from the Weitzenbock formula. Since VH = 0, T' = —JS. The first two
identities in Theorem B.7 yield:

1
0= §AH2~+|VA<I>|2 + | Hessa @2 + |D(Va®)|? — 3(F, i)y |V 4D [%

In this case, D(v) = (Vu,v),{Vu,Jv)) and |D(v)|§ = |®%|v|%2. In the meanwhile, we
have

0- %AH2+|F|2 FIVER + [B[2(F2 — [VAB[2(E, iy,
These formulae were first proved in [JT80, Proposition 6.1]. O

Proof of Theorem B.7. Let us start with 02|T|?. By Lemma B.4 (4),

ST = 0VAT.T) = [VATP + (T, VAVAT).
By Lemma B.4 (3)(5), we have

VAVAT =V5(VAS +F)
= VAVE S+ Ry(S,T)S + (JHess u(S), F) + VA F,
which implies that
%(af LT = [VATP? + |VATP 4 (VA(—AAP), T) + (Ry(S,T)S, T
+ (JHess u(S), F®T) + (V4 F,T).
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By using the equation (4.7a), we attempt to extract some positivity from the last term:

= (JHess u(S), FQT) + {(JVu,0sF),T).
— (I Hess u(S), F @ T) + (Y, JT),(V 1, S)q
By Lemma B.1 (5), (Vu, JVH) = 0. Using (4.7b), we have
<v:u7 JT> = <v:u7 S — JVH> = <v:u7 S>
Hence, <V§SF,T> = (JHess u(S), FRT) + |V, JT)|,.
Now we deal with the term involving A 4P, using Lemma B.9. We exploit the fact that
Hess H(VH) is a G-invariant vector field on M and Lemma B.4 (2):

Va(—AaP) = V4 (JF + Hess H(VH))
= —Va(Vu,Fy+ (VrHess H)(VH) + Hess H*(T).
= —(Hess u(T), Fy —(Vu,0:F) + (V7 Hess H)(VH) + Hess H*(T).

Note that —((Vu, 0 F), Ty = {Vpu, (N, T)), Ty = KV, T)l3-
Combining all these together, we obtain

1

5 (00 + TP = [VE T+ |[VETP + (Rar(8,T)8,T)
+ KV, THlg + [(V i, JT)[; + | Hess H(T)|?
+{((VrHess H)(VH),T) + (Hess u(2JS = T), FQT).

The formula of (7 + 02)|S|? is proved in a similar may.
Finally, let us deal with the Laplacian of |F|3. By (4.7a), we have

1
§0§IF|§ = |0sF [} + (F, 03 (—p))g-
= 0, F|2 — (Hess u(S),S® Fy = (Vp, V&S ® F).
By Lemma B.9, we have

(~Vu, (VAT + V58 ®F) ={(~Vu, JFQ Fy + (~Vu,Hess HVH) ® F)
= [{p, F)gl* + (Hess p(VH), VH @ F).

At the last step, we applied the identity:
(B.7) (Hess u(X),VH) +(Vu,Hess H(X)) =0

for X = VH. By Lemma B.1 (5), (Vu,VH) = 0. Expanding the expression X -
(Vu,VH) = 0 yields (B.7). O
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