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MONOPOLES AND LANDAU-GINZBURG MODELS I

DONGHAO WANG

Abstract. The end point of this series of papers is to construct the monopole Floer ho-
mology for 3-manifolds with torus boundary. In the first paper, we explain the idea from
the standpoint of gauged Landau-Ginzburg models and address a few model problems
related to the compactness of moduli spaces, using a Bochner-type formula associated
to the gauged Witten equations.
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2 DONGHAO WANG

Part 1. Introduction

1. Introduction

1.1. Motivations in Floer Homology. The Seiberg-Witten Floer homology of a closed
oriented 3-manifold Y is defined by Kronheimer-Mrowka [KM07] and has greatly influenced
the study of 3-dimensional topology. The underlying idea is to construct an infinite dimen-
sional Morse theory: solutions to the 3-dimensional Seiberg-Witten equations on Y are
critical points of the Chern-Simons-Dirac functional L, and solutions to the 4-dimensional
equations on Rt ˆ Y are viewed as negative gradient flowlines of L.

The purpose of this series of papers is to generalize their construction and define the
Seiberg-Witten Floer homology HM ˚pY q for an oriented 3-manifold pY, BY q with torus
boundary, which has the potential to recover the knot Floer homology of a knot K Ă S3,
both the hat-version and the minus-version as special cases. In the first paper, we focus
on the geometric aspect and explain its relations with gauged Landau-Ginzburg models,
which were first introduced by Witten [Wit93] in his formulation of gauged linear sigmal
model (see Subsection 1.3 below). This change of standpoints allows us to prove two
fundamental results (Theorem 1.2 & 1.3 below) that lead eventually to the compactness
theorem of the Seiberg-Witten moduli spaces. The actual construction of the monopole
Floer homology of pY, BY q, including the compactness theorem and many other analytic
details, will be postponed to the second paper of this series [Wan20].

One reason to develop a relative version of Floer theory for 3-manifolds with boundaries
is to give a gluing formula for the absolute version. The second reason is to define invariants
for knots and links inside S3. These goals are accomplished in the framework of Heegaard
Floer Homology, via the construction of bordered Floer homology [LOT08] by Lipshitz-
Ozsváth-Thurston and knot Floer homology by Ozsváth-Szabó [OS04] and independently
Rasmussen [Ras03]. See [Man16] for a nice survey on their constructions. A long term
goal of our program is to interpret their works in the context of gauge theory and hopefully
provide new insights for future research.

It has been long believed [Man16, P.1] that the knot Floer homology of pS3,Kq en-
codes something about the Seiberg-Witten equations on Rt times the knot complement
S3zNpKq. One may approach this heuristic using the Floer homology constructed in the
second paper, which applies to any knot (or link) complements. The conjectural relation
(see [Wan20] for more details) is as follows

HM ˚pY q ù HFK´
˚ pS3,Kq if Y “ S3zNpKq,

HM ˚pY q ù
zHFK˚pS3,Kq or KHM ˚pS3,Kq if Y “ S3zNpK Y mq,

where m is a meridian of K Ă S3. In the second case, we will describe a conjectural
self-gluing formula of HM ˚pY q in Subsection 2.3 that explains this reduction.

Some constructions of knot Floer homology that uses gauge theory already exist in the
literature. It is hoped that the analytic tools introduced in this series of papers can also
help extend the existing theory in some directions. Let us give a brief summary:
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‚ In [KM10], Kronheimer-Mrowka defined the monopole knot Floer homology KHM ˚
using the sutured manifolds technique developed by Juhász [Juh06, Juh08], as the

counterpart of zHFK in Heegaard Floer homology. In the same paper, they intro-
duced the instanton knot Floer homology whose applications include a new proof of
Property P for knots. The rough idea is to close up the boundary of the knot com-
plement S3zNpKq (treated as a balanced sutured manifold) and obtain a closed
oriented 3-manifold whose monopole Floer homology is already defined. We will
come back to this approach and explain its relation with our work in Subsection
2.3;

‚ Most recently, it is shown that the sutured monopole Floer homology is a functor
from the sutured cobordism category [Li18], and Li [Li19] proposed a construction
of HFK´ in the Seiberg-Witten theory using a direct system of sutures on the knot
complement;

‚ In [KM11a], Kronheimer-Mrowka introduced the singular instanton Floer homol-
ogy and proved that the Khovanov homology detects the unknot. See also [KM11b].
The idea is to treat pS3,Kq as a bi-fold, whose metric is singular along the knot
K with a cone angle π.

On the other hand, Nguyen [Ngu12, Ngu18] studied the monopole equations on the
manifold with boundary pY, BY q directly and developed analytic foundations for a Floer
theory with the Lagrangian boundary condition on BY . We will work instead with a
complete Riemannian manifold, as we explain in the next subsection.

1.2. Summary of Results. To give the statement of our main theorems, let us now
describe the setup. Given a compact oriented 3-manifold Y with torus boundary BY “ Σ,
let gY be a Riemannian metric that is cylindrical near Σ and gΣ “ gY

ˇ̌
Σ
. Then Σ “š

1ďiďmΣi is a disjoint union of 2-tori. Instead of Y , we look at the monopole equations
on the complete Riemannian manifold:

pY “ Y
ž

Σ

r0,8qs ˆ Σ

For most results in this paper, there is no need to assume that gΣ is flat. At this point, a
suitable perturbation along the cylindrical end r0,8qs ˆ Σ is required so that Lemma 1.1
below is valid, which is crucial for a Floer theory. It relies on a pair pλ, µq where

‚ λ P Ω1
hpΣ, iRq is an imaginary valued harmonic 1-form on Σ;

‚ µ P Ω2
hpΣ, iRq is an imaginary valued harmonic 2-form on Σ, i.e. µ “ řm

j“1
δjdvolΣi

for some constants δj P iR.

Finally, we use the 2-form ω :“ µ ` ds ^ λ to perturb the Seiberg-Witten equations on
r0,8qs ˆ Σ. See (10.1) for the explicit formulae on Rs ˆ Σ and (7.1) on the 4-manifold

C ˆ Σ. As we will focus on the cylindrical end of pY in this paper, it does no harm to
assume that Σ is connected from now on. We are only interested in spinc structures with
c1pS`qrΣs “ 0. The construction is inspired by the following lemma by Meng-Taubes:
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Lemma 1.1 ([MT96]). For any metric gΣ on Σ and any pair pλ, µq ‰ p0, 0q, there exists
a unique Rs-translation invariant solution (up to gauge) to the perturbed Seiberg-Witten
equations (10.1) on the 3-manifold Rs ˆ Σ. Moreover, this solution is irreducible.

Any finite energy solutions on pY will approximate this unique solution along the cylin-
drical end r0,8qs ˆ Σ. As critical points of the perturbed Chern-Simons-Dirac functional
Lω, they become non-degenerate after further perturbations and form a compact moduli
space of dimension 0.

Now consider the moduli space of finite energy monopoles on the 4-manifold Rt ˆ pY
which possesses a planar end H

2
` ˆ Σ. The upper half plane

H
2
` :“ Rt ˆ r0,8qs

is furnished with the Euclidean metric. The convention here is to use t for the time
coordinate and s for the spatial coordinate on cylindrical the end of pY . To define the
Floer differential B and prove that B2 “ 0 on the Floer complex, the moduli space must

have the right compactification. The failure may arise from the cylindrical end of pY .

For a sequence of solutions on Rt ˆ pY , some amount of energy might slide off along the

cylindrical ends of pY and give rise to finite energy solutions on C ˆ Σ.
This is the first problem that we address. This phenomenon is precluded by the next

theorem; the 4-manifold Rt ˆ pY is non-compact in two directions, but the energy can slide
off only in the time direction.

Theorem 1.2. For any metric gΣ and any λ ‰ 0, any finite energy solution to the
perturbed Seiberg-Witten equations (7.1) on C ˆ Σ, the so-called point-like solution, is ir-
reducible and gauge equivalent to the unique C-translation invariant solution whose energy
is zero.

In this sense, we say that point-like solutions on CˆΣ are trivial. This result contrasts
immensely with the case of the unperturbed equations. Let us give a brief summary:

‚ For a higher genus surface Σ̃ with gpΣ̃q ą 1, point-likes solutions on C ˆ Σ̃ can
be non-trivial. They are classified completely in terms of some algebraic data, see
[Wan18];

‚ When pλ, µq “ p0, 0q, point-like solutions on C ˆ Σ are reducible and correspond
to flat Up1q-connections on Σ;

‚ When λ “ 0 and µ ‰ 0, the moduli space is isomorphic to
š

dě0
Symd

C, i.e.
the vortex moduli space on C in the sense of [Tau80]. It is not regular unless
d “ 0. Indeed, the expected dimension is always 0 for any connected component,
cf. Example 5.9.

The second problem we address is the exponential decay in the spatial direction on

Rt ˆ pY , and we state the result for the planar end H
2
` ˆ Σ. For any n P Z and R P r1,8q,

define Ωn,R :“ rn ´ 1, n ` 1s ˆ rR ´ 1, R ` 1s Ă H
2
` and let

(1.1) Eanpγ; Ωn,Rq
be the analytic energy of the configuration γ on the 4-manifold Ωn,R ˆ Σ, called the local
energy functional of γ. See Definition 8.2 for the precise expression. This non-negative
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quantity is gauge invariant, and bounds the L2
1-norm of γ (up to gauge) on Ωn,R ˆ Σ and

also the L2
k-norms in the interior of Ωn,R ˆ Σ for any k ě 1 when γ is a solution.

Theorem 1.3. If λ ‰ 0 P Ω1
hpΣ, iRq, then there exist constants ǫ, ζ ą 0 depending only

on pgΣ, λ, µq with the following significance. Suppose γ solves the perturbed Seiberg-Witten
equations on H

2
` ˆ Σ and Eanpγ,Ωn,Rq ă ǫ for any n P Z and R ě 1, then

Eanpγ; Ωn,Rq ă e´ζR.

From Theorem 1.3, one can easily deduce the decay of L2
k-norms for a solution γ. Note

that the spatial direction (s Ñ 8) is not the direction of downward gradient flowlines
of the functional Lω, so Theorem 1.3 is not a consequence of the standard theory, e.g.
[KM07, Section 13].

The proofs of Theorem 1.2 and 1.3 rely on Proposition 1.4 below which relates the
Seiberg-Witten equations on C ˆ Σ with the gauged Witten equations of an infinite di-
mensional gauged Landau-Ginzburg model, as we explain in the next subsection.

1.3. Gauged Landau-Ginzburg Models. The gauged Witten equations were first in-
troduced by Witten in his formulation of gauged linear sigma model [Wit93] as a physics
theory that explains the so-called Landau-Ginzburg/Calabi-Yau correspondence. Its math-
ematical foundation is recently developed by Tian-Xu in a series of papers [TX18a, TX18b],
in which case the domain is a compact Riemann surface with punctures. We would like
to refer readers to their nice introduction for necessary background. Since our focus is
slightly different, we give a short discussion below with emphasize on the Picard-Lefschetz
theory.

When the dimension is finite and the structure group G “ teu is trivial, a Landau-
Ginzburg model is a pair pM,W q where

‚ M is a complete non-compact Kähler manifold, and
‚ W “ L ` iH : M Ñ C is a holomorphic function, called the superpotential.

The Landau-Ginzburg Model pM,W q is called Morse if L :“ ReW is a Morse function
on M , so pM,W q defines a Lefschetz fibration. In the viewpoint of symplectic topology,
one may define its Fukaya-Seidel category A in the sense of [Sei08] using Lagrangian
Floer cohomology. Each compact Lagrangian submanifold L0 Ă M should be assigned a
A8-module over A. The construction is based on the Floer equation

(1.2) BtP ` JBsP ` ∇H “ 0,

whereH :“ ImW and P : Rtˆr0, 1ss Ñ M is a J-holomorphic curve subject to Lagrangian
boundary conditions. We wish to generalize this picture in two directions. Here is the
first one:

(1) the structure group G is abelian, but non-trivial.

In this case, the action of G on M is Hamiltonian with a moment map µ : M Ñ g

and the superpotential W is G-invariant. Readers are referred to Definition 3.1 for other
requirements on a gauged Landau-Ginzburg model. The right replacement of (1.2) is the
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gauged Witten equations:

(1.3)

"
´ ˚2 FA ` µ “ ~δ,

∇A
BtP ` J∇A

BsP ` ∇H “ 0,

where A is a connection on the trivial G-bundle Q over Rt ˆ r0, 1ss and ~δ P g. The map
P is now regarded as a section of the trivial bundle Q ˆG M . The right replacement of
the Morse condition is a notion of stability, cf. Definition 3.6. The local energy functional
(1.1) in this context is defined as

(1.4) EanpA,P ; Ωn,Rq “
ż

Ωn,R

|FA|2 ` |µ ´ ~δ|2 ` |∇AP |2 ` |∇H|2.

for any Ωn,R Ă H
2
`. In particular, EanpA,P ; Ωn,Rq “ 0 implies that up to gauge, A “ d

and P is a constant map defined on Ωn,R taking values in µ´1p~δq X CritpHq.
Here is the second generalization that we make:

(2) the gauged Landau-Ginzburg model pM,W,Gq can be infinite dimensional.

The proofs of Theorem 1.2 and 1.3 start with their counterparts for finite dimensional
Landau-Ginzburg models (as toy problems) and are concluded by the following observa-
tion.

Proposition 1.4 (Proposition 7.4 & 7.5). There is an infinite dimensional gauged Landau-
Ginzburg model pMpΣq,Wλ,GpΣqq associated to pΣ, gΣ, λq whose gauged Witten equations
on C recover the Seiberg-Witten equations on C ˆ Σ. When λ ‰ 0, this Landau-Ginzburg
model is stable in the sense of Definition 3.6, and the superpotential Wλ has infinitely
many critical values, which form a lattice inside C.

Remark 1.5. The perturbations λ and µ play very different roles from the standpoint of
the gauged Witten equations (1.3): λ is used to perturb the superpotential Wλ, while µ

is used to perturb the moment map equation in (1.3) by changing ~δ P g. ♦

The first clause of Proposition 1.4 does apply to a high genus surface Σ̃, but only when
gpΣ̃q “ 1 and λ ‰ 0, the gauged Landau-Ginzburg model we obtain is stable. Roughly
speaking, Theorem 1.2 and 1.3 hold in general for any gauged Landau-Ginzburg model
with a stable superpotential. The only difference in the infinite dimensional case is that
the metric of M depends on the Sobolev completions, and we have to specify the correct
norms involved in our estimates. The plot-line of proofs are summarized in the table
below:

dim ă 8 dim “ 8
G “ teu G ‰ teu the Seiberg-Witten equations on C ˆ Σ or H2

` ˆ Σ
Lemma 2.7 Theorem 5.1 Theorem 8.1 (Theorem 1.2)
Lemma 2.5 Theorem 6.1 Theorem 9.1 (Theorem 1.3)

For instance, when M “ C, G “ S1 and W ” 0, the gauged Witten equations (1.3)
defined on C “ Rt ˆ Rs come down to the vortex equations in the sense of [Tau80] (with
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~δ “ i{2):

(1.5)

"
˚2iFA ` 1

2
|P |2 “ 1

2
,

B̄AP “ 0,

where A “ d ` a is a Up1q-connection on C and P : C Ñ C is a complex valued function.
This example is not stable in the sense of Definition 3.6, and Theorem 5.1 fails, by [Tau80,
Theorem 1]. Nevertheless, Theorem 6.1 still holds, which states that the local energy
functional EanpA,P ; Ωn,Rq defined by (1.4) has exponential decay as R Ñ 8. This decay
is also point-wise, so it recovers a theorem of Jaffe-Taubes:

Theorem 1.6 ([JT80], P.59, Theorem 1.4). Let pA,P q be a smooth finite energy solution
to the vortex equations (1.5). Given any ǫ ą 0, there exists C “ Cpǫ,A, P q ă 8 such that

0 ď ˚2iFA “ 1

2
p1 ´ |P |2q ă Ce´p1´ǫq

?
t2`s2 .

The proof of Theorem 6.1 uses the maximum principle and a Bochner-type formula
(Lemma 6.4) for the energy density functional of pA,P q, which was first proved by Taubes
in the special case of the vortex equations in [JT80, Proposition 6.1]. See Remark B.10
for more details.

The example above is more or less degenerate, since the superpotential W is identically
zero. Usually one can take any Hamiltonian function to perturb the Floer equation (1.2),
but when it is the imaginary part of a holomorphic function W , both (1.2) and (1.3)
possess richer structures. Analytically this is encoded in the Bochner-type formula in
Lemma 6.4. Geometrically this is related to Fukaya-Seidel categories, as we discuss in the
next subsection and Section 2.

1.4. Fukaya-Seidel Categories and Floer Homology. As explained in the beginning
of Subsection 1.3, each Landau-Ginzburg model (under additional conditions) should be
assigned an A8-category. To generalize this Picard-Lefschetz theory to the infinite di-
mensional gauged Landau-Ginzburg model in Proposition 1.4, one may work with infinite
dimensional Lagrangian submanifolds, but there is another alternative: can we define
Lagrangian Floer cohomology without actually mentioning Lagrangian submanifolds?

When G “ teu and dimM ă 8, this idea can be partly realized when the Lagrangian
submanifold L0 is a Lefschetz thimble, i.e. the stable (or unstable) submanifold of a critical
point q P CritpReW q. Instead of a stripe Rt ˆ r0, 1ss, we look at J-holomorphic curves
defined on the upper (or lower) half plane:

P : H2
` “ Rt ˆ r0,8qs Ñ M

subject to the Floer equation (1.2) and Lagrangian boundary condition on Rt ˆ t0u. The
study of Fukaya-Seidel category of Landau-Ginzburg models via this approach has been
pioneered by Haydys [Hay15] and Gaiotto-Moore-Witten [GMW15]. See also [FJY18,
GMW17, KKS16]. We will give a brief sketch of their proposal in Section 2. The primary
application in their cases is when

M “ SLp2,Cq connections on a closed 3-manifold Y,

W “ the complex valued Chern-Simons functional,
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so the gauged Witten equations go over to the Haydys-Witten equations on the 5-manifold
CˆY . This idea even goes back to the seminal paper [DT98] by Donaldson and Thomas,
in which case

M “ the space of B̄-operators on a complex vector bundle E Ñ Y,

W “ the holomorphic Chern-Simons functional,

for a compact Calabi-Yau 3-fold Y, and one recovers the Spinp7q-instanton equation on
C ˆ Y. The Seiberg-Witten equations should serve as the field test for their programs
in higher dimensions, as the compactness does not cause an issue here. Although it is
not pursued in the present work, it would be an interesting future direction to develop a
bordered monopole Floer theory along this line.

Since we will not come back to Landau-Ginzburg models in the second paper of this
series, we will explain in Subsection 2.3, how the monopole Floer homology of pY, BY q fits
into this general picture.

1.5. Organization. Section 2 is a continuation of this introduction, in which we explain
a variant of Lagrangian Floer cohomology, following the work of Haydys [Hay15] and
Gaiotto-Moore-Witten [GMW15]. This variant will allow generalization to the infinite
dimensional setting. Instead of holomorphic strips, we look at “holomorphic upper half
planes” with boundary condition only on the one side. It is intended to be a general
overview; no proofs will be presented.

In Part 2, we study gauged Landau-Ginzburg models on a finite dimensional Kähler
manifold. The focus is on the geometric insights that motivate definitions and proofs in
the infinite dimensional setting. In Section 3 and 4, we define gauged Landau-Ginzburg
models and study the gauged Witten equations on the upper half plane H

2
`. Point-like

solutions are solutions on the complex plane C with finite analytic energy. It is shown in
Section 5 that point-like solutions are trivial provided that W is a stable superpotential.
In Section 6, we prove an exponential decay result using a Bochner-type formula for the
energy density functional.

In the last part of this paper, we introduce the Fundamental Landau-Ginzburg Model
associated to a 2-torus Σ and prove Theorem 1.2 and 1.3 by generalizing Theorem 5.1 and
6.1 from Part 2.

Acknowledgments. The author is extremely grateful to his advisor, Tom Mrowka,
for his patient help and constant encouragement throughout this project. The author
would like to thank Tim Large and Paul Seidel for several discussions and for providing
the critical references, and also Ao Sun for teaching him the elegant proof of maximum
principle. This material is based upon work supported by the National Science Foundation
under Grant No.1808794.

2. A General Overview

In this section, we explain a variant of Lagrangian Floer cohomology defined using holo-
morphic upper half planes, following [Hay15] and [GMW15]. To make it more consistent
with the literature, we will work with cohomology instead of homology in this section.
This variant serves as a toy model for the monopole Floer homology of a 3-manifold
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pY, BY q with torus boundary, as we sketched in the introduction. More details will be
given in Subsection 2.3. This analogy is only used as an inspiration or a guideline for
future research; it is not our intention to relate these two theories in a precise way.

Analytically, the perturbed Seiberg-Witten equations on H
2
` ˆΣ and the Floer equation

(2.5) on H
2
` share many common features. Lemma 2.7 and Lemma 2.5 below are the

counterparts of Theorem 1.2 and 1.3 in this toy model. Their proofs are postponed to the
next part, where the corresponding results (Theorem 5.1 and 6.1) are stated and proved
for the gauged Witten equations.

2.1. A Variant of Lagrangian Floer Cohomology. Recall that a Landau-Ginzburg
Model is a pair pM,W q where

‚ pM,ω, J, gq is a non-compact complete Kähler manifold with complex structure J

and Kähler metric h :“ g ´ iω. The underlying Riemannian metric is g, while ω

is the symplectic form.
‚ W : M Ñ C is a holomorphic function, called the superpotential.

Since M is Kähler, J is parallel. Write W “ L ` iH with L “ ReW and H “ ImW .
Then the Cauchy-Riemann equation pdW q0,1 “ 0 comes down to

(2.1) ∇L ` J∇H “ 0,

i.e. the gradient ∇L is the Hamiltonian vector field of H.
A Landau-Ginzburg model pM,W q is said to be Morse if all critical points of L are

non-generate. We always assume pM,W q is Morse in this section. Let CritpLq be the set
of critical points of L. Taking the covariant derivative of p2.1q yields:

(2.2) HessL ` J ˝ HessH “ 0.

Since HessH is a symmetric operator and J is skew-symmetric, (2.2) implies that

(2.3) J ˝ HessL ` HessL ˝ J “ 0.

For any q P CritpLq, let H˘
q Ă TqM be the positive (negative) spectral subspace of

Hessq L. Then (2.3) implies JpH˘
q q “ H¯

q . In particular, the index of q is pn, nq if
dimRM “ 2n. Let Uq and Sq be the unstable and stable submanifolds of q, i.e.

Uq “ tx P M : Dp : p´8, 0ss Ñ M, Bsp ` ∇L “ 0, pp0q “ x, lim
sÑ´8

p “ qu,

Sq “ tx P M : Dp : r0,8qs Ñ M, Bsp ` ∇L “ 0, pp0q “ x, lim
sÑ8

p “ qu.

Uq and Sq are called Lefschetz thimbles of pW, qq.
Lemma 2.1. Uq and Sq are Lagrangian submanifolds of pM,ωq.

Lemma 2.1 may have been well-known for a long time, but its significance was only
realized after the works of Donaldson [Don99] and Seidel [Sei03]; see [Sei08, Remark
16.10].

Assumption 2.2. To simplify our exposition in this section, we make the following as-
sumptions.
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‚ pM,ωq is an exact symplectic manifold, i.e. ω “ dθM is an exact 2-form; the
primitive θM P Ω1pMq is a smooth 1-form;

‚ L has a unique critical point on M ; let CritpLq “ tqu;
‚ The superpotential W : M Ñ C is not assumed to be proper. Instead, we assume
that |∇W |2 : M Ñ r0,8q is a proper map. ♦

Example 2.3. Let M “ pCn, z1, ¨ ¨ ¨ , znq and W “ z2
1

`¨ ¨ ¨ `z2n. The unique critical point
q is the origin. ♦

Take a pair of compact Lagrangian submanifolds pL0,L1q Ă M ; assume they intersect
transversely. Let CF˚pL0,L1q be the F2-vector space freely generated by the intersection
L0 X L1:

CF˚pL0,L1q “
à

yPL0XL1

F2 ¨ y.

The differential B on CF˚pL0,L1q is defined by counting J-holomorphic strips of Maslov
index 1, subject to Lagrangian boundary conditions. They are smooth maps

P : Rt ˆ r0, 1ss Ñ M

satisfying the equation

(2.4) BtP ` JBsP “ 0,

along with the boundary conditions P p¨, 0q P L0 and P p¨, 1q P L1. At this point, some
assumptions on M and pL0,L1q are required to ensure that B is well defined after suitable
perturbations, but let us skip these technical steps here.

Equation (2.4) can be perturbed by a Hamiltonian function. In our case, we use the
imaginary part of W :

(2.5) BtP ` JBsP ` ∇H “ 0.

The co-chain complex CF˚pL0,L1q is then generated by Hamiltonian chords, which are
smooth maps p : r0, 1ss Ñ M satisfying relations

pp0q P L0, pp1q P L1, JBsp ` ∇H “ 0.

Using the Cauchy-Riemann equation (2.1), the last condition is equivalent to

(2.6) 0 “ JpBsp ` ∇Lq, s P r0, 1ss.
i.e. p is a downward gradient flowline of L.

One obtains the Lagrangian Floer cohomology HF˚pL0,L1q by taking the cohomology
of pCF˚pL0,L1q, Bq. The underlying idea is an infinite dimensional Morse theory. The
configuration space is the loop space

C8pr0, 1s,M ;L0,L1q :“ tp : r0, 1ss Ñ M : p smooth, pp0q P L0, pp1q P L1u,
and the Morse function defined on C8pr0, 1s,M ;L0,L1q is the perturbed symplectic action
functional:

AHppq “ Appq `
ż

r0,1ss
H ˝ ppsqds.
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A path p is a critical point of AH if and only if p is a Hamiltonian chord. For an Rt-family
of paths tptutPR Ă C8pr0, 1s,M ;L0 , L1q, it forms a down-ward gradient flowline of AH

precisely when P pt, sq “ ptpsq solves the equation (2.5) on Rt ˆ r0, 1ss.
We would like to generalize this setup for certain non-compact Lagrangian submanifolds,

in particular for the unstable and stable submanifolds U “ Uq and S “ Sq. This can not
be done in general; some asymptotic behaviors of Li at infinity are required to make
the cohomology group well-defined. We do not intend to make these conditions precise;
instead, we give a few incomplete axiomatic properties:

(1) There are two classes of non-compact Lagrangian submanifolds: the unstable type
and the stable type. Denote them by Cun and Cst respectively.

(2) Uq P Cun and Sq P Cst, where Uq and Sq are Lefschetz thimbles of q.
(3) For any LU P Cun and LS P Cst, L “ ReW is bounded above on LU and below on

LS. LU only intersect LS within a compact region of M .
(4) The Lagrangian Floer cohomology HF˚pLU ,LSq is well-defined, assuming transver-

sality, by counting Hamiltonian chords and solutions of (2.5).

Our goal now is to give an alternative construction of HF˚pLU , Sqq and HF˚pSq,LU q.
We focus on the first case. Suppose LU is exact, so the primitive θM |LU

“ dh for some
real valued function h : LU Ñ R. The chain group CF˚pLU , Sqq is generated by the finite
set LU X Sq. Each x P LU X Sq corresponds to a path p : r0,8qs Ñ M such that

Bsp ` ∇L “ 0, pp0q “ x, lim
sÑ8

ppsq “ q.

Comparing with p2.6q, this motives us to look at the space

C8pr0,8q,M ;LU q :“ tp : r0,8qs Ñ M : p smooth, pp0q P LU , lim
sÑ8

“ qu,

and consider the perturbed action functional:

AHppq “ ´hppp0qq `
ż

r0,8qs
´p˚θM ` H ˝ ppsqds.

The differential pB is defined by counting solutions to (2.5) on the upper half plane H
2
` “

Rt ˆ r0,8qs with the boundary condition:

(2.7) P p¨, 0q P LU , lim
sÑ8

P pt, sq “ q.

To prove pB2 “ 0 in this context, it is important to know a compactness result. Since we
have omitted some assumptions, we state the result as a property instead of a proposition:

Property 2.4. For a fixed unstable type Lagrangian submanifold LU , there exists a func-
tion η : r0,8qs Ñ Rě0 such that limsÑ8 ηpsq “ 0, and for any solution P : H2

` Ñ M of
p2.5q subject to the boundary condition p2.7q, we have

sup
tPR

dpP pt, sq, qq ď ηpsq,

where d is the distance function of the Riemannian metric g.



12 DONGHAO WANG

The upshot is that the convergence in the boundary condition (2.7) is also uniform for
all possible solutions P . In fact, this decay is exponential. The next lemma is the toy
model of Theorem 1.3 when G “ teu and dimM ă 8.

Lemma 2.5. There exist constants ǫpM,W q, ζpM,W q ą 0 with following significance.
For any solution P1 : H

2
` Ñ M such that dpP1pt, sq, qq ă ǫ,@pt, sq P H

2
`, we have

dpP1pt, sq, qq ă e´ζs,@s ě 0.

The exponent ζpM,W q is determined by the first positive eigenvalue of Hessq L. To
derive the exponential decay from Lemma 2.5, set P1pt, sq “ P pt, s ` Rq for some R " 0
in Property 2.4.

Remark 2.6. Apparently, Lemma 2.5 holds when P is time-independent, since in this
case tP pt, squsPr0,8qs is a down-ward gradient flowline of L “ ReW for any fixed t P Rt

and L is a Morse function. It is not clear to the author whether tP p¨, squsPr0,8q forms a
down-ward gradient flowline (in the spatial direction) of some functional in general. ♦

The proof of Property 2.4 relies on the following fact:

Lemma 2.7. Let P : C Ñ M be a solution of p2.5q on the complex plane. If P pt, sq Ñ q

as pt, sq Ñ 8, then P ” q.

Remark 2.8. As we will see later, for a gauged Landau-Ginzburg model, Lemma 2.7
is not true in general. An appropriate condition that ensures Lemma 2.7 is a notion of
stability, cf. Definition 3.6. ♦

Remark 2.9. We will prove Lemma 2.7 and Lemma 2.5 in the context of gauged Landau-
Ginzburg models in Part 2, cf. Theorem 5.1 and Theorem 6.1.

Property 2.4 is not true in general if L “ ReW has multiple critical points on M . We
will address this issue for the Seiberg-Witten equations in the second paper, cf. [Wan20,
Theorem 5.3]. ♦

2.2. A Gluing Formula. In general, when L “ ReW is allowed to have multiple critical
points (still finite), one may define the Fukaya-Seidel category of pM,W q, an A8-algebra A
generated by Lefschetz thimbles tUquqPCritpLq or tSquqPCritpLq. Moreover, for each LU P Cun
and LS P Cst, we assign:

LU ù an A8-right module over A,

LS ù an A8-left module over A.

Their underlying co-chain complexes are given respectively by

(2.8)
à

qPCritpLq
CF˚pLU , Sqq and

à

qPCritpLq
CF˚pUq,LSq.

A theorem of Seidel [Sei08, Corollary 18.27] then suggests a spectral sequence whose
E1-page is

(2.9)
à

qPCritpLq
HF˚pLU , Sqq b HF˚pUq,LSq,
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abutting to HF˚pLU ,LSq in the E8-page. The underlying geometric picture was probably
observed first by Donaldson and elaborated later in the monograph [GMW15] by Gaiotto-
Moore-Witten. The Lagrangian Floer cohomology HF˚pLU ,LSq is defined by counting
holomorphic strips of width 1 with boundary conditions, but one can instead work with
strips of width R for arbitrarily large R ą 0 and let R Ñ 8.

This neck-stretching picturemakes more sense with the perturbed equation (2.5), in
place of (2.4). In the limit R Ñ 8, a holomorphic strip boils down to a few simpler pieces
which can be analyzed by the A8-structures of (2.8). For instance, a differential on the
E0-page comes from a holomorphic upper half plane in CF˚pLU , Sqq and an intersection
point in Uq X LS, or the other way around. This explains why the E1-page is a tensor
product. Higher multiplications in the A8-structure give rise to higher differentials.

If the A8-algebra A turns out to be trivial, then the spectral sequence collapses after
the E1-page. There is one simple geometric condition that yields this triviality:

Lemma 2.10. If for any eiθ P S1, the down-ward gradient flowline equation

Bsppsq ` ∇pRepeiθW qq “ 0, p : Rs Ñ M

can only have constant solutions, then the Fukaya-Seidel category of pM,W q is trivial.

As we shall see in Corollary 10.4, this condition can be verified for the Seiberg-Witten
equations when the metric gΣ is flat and δ ‰ 0.

Although this geometric intuition is enlightening to keep in mind, the analytic founda-
tion of the web-based formalism [GMW15] is still missing. To implement their proposal
for the Seiberg-Witten equations remains a challenging problem.

2.3. Relations with Gauge Theory. As noted in Subsection 1.4, our goal is to define
Lagrangian Floer cohomology without using boundary conditions, and we have achieved
this goal partly by considering holomorphic upper half planes. To deal with the other
boundary component, let us explain the origin of LU and LS in our primary applications.

Suppose we have a closed oriented 3-manifold Y separated by a homological essential
2-torus Σ:

Y “ YL#ΣYR and ImpH1pΣ;Rq Ñ H1pY ;Rqq ‰ 0.

Let MpΣq be the infinite dimensional Kähler manifold associated to Σ in Proposition
1.4. The solution space of 3-dimensional Seiberg-Witten equations on YL, by the work
of Nyugen [Ngu12], is infinite-dimensional, whose boundary values on Σ form an infinite
dimensional Lagrangian submanifold of MpΣq. Denote it by LU . One may construct
the other piece LS from the 3-manifold YR. It becomes clear that the monopole Floer
cohomology HM ˚pYLq of YL, as we sketched in Subsection 1.2, is the analogue of

à
qPCritL

HF˚pLU , Sqq

defined using holomorphic upper half planes. By working with the extended 3-manifold

pYL “ YL

ž

Σ

r0,8qs ˆ Σ

and the 4-manifold Rt ˆ pYL, we get rid of boundary conditions completely.
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To see the relation with the knot Floer cohomology, recall the construction from [KM10].
For any knot K Ă S3, take a meridian m Ă S3zK. The link complement

YK :“ S3zNpm Y Kq.
is a 3-manifold with boundary BYK “ Σ1 YΣ2. Using any orientation reversing diffeomor-
phism ϕ : Σ1 Ñ Σ2, we close up the boundaries of YK and obtain a closed 3-manifold Y 1

K .
Then define

KHM ˚pS3,Kq :“ HM ˚pY 1
Kq.

The latter group HM ˚pY 1
Kq is the monopole Floer cohomology of Y 1

K defined using a
suitable non-exact perturbation. It is shown in [KM10] that KHM ˚pS3,Kq is independent
of the isotopy class of ϕ up to isomorphisms.

On the other hand, we can take HM ˚pYK , BYKq as a candidate of knot Floer ho-
mology, which is defined by attaching cylindrical ends to YK . To see its relation with
KHM ˚pS3,Kq, regard ϕ as gluing two pieces:

YK and r´R,Rss ˆ Σ1.

As R Ñ 8, we stretch the metric in a neighborhood of Σ1 in Y 1
K , in analogy of the neck

stretching picture involved in the spectral sequence (2.9). In fact, Lemma 2.10 applies in
this case, so one may recover KHM ˚pS3,Kq from HM ˚pYK , BYKq by a self-gluing formula.

As an ending remark for this expository section, the monopole Floer homology of 3-
manifolds with torus boundary to be defined in the second paper [Wan20] only gives
the underlying co-chain complexes (2.8). The construction of A8-structures is left as an
interesting future project. The discussion of this subsection is mostly inspirational and
philosophical. It will require substantial new ideas to fully realize this picture.
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Part 2. Gauged Landau-Ginzburg Models

In this part, we generalize the setup from the previous section by allowing an abelian
group G act on the Kähler manifold M . In this case, we obtain the gauged Witten
equations (4.1) as the replacement of the Floer equation (2.5). Theorem 5.1 and Theorem
6.1 are analogue of Theorem 1.2 and Theorem 1.3 in the finite dimensional case; their
proofs are presented in Section 5 and Section 6 respectively.

3. Definitions and Examples

We generalize the setup from the previous section and introduced the notion of gauged
Landau-Ginzburg Models.

Definition 3.1. The quadruple pM,W,G, ρq is called an (abelian) gauged Landau-Ginzburg
model if

(1) pM,ω, J, gq is a complete non-compact Kähler manifold with complex structure J

and Kähler metric h :“ g ´ iω; g is the underlying Riemannian metric, and ω the
symplectic form.

(2) pG, ρq is a compact abelian Lie group acting on M holomorphically and isometri-
cally, i.e. for any g P G, the action ρpgq : M Ñ M is a holomorphic isometry;

(3) pG, ρq is an Hamiltonian group action, and it admits a moment map:

µ : M Ñ g,

where g is the Lie algebra of G. Since G is abelian, µ is G-invariant;
(4) The action of pG, ρq extends to an action of the complex group pGC, ρCq. ρC :

GC ˆ M Ñ M is holomorphic. ρC does not preserve the Riemannian metric g in
general.

(5) W : M Ñ C is a GC-invariant holomorphic function called the superpotential.
Write W “ L ` iH with L “ ReW and H “ ImW . ♦

Again, we assume pM,ωq is an exact symplectic manifold, i.e. ω “ dθM for some

θM P Ω1pMq. For any ξ P g, let ξ̃ be the vector field on M induced from the group action
pG, ρq:

ξ̃ppq “ d

dt
ρpetξqp

ˇ̌
ˇ̌
t“0

.

We adopt a non-standard (sign) convention of the moment map in this paper:

(3.1) ιpξ̃qω “ ´dxµ, ξyg.
Since ωp¨, ¨q “ gpJ ¨, ¨q, (3.1) is equivalent to
(3.2) x∇µ, ξyg “ ∇xµ, ξyg “ ´Jξ̃,

where ∇µ P ΓpM,TM bgq is a g-valued vector field on M and x¨, ¨yg denotes a bi-invariant
metric of g.

Example 3.2. Let G “ S1, GC “ C
˚,M “ C and W ” 0. The group action is the

standard complex multiplication. Using our sign convention (3.2), the moment map is
µpzq “ i

2
|z|2 for z P C. ♦
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Example 3.3. Let G “ S1, GC “ C
˚,M “ S2 and W ” 0. Identify M with CP

1 “
C Y t8u. The action ρC is the same as in Example 3.2. t0,8u is the fixed point set of
ρC. ♦

Example 3.4. Let G “ S1, GC “ C
˚,M “ pC2, x, yq and W px, yq “ xy. W becomes

GC-invariant if we set the action ρC as

ρCpuqpx, yq “ pux, u´1yq,
for any u P C

˚. The moment map is µpx, yq “ i
2
p|x|2 ´ |y|2q. ♦

Just as Assumption 2.2, we wish pW,µq to satisfy some good properties. The replace-
ment of the Morse condition for gauged Landau-Ginzburg models is a notion of stability.
There are two possible candidates; the second one turns out to be more useful.

Definition 3.5. A regular value ~δ P g of the moment map µ is called W -stable if the
restriction of L on

µ´1p~δq{G
has a unique critical point and it is non-degenerate. Thus, before taking the quotient,

there exists a unique critical orbit O˚ of L such that O˚ Ă µ´1p~δq. ♦

~δ is a regular value of the moment map µ if and only if the infinitesimal action of G on

the fiber µ´1p~δq is free, so the quotient space is a genuine manifold (or orbifold in general).
However, from the viewpoint of Remark 2.8, having a W -stable regular value is not

good enough (see Example 5.8). Note that the critical set CritpLq “ tx P M : ∇Lpxq “ 0u
is closed and GC-invariant.

Definition 3.6. The superpotentialW is called stable if CritpLq contains a unique freeGC-
orbit and L is Morse-Bott, i.e. for any x P CritpLq, ker Hessx L is precisely TxpGC ¨ xq. ♦

In fact, any regular value ~δ P Imµ Ă g is a W -stable if W is stable.
In Example 3.2, any δ P ir0,8q is W -stable, but W itself is not a stable superpotential.

Indeed, CritpLq “ M , and it contains two C
˚-orbits.

In Example 3.4, L has a unique critical point q “ p0, 0q P C
2. It is not W -stable. If

instead we let G “ teu, W is stable, and ~δ “ 0 is W -stable.
Let us provide a more interesting example.

Example 3.7 (The Fundamental Toy Model). Let G “ S1, GC “ C
˚,M “ pC3, x, y, bq

and Wλpx, y, bq “ pxy ´ λqb, where λ P C is a fixed parameter. ρC is defined by

ρCpuqpx, y, bq “ pux, u´1y, bq.
for any u P C

˚. The moment map is µpx, y, bq “ i
2
p|x|2 ´ |y|2q and ∇L “ pȳb̄, x̄b̄, x̄ȳ ´ λ̄q.

If λ ‰ 0, then CritpLq “ tb “ 0, xy “ λu containing a unique C
˚-orbit, and the

superpotential W is stable.
If λ “ 0, then CritpLq “ Axy Y Axb Y Ayb where

Axy “ tx “ 0, y “ 0u, etc.
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So W is not stable. ~δ P iR is W -stable if and only if ~δ ‰ 0. For instance, take ~δ P i ¨ p0,8q.
If px, y, bq P µ´1p~δq, then x ‰ 0, so

CritpLq X µ´1pδq “ tpx, 0, 0q :
i

2
|x|2 “ δu Ă Ayb,

which contains a single free G-orbit. Moreover, we compute HessL at px, y, bq P M :

HessL

¨
˝
x1

y1

b1

˛
‚“

¨
˝
0 b̄ ȳ

b̄ 0 x̄

ȳ x̄ 0

˛
‚

¨
˝
x̄1

ȳ1

b̄1

˛
‚,

so L is Morse-Bott away from the origin. Note that the C
˚-orbit of px, 0, 0q is not closed.

Its closure contains the origin. ♦

4. The Gauged Witten equations

In this section, we introduce gauged Witten equations, the notion of analytic energy
and explain its relation with down-ward gradient flow of the gauged action functional AH .
This serves as a toy model for the Floer theory to be studied in the second paper [Wan20]
of this series. Some lemmas are stated and proved only for inspirations; they are not quite
related to the proof of Theorem 1.2 and 1.3 in the end.

4.1. The Gauged Action Functional. Let ~δ P g be a W -stable regular value (in the

sense of Definition 3.5) of the moment map µ : M Ñ g and LU Ă µ´1p~δq be an G-

invariant unstable-type Lagrangian sub-manifold of M . Since ~δ is W -stable, µ´1p~δq X
CritpLq contains a unique G-orbit O˚. Choose a reference point q P O˚.

Assumption 4.1. Let us first summarize the assumptions we make in this section in
order to set up a Floer theory formally :

‚ the Kähler form ω is exact, i.e. ω “ dθM for some θM P Ω1pMq;
‚ since ω|LU

“ 0, the primitive 1-form θM is closed on LU . For convenience, assume
θM “ dh is exact on LU ;

‚ ~δ P g is a W -stable regular value; ♦

Let Y “ r0,8qs and X “ Rt ˆ Y “ H
2
`. Consider a smooth map P : X Ñ M and a

connection A “ d ` a of the trivial principal G-bundle Q over X:

Q “ X ˆ G.

Write the connection 1-form a as atdt ` asds with at, as P ΓpH2
`, gq. The smooth map P

can be differentiated co-variantly with respect to A:

∇A
V P :“ V ¨ P ` ãpV q

for any tangent vector V P TX. Here, ãpV q is the induced tangent vector of apV q P g.
We are interested in the gauged Witten equations on X “ H

2
` with boundary values in

LU :

(4.1)

$
&
%

´ ˚2 FA ` µ “ ~δ,

∇A
BtP ` J∇A

BsP ` ∇H “ 0,
P pt, 0q P LU .
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The first equation is a moment map constraint. The second one is the J-holomorphic
curve equation perturbed by the Hamiltonian H “ ImW . When H ” 0, this reduces to
the symplectic vortex equation. The gauged Witten equations (4.1) can be viewed as a
down-ward gradient flowline equation in an infinite dimensional space, as we explain now.

For either Z “ Y or X, let ApZq “ d ` Γ0pZ, iT ˚Z b gq be the space of smooth
connections with decay in the spatial direction. Here,

(4.2) Γ0pZ, iT ˚Z b gq “ ta P C8pZ, iT ˚Z b gq : lim
sÑ8

a “ 0 and xa, dsy “ 0 at s “ 0u.

A smooth map p : Z Ñ M can be viewed as a section of the trivial M bundle over Z:

ĂM “ Z ˆ M “ pZ ˆ Gq ˆG M.

Consider the space of smooth sections of ĂM Ñ Z subject to the Lagrangian boundary
condition and a decay condition at infinity:

Γ0pZ, ĂM ;LU q “ tp : Z Ñ ĂM : pp0q P LU , lim
sÑ8

ppsq “ qu.

A gauge transformation must converge to the identity element e of G as s Ñ 8:

GpZq :“ Map0pZ,Gq “ tu : Y Ñ G : lim
sÑ8

u “ e P Gu.

The configuration space is CpZq “ ApZq ˆ Γ0pZ, ĂM ;LU q with GpZq acting on by the
formula:

upA, pq “ pA ´ u´1du, u ¨ pq.
Definition 4.2. The gauged action functional AH is defined over CpY q with Y “ r0,`8qs
as:

(4.3) AHpd ` a, pq “ ´hppp0qq ´
ż

Y

p˚θM `
ż

Y

H ˝ ppsqds ` xa,~δ ´ µ ˝ pyg.

where xa,~δ ´µ ˝ pyg “ xas, ~δ ´µ ˝ pygds is understood as an 1-form on Y and θM “ dh on
LU . ♦

For any γ “ pA, pq P CpY q, a tangent vector pδa, δpq in TγCpY q consists of a smooth
form δa P Γ0pY, iT ˚Y b gq and a vector field δp along the image ppY q:

δp P Γ0pY, p˚TM ;LU q.
The tangent space TγCpY q inherits a G-invariant L2-inner product from the Riemannian

metric g of M , with respect to which we compute the formal-gradient of AH :

Proposition 4.3. gradAHpd ` a, pq “ p~δ ´ µ ˝ p, J∇A
Bsp ` ∇Hq.

Proof. Let P : r0, 1stˆY Ñ M be a smooth map such that P p0, sq “ ppsq, BtP p0, sq “ δppsq
and limsÑ8 P p¨, sq “ q. Then γt “ pd ` a ` tδa, P pt, ¨qq is a smooth variation of γ0 “ γ.
Note that
(4.4)ż

r0,tsˆY

P ˚ω “
ż

r0,tsˆY

dP ˚θM “ hpP pt, 0qq ´ hpP p0, 0qq `
ż

ttuˆY

P ˚θM ´
ż

t0uˆY

P ˚θM ,
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but also ż

r0,tsˆY

P ˚ω “
ż

r0,tsˆY

ωpBtP, BsP qdt1ds “ ´
ż

r0,ts
dt1

ż

Y

gpBtP, JBsP qds.

Now consider the first variation of p4.3q along a tangent vector pδp, δaq:
d

dt
AHpγtq|t“0 “

ż

Y

gpδp, JBsP ` ∇Hqds ` xδa,~δ ´ µ ˝ pyg ´ x∇µ, δp b ayg.

“
ż

Y

gpδp, J∇A
BsP ` ∇Hqds ` xδa,~δ ´ µ ˝ pyg,

where we used the relation ∇A
BsP “ BsP ` Jx∇µ, asyg. �

Proposition 4.4. AH is GpY q-invariant.
Proof. Since elements of GpY q are subject to the boundary condition limsÑ8 u “ e, GpY q
is contractible. It suffices to consider the infinitesimal action. The Lie algebra of G is

LiepGq “ Γ0pY, gq “ tξ : Y Ñ g : lim
sÑ8

ξpsq “ 0u

For ξ P LiepGq, the tangent vector generated at γ P CpY q is

(4.5) dγpξq :“ p´Bsξ, ξ̃q “ p´Bsξ, Jx∇µ, ξyq.
It suffices to verify this vector is L2-orthogonal to gradAH . For any path p P Γ0pY, ĂM ;LU q,

~δ ´ µ ˝ ppsq “ 0 for s “ 0 and 8. Hence, the boundary terms involved in the integration
by parts below vanish:ż

Y

x~δ ´ µ ˝ p,´Bsξy “ ´
ż

Y

xBspµ ˝ pq, ξy “ ´
ż

Y

x∇µ, Bsp b ξy,

On the other hand, we use Lemma B.1 (5)(6) to compute:
ż

Y

xJ∇A
Bsp ` ∇H,Jx∇µ, ξyy “

ż

Y

x∇µ, Bsp b ξy. �

Remark 4.5. In the expression (4.3), the first two terms come from the usual action
functional, motivated by the integration by parts (4.4). The third part comes from the
Hamiltonian perturbation. The last one is added by requiring AH to be gauge-invariant.

♦

Hence, the gauged Witten equations (4.1) can be formally written as

Btγt ` gradAHpγtq “ 0

if at ” 0 and γt “ pd ` aspt, ¨qds, P pt, ¨qq P CpY q. There is a classical notion of analytic
energy associated to any down-ward gradient flow equation:

8 ą Eanptγtuq “ ´ lim
tÑ8

AHpγtq ` lim
tÑ´8

AHpγtq “
ż

Rt

x´Btγt, gradAHpγtqy

“ 1

2

ż

Rt

|Btγt|2 ` | gradAHpγtq|2 ě 0.
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This formula is only valid when A is in the temporal gauge, i.e. when at ” 0. On the
contrary, the gauged Witten equations (4.1) are invariant under the larger gauge group
GpXq (recall that X “ Rt ˆ Y ). In fact, the left hand side of (4.1) defines a GpXq-
equivariant map:

F : CpXq Ñ Γ0pX,Q ˆG pTM ‘ gqq,
called the gauged Witten map.

Definition 4.6. Let X “ H
2
` “ Rt ˆ r0,8qs. For any pA,P q P CpXq, let T “ ∇A

BtP, S “
∇A

BsP and F “ ´ ˚2 FA ˝ P P ΓpX, gq. The analytic energy of pA,P q is defined as

♦(4.6) EanpA,P q “
ż

X

|T |2 ` |JS ` ∇H|2 ` |F |2 ` |~δ ´ µ|2.

With this convention of notations understood, the equation (4.1) takes a more compact
form:

F ` µ “ ~δ,(4.7a)

T ` JS ` ∇H “ 0,(4.7b)

P pt, 0q P LU .(4.7c)

We are interested in the moduli space of solutions of (4.1) with finite analytic energy.
One may impose a gauge-fixing condition, produce an elliptic theory and finally construct
a Morse complex in this context. However, we will only carry out the proof in the infinite
dimensional setting for the Seiberg-Witten equations.

4.2. The Extended Hessian. Although we will only get into linear analysis in the second
paper [Wan20] of this series, it is enlightening to first work out the extended Hessian of the
gauged action functional AH here. The discussion below will be used in [Wan20, Section
11] where we compute the essential spectrum of the extended Hessian for the perturbed

Chern-Simons-Dirac functional on pY .
At any γ “ pA, pq P CpY q. the linearized gauge action

dγ : LiepGq “ Γ0pY, gq Ñ TγCpY q
defined by the formula (4.5) has a formal adjoint:

d˚
γ : TγCpY q Ñ Γ0pY, gq

ppδasqds, δpq ÞÑ Bspδasq ` xJ∇µ, δpy.
By formally linearizing the expression in Proposition 4.3, we obtain the Hessian of AH

at γ:

DγAH : TγCpY q Ñ TγCpY q
ppδasqds, δpq ÞÑ p´x∇µ, δpy, JpBsδpq ´ x∇µ, asyg ` HessHpδpqq.

The upshot is that these operators can be combined to form a larger operator, the
extended Hessian of AH , which is essential self-adjoint:

zHessγ “
ˆ

0 d˚
γ

dγ DγAH

˙
: L2

1pY, g ‘ pT ˚Y b gq ‘ p˚TMq Ñ L2pR, g ‘ pT ˚Y b gq ‘ p˚TMq,
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and it is cast into the form σpBs ` pDppsqq with

(4.8) σ “

¨
˝

0 1 0
´1 0 0
0 0 J

˛
‚ and pDppsq “

¨
˝

0 0 x∇µ, ¨yTppsqM

0 0 xJ∇µ, ¨yTppsqM

x∇µ, ¨yg xJ∇µ, ¨yg HessL

˛
‚.

where we identify T ˚Y bg with g by omitting the form ds. The operator pD is a self-adjoint
bundle endomorphism over the vector bundle

yTM :“ g ‘ g ‘ TM Ñ M.

Moreover, σ acts on yTM as an almost complex structure and anti-commutes with pD, i.e.

σ2 “ ´ Id, σ pD ` pDσ “ 0.

The operator pD is tied to the stability of W by the following observation:

Lemma 4.7. The super-potential W is stable in the sense of Definition 3.6 if and only

if pDq is invertible for any critical point q P CritpLq and CritpLq contains a unique free
GC-orbit.

These structures of the extended Hessians form the basis of linear analysis in [Wan20,

Section 11]. As a preview, the essential spectrum of zHessγ will be

p´8,´λ1s Y rλ1,`8q

where λ1 is the first non-negative eigenvalue of pDq. In particular, zHessγ is Fredholm if
and only if λ1 ą 0.

Finally, we end this section by a remark on the domain of zHessγ . To make it self-adjoint,
a section pf, pδasqds, δpq in the domain must satisfy the boundary condition:

pfp0q, δasp0q, δpp0qq P g ‘ t0u ‘ p˚TLU at s “ 0,

which is a Lagrangian subspace with respect to σ. This is the reason why we have imposed
the boundary condition

xa, dsy “ 0 at s “ 0,

in the definition (4.2) of ApZq. Otherwise, d˚
γ is not the formal adjoint of dγ .

5. Point-Like Solutions

In this section, we study finite energy solutions of (4.1) on the complex plane C, the
so-called point-like solutions in terms of [GMW15, Section 14.1]. Assuming W is a stable
superpotential, we will prove that all point-like solutions are trivial, i.e. they are gauge
equivalent to the constant solutions. Interesting solutions may occur if W is not stable,
cf. Example 5.8.

Let P : C Ñ M be a smooth map and A be a smooth connection in the trivial principal
G-bundle CˆG Ñ C. We shall frequently use the abbreviations from Definition 4.6. The
main result of this section is the following:
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Theorem 5.1. Suppose pM,W,G, ρq is a gauged Landau-Ginzburg model and W is stable

in the sense of Definition 3.6. Take any ~δ P Imµ Ă g. Suppose pA,P q is a solution of the
gauged Witten equations

(5.1)

"
´ ˚ FA ` µ “ ~δ,

∇A
BtP ` J∇A

BsP ` ∇H “ 0.

on C with EanpA,P q ă 8, and pA,P q is subject to the boundary condition

(5.2) lim
pt,sqÑ8

P pt ` isq Ñ q,

then pA,P q is gauge equivalent to the constant solution pA0 “ d, P ” qq. Here q P O˚ “
µ´1p~δq X CritpLq is an arbitrary base point.

The proof is based on an interesting observation. Since W is holomorphic and P is
“J-holomorphic”, it is reasonable to ask if the composition:

W ˝ P : C
PÝÑ M

WÝÑ C.

is still holomorphic. In fact, we have

Lemma 5.2. If pA,P q is a solution to the gauged Witten equations p5.1q on C, then

B̄pW ˝ P q :“ pBt ` iBsqpW ˝ P q “ ´i|∇H|2,
Proof. By the Cauchy-Riemann equation ∇L “ ´J∇H and p5.1q, we have

B̄pW ˝ P q “ x∇L ` i∇H,∇A
BtP ` J∇A

BsP y “ ´i|∇H|2. �

Remark 5.3. When A “ d is the trivial connection and ∇A
BtP ” 0, P pt, ¨q is a downward

gradient flowline of L. In this case, this lemma recovers the usual identity:

BspL ˝ P q “ ´|∇L|2.
P pt, ¨q is also a Hamiltonian flow, so BspH ˝ P q “ 0. ♦

We also need a more useful notion of energy:

Lemma 5.4. Under the conditions of Theorem 5.1, define

(5.3) EanpA,P ;Cq “
ż

C

|∇AP |2 ` |∇H|2 ` |F |2 ` |~δ ´ µ|2.

Then EanpA,P,Cq “ EanpA,P q ă 8.

Proof. Using the Cauchy-Riemann equation (2.1), we have
ż

C

|JS ` ∇H|2 “
ż

C

|S ` ∇L|2 “
ż

C

|S|2 ` |∇L|2 ` lim
t1Ñ8

lim
s1Ñ8

ż

r´t1,t1sˆr´s1,s1s
2xS,∇Ly

“
ż

C

|S|2 ` |∇L|2 ` lim
t1Ñ8

lim
s1Ñ8

ż

r´t1,t1s
2pL ˝ P pt1, s1q ´ L ˝ P pt1,´s1qq.

By (5.2), the boundary term tends to zero as s1 Ñ 8, so EanpA,P ;Cq “ EanpA,P q. �
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Lemma 5.5. Under the assumption of Theorem 5.1, ∇L ” 0, so P pzq P CritpLq for any
z “ t ` is P C and W ˝ P is a constant function on C.

Proof. As W is Morse-Bott, for some G-invariant neighborhood Ω of O˚ Ă M and C ą 0,
the estimate

(5.4) |W pxq ´ W pqq| ď C|∇Hpxq|2.
holds for any x P Ω. By the boundary condition p5.2q, for a large constant RpΩq ą 0,
P pzq P Ω if |z| ą R. As a result,

(5.5) |W ˝ P pzq ´ W pqq| ď C|∇HpP pzqq|2.
when |z| ą R. Write pW ˝ P qpzq ´ W pqq “ U ` iV with U, V real. Then Lemma 5.2
implies that

BtU ´ BsV “ 0, BtV ` BsU “ ´|∇H|2 ď 0.

Set Kpzq “
şz
0
V dt ` Uds. By the first equation above, this integral is independent of

the path we choose. Therefore,

U “ BsK,V “ BtK and ∆CK “ p´B2s ´ B2t qK “ |∇H|2 ě 0.

Then the Morse-Bott inequality (5.5) is equivalent to |∇K| “ |W ˝P ´W pqq| ď C|∆K|.
Our goal is to show K ” 0. Let Zprq :“

ş
BBp0,rq ∆K ě 0. Take r ą RpΩq and integrate

by parts:

0 ď Eprq :“
ż r

0

Zpr1qdr1 “
ż

Bp0,rq
∆K “ |

ż

BBp0,rq
~n ¨ ∇K|

ď Cp
ż

BBp0,rq
∆Kq ď CEprq1.

Therefore, for any r ą r0 ą RpΩq,

(5.6) 0 ď Epr0q ď Eprqe
r0´r

C .

Let r Ñ 8. Note that limrÑ8 Eprq “
ş
C

|∇H|2 ď E 1
anpA,P q ă 8. Hence, Epr0q ” 0,

and

∆K “ |∇H|2 ” 0 ñ W ˝ P pzq ” W pqq. �

Remark 5.6. The proof of Lemma 5.5 does not require W to be stable. It suffices to
assume that W is Morse-Bott near O˚. ♦

Proof of Theorem 5.1. Since W is stable, the multiplication g ÞÑ g ¨ q defines a closed
embedding ι of GC into M . Let µ̃ : GC Ñ g be the composition µ ˝ ι.

By Lemma 5.5, ImP Ă Im ι, so P pzq “ gpzq ¨ q for a unique element gpzq P GC.
We first deal with the case when G “ S1 and GC “ C

˚. Since we are interested in
solutions modulo gauge, gpzq may be assumed to be real. Suppose gpzq “ eαpzq for some
α : C Ñ R. The boundary condition (5.2) implies

lim
zÑ8

αpzq “ 0.
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Moreover, the first equation of (5.1) implies A “ d ` i ˚2 dα. Plugging this into the
second equation of (5.1), we obtain that

(5.7) i∆Cα ` pµpeαpzq ¨ qq ´ µpqqq “ 0.

Suppose |α| attains its maximum at z0 P C and β :“ αpz0q ‰ 0. Then

xµpeβ ¨ qq ´ µpqq, iβyg “ ´x∆Cαpz0q, βy ď 0.

We claim that for any β ‰ 0, the inner product xµpeβ ¨ qq ´ µpqq, iβyg ě 0. Indeed,

xµpeβ ¨ qq ´ µpqq, iβyg “
ż

1

0

xBtµpetβ ¨ qq, iβygdt “
ż

1

0

|x∇µpetβ ¨ qq, iβyg|2dt.

Since the base point q generates a free GC-orbit, the integrand is strictly positive. So
β ” 0. The general case is dealt with in a similar manner. �

Let us end this section with a few examples.

Example 5.7. In our Fundamental Example 3.7, suppose λ “ r`r´, q “ pr`, r´, 0q and
~δ “ i

2
pr2` ´ r2´q. In this case, the equation (5.7) becomes

∆Cα ` 1

2
pr2`pe2α ´ 1q ` r2´p1 ´ e´2αqq “ 0. ♦

Example 5.8. For Example 3.2, the gauged Witten equations come down to the vortex
equation on C (with δ “ i

2
):

(5.8)

"
B̄AP “ 0,

i ˚ FA ` 1

2
p|P |2 ´ 1q “ 0.

By [Tau80], the moduli space Mn with Ean “ 2πn is Symn
C for any n ě 1, so Theorem

5.1 fails. W is not stable in this case, even though δ “ i
2
is W -stable. Note that Mn is

regular; its dimension agrees with the prediction of the index formula. ♦

Example 5.9. In Example 3.7, let λ “ 0 and ~δ “ i
2
. For a solution pA,P q of (5.1),

write P pzq “ pxpzq, ypzq, bpzqq. Lemma 5.5 and Remark 5.6 implies ypzq “ bpzq ” 0. The
equations are reduced to the previous example. However, in this case, the moduli space
M1

n is not regular. Its formal dimensions are always zero for any n ě 0. ♦

6. Exponential Decay in the Spatial Direction

In this section, we generalize Lemma 2.5 in the context of gauged Landau-Ginzburg
models, which is also the analogue of Theorem 1.3 in the finite dimensional case. We state
and prove the theorem for the energy density function.

Theorem 6.1. For any stable gauged Landau-Ginzburg model pM,W,G, ρq, there exist
ǫpM,W q, ζpM,W q ą 0 with following significance. Given a solution γ “ pA,P q P CpXq to
the gauged Witten equations p4.1q on the upper half plane X “ Rt ˆ r0,8qs, suppose the
point-wise estimate

Uγpt, sq :“ |∇AP |2 ` |∇H|2 ` |F |2 ` |~δ ´ µ|2 ă ǫ
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holds and any pt, sq P X. Then

Uγpt, sq ă e´ζs, @s ě 0.

The function Uγ : X Ñ r0,8q is called the energy density function.

Fix a base point q P O˚ “ µ´1p~δq X CritpLq. Then any configuration pA,P q P CpXq is
subject to the boundary condition

lim
sÑ8

P p¨, sq Ñ q.

In this case, the energy density Uγ provides an upper bound for the distance:

Uγ ě |∇H|2 ` |~δ ´ µ|2 ě ǫ ¨ rdpP pt, sq, O˚qs2,

so Theorem 6.1 implies Lemma 2.5 when G “ teu is trivial. Uγ is only a bounded function
on X. Its integral is not finite and does not yield the analytic energy Ean in Definition
4.6. In fact, it is more relevant with the variant EanpA,P ;Cq defined in Lemma 5.4.

Remark 6.2. The analogue of Property 2.4 (the uniform L8 decay) continues to hold
for the gauged Witten equation, which can be improved into an exponential decay using
Theorem 6.1. However, if the superpotential W is allowed to have multiple critical GC-
orbits, Property 2.4 is not automatic. We will come back to this issue in the second
paper. ♦

Proof of Theorem 6.1. By the gauged Witten equations (4.1), it suffices to show the ex-
ponential decay for the quantity

upt, sq :“ |∇AP |2 ` |F |2g.

We use a lemma from Appendix A and verify its conditions:

Lemma 6.3 (Corollary A.2). Take ζ ą 0. Suppose u : H2
` “ Rt ˆ r0,8qs Ñ R is a

bounded C2-function on the upper half plane H
2
` such that

(U1) p∆H2

`
` ζ2qu ď 0, and

(U2) upt, 0q ď K for some K ą 0 and any t P Rt.

Then upt, sq ď Ke´ζs for any pt, sq P H
2
`.

(U2) follows from the assumption that upt, sq ď Uγpt, sq ă ǫ. To verify (U1), we find an
explicit formula of ∆H2

`
ups, tq. It is convenient to define a bundle map:

D : TM Ñ TM ‘ g ‘ g

pp, vq ÞÑ pHesspHpvq, x∇µ, vy, xJ∇µ, vyq,@p P M,v P TpM.

Lemma 6.4 (Corollary B.8). We have the following Bochner-type formula for ∆H2

`
upt, sq:

0 “ 1

2
∆H2

`
p|∇AP |2 ` |F |2gq ` I1 ` I2 ` I3 ` I4 ` I5
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where

I1 “ |HessA P |2 ` |∇F |2g, I2 “ |Dp∇AP q|2 ` |x∇µ, F yg|2, I3 “ 2xRpS, T qS, T y,
I4 “ xp∇T HessHqp∇Hq, T y ` xp∇S HessHqp∇Hq, Sy,
I5 “ 6xHessµpJSq, T b F y ´ xHessµpT q, T b F y ´ xHessµpSq, S b F y.

and R is the Riemannian curvature tensor of M .

Remark 6.5. This identity was first proved by Taubes in [JT80, Proposition 6.1] for the
vortex equation on C, in which case M “ C is furnished with the flat metric, W ” 0 and
µ “ i

2
|z|2, cf. Example 3.2. For more details, see Remark B.10. ♦

Let us digest the consequence of Lemma 6.4. I1 ě 0. I4 and I5 involve only trilinear
tensors:

x∇¨ HessHp¨q, ¨y : TM b TM b TM Ñ R,

xHessµp¨q, ¨ b ¨y : TM b TM b g Ñ R.

Within a G-invariant neighborhood Ω of O˚ with compact closure, we may assume these
trilinear maps have uniformly bounded operator norms. Hence, whenever P pt, sq P Ω,

|I4| ` |I5| ď Cu3{2.

for some C ą 0. The same estimate holds for I3 with a different exponent of u:

|I3| ď Cu2.

Since the critical orbit O˚ is free,

|x∇µ, F yg|2 ą ζ21 |F |2

for a small number ζ1 ą 0 for any p P O˚ and F P g. The same estimate also holds for
any p P Ω by possibly shrinking the open neighborhood Ω.

Finally, since W is a stable superpotential, Dp is injective for any p P O˚ (by the
Morse-Bott condition); so

|Dppvq|2 ą ζ22 |v|2

for any v P TpM . The same estimate also holds for p P Ω (by possibly shrinking Ω).
Hence, for ζ “ mintζ1, ζ2u,

|I2| ě ζ2u

whenever P ps, tq P Ω. By taking ǫ ! 1 such that ǫ`ǫ1{2 ă ζ2{2C. Lemma 6.4 then implies

0 ě 1

2
∆H2

`
u ` ζ2u ´ Cpu2 ` u3{2q ě 1

2
p∆H2

`
` ζ2qu.

Now apply Lemma 6.3 with K “ ǫ. �

Remark 6.6. The bundle maps D and x∇µ, ¨y involved in I2 are components of the

operator pD. The invertibility of pD is essential to this proof. ♦
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Remark 6.7. Let us add a remark to explain the mysterious Bochner-type formula in
Lemma 6.4. The baby case is Example 2.3 in which the structure group G “ teu is trivial.
In that case, HessH is a constant self-adjoint R-linear operator on C

n, so

p∇Hqx “ HessHpxq, x P C
n.

Applying the operator pBt ´ JBsq to (4.7b), we obtain that

0 “ BtT ` BsS ` HessHpT ` JSq “ ´∆P ´ pHessHq2pP q,
from which one can easily prove that the map P : H2

` Ñ C
n along with its all higher

derivatives has exponential decay as s Ñ 8. Example 3.2 is the other extreme where
W ” 0 and µ is quadratic. The proof of Lemma 7.7 is a tedious exercise in Riemannian
geometry, and is deferred to Appendix B. ♦
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Part 3. The Seiberg-Witten Equations on C ˆ T
2

In the third part of this paper, we study an infinite dimensional Landau-Ginzburg model
associated to a 2-torus Σ “ pT2, gΣq whose gauged Witten equations recover the Seiberg-
Witten equations on X “ Cˆ Σ or H2

` ˆ Σ. We generalize Theorem 5.1 and 6.1 from the
previous part to this infinite dimensional case. The main difference is that the topology
of M depends on a Sobolev completion of smooth sections, and we need to specify the
correct norms used in the estimates.

One main obstacle in defining a Floer homology for a 3-manifold pY with cylindrical ends
is a compactness issue, and its resolution relies on three key ingredients:

(K1) A uniform upper bound on the analytic energy;
(K2) Point-like solutions are trivial on C ˆ Σ, namely, they have to be C-translation

invariant up to gauge.
(K3) Finite energy solutions on RsˆΣ are trivial, namely, they have to be Rs-translation

invariant up to gauge.

In order to achieve these properties, a suitable perturbation of the Seiberg-Witten
equations on either CˆΣ or Rs ˆΣ has to be perturbed by a 2-form ω “ µ`ds^λ where

‚ λ P Ω1
hpΣ, iRq is a harmonic 1-form on Σ;

‚ µ P Ω2
hpΣ, iRq is a harmonic 2-form on Σ.

However, most results in this part, except Section 10, do not require µ to be harmonic.

One can take µ “ ~δ ¨ dvolΣ to be any smooth 2-form on Σ instead. While λ is used to
perturb the superpotential Wλ, µ is used to perturb the moment map equation in (4.1).

The first property (K1) will be postponed to the second paper [Wan20] where we set
up the cobordism category properly. (K2) is achieved by Theorem 1.2. The proof uses
ideas from Section 5 and is accomplished in Section 8. As for (K3), we invoke a theorem
of Taubes, which will be explained in Section 10.

7. The Fundamental Landau-Ginzburg Model

In this section, we explain the construction of the fundamental Landau-Ginzburg model
pMpΣq,Wλ,GpΣqq associated to a Riemannian 2-torus pΣ, gΣq. When λ ‰ 0, we will verify

the superpotential Wλ is stable in the sense of Definition 3.6 and any ~δ P g is W -stable in
the sense of Definition 3.5, cf. Proposition 7.5.

7.1. Review. Recall that a spinc structure s on a smooth 4-manifold X is a pair pSX , ρ4q
where SX “ S` ‘ S´ is the spin bundle, and the bundle map ρ4 : T

˚X Ñ HompSX , SXq
defines the Clifford multiplication. A configuration γ “ pA,Φq P CpX, sq consists of
a smooth spinc connection A and a smooth section Φ of S`. Let At be the induced
connection on

Ź
2 S`. Let ω be a closed 2-form on X and ω` denote its self-dual part.

The Seiberg-Witten equations perturbed by ω are defined on CpX, sq by the formula:

(7.1)

"
1

2
ρ4pF`

Atq ´ pΦΦ˚q0 ´ ρ4pω`q “ 0,
D`

AΦ “ 0,
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where D`
A : ΓpS`q Ñ ΓpS´q is the Dirac operator and pΦΦ˚q0 “ ΦΦ˚ ´ 1

2
|Φ|2 b IdS`

denotes the traceless part of the endomorphism ΦΦ˚ : S` Ñ S`.
The gauge group GpXq “ MappX,S1q acts naturally on CpX, sq by the formula:

Gpxq Q u : CpX, sq Ñ CpX, sq, pA,Φq ÞÑ pA ´ u´1du, uΦq.
The monopole equations (7.1) is invariant under gauge transformations.

Let Σ “ pT2, gΣq be the 2-torus with a Riemannian metric gΣ, which is not necessarily
flat. In the special case when X “ CˆΣ is a product of complex manifolds, the equations
(7.1) can be understood more explicitly. In what follows, the 4-manifold X is equipped
with the product metric and the complex orientation.

Let dvolC and dvolΣ denote volume forms on C and Σ respectively. Then the 2-form
ωsym “ dvolC ` dvolΣ makes X into a symplectic manifold. The spin bundle S` splits as
L` ‘L´: they are ¯2i eigenspace of ρ4pωsymq : S` Ñ S`. The spin section Φ decomposes
as pΦ`,Φ´q with Φ˘ P ΓpX,L˘q. We are only interested in the spinc structure on C ˆ Σ
with

c1pS`qrΣs “ 0,

so both L` and L´ are topologically trivial.
Let z “ t ` is be the coordinate function on C. The Clifford multiplication ρ “ ρ4 :

T ˚X Ñ HompS, Sq can be constructed by setting:

ρ4pdtq “
ˆ
0 ´id

id 0

˙
, ρ4pdsq “

ˆ
0 σ1
σ1 0

˙
: S` ‘ S´ Ñ S` ‘ S´,

where σ1 “
ˆ
i 0
0 ´i

˙
: S` “ L` ‘ L´ Ñ L` ‘ L´ is the first Pauli matrix.

If we identify L` – C and L´ – Ź
0,1Σ, then

ρ3pwq :“ ρ4pdtq´1 ¨ ρ4pwq “
ˆ

0 ´ιp
?
2w0,1q ¨?

2w0,1 b ¨ 0

˙
: S` Ñ S`,

for any x P Σ and w P TxΣ.

Remark 7.1. We will frequently work with Clifford multiplications in dimension 2, 3 and
4, denoted by ρ2, ρ3 and ρ4 respectively. Identify C as Rt ˆ Rs, then they are related by

ρ3pwq “ ρ4pdtq´1 ¨ ρ4pwq, ρ2pvq “ ρ3pdsq´1 ¨ ρ3pvq : S` Ñ S`.

for any w P T ˚pRs ˆ Σq and v P T ˚Σ. ♦

The symplectic form ωsym is parallel, so is the decomposition S` “ L` ‘ L´. Thus,
any spinc connection A must split as

∇A “
ˆ
∇A` 0
0 ∇A´

˙
.

We regard L` and L´ as bundles over Σ, and they pull back to spin bundles over
X via the projection map X Ñ Σ. Let B̌0 “ pd,∇LCq be the reference connection on
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C b Ź
0,1

T
2 Ñ T

2. We obtain a reference connection A0 on S` by setting

∇A0
“ ∇B̌0

` d

dt
` d

ds

One can easily check that A0 is a spinc connection. Any other spinc connection A differs
from A0 by an imaginary valued 1-form a P ΓpX, iT ˚Xq. Their curvature tensors are
related by

FA “ FA0
` da b IdS .

Using the product structure on X, the connection ∇A “ p∇C
A,∇

Σ
Aq is decomposed into

C-direction part and Σ-direction part. The curvature tensor FA is decomposed accordingly
as:

FA “ FΣ
A ` FC

A ` Fm
A

where Fm
A P ΓpX, iT ˚X b EndpSqq is the mixed term. Similar decomposition applies to

the induced curvature form FAt on
Ź

2 S` “ L` b L´:

(7.2) FAt “ FΣ

AtdvolΣ ` FC

AtdvolC ` Fm
At ,

where Fm
At P ΓpX, iΩ1pCq ^ Ω1pΣqq. Our description of FA then shows that

(7.3) Fm
A “ 1

2
Fm
At b Id .

and

(7.4) FΣ
A “

˜
FΣ
A`

0

0 FΣ
A´

¸
dvolΣ “

ˆ
1

2
FΣ

At ` i
2
K 0

0 1

2
FΣ

At ´ i
2
K

˙
dvolΣ.

where K is the Gaussian curvature of pT2, gΣq.

7.2. The Fundamental Landau-Ginzburg Model. We now provide another perspec-
tive on the Seiberg-Witten equations on C ˆ Σ in the language of Landau-Ginzburg
models and the gauged Witten equations. The fundamental Landau-Ginzburg model
pMpΣq,Wλ,GpΣqq to be defined below will allow us to apply results from Part 2 to the
Seiberg-Witten equations on either C ˆ Σ or H2

` ˆ Σ.

The Kähler manifold MpΣq “ CpΣq is also the configuration space on Σ:

pB̌0, 0q ` Ω1pΣ, iRq ‘ ΓpΣ, L` ‘ L´q,
where B̌0 “ pd,∇LCq is the reference spinc connection on S` Ñ Σ. A configuration κ P M

is a triple pb̌, Ψ̌`, Ψ̌´q, where the sum B̌0 ` b̌ is viewed as a spinc connection on Σ and
Ψ̌ “ pΨ̌`, Ψ̌´q P ΓpΣ, S`q is a spin section.

The complex structure of M is defined by the bundle map

J “ p˚Σ, ρ3pdsqq “ p˚Σ, σ1 “
ˆ
i 0
0 ´i

˙
q,

while the Riemannian metric gM of M is the flat L2 metric:

xpb̌1, Ψ̌1q, pb̌2, Ψ̌2qy “
ż

Σ

xb̌1, b̌2y ` RexΨ̌1, Ψ̌2y.
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Let hM be the Hermitian metric on M induced from J and gM .

The abelian group acting on M is GpΣq “ MappT2, S1q with the usual action:

upb̌, Ψ̌q “ pb̌ ´ u´1du, uΨ̌q.
Occasionally, we will use a smaller group Ge, the identity component of G, to develop the
theory. They fits into a short exact sequence:

0 Ñ Ge Ñ G
πÝÑ H1pT2,Zq Ñ 0, πpuq “ ru

´1du

2πi
s.

The Lie algebra of GpΣq or Ge is LiepGq “ ΓpΣ, iRq. Since J acts on ΓpΣ, L´q by the
conjugate of the standard complex structure, we say that GpΣq acts on Ω1pΣ, iRq,ΓpΣ, L`q
and ΓpΣ, L´q by weights p0, 1,´1q.

The moment map µ is given by

µpb̌, Ψ̌q “ ´ ˚Σ db̌ ` i

2
p|Ψ̌`|2 ´ |Ψ̌´|2q ` i

2
K.

where the Gaussian curvature K is added for conventions. If v “ pδb, δφq is a tangent
vector at pδb̌, δΨ̌q, then we have

x∇µ, vy “ ´ ˚Σ dΣδb̌ ` iRexiδΨ̌, ρ3pdsqΨ̌y P LiepGq,(7.5)

x∇µ, Jvy “ d˚
Σδb̌ ` iRexiδΨ̌, Ψ̌y P LiepGq.

The super-potential W is the Dirac functional. The Clifford multiplication on Σ:

ρ2 : T
˚Σ Ñ HompS`, S`q,

defines a Dirac operator for each spinc connection B̌ on S` Ñ Σ:

DΣ

B̌
: ΓpΣ, S`q ∇B̌ÝÝÑ ΓpΣ, T ˚Σ b S`q ρ2ÝÑ ΓpΣ, S`q.

This operator is self-adjoint and switches the parity, i.e.

DΣ

B̌
“

ˆ
0 D´

B̌

D`
B̌

0

˙
: ΓpΣ, L` ‘ L´q Ñ ΓpΣ, L` ‘ L´q.

The super-potential W0 is then defined as

W0pb̌, Ψ̌`, Ψ̌´q “
ż

Σ

xD`
B̌
Ψ̌`, Ψ̌´y “

ż

Σ

xΨ̌`,D
´
B̌
Ψ̌´y.

The perturbation that we consider takes the form

Wλpb̌, Ψ̌q “ W0 ´ xb̌, λyhM
,

where λ P Ω1pΣ, iRq and hM is the Hermitian inner product.

The complex gauge group GC “ MappΣ,C˚q acts on M by the formula:

eαupb̌, Ψ̌q “ pb̌ ` i ˚Σ dΣα ´ u´1du, eαuΨ̌`, e
´αuΨ̌´q,

where u P GpΣq and α : Σ Ñ R is real.

Lemma 7.2. The super potential W0 : MpΣq Ñ C is invariant under GC.
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Proof of Lemma. It suffices to verify that e´αD`
B̌1 peα¨q “ D`

B̌
p¨q if B̌1 “ eα ¨ B̌, or equiva-

lently
ρ2pdαq ` ρ2pi ˚Σ dαq “ 0 : ΓpL`q Ñ ΓpL´q.

If one restricts instead to sections of ΓpL´q, then
ρ2pdαq ´ ρ2pi ˚Σ dαq “ 0 : ΓpL´q Ñ ΓpL`q. �

As for the perturbed super-potential Wλ,

‚ for Wλ to be invariant under Ge, λ has to be co-closed;
‚ for Wλ to be invariant under the identity component Ge

C
, λ has to be harmonic;

‚ for Wλ to be invariant under GC, λ has to zero.

Assumption 7.3. We choose λ ‰ 0 P Ω1
hpΣ, iRq to be a harmonic form, so Wλ is only

invariant under Ge
C
. ♦

Write Wλ “ L ` iH. Then

(7.6) ∇Lpb̌, Ψ̌q “ pρ´1

2
pΨ̌Ψ̌˚qΠ ´ λ,D´

B̌
Ψ̌´,D

`
B̌
Ψ̌`q.

The equation ∇L “ 0 has solutions if and only if λ is a harmonic 1-form. When it is the
case, CritpLq contains a unique GC orbit if and only if λ ‰ 0 (see Proposition 7.4 below).
This is the second reason why we insist Assumption 7.3. When λ “ 0, CritpLq consists of
three classes of orbits corresponding respectively to

pΨ̌` ı 0, Ψ̌´ ” 0q, pΨ̌` ” 0, Ψ̌´ ı 0q, pΨ̌` ” 0, Ψ̌´ ” 0q.
Consider the trivial principal bundle C ˆ GpΣq Ñ C. A connection Ā is expressed as

Ā “ d ` atpzqdt ` aspzqds
with at, as P ΓpC,LiepGpΣqqq “ ΓpC ˆ Σ, iRq.
Proposition 7.4. With the gauged Landau-Ginzburg model pMpΣq,Wλ,GpΣqq defined as
above, the associated gauged Witten equations over C is equivalent to the Seiberg-Witten

equations p7.1q on C ˆ Σ with ω “ ds ^ λ ´ ~δdvolΣ. Let

P : C Ñ MpΣq
z ÞÑ pb̌pzq, Ψ̌pzqq

be a smooth map defined on C. Then the identification pA,Φq Ø pĀ, P q is made by taking

A ´ A0 “ pĀ ´ dq ` pB̌pzq ´ B̌0q “ atpzqdt ` aspzqds ` b̌pzq,
Φ “ Ψ̌pzq on tzu ˆ Σ.

Proof. The J-holomorphic equation in (4.1) in our case becomes

∇Ā
Bt

ˆ
b̌

Ψ̌

˙
`

ˆ
˚Σ 0
0 ρ3pdsq

˙ ˆ
∇Ā

Bs

ˆ
b̌

Ψ̌

˙
` ∇L

˙
.

More concretely, it is

pBtb̌ ´ dΣatq ` ˚ΣpBsb̌ ´ dΣas ` ρ´1

2
pΨ̌Ψ̌˚qΠ ´ λq “ 0,(7.7)

pBtΨ̌ ` atΨ̌q ` ρ3pdsqpBsΨ̌ ` asΨ̌ ` DΣ

B̌
Ψ̌q “ 0.
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The second equation gives rise to the Dirac operator D`
AΦ “ 0, while the first equation

gives the off-diagonal part of the curvature equation:

1

2
ρ4pF`

AtqΠ ´ pΦΦ˚qΠ ´ ρ4pω`q “ 0

with ω “ ds ^ λ ´ ~δdvolΣ. The diagonal part comes from the moment map equation in
(4.1):

´ ˚C dCpatdt ` asdsq ´ ˚ΣdΣb̌ ` i

2
p|Ψ̌`|2 ´ |Ψ̌´|2q ` i

2
K “ ~δ.

Indeed, 1

2
FΣ

At “ dΣb̌´i{2¨KdvolΣ and 1

2
FC

At “ dCpatdt`asdsq in terms of the decomposition
(7.2). �

7.3. Stability. Now we examine the stability of the superpotential Wλ. Even though Wλ

is not GC-invariant, ∇L “ 0 is a GC-invariant equation on M .

Proposition 7.5. Suppose λ ‰ 0 P Ω1
hpΣ, iRq. Then CritpLq contains a unique free GC-

orbit. For any ~δ P LiepGq, µ´1p~δq X CritpLq consists of a unique GpΣq-orbit. Moreover,

Wλ is a Morse-Bott function. In this sense, we say that Wλ is stable and any ~δ P LiepGq
is Wλ-stable.

Proof. The verification that Wλ is Morse-Bott is postponed to Proposition 7.9. It concerns
only the linearized operator at the critical GC-orbit. We focus on the other statements.
The equation ∇L “ 0 implies:

(7.8) pρ´1

2
pΨ̌Ψ̌˚qΠ ´ λ,D´

B̌
Ψ̌´,D

`
B̌
Ψ̌`q “ 0.

In terms of the Hodge decomposition of Ω1pΣ, iRq, write
(7.9) b̌ “ b̌1 ` b̌h ` b̌2.

with b̌1 exact, b̌h harmonic and b̌2 co-exact. The equation (7.8) is invariant under the
action of GC, so we may kill b̌1 and b̌2 by an element eα`iβ P GC with

idΣβ “ b̌1 and idΣα “ ˚Σb̌2.
Since λ ‰ 0, |λ| is non-vanishing everywhere, so are Ψ̌` and Ψ̌´ by the first equation of
p7.8q. Hence, b̌h can be killed by a harmonic gauge transformation as well (the trivial
connection is the only flat connection on Σ that supports non-trivial holomorphic global
sections), and Ψ̌` has to be a constant function. Using the identification L` – C and

L´ – Ź
0,1Σ, a representative in the orbit can be written as

pb, Ψ̌`, Ψ̌´q “ p0, 1,
?
2λ0,1q.

In general, a solution of the equation (7.2) is cast into the form:

eα ¨ p0, 1,
?
2λ0,1q “ pi ˚Σ dΣα, e

α, e´α
?
2λ0,1q.

up to the gauge action of GpΣq. Take any smooth function ~δ P ΓpΣ, iRq. To show ~δ is

Wλ-stable, we have to find solutions of (7.2) in the fiber µ´1p~δq, or equivalently, to solve
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the equation

(7.10) ip∆Σα ` 1

2
pe2α ´ e´2α|λ|2q ` 1

2
Kq “ ~δ.

The strategy is to use the variational principle and show that the non-linear map:

η : L2
kpΣ,Rq Ñ L2

k´2pΣ,Rq,

α ÞÑ ηpαq “ ∆Σα ` 1

2
pe2α ´ e´2α|λ|2q

is a bijection for any k ě 2. It suffices to prove the special case for k “ 2; the rest will
follow from elliptic regularity. For any g P L2pΣ,Rq, define an energy functional as

Egpαq “ }ηpαq ´ g}22
If α0 achieves the infimum infαPL2

2

Egpαq, let f “ ηpα0q ´ g P L2pΣq. Then, for any

tangent vector v P L2
2
pΣ,Rq at the minimizer α0, we have

0 “ BtEgpα0 ` tvq “ xf,∆Σv ` pe2α0 ` e´2α0 |λ|2qvy.
Since the linearized operator ∆Σ ` pe2α0 ` e´2α0 |λ|2q is positive and self-adjoint on L2

2,
f “ 0. To find such a minimizer α0, let tαnu Ă L2

2 be a sequence that minimizes Egpαq,
i.e.

lim
nÑ8

Egpαnq “ inf
αPL2

2

Egpαq.

To show that tαnu contains a weakly convergent subsequence, we need an a priori estimate:

Lemma 7.6. For any fixed g P L2pΣq, there exists function ϕ : R` Ñ R` such that for
any α P L2

2, Egpαq ă C implies }α}L2

2

ď ϕpCq.

Proof of Lemma. It suffices to prove the lemma for a particular g P L2pΣq. We do this for

g “ g0 :“
1

2
p1 ´ |λ|2q.

However, in the computation below, we take g “ g0 ´ g1 where g1 is an auxiliary function
to be fixed later. By direct computation, we have

Egpαq “ }ηpαq ´ g}2 “
ż

Σ

|∆Σα ` g1 ` 1

2
pe2α ´ 1q ` 1

2
p1 ´ e´2αq|λ|2|2

(7.11)

“
ż

Σ

|∆Σα ` g1|2 ` 1

4
|eα ´ e´α|2|eα ` e´α|λ|2|2 ` 2|eαdα|2 ` 2|e´αdα b λ|2

`
ż

Σ

Rexg1, peα ´ e´αqpeα ` e´α|λ|2qy ` Rexdα, p1 ´ e´2αqd|λ|2y.

The last term is bounded below by

2Rexe´αdα b λ, peα ´ e´αq∇λy ě ´|e´αdα b λ|2 ´ |peα ´ e´αq∇λ|2.(7.12)
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If we set g1 “ peα ´ e´αq|∇λ|2{peα ` e´α|λ|2q in (7.11), then (7.11) and (7.12) imply
that

Egpαq ě
ż

Σ

|∆Σα ` g1|2 ` 1

4
|eα ´ e´α|2|eα ` e´α|λ|2|2

ě
ż

Σ

1

2
|∆Σα|2 ´ |g1|2 ` 4|α|2|λ|2.

using the fact that |eα ´ e´α| ě 2|α| and eα ` e´α|λ|2 ě 2|λ|. Technically, g1 can not be
α-dependent. However, for this particular choice, there is a point-wise estimate

|g1| ď |∇λ|2maxt1, |λ|´2u,
from which we deduce that

Eg0pαq ` C ě c ¨ }α}2
L2

2

.

for some C " 1 and 1 " c ą 0, since |λ| is non-vanishing everywhere and

2Eg0pαq ě Egpαq ´ 2}g1}22. �

Remark 7.7. It is essential for this proof to have |λ| non-vanishing. One can also prove
Lemma 7.6 using the Weitzenböck formula and the fact that λ is harmonic. The equation
ηpαq “ g is a variant of the Kazdan-Warner equation. The third approach is then to apply
their general theory. ♦

Back to the proof of Proposition 7.5. Lemma 7.6 allows us to find a weakly convergent
subsequence among tαnu. Denote the limit as α0. Then

Egpα0q ď lim
nÑ8

Egpαnq “ inf Egpαq,

so the infimum is attained at α “ α0. This proves η : L2
2 Ñ L2 is surjective. If ηpα1`δαq “

ηpα1q, then

∆Σδα ` 1

2
pe2δα ´ 1qe2α1 ` 1

2
p1 ´ e´2δαqe´2α1 |λ|2 “ 0.

By the maximum principle, δα ” 0 on Σ, so η is injective. �

Remark 7.8. By Proposition 7.5, µ´1p~δq contains many Ge-orbits. They are parametrized
by G{Ge “ π0pGq – H1pΣ,Zq. ♦

7.4. The Morse-Bott Condition. In this subsection, we take up the task to verify that
RepWλq is a Morse-Bott function on M , which completes the proof of Proposition 7.5.

Proposition 7.9. For the fundamental Landau-Ginzburg model pM,Wλ,GpΣqq, L “
RepWλq is Morse-Bott if λ ‰ 0 P Ω1

hpΣ, iRq. In particular, the Morse-Bott estimate
(5.4) continues to hold in our case.

Proof. Since M is a complex linear space, the tangent space at any κ “ pB̌, Ψ̌q P M is
identified with

H :“ Ω1pΣ, iRq ‘ ΓpΣ, L` ‘ L´q,
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and let Hk be the completion of H with respect to the L2

k,B̌
norm:

}pδb̌, δΨ̌q}2
L2

k,B̌

“
ÿ

0ďjďk

ż

Σ

|∇kδb̌|2 ` |∇k
B̌
δΨ̌|2.

This family of norms on the tangent bundle of MpΣq is equivariant under the gauge action
of GpΣq. The Lie algebra g of GpΣq is ΓpΣ, iRq and let gk “ L2

kpΣ, iRq be its L2
k-completions

for k “ 0, 1. By Lemma 4.7, it suffices to prove the extended operator

pDκ “

¨
˝

0 0 x∇µ, ¨yTqM

0 0 xJ∇µ, ¨yTqM

x∇µ, ¨yg xJ∇µ, ¨yg HessL

˛
‚: g1 ‘ g1 ‘ H1 Ñ g0 ‘ g0 ‘ H0,

is invertible for any κ “ pB̌, Ψ̌q P CritpLq. Since pDκ is self-adjoint and Fredholm by the

standard elliptic theory, it suffices to verify that pDκ is injective. Notice that the images of

x∇µ, ¨yg, xJ∇µ, ¨yg, Dκ :“ px∇µ, ¨yg, xJ∇µ, ¨yg,HessLq

are pairwise orthogonal in g0 ‘ g0 ‘ H0. The first two are injective, because the GC-orbit
of κ is free. We focus the last operator

Dκ : H1 Ñ g0 ‘ g0 ‘ H0.

Suppose v “ pδb̌, δΨ̌q P kerDκ, then the tangent vector v solves the following equations
by (7.5) and (7.8):

´ ˚Σ dΣδb̌ ` iRexiδΨ̌, ρ3pdsqΨ̌y “ 0,(7.13)

d˚
Σδb̌ ` iRexiδΨ̌, Ψ̌y “ 0,(7.14)

pδΨ̌Ψ̌˚ ` Ψ̌δΨ̌˚qΠ “ 0,(7.15)

DΣ

B̌
δΨ̌ ` ρ2pδb̌qΨ̌ “ 0.(7.16)

The key observation is that the third equation (7.15) imposes an algebraic constraint
on the spinor δΨ̌. Recall that entries of Ψ̌ “ pΨ̌`, Ψ̌´q are non-vanishing everywhere by
the proof of Proposition 7.5, so (7.15) implies that

(7.17) δΨ̌ “ phΨ̌`,´h̄Ψ̌´q “ iβΨ̌ ` pαΨ̌`,´αΨ̌´q,

for a complex valued function h “ α ` iβ : Σ Ñ C. By (7.16)(7.17) and the fact that
DΣ

B̌
Ψ̌ “ 0, we have

ρ2pdh ` δb̌qΨ̌` “ 0, ρ2p´dh̄ ` δb̌qΨ̌´ “ 0.

Again, by the non-vanishing property of Ψ̌,

δb̌ “ ip˚Σdα ´ dβq.

In other words, pδb̌, δΨ̌q is generated by the linearized action by GC at κ. By the gauge
fixing condition (7.14), β ” 0. By (7.13), α ” 0. �
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8. Point-like Solutions are trivial

With all machineries developed so far, we are now ready to study the monopole equa-
tions on CˆT

2. By [Wan18], for a higher genus Riemann surface Σ̃, finite energy solutions

to the unperturbed equations on C ˆ Σ̃ are not trivial in general and can be classified in
terms of some algebraic data. In our case, we show the other extreme:

Theorem 8.1. Take any smooth function ~δ P LiepGq “ ΓpΣ, iRq and λ ‰ 0 P Ω1
hpΣ, iRq.

Consider the fundamental Landau-Ginzburg model pMpΣq,Wλ,GpΣqq and the gauged Wit-
ten equations on the complex plane C:

(8.1)

#
´ ˚ FĀ ` µ “ ~δ,

∇Ā
BtP ` J∇Ā

BsP ` ∇H “ 0.

where P : C Ñ MpΣq is a smooth map and Ā is a smooth connection in the trivial
GpΣq-bundle. Suppose the analytic energy

(8.2) EanpĀ, P ;Cq “
ż

C

|∇ĀP |2 ` |∇H|2 ` |F |2 ` |~δ ´ µ|2

is finite, then pĀ, P q is gauge equivalent to a constant configuration, so EanpĀ, P ;Cq “ 0.

Proof. We follow the proof of Theorem 5.1. Let κ˚ “ pb̌0, Ψ̌0
`, Ψ̌

0
´q be a representative in

the critical G-orbit in µ´1p~δq, so

(8.3) ´ ˚ΣdΣb̌0 ` i

2
p|Ψ̌0

`|2 ´ |Ψ̌0
´|2q ` i

2
K “ ~δ.

Define a family of metrics on the quotient configuration space MpΣq{GpΣq using L2
k-

Sobolev norms:
dkprκ1s, rκ2sq “ inf

gPG
}κ1 ´ g ¨ κ2}L2

k
.

We first verify the condition of Theorem 5.1 by showing that

(8.4) dkprP pt, sqs, rκ˚sq Ñ 0

as z “ t` is Ñ 8 for any k ě 0. Note that EanpĀ, P ;Cq coincides with the more classical
notion of analytic energy for the monopole equations, cf. [Wan18, Lemma 2.1]:

EanpĀ, P ;Cq “
ż

C

ż

Σ

1

4
|FAt |2 ` |∇AΦ|2 ` |pΦΦ˚q0 ` ρ4pω`q|2 ` K

2
|Φ|2 ` RexFΣ

At , ~δy,

with ω “ ds ^ λ ´ ~δdvolΣ. The equation even holds before integrating over C. Let
n “ pn1, n2q P Z ˆ Z Ă C and define

pAn,Φnqpz, xq “ pA,Φqpz ` n, xq,@z P Ω :“ Bp0, 10q and x P Σ.

Then tpAn,Φnqu is a family of solutions on ΩˆΣ with EanpAn,Φn; Ωq Ñ 0 as n Ñ 8, where
EanpA,Φ;Ωq is given by Definition 8.2. By the standard compactness theorem [KM07,
Theorem 5.1.1], up to gauge transformations, any subsequence of tpAn,Φnqu contains a
further subsequence converging in C8-topology in the interior. Let pA8,Φ8q be the limit.
Since EanpA8,Φ8; Ωq “ 0, it is gauge equivalent to a constant family of κ˚ with Ā “ d.
This proves (8.4).
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By Proposition 7.5 and Lemma 5.5, the superpotential Wλ is stable, and if pĀ, P q solves
the gauged Witten equation (8.1), then

∇LpP pzqq ” 0.

Because the superpotential W is stable, P pzq lies in the GC-orbit of κ˚. In terms of Hodge
decomposition (7.9), we apply the gauge fixing condition pb̌pzq ´ b̌0q1 ” 0, i.e. b̌pzq ´ b̌0 is
co-closed for each z P C. It follows that

P pzq “ eαpzqκ˚ “ pb̌0 ` i ˚Σ dΣαpzq, eαpzq`iθpzqΨ̌0
`, e

´αpzq`iθpzqΨ̌0
´q

for some smooth function α P ΓpC ˆ Σ,Rq and θ : C Ñ R. One may kill θ by a further
gauge transformation, so we set θ ” 0 in the sequel. Write Ā “ d ` atdt ` asds. The first
equation of p8.1q then imply (comparing (7.7)):

pBtb̌ ´ dΣatq ` ˚ΣpBsb̌ ´ dΣasq “ 0,

pBtΨ̌ ` atΨ̌q ` ρ3pdsqpBsΨ̌ ` asΨ̌q “ 0,

so at “ ´iBsα, as “ iBtα. Combining with (8.3), the moment map equation in (8.1) then
gives

(8.5) p∆C ` ∆Σqα ` 1

2
pe2α ´ 1q|Ψ̌0

`|2 ` 1

2
p1 ´ e´2αq|Ψ̌0

´|2 “ 0.

By the boundary condition (8.4), }αpzq}8 Ñ 0 as z Ñ 8. The maximum principle
then implies that α ” 0, so pĀ, P q is gauge equivalent to the constant configuration
pP ” κ˚, Ā ” dq. �

Theorem 8.1 will play an important role in the proof of compactness theorem in the
second paper. In practice, it is convenient to work with a weaker condition than the
finiteness of the total energy:

EanpĀ, P ;Cq ă 8.

To state the result, let In “ rn ´ 2, n ` 2st Ă Rt. Choose a compact domain Ω0 Ă
I0 ˆ r0,8qs with a smooth boundary such that

(8.6) I0 ˆ r1, 3s Ă Ω0 Ă I0 ˆ r0, 4s.
Define Ωn,R to be the translated domain

(8.7) tpt, sq : pt ´ n, s ´ Rq P Ω0u Ă In ˆ r0,8qs
for any n P Z and R ą 0.

Definition 8.2. For any region Ω Ă C and any configuration γ “ pĀ, P q or pA,Φq, define
the local energy functional of γ over Ω as

EanpĀ, P ; Ωq “ EanpA,Φ;Ωq :“
ż

Ω

|∇ĀP |2 ` |∇H|2 ` |F |2 ` |~δ ´ µ|2,

“
ż

Ω

ż

Σ

1

4
|FAt |2 ` |∇AΦ|2 ` |pΦΦ˚q0 ` ρ4pω`q|2 ` K

2
|Φ|2 ` RexFΣ

At , ~δy. ♦
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Proposition 8.3. There exists a constant ǫ˚ ą 0 with the following significance. Under
the assumptions of Theorem 8.1, suppose instead that the local energy functional

EanpĀ, P ; Ωn,Rq ă ǫ˚

when |n| ` |R| " 1, then pĀ, P q is gauge equivalent to the constant configuration.

Apparently, Proposition 8.3 implies Theorem 8.1.

Proof. There are two ways to proceed. In the first approach, we apply Theorem 1.3 to show
the total analytic energy EanpĀ, P ;Cq is actually finite, since the local energy functional
EanpĀ, P ; Ωn,Rq has exponential decay as |n| ` |R| Ñ 8. Then our proposition follows
from Theorem 8.1.

In the second approach, we adapt the proof of Theorem 8.1 to our situation. There are
three major modifications:

Step 1. If ǫ˚ is small enough, then the Morse-Bott estimate (5.4) in the proof of Lemma
5.5 still holds for any P pzq when |z| " 1. This step requires the compactness theorem
[KM07, Theorem 5.1.1].

Step 2. In the proof of Lemma 5.5, we concluded from (5.6) that if Epr0q ą 0, then

Eprq “
ż

Bp0,rq
|∇H|2

blows up exponentially as r Ñ 8. In our case, since EanpĀ, P ; Ωn,Rq is uniformly bounded
for all n P Z and R P R, Eprq can grow at most in the rate r2. We still arrive at a
contradiction, so ∇H ” 0.

Step 3. Finally, using the stability of the superpotential W , we have to show the
equation (8.5) can only have the trivial solution α ” 0. At this point, we only know α is
uniformly bounded on C ˆ Σ and we argue as follows. If α : C ˆ Σ Ñ R is a solution of
(8.5), then

1

2
p∆C ` ∆Σqα2 ď xp∆C ` ∆Σqα,αy

“ ´1

2
αpe2α ´ 1q|Ψ̌0

`|2 ´ 1

2
αp1 ´ e´2αq|Ψ̌0

´|2 ď ´c2|α|2

for some c ą 0. Let V pzq “
ş

tzuˆΣ
α2, then V pzq is a bounded subharmonic function on

C:

(8.8) ∆CV pzq ď ´2c2V pzq ď 0,

so V pzq is constant. (8.8) implies that V pzq ” 0. �

9. Proof of Theorem 1.3

Now we present the proof of Theorem 1.3 by generalizing ideas from Section 6. In fact,

we do not need any assumptions on ~δ P g: it can be any smooth function on Σ.
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Theorem 9.1. There exists constants ǫ, ζ ą 0 depending only the metric gΣ, λ ‰ 0 and
~δ P ΓpΣ, iRq with the following significance. Suppose a configuration γ “ pĀ, P q solves the
gauged Witten equations (8.1) on H

2
` and Eanpγ; Ωn,Rq ă ǫ for any n P Z and r ě 0, then

Eanpγ; Ωn,Rq ă e´ζR.

Here the subset Ωn,R Ă H
2
` is defined by (8.7).

Proof. We adapt the proof of Theorem 6.1 and follow the notations from Proposition
7.9. Let pMpΣq,Wλ,GpΣqq be the fundamental Landau-Ginzburg model introduced in
Subsection 7.2. For any κ “ pB̌, Ψ̌q P M , recall that Hk is the completion of the tangent
space TκM with respect to the L2

k,B̌
norm for any k ě 0:

}pδb̌, δΨ̌q}2
L2

k,B̌

“
ÿ

0ďjďk

ż

Σ

|∇kδb̌|2 ` |∇k
B̌
δΨ̌|2.

We claim that the trilinear tensors defined in the proof of Theorem 6.1:

x∇¨ HessHp¨q, ¨y : H1 b H1 b H1 Ñ R,(9.1)

xHessµp¨q, ¨ b ¨y : H1 b H1 b g1 Ñ R,

are bounded operators. Indeed, take tangent vectors vi “ pδb̌i, δΨ̌iq P TκM for i “ 1, 2.
Using (7.5) and (7.6), we compute that:

HessLpv1q “ pρ´1

2
pΨ̌δΨ̌˚

1 ` δΨ̌1Ψ̌
˚q0,DΣ

BδΨ̌1 ` ρ2pδb̌1qΨ̌q,
p∇v2 HessLqpv1q “ pρ´1

2
pδΨ̌2δΨ̌

˚
1 ` δΨ̌1δΨ̌

˚
2q0, ρ2pδb̌2qδΨ̌1 ` ρ2pδb̌1qδΨ̌2q,

xHessµpv1q, v2y “ iRexiδΨ̌1, ρ3pdsqδΨ̌2y.

Hence, tensors in (9.1) are independent of γ P M and involve only point-wise multipli-
cations of sections. Since L2

1,B̌
ãÑ L3 in dimension 2 (with a uniform norm independent

of B̌), and the multiplication map L3 ˆ L3 ˆ L3 Ñ L1 is bounded, our claim follows.
Now we come to analyze the differential operators

Dκ : H1 Ñ H0 ‘ g0 ‘ g0,

v “ pδb̌, δΨ̌q ÞÑ pHessHpvq, x∇µ, vy, xJ∇µ, vyq,

and Jx∇µ, ¨y : g1 Ñ H0, ξ ÞÑ p´dξ, ξΨ̌q.

Lemma 9.2. Suppose κ˚ “ pB̌˚, Ψ̌˚q P M is a reference point in the critical orbit O˚ “
µ´1p~δq X CritpLq. Then for any ǫ ą 0, we can find an L2`ǫ1 neighborhood Ωpǫ1q of κ˚ por
a G-invariant neighborhood of O˚q such that for any κ “ pB̌, Ψ̌q P Ω, v P TκM and ξ P g,
we have

(9.2) }Dκpvq}L2pΣq ě c}v}L2

1,B̌
and }Jx∇µ, ξy}2 ě c}ξ}L2

1

for some c ą 0.
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Proof of Lemma. If κ “ κ˚ “ pB̌˚, Ψ̌˚q, then estimates (9.2) follow from the injectivity

of the extended operator pDκ in the proof of Proposition 7.9. In general, let w “ κ ´ κ˚.
Then pDκpvq “ pDκ˚v ` Ipw, vq for a bilinear operator Ip¨, ¨q involving only point-wise
multiplication, so

}Ipw, vq}2 ď }w}p}v}q ď Cppq}w}p}v}L2

1,B̌

for any positive pp, qq with 1{p ` 1{q “ 1{2. The constant Cppq arises from the Sobolev
embedding L2

1,B̌
ãÑ Lq where 2 ă p, q ă 8. Similarly, we have

}v}L2

1,B̌˚

ě }v}L2

1,B̌
´ Cppq}w}p}v}L2

1,B̌
.

Thus, estimate (9.2) hold when }w}p ! 1. �

Back to the proof of Theorem 1.3. Now the proof of Theorem 6.1 can proceed with no
difficulty. Following the notations therein, define

upzq “ }∇AP }2L2pΣq ` }F }2L2pΣq and wpzq “ }∇AP }2H1
` }F }2

L2

1
pΣq.

For any number η ą 0, by the compactness theorem [KM07, Theorem 5.2.1], there
exists a constant ǫpηq ą 0 such that for any configuration γ “ pĀ, P q with

Eanpγ,Ω0q “
ż

Ω

upzqdz ă ǫpηq,

we have the point-wise estimate

0 ď upzq ď wpzq ď η,@z P Ω1
0

for a smaller domain Ω1
0

Ă Ω0. By taking η ! 1, we ensures that P pzq P Ωp4q, where Ωp4q
is the neighborhood obtained in Lemma 9.2 with ǫ1 “ 4.

Now replace Ω0 by Ωn,R for any n P Z and R ą 1. The Bochner-type formual in Lemma
6.4 then implies that

0 ě 1

2
∆H2

`
u ` ζ2w ´ Cw3{2 ě 1

2
∆H2

`
u ` ζ2

2
w ě 1

2
p∆H2

`
` ζ2qu,

for some ζ ą 0, and we use Lemma 6.3 to conclude. �

10. Finite Energy Solutions on Rs ˆ T
2

In this section, we study the 3-dimensional Seiberg-Witten equations:

(10.1)

"
1

2
ρ3pFBtq ´ pΨΨ˚q0 ´ ρ3pωq “ 0,

DBΨ “ 0.

on the cylinder Rs ˆ Σ with ω “ ds ^ λ ´ ~δdvolΣ. Here, λ ‰ 0 P Ω1
hpΣq is a harmonic

1-form on Σ and ~δ P LiepGq “ ΓpΣ, iRq is an imaginary valued function. In terms of
Landau-Ginzburg models, the equations (10.1) are equivalent to the downward gradient
flow equation of L “ ReWλ:

(10.2)
d

ds
ppsq ` ∇L ˝ p “ 0.
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where ppsq “ pb̌psq, Ψ̌psqq : R Ñ MpΣq is a smooth path in the Kähler manifold MpΣq. Its
relation with (10.1) can be seen by setting

B “ d

ds
` B̌0 ` b̌psq and Ψ “ Ψ̌psq on tsu ˆ Σ.

We require the path p to have finite analytic energy:

(10.3) Eanppq :“
ż

Rs

| d
ds

p|2 ` |∇L|2 ă 8.

Under (10.3), it is easily seen that the path p has a finite length and

q˘ “ lim
sÑ˘8

ppsq

lies in CritpLq. By the Cauchy-Riemann equation (2.1), (10.2) is also the Hamiltonian
flow equation for H “ ImWλ. Hence, a flowline connecting q´ and q` can exist only if

(10.4) Lpq´q ě Lpq`q and Hpq´q “ Hpq`q.
Proposition 10.1. When λ P Ω1

hpΣq – H1pΣ, iRq is not a multiple of any integral classes,
any finite energy solution of p10.1q has to be Rs-translation invariant, i.e ppsq ” q´ “ q`.

Proof. By Proposition 7.5, q´ and q` lie in the same GpΣq-orbit, so q` “ u ¨ q´ for some
u : Σ Ñ S1. Hence,

Wλpq´q ´ Wλpq`q “ ´
ż

Σ

xu´1du, λyhM
.

In particular, Hpq´q ´ Hpq`q “ 4π2pru´1du
2πi

s Y r λ
2πi

sqrΣs. If λ is not a multiple of an

integral class, this pairing can not be zero unless ru´1du
2πi

s “ 0 P H1pΣ,Zq. This implies
that

Eanppq “ 2pLpq´q ´ Lpq`qq “ 0,

so the path p has to be Rs-translation invariant. �

Remark 10.2. A solution of (10.1) can be viewed as an S1-invariant solution of the 4-
dimensional equations (7.1) on S1 ˆ Rs ˆ T

2. When gΣ is flat, Proposition 10.1 follows
from a theorem of Taubes, see [Tau01, Proposition 4.4]. ♦

Taubes’ theorems provide another simple condition that precludes non-trivial solutions.

Proposition 10.3. [Tau01, Proposition 4.7] Suppose gΣ is flat and ~δ P LiepGq is a constant

function on Σ, i.e. ~δ ” δ for some δ P iR. If δ ‰ 0, then any finite energy solution of
p10.1q has to be Rs-translation invariant, i.e ppsq ” q´ “ q`.

Proof. The proof is adapted from [Tau01, P. 486-487]. The closed 2-form ω “ ds ^ λ ´
δdvolΣ that is used to perturb the equations (10.1) is a parallel 2-form. Thus, the spin
bundle S` splits as

(10.5) L`
ω ‘ L´

ω

with ρ3pωq acting on by a diagonal matrix

m

ˆ
´1 0
0 1

˙
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where m “
a

|δ|2 ` |λ|2 is a positive number. The splitting (10.5) is parallel. Let pptq “
pbptq,Φptqq be a solution of (10.2) on Rs ˆ Σ. Write Φptq “

?
2mpαptq, βptqq with respect

to the decomposition (10.5). By Witten’s vanishing spinor argument [Wit94], β ” 0. The
first equation of (10.1) becomes

1

2
FBt “ p1 ´ |α|2qω.

The curvature form FBt is closed, so dp1 ´ |α|2q ^ ω “ 0. Alternatively, it says that
xd|α|2, ˚3ωy “ 0. The dual tangent vector of i ˚3 ω generates a flow on Rs ˆΣ along which
|α|2 stays constant. Since δ ‰ 0, this flow translates the spatial coordinate s as time
varies. Since |α| Ñ 1 as s Ñ ˘8, |α| ” 1. This completes the proof. �

When gΣ is flat, δ “ 0 and λ is a multiple of an integral class, there is a non-trivial
moduli space of flowlines for any pair pq´, q`q subject to (10.4). They are pulled back
from vortices on the cylinder Rs ˆS1. These moduli spaces are not regular; their expected
dimensions are always zero from the index computation. For more details, see [Tau01,
Section 4(d)(e)]. Here is an immediate corollary of Proposition 10.3.

Corollary 10.4. Suppose gΣ is flat and ~δ ” δ P iR is a constant function on Σ. If δ ‰ 0,
then for any eiθ P S1, any down-ward gradient flowline of the functional RepeiθWλq:

Bsppsq ` ∇RepeiθWλq “ 0,

has to be a constant path.

Proof. This corollary follows from Proposition 10.3 by noting that

eiθWλpb̌, Ψ̌`, Ψ̌´q “ W0pb̌, Ψ̌`, e
´iθΨ̌´q ` xb̌, e´iθλyhM

. �

Appendix A. The Maximum Principle

This appendix is meant to state a version of maximum principle, from which one can
easily deduce exponential decay. The author is greatly indebted to Ao Sun for teaching me
this elementary and enlightening proof (of Lemma A.1). Laplacian operators are assumed
to have positive spectra. In particular, over the complex plane,

∆C :“ ´B2t ´ B2s .
This sign convention is adopted throughout this paper.

Proposition A.1. Take ζ ą 0. Suppose u : H
2
` “ Rt ˆ r0,8qs Ñ R is a bounded

C2-function on the upper half plane such that

(1) p∆C ` ζ2qu ď 0, and
(2) upt, 0q ď 0 for any t P Rt.

Then upt, sq ď 0 for any pt, sq P H
2
`.

Proof. Choose a smooth cut-off function ψ : r0,8q Ñ r0,8q such that

‚ ψ ” 1 on r0, 1s,
‚ ψ ” 0 on r2,8q and
‚ 0 ď ψ ď 1.
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Let φR : C Ñ R such that φRpzq “ ψp|z|{Rq. Then
‚ φR ” 1, ∇φR “ 0 and ∆CφR ” 0 for |z| ă R;
‚ φR ” 0, ∇φR “ 0 and ∆CφR ” 0 for |z| ą 2R;
‚ For some L ą 0, |∇φR| ă L

R
and |∆CφR| ă L

R2 .

Only the last property requires some explanation. In general, we have

∇φR “ 1

R
φ1p |z|

R
q,

∆CφR “ ´pB2rφR ` 1

|z| BrφRq “ ´ 1

R2
ψ2p |z|

R
q ´ 1

|z|Rψ1p |z|
R

q.

Suppose upz0q ą 0 for some z0 P H
2
`. Consider uRpzq :“ upzqφRpz´z0q. Then uRpzq ” 0

when |z ´ z0| ą 2R and

uRpt, 0q ď 0.

Hence, maxuR is attained at some z1 in the interior of H2
`. Let N “ }u}8, so

(A.1) 0 ă upz0q “ uRpz0q ď uRpz1q ď NφRpz1 ´ z0q.
At z1 P H

2
`, we have

0 “ p∇uRqpz1q “ p∇u ¨ φRpz1 ´ z0q ` u∇φRpz1 ´ z0q,
so ∇upz1q “ ´upz1q∇φRpz1 ´ z0q{φRpz1 ´ z0q. Then the relation ∆Cu ď ´ζ2u gives:

0 ď ∆CuRpz1q “ φRpz1 ´ z0qp∆Cuq ` up∆CφRpz1 ´ z0qq ´ 2∇φRpz1 ´ z0q ¨ ∇u,

ď up´ζ2φR ` ∆CφR ` 2|∇φR|2
φR

qpz1 ´ z0q.

However, this inequality is violated when R " 0 which yields a contradiction. By (A.1),
when R " 1,

|∆CφR ` 2|∇φR|2
φR

|pz1 ´ z0q ď L

R2
` 2L2

R2
¨ N

upz0q ă ζ2upz0q
N

ď ζ2φRpz1 ´ z0q.

Moreover, upz1q ą 0. This completes the proof. �

Corollary A.2. Take ζ ą 0. Suppose u : H2
` “ Rtˆr0,8qs Ñ R is a bounded C2-function

on the upper half plane such that

(1) p∆C ` ζ2qu ď 0, and
(2) upt, 0q ď M1 for some M1 ą 0 and any t P Rt.

Then upt, sq ď M1e
´ζs for any pt, sq P H

2
`.

Proof. Let vpt, sq “ Me´ζs. Then p∆C ` ζ2qv “ 0 and vpt, 0q “ M for any t P Rt. Apply
Proposition A.1 to u ´ v to conclude. �

There are analogous statements for a strip of finite length. Their proofs are similar and
omitted here.

Proposition A.3. Take ζ ą 0. Suppose u : Rt ˆ r0, 2Rss Ñ R is a bounded C2-function
such that
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(1) p∆C ` ζ2qu ď 0, and
(2) upt, sq ď 0 for any t P Rt and s P t0, 2Ru.

Then upt, sq ď 0 for any pt, sq P Rt ˆ r0, 2Rss.
Corollary A.4. Take ζ ą 0. Suppose u : Rt ˆr0, 2Rss Ñ R is a bounded C2-function such
that

(1) p∆C ` ζ2qu ď 0, and
(2) upt, sq ď M1 for any t P Rt and s P t0, 2Ru.

Then upt, sq ď M1 ¨ coshpζps´Rqq
coshpζRq for any pt, sq P Rt ˆ r0, 2Rss.

Appendix B. A Bochner-Type Formula

The purpose of this appendix is to summarize some useful formulae from Riemannian
geometry for a gauged Landau-Ginzburg model pM,W,G, ρq. In particular, we will prove a
Bochner-type formula for a generalized vortex pA,P q on H

2
`. Some formulae become more

transparent when M is a complex linear space. Readers are recommended to skim these
formulae quickly when first reading and come back to their proofs when it is necessary.

B.1. Some Useful Formulae. Recall that pM,ω, J, gq is a Kähler manifold and G is a
compact abelian Lie group acting on M holomorphically and isometrically. pG, ρq admits a
moment map µ : M Ñ g which is G-invariant. W “ L` iH is a GC-invariant holomorphic
function on M , called the superpotential.

For any ξ P g, let ξ̃ be the vector field on M induced from the action pG, ρq. The
convention of the moment map used in our paper is that

ιpξ̃qω “ ´dxµ, ξyg
Since ωp¨, ¨q “ gpJ ¨, ¨q, we will frequently use the following equivalent equation:

(B.1) ξ̃ “ Jx∇µ, ξyg,
where ∇µ P ΓpM,TM b gq is viewed as a g-valued vector field on M .

Lemma B.1. For a gauged Landau-Ginzburg model pM,W,G, ρq as defined in Definition
3.1, we have the following identities:

(1) ∇L ` J∇H “ 0.
(2) HessL ` J ˝ HessH “ 0.
(3) J ˝HessH ` HessH ˝ J “ 0, i.e. the Hessian HessH of H anti-commutes with J .
(4) J ˝ Hessµ “ Hessµ ˝ J , i.e. the Hessian Hessµ commutes with J .
(5) x∇µ,∇Hy “ xJ∇µ,∇Hy “ 0.

(6) x∇µ, ξ̃y “ 0 for any ξ P g.

Proof. The first identity (1) is the Cauchy-Riemann equation.
Since M is kähler, the almost complex structure J is parallel, i.e. ∇J “ 0, so (2) follows

from (1) by taking the covariant derivative.
Both HessL and HessH are symmetric operators with respect to the metric g, so by

(2), we have

J ˝ HessH “ pJ ˝ HessHqT “ pHessHqT ˝ JT “ ´HessH ˝ J.
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Since the metric g is G-invariant, for any ξ P g, the Lie derivative of g is zero:

L
ξ̃
g “ 0.

This implies that for any vector fields V,U , x∇V ξ̃, Uy ` x∇U ξ̃, V y “ 0. Using the defining
equation (B.1), we conclude that xJ Hessµ, ξyg is an anti-symmetric operator, so Hessµ
commutes with J . This proves (4)

Finally, since H is G-invariant, xξ̃,∇Hy “ 0. By (B.1), xJ∇µ,∇Hy “ 0. The other
identity in (5) follows from the G-invariance of L and the first identity (1).

(6) follows from the fact that µ : M Ñ g is G-invariant. �

A smooth connection A “ d ` a in the trivial principal bundle G ˆ H
2
` Ñ H

2
` allows

us to take covariant derivatives of a map P : H2
` Ñ M . It is also important to know

covariant derivatives of a vector field v along P (for each x P H
2
`, vpxq is a tangent vector

at P pxq P M).
Recall that for any tangent vector px, V q P TH2

`, ∇
A
V P is defined by the property:

(B.2) ∇A
V P “ d

dt
ρpet¨apV qqP pγptqq

ˇ̌
ˇ̌
t“0

where γ : r0, 1s Ñ H
2
` is a path with γp0q “ x and γ1p0q “ V . The action of G extends to

the tangent bundle TM of M :

ρTM pgqpp, vq ÞÑ pρpgqp, ρpgq˚vq.

If v is a vector field along P ˝ γptq, it is reasonable to define:

(B.3) ∇A
V v :“ ∇∇A

V
Pρpet¨apV qq˚v.

It is enlightening to find a concrete formula of ∇A
V v without using the group action. By

the defining property of the moment map (B.1), we have

(B.4) ∇A
V P “ V ¨ P ` ãpV q “ P˚pV q ` Jx∇µ, apV qy.

Lemma B.2. The covariant derivative of a vector field v equals:

∇A
V v “ ∇P˚V v ` JxHessµpvq, apV qy.

where ∇P˚V v denotes the covariant derivative with respect to the Levi-Civita connection.

Remark B.3. The correction term JxHessµpvq, apV qy reflects the dependence on the
connection 1-form a. It is linear in a, v and V as expected. ♦

Proof. The formal proof is to linearize the equation (B.4) along the tangent vector vpxq P
TP pxqM . Let us make this intuition precise. Consider a variation of P ˝γ along the vector
field v:

Qpr, t, sq “ ρper¨apV qq expP˝γptqpsvptqq.
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When r ” 0, Qp0, t, sq is a variation of the path P ˝ γptq. Indeed, Qp0, t, 0q ” P ˝ γptq.
When s ” 0, the covariant derivative of P is defined as (comparing (B.2)):

d

dt
Qpt, t, 0q

ˇ̌
ˇ̌
t“0

“ ∇A
V P “ d

dt
Qp0, t, 0q ` d

dt
Qpt, 0, 0q

ˇ̌
ˇ̌
t“0

“ P˚pV q ` Jx∇µ, apV qy.

Let U1 “ d
dt
Qpt, t, sq and U2 “ d

ds
Qpt, t, sq. Then U1 “ U3 ` U4 with

U3 “ pB2Qqpt, t, sq, U4 “ pB1Qqpt, t, sq.
U4 “ Jx∇µ, apV qy. When t “ s “ 0, U3 “ P˚V . Moreover, rU2, U4s “ 0. By (B.4), we
have

∇A
V v “ ∇U1

U2

ˇ̌
ˇ̌
t“s“0

“ ∇U3
U2 ` ∇U4

U2

ˇ̌
ˇ̌
t“s“0

“ ∇P˚V v ` ∇U2
U4

ˇ̌
ˇ̌
t“s“0

“ ∇P˚V v ` JxHessµpvq, apV qy. �

The next lemma concerns the curvature tensor of ∇A. Since we are merely interested
in the manifold H

2
`, it suffices to work with vector fields Bt and Bs.

Lemma B.4. Write T “ ∇A
BtP and S “ ∇A

BsP for short. The following properties hold
for any configuration pA,P q and any vector field v along P :

(1) The connection ∇A is equivariant under the gauge transformation upA,P q “ pA´
u´1du, u ¨ P q, i.e.

u˚p∇A
V P q “ ∇

upAq
V upP q, u˚p∇A

V vq “ ∇
upAq
V u˚v.

where u˚v is the vector field along upP q.
(2) If v is induced from a G-invariant vector field on M , then ∇A

Bsv “ ∇Sv.

(3) p∇A
Bt∇

A
Bs ´ ∇A

Bs∇
A
BtqP “ Jx∇µ, FApBt, Bsqy “ ´F̃ where F “ ´ ˚2 FA.

(4) For any vector fields v,w on ImP Ă M ,

Bsxv,wy “ x∇A
Bsv,wy ` xv,∇A

Bswy,
i.e. the connection ∇A is unitary.

(5) The curvature tensor of ∇A is given by

p∇A
Bt∇

A
Bs ´ ∇A

Bs∇
A
Btqv “ RM pT, Sqv ` JxHessµpvq, FApBt, Bsqy.

where RM p¨, ¨q¨ denotes the Riemannian curvature tensor on M .

Proof. The property (1) follows from the defining property (B.2) and (B.3) of ∇A.
If v is induced from a G-variant vector field on M , then for any g P G, ρpgq˚v “ v. By

(B.3),

∇A
V v :“ ∇∇A

V
P ρpet¨apV qq˚v “ ∇∇A

V
P v.

This proves (2). For (3), if FA ” 0 near a point x P H
2
`, then we apply a gauge

transformation u so that the connection 1-form a ” 0 near x. Thus,

u˚p∇A
Bt∇

A
Bs ´ ∇A

Bs∇
A
BtqP “ ∇BtBsupP q ´ ∇BsBtupP q “ 0.
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This shows the commutator is at least proportional to ˚FA. To work out the general case,
we apply (B.4) and Lemma B.2:

∇A
Bt∇

A
BsP “ ∇BtPS ` JxHessµpSq, apBtqy

“ ∇BtPBsP ` ∇BtPJx∇µ, apBsqy ` JxHessµpSq, apBtqy
“ ∇BtPBsP ` Jx∇µ, BtapBsqy ´ xHessµpx∇µ, apBsqyq, apBtqy

` JxHessµpBtP q, apBsqy ` JxHessµpBsP q, apBtqy.
At this point, we need the following fact. For any ξ, η P g,

xHessµpx∇µ, ξyq, ηy “ xHessµpx∇µ, ηyq, ξy.
This follows from the fact that ∇

ξ̃
η̃ ´ ∇

ξ̃
η̃ “ rξ̃, η̃s “ Ćrξ, ηs “ 0. This proves p3q.

As for (4), we apply the gauge invariance of ∇A. Alternatively, one uses Lemma B.2
and the fact that

(B.5) xJ Hessµpvq, wy ` xJ Hessµpwq, vy “ 0.

since the metric g is G-invariant.
The expression of the curvature tensor p5q requires some work. Again, if FA ” 0, we

use the gauge invariance of ∇A, and p5q follows from the definition of RM . The actually
proof is not very tidy. We follow the strategy of (3):

∇A
Bt∇

A
Bsv “ ∇BtP∇

A
Bsv ` JxHessµp∇A

Bsvq, apBtqy
“ ∇BtP∇BsP v ` J∇BtP xHessµpvq, apBsqy ` JxHessµp∇A

Bsvq, apBtqy
“ ∇BtP∇BsP v ` JxHessµpvq, BtapBsqy ` Jxp∇BtP Hessµqpvq, apBsqy

` JxHessµp∇BtP vq, apBsqy ` JxHessµp∇BsP vq, apBtqy
` JxHessµpxJ Hessµpvq, apBsqyq, apBtqy

There are six terms in the expression. The fourth and fifth ones will also occur in that
of ∇A

Bs∇
A
Btv, so canceled out. The second term contributes to

JxHessµpvq, FApBt, Bsqy.
The first one contributes to RM pBtP, BsP q. To better organize the proof, we point out two
lemmas from which the identity (5) will follow. Note that

RM pT, Sq ´ RM pBtP, BsP q “ RM pBtP, ãpBsqq ` RM pãpBtq, BsP q ` RM pãpBtq, ãpBsqq.
We have to identify these terms in the expression of ∇A

Bt∇
A
Bsv ´ ∇A

Bs∇
A
Btv. �

Lemma B.5. For any ξ P g and vector fields u,w on M , we have

RM pw, ξ̃qu “ x∇wpJ Hessµqpuq, ξy.
Proof of Lemma. Differentiating (B.5) yields that

x∇upJ Hessµqpvq, wy ` x∇upJ Hessµqpwq, vy “ 0.

The key observation is that for any vectors u, v, w, we have

xRM pu, vqw, J∇µy “ ´x∇upJ Hessµqpvq, wy ´ x∇vpJ Hessµqpwq, uy.
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Indeed, we use the symmetry of curvature tensor to compute:

xRM pu, vqw, J∇µy “ ´xRMpu, vqJ∇µ,wy
“ ´x∇upJ Hessµqpvq, wy ` x∇vpJ Hessµqpuq, wy
“ ´x∇upJ Hessµqpvq, wy ´ x∇vpJ Hessµqpwq, uy.

This expression is unchanged if we permute pu, v, wq. Using the symmetry

RM pu, vqw ` RM pv,wqu ` RM pw, uqv “ 0

from Riemannian geometry, we conclude that

x∇upJ Hessµqpvq, wy ` x∇vpJ Hessµqpwq, uy ` x∇wpJ Hessµqpuq, vy “ 0.

In particular, this implies xRM pu, vqw, J∇µy “ x∇wpJ Hessµqpuq, vy. Finally, note that

ξ̃ “ x∇µ, ξy and

xRM pw, ξ̃qu, vy “ xRM pu, vqw, ξ̃y “ x∇wpJ Hessµqpuq, v b ξy. �

Lemma B.6. For any ξ, η P g and any vector field v on M ,

RM pξ̃, η̃qv “ JxHessµpxJ Hessµpvq, ηygq, ξyg ´ JxHessµpxJ Hessµpvq, ξygq, ηyg.

Proof of Lemma. This identity is equivalent to that

(B.6) xRM pξ̃, η̃qv,wy “ ´x∇vη̃,∇w ξ̃y ` x∇vξ̃,∇wη̃y.

Recall that Lξ̃g “ 0 implies x∇vξ̃, wy “ ´x∇wξ̃, vy. Hence, the right hand side of (B.6)

equals

I :“ ´x∇vη̃,∇w ξ̃y ` x∇vξ̃,∇wη̃y
“ ´v ¨ xη̃,∇w ξ̃y ` xη̃,∇v∇w ξ̃y ` w ¨ xη̃,∇v ξ̃y ´ xη̃,∇w∇v ξ̃y

Since ∇
ξ̃
η̃ “ ∇η̃ ξ̃, we have

x∇v ξ̃, η̃y “ ´x∇η̃ ξ̃, vy “ ´x∇
ξ̃
η̃, vy “ x∇vη̃, ξ̃y.

Therefore, v ¨ xη̃, ξ̃y “ 2x∇v ξ̃, η̃y. Moreover,

´v ¨ xη̃,∇w ξ̃y ` w ¨ xη̃,∇v ξ̃y “ ´1

2
v ¨ wxη̃, ξ̃y ` 1

2
w ¨ vxη̃, ξ̃y.

“ ´1

2
rv,wsxη̃, ξ̃y “ ´xη̃,∇rv,wsξ̃y.

Finally, we conclude that I “ xRM pv,wqξ̃, η̃y “ xRMpξ̃, η̃qv,wy. �
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B.2. A Bochner-Type Formula. It will be convenient to introduce the operator Dp for
any p P M . For any tangent vector v P TpM , its image is defined as:

v P TpM ÞÑ Dppvq :“ pHesspHpvq, x∇µ, vy, x∇µ, Jvyq P TpM ‘ g ‘ g.

The family of operators Dp forms a bundle map TM Ñ TM ‘ g ‘ g, which is induced
from the Hamiltonian H and the moment map µ.

The Bochner’s formula [Pet16, P. 334] was originally stated for a harmonic function
u : M Ñ R on a Riemannian manifold M . It computes the Laplacian of |∇u|2:

0 “ 1

2
∆M |∇u|2 ` |Hess u|2 ` Ricp∇u,∇uq.

We provide a formula in the same spirit for a generalized vortex on H
2
`, with Dp playing

the role of Ricp¨, ¨q. The Laplacian operator ∆M or ∆H2

`
is always assumed to have positive

spectrum. In particular,
∆H2

`
“ ´pB2t ` B2sq.

Theorem B.7. Write T “ ∇A
BtP and S “ ∇A

BsP for short. For a solution pA,P q to the

gauged Witten equation p4.1q on H
2
`, we have identities:

(1) The Laplacian 1

2
p´∆H2

`
q|T |2 “ 1

2
pB2s ` B2t q|T |2 of |T |2 is equal to

|∇A
BsT |2 ` |∇A

BtT |2 ` |DP pT q|2 ` xRM pS, T qS, T y
` xp∇T HessHqp∇Hq, T y ` xHessµp2JS ´ T q, T b F y.

(2) Similarly, 1

2
p´∆H2

`
q|S|2 “ 1

2
pB2s ` B2t q|S|2 is equal to

|∇A
BtS|2 ` |∇A

BsS|2 ` |DP pSq|2 ` xRM pT, SqT, Sy
` xp∇S HessHqp∇Hq, Sy ` xHessµp´2JT ´ Sq, S b F y.

(3) The Laplacian 1

2
p´∆H2

`
q|F |2g of |F |2g is equal to

|BsF |2g ` |BtF |2g ` |x∇µ, F yg|2 ` 2xHessµpJSq, T b F y

Define ∇AP “ dtb T ` ds bS and HessA P as ωi bωj b∇A
ei
∇A

ej
P for pe1, e2q “ pBt, Bsq

and pω1, ω2q “ pdt, dsq.
Corollary B.8. We have the following identity for ∆H2

`
p|∇AP |2 ` |F |2gq:

0 “ 1

2
∆H2

`
p|∇AP |2 ` |F |2gq ` |HessA P |2 ` |∇F |2g ` |DP p∇AP q|2 ` |x∇µ, F yg|2

` 2xRpS, T qS, T y ` xp∇T HessHqp∇Hq, T y ` xp∇S HessHqp∇Hq, Sy
` 6xHessµpJSq, T b F y ´ xHessµpT q, T b F y ´ xHessµpSq, S b F y.

One thinks of ´p∇A
BtT ` ∇A

BsSq as the connection Laplacian of P . Let us define

´∆AP :“ ∇A
Bt∇

A
BtP ` ∇A

Bs∇
A
BsP “ ∇A

BtT ` ∇A
BsS.

We start with a useful formula of ∆AP .

Lemma B.9. ´∆AP “ JF̃ ` HessHp∇Hq.



MONOPOLES AND LANDAU-GINZBURG MODELS I 51

Proof. Apply the operator ´∇A
Bt `J∇A

Bs to the equation (4.7b). Using the fact that HessH
anti-commutes with J (Lemma B.1 (3)) and Lemma B.4 (2)(3), we have

0 “ p´∇A
Bt ` J∇A

BsqpT ` JS ` ∇Hq
“ ´p∇A

BtT ` ∇A
BsSq ´ Jr∇A

BtS ´ ∇A
BsT s ´ HessHpT ` JSq

“ ∆AP ` JpF̃ q ` HessHp∇Hq. �

Remark B.10. It is enlightening to work out Lemma B.9 and Theorem B.7 concretely
in some special cases. In Example 3.2, we have M “ C,W ” 0 and µ “ i

2
|z|2. The metric

on C is flat, and we identify TzM with C for each z P M . Hence,

∇µpzq “ z b i and Hessµ “ 1C b i.

Take δ “ i
2

P iR “ g. In this case, the equation (4.1) recovers the vortex equation on

H
2
` Ă C: "

B̄AΦ “ 0
´ ˚ FA ` µ “ i

2

where A is a unitary connection and Φ : H2
` Ñ C is a smooth function. In this case,

Lemma B.9 says

∆AΦ “ xF, iygΦ
which follows from the Weitzenböck formula. Since ∇H ” 0, T “ ´JS. The first two
identities in Theorem B.7 yield:

0 “ 1

2
∆H2

`
|∇AΦ|2 ` |HessAΦ|2 ` |Dp∇AΦq|2 ´ 3xF, iyg|∇AΦ|2.

In this case, Dpvq “ px∇µ, vy, x∇µ, Jvyq and |Dpvq|2g “ |Φ|2|v|2. In the meanwhile, we
have

0 “ 1

2
∆H2

`
|F |2 ` |∇F |2g ` |Φ|2|F |2g ´ |∇AΦ|2xF, iyg.

These formulae were first proved in [JT80, Proposition 6.1]. ♦

Proof of Theorem B.7. Let us start with B2s |T |2. By Lemma B.4 (4),

1

2
B2s |T |2 “ Bsx∇A

BsT, T y “ |∇A
BsT |2 ` xT,∇A

Bs∇
A
BsT y.

By Lemma B.4 (3)(5), we have

∇A
Bs∇

A
BsT “ ∇A

Bsp∇A
BtS ` F̃ q

“ ∇A
Bt∇

A
BsS ` RM pS, T qS ` xJ HessµpSq, F y ` ∇A

BsF̃ ,

which implies that

1

2
pB2t ` B2sq|T |2 “ |∇A

BsT |2 ` |∇A
BtT |2 ` x∇A

Btp´∆AP q, T y ` xRM pS, T qS, T y

` xJ HessµpSq, F b T y ` x∇A
BsF̃ , T y.
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By using the equation (4.7a), we attempt to extract some positivity from the last term:

x∇A
Bs F̃ , T y “ x∇A

BsxJ∇µ, F y, T y.
“ xJ HessµpSq, F b T y ` xJ∇µ, BsF y, T y.
“ xJ HessµpSq, F b T y ` xx∇µ, JT y, x∇µ, Syyg

By Lemma B.1 (5), x∇µ, J∇Hy “ 0. Using (4.7b), we have

x∇µ, JT y “ x∇µ, S ´ J∇Hy “ x∇µ, Sy.

Hence, x∇A
Bs F̃ , T y “ xJ HessµpSq, F b T y ` |x∇µ, JT y|g.

Now we deal with the term involving ∆AP , using Lemma B.9. We exploit the fact that
HessHp∇Hq is a G-invariant vector field on M and Lemma B.4 (2):

∇A
Btp´∆AP q “ ∇A

BtpJF̃ ` HessHp∇Hqq
“ ´∇A

Btx∇µ, F y ` p∇T HessHqp∇Hq ` HessH2pT q.
“ ´xHessµpT q, F y ´ x∇µ, BtF y ` p∇T HessHqp∇Hq ` HessH2pT q.

Note that ´xx∇µ, BtF y, T y “ xx∇µ, x∇µ, T yy, T y “ |x∇µ, T y|2g.
Combining all these together, we obtain

1

2
pB2t ` B2sq|T |2 “ |∇A

BsT |2 ` |∇A
BtT |2 ` xRM pS, T qS, T y

` |x∇µ, T y|2g ` |x∇µ, JT y|2g ` |HessHpT q|2

` xp∇T HessHqp∇Hq, T y ` xHessµp2JS ´ T q, F b T y.

The formula of 1

2
pB2t ` B2sq|S|2 is proved in a similar may.

Finally, let us deal with the Laplacian of |F |2g. By (4.7a), we have

1

2
B2s |F |2g “ |BsF |2g ` xF, B2sp´µqyg.

“ |BsF |2g ´ xHessµpSq, S b F y ´ x∇µ,∇A
BsS b F y.

By Lemma B.9, we have

x´∇µ, p∇A
BtT ` ∇A

BsSq b F y “ x´∇µ, JF̃ b F y ` x´∇µ,HessHp∇Hq b F y
“ |xµ, F yg|2 ` xHessµp∇Hq,∇H b F y.

At the last step, we applied the identity:

(B.7) xHessµpXq,∇Hy ` x∇µ,HessHpXqy “ 0

for X “ ∇H. By Lemma B.1 (5), x∇µ,∇Hy ” 0. Expanding the expression X ¨
x∇µ,∇Hy ” 0 yields (B.7). �
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