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MONOPOLES AND LANDAU-GINZBURG MODELS II:
FLOER HOMOLOGY

DONGHAO WANG

ABSTRACT. This is the second paper of this series. We define the monopole Floer homol-
ogy for 3-manifolds with torus boundary, extending the work of Kronheimer-Mrowka for
closed 3-manifolds. The Euler characteristic of this Floer homology recovers the Milnor
torsion invariant of the 3-manifold by a theorem of Meng-Taubes.
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Part 1. Introduction

1.1. Motivations. The Seiberg-Witten Floer homology of a closed oriented 3-manifold is
defined by Kronheimer-Mrowka [KMO07] and has greatly influenced the study of 3-manifold
topology. The aim of this current paper is to generalize their construction for any compact
oriented 3-manifold (Y, 0Y") with torus boundary, with the potential to recover the knot
Floer homology (for a knot in $2), both the hat-version HFK and the minus-version HFK ™
as special cases. The Euler characteristic of this Floer homology group will recover the
Milnor torsion invariant of (Y,dY") by a theorem of Meng-Taubes [MT96].

In the first paper of this series [Wan20], we discussed an infinite dimensional gauged
Landau-Ginzburg model for any Riemannian 2-torus (X, g5)

(1.1) (M(%), Wy, 6(%))

whose gauged Witten equations on the complex plane C recover the Seiberg-Witten equa-
tions on the product manifold C x ¥. This allows us to borrow many ideas from symplectic
topology and interpret our construction as Lagrangian Floer homology in the infinite di-
mensional setting. The author would like to refer readers to [Wan20, Section 2] for more
details on this heuristic. For the present paper, we focus on the analytic details that
implement these ideas. The use of Landau-Ginzburg models will be minimized.

One motivation of this work is to define invariants for knots and links inside S$3. Within
the framework of Heegaard Floer Homology, this goal has been accomplished via the con-
struction of knot Floer homology by Ozsvéth-Szab6 [OS04] and independently Rasmussen
[Ras03]. See [Manl6] for a nice survey on their constructions. A long term goal of our
program is to interpret their works in the context of gauge theory and hopefully provide
new insights for future research.

It has been believed [Man16] that the knot Floer homology of (S2, K') encodes something
about the Seiberg-Witten equations on R; times the knot complement S*\N(K). This
heuristic can be approached using the invariants constructed in this paper, which apply
to any knot and link complements. The conjectural relation is as follows

HM . (Y) ~ HFK, (S*, K) if Y = S3\N(K),
HM (V) wo> AFK,(S3, K) or KHM (5%, K) ifY = SS\N(K um),

where m is a meridian of K < S3. The evidence is not strong, but they do have the same
Euler characteristics.
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Some constructions of knot Floer homology that uses gauge theory already exist in the
literature. Motivated by the sutured manifolds technique developed by Juhdsz [JuhO6,
Juh08], Kronheimer-Mrowka defined the monopole knot Floer homology KHM , in [KM10],
as the analogue of [FK in Heegaard Floer homology. By further exploring this idea, Li
[Li19] proposed a construction of HFK™ in the Seiberg-Witten theory using a direct system
of sutures on the knot complement.

Our construction will follow a more direct approach. We will make (Y,dY) into a
complete Riemannian manifold by attaching cylindrical ends, and define the monopole
Floer homology as an infinite dimensional Morse theory, as we explain in the next section.
In particular, it is reminiscent of the original construction of Kronheimer-Mrowka [KMOT]
for closed 3-manifolds.

1.2. The Setup. To state our results, let Y be a compact oriented 3-manifold whose
boundary oY = ¥ :=[], .., T? is a disjoint union of 2-tori. Throughout this paper, we
assume that Y is connected and its boundary 0Y is non-empty. The Floer homology of
(Y, 0Y) that we construct will rely on some auxiliary data on the boundary ¥ including

e a choice of flat metric gs; of X;

e an imaginary-valued harmonic 1-form 0 # X € Q} (¥, iR);

e an imaginary-valued harmonic 2-form p € Q3 (%, iR) such that the triple (gs;, A, 1)
satisfies conditions (P4)(P5)(P7) in Section 3;

We denote such a quadruple (Y, g5, A, ) by a thickened letter Y. The boundary data
(g9s, A, 1) will play essential roles in the proof of compactness theorems. One may think
of them as a way to close up the boundary of Y, so analytically it behaves like a closed
3-manifold. The monopole Floer homology HM .(Y) can be viewed as an invariant of YV
relative to the gauged Landau-Ginzburg model (1.1).

We are only interested in the spin® structure 544 on ¥ such that
c1(SH)[TF] =0

on each connected component of ¥. A relative spin® structure 5 of Y is a spin® structure
s together with an identification of s with 544 on the boundary . For each relative
spin® manifold (Y,s), we will associate a finitely generated module over a base ring R:

(1.2) HM (Y, 3).

called the monopole Floer homology group of (Y,s). This group will be constructed as an
infinite dimensional Morse theory of the perturbed Chern-Simons-Dirac functional £, on
the complete Riemannian manifold:

Y= YH[O, +00)s x X,
)

where the metric on the cylindrical end is d?s + gs and L, is perturbed by a closed 2-form
w e Q}(Y,iR) (cf. Definition 3.8) such that

w=p+dsnA
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on [0,+m)s x X. We will always work with irreducible configurations: there is no need
to blow up the configuration space. Critical points of L, are solutions to the perturbed
3-dimensional Seiberg-Witten equations on 1’}, while the Floer differential is defined by
counting solutions on R; x Y.

Remark 1.1. The Seiberg-Witten invariant SW of the 3-manifold (Y, 0Y") is defined in

[MT96] as the signed count of critical points of £, on Y. We are using exactly the same
setup here. O

The set of isomorphism classes of relative spin® structures on Y:
Sping, (V)
is a principal homogeneous space over H2(Y, dY'; Z). The desired invariant of Y is obtained
by forming the direct sum,
(1.3) HM (YY) := 6—) HM (Y,5),
5eSping (V)

which admits an additional homology grading (cf. Section 18 for more details):

e the monopole Floer homology group HM ,(Y) carries a canonical grading by ho-
motopy classes of oriented relative 2-plane fields on Y ( i.e. oriented 2-plane fields
that take a standard form near X); If 5 and 5’ come down to the same underlying
spin® structure, then their grading sets are the same;

e a homology orientation of Y determines a canonical mod 2 grading of HM ,(Y).

As for the base ring R in the definition of HM ,(Y),

e we take R = Z if p = 0 and the perturbation is monotone in the sense of Definition

17.3;

e we take R to be a Novikov ring over Z otherwise.

1.3. The Euler Characteristic. By the work of Meng-Taubes [MT96], for any closed 3-
manifold Yy with the first Betti number b1 (Yy) > 0, the Euler characteristic of the reduced
monopole Floer homology HM fd(Yo) defined by Kronheimer-Mrowka recovers the Milnor
torsion invariant of Y. The same statement continues to hold in our case. Since we have
followed the same setup of Meng-Taubes in [MT96], the Euler characteristic of HM ,(Y)
recovers the Seiberg-Witten invariant SW (Y, 0Y') defined in their paper. In particular, it
is independent of the choice of (g5, A, ).

Theorem 1.2 (Theorem 1.1 [MT96]). For any compact oriented 3-manifold (Y,0Y") with
torus boundary, the Euler characteristic x(HM «(Y)) recovers the Milnor torsion invari-
ant of (Y,0Y); in particular, x(HM «(Y,8)) is non-zero only for finitely many relative
spin® structures s € Sping (V') if b1 (Y') > 1.

Remark 1.3. It is not clear to the author whether HM ,(Y,s) # 0 only for finitely many
relative spin® structures if b (Y) > 1. &

Remark 1.4. Turaev [Tur98] later refined their result by showing that x(HM .(Y)) as a
map
Sping (Y) - Z
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agrees with the Milnor-Turaev invariant of (Y,0Y") up to an overall sign ambiguity. The
version proved in [MT96] is slightly weaker: relative spin® structures differed by a torsion
line bundle in H?(Y,0Y;Z) are not distinguished. Readers are referred to their original
paper for the precise statements. O

1.4. The TQFT Property and Invariance. To state the (3 + 1) TQFT property en-
joyed by HM ., we introduce a class of cobordisms between 3-manifolds with torus bound-
ary:

(14) X: Yl — Yg
which are subject to certain constraints. On the level of manifolds, the cobordism
(X, W) : (Y1,0%1) — (Ya, 0%2)

is a manifold with corners carrying a cobordism W : 0Y; — 0Y5 of boundaries. We will
require W to be the product cobordism [—1, 1], x ¥ between 0Y; and 0Y2, and as such must
have the same number of components. They form the so-called strict cobordism category
Cobg. The precise definition is given in Section 3. In the theorem below, we will work
instead with SCobg: each object (Y,5) of SCobg is coupled with a relative spin® structure,
while morphism sets of SCoby are the same as those of Cobs.

Theorem 1.5. Let R be the Novikov ring with integral coefficients, then the monopole
Floer homology HM .. extends to a functor:

HM , : SCobs; — R-Mod
from the strict cobordism category SCobg to the category of R-modules.
Remark 1.6. The strict cobordism category Cobg or SCobg will be large enough to prove

the invariance of HM ,(Y,s) under

e the change of tame perturbations of the Chern-Simons-Dirac functional L,
e the change of interior metrics of Y and
e the isotopy of the identification map Y = X,

as a corollary of Theorem 1.5. In the actual construction of HM ,, we will use a formal
enlargement of SCoby to deal with the orientation issue; see Section 19. &

Remark 1.7. Although it is believed that the monopole Floer homology HM ,(Y,s) is
independent of the flat metric gs; of X, this is not proved in this paper. The author wishes
to come back to the invariance of gy, as well as general cobordism maps in a future paper.
If the restriction of X : Y; — Y5 on the boundary W : 0Y; — 0Y5 or

W (ayla g9, )\17 /’Ll) - (83/2, gss, )\2, /J’2)
is a general cobordism, then one would hope to construct a map:
HM (Y1) ® HM (W) — HM (Y3).

When W is the product cobordism [—1,1]; x (X, gx), it recovers the functor in Theorem
1.5 by inserting the canonical generator 1 € HM (W) = R. &
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1.5. Some Speculations: Relations with Knot Floer Homology. The simplest
examples of (Y,dY) arise from the knot complements of knots inside S2. In this case,
there exist a unique spin® structure s on (Y, JY’) and Sping, (Y') is a torsor over

(1.5) HY0Y;Z)/Im H (Y;Z) = Z.

The technical conditions (P4)(P5)(P7) on the boundary data (gx, A, i) now require that
@ =0 and
e [*x)] € Im(HY(Y,R) — H'(X,R)) and [\] € H'(X,R) is not any multiple of an
integral class. In particular, A # 0.
The second condition is essentially a constraint on the flat metric gs. The choice of A
will pick up an isomorphism of (1.5). Despite these unpleasant limitations, the monopole
Floer homology group HM ,(Y) carries a bi-grading of Z@Z. The first grading arises from
relative spin¢ structures, and
HM . (Y,5 +n) = {0}
when n » 1 under (1.5). The second one arises from the homology grading by oriented
relative 2-plane fields. HM ,(Y) is analogous to HFK (53, K) in Heegaard Floer homology,
but one important structure is missing: HFK (53, K) is an Fo[U]-module with deg U =
(—=1,-1).

As noted in the first paper [Wan20, Section 2.3], we would hope to assign an Ay-algebra
A to the fundamental Landau-Ginzburg model (1.1) and enhance HM ,(Y) into an Ae-
module over A. By passing to the homology category, HM ,(Y) becomes a module over
the algebra H,(A). This is one way that U-action might arise in our picture. However, it
would require some new ideas and analytic tools to fully implement this picture, since the
proposals of Haydys [Hay15] and Gaiotto-Moore-Witten [GMW15] do not apply directly
here.

On the other hand, we pick a meridian m of the knot K < S® and consider the link
complement Yz := S\ N (K U m). By gluing the two boundary components of Y (using
any orientation reversing diffeomorphism), we obtain a closed 3-manifold Y. An internal
gluing theorem may then relate HM,(Yg) with the monopole Floer homology of the
closure Yy, which is isomorphic to the monopole knot Floer homology KHM ,(S3, K) by
[KM10]. Interested readers are referred to [Wan20, Section 2| for more heuristics on this
gluing formula. It is left as an interesting future project and will not be explored in the
present paper. At this point, the only computation that we can make is for the unknot
Uc 83 soYy =[—1,1]s x T? is a finite cylinder and XA/U = R, x T2

Proposition 1.8. For Yy = [~1,1]s x T2, the monopole Floer homology HM 4(Y,5) is
isomorphic to R for the standard relative spin® structure 5 = 54q and is trivial when
§=544®L and [L] # 0 € H*(Yy,0Yy;Z), regardless of the choice of the boundary data
(gr2, A\, pt). However, we insist here that the restriction of the metric of Yy on {1} x T2
and {—1} x T? are the same.

Proof. This can be checked directly by working with the product metric on EA/U = Ry %
T2. O
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1.6. Organizations. To define the monopole Floer homology H M, (Y) and implement
the construction sketched in Subsection 1.2, we address five analytic problems in this
paper, as summarized below. We will follow closely the plotline of the book [KMO7].

Compactness. To obtain the right compactification of moduli spaces on R; x }7, we
have to address the planar end of R; x Y:

(1.6) H2 x ¥ :=R; x [0,00)s x %,

where the upper half plane H%r is furnished with the Euclidean metric. At this point,
we make essential use of results from the first paper [Wan20]. Our constraints on the
boundary data (gs, A, 1) are intended to make the following properties hold:

e finite energy solutions are trivial on C x X, namely, they have to be C-translation
invariant up to gauge [Wan20, Theorem 1.2 or 8.1].

e finite energy solutions on Ry x ¥ are trivial, namely, they have to be R;-translation
invariant up to gauge. This result is due to Taubes; see [Tau01, Proposition 4.4 &
4.7] or [Wan20, Proposition 10.1 & 10.3] for a version that we exploit.

In Part 2, we will first set up the strict cobordism category Cobg and derive an energy
identity for the Seiberg-Witten equations. Combining results from the first paper [Wan20],
this will lead us to the compactness theorem in Section 6. Part 2 is the counterpart of
[KMO7, Section 4, 5, 16] of the book.

Perturbations. To make moduli spaces regular, we have to apply a further perturba-
tion to the Chern-Simons-Dirac functional £,. Any additional perturbations will happen
within the compact region

Y = {s <0}

of Y. In particular, the monopole equations are always unperturbed on the planar end
Hi x Y. The cylinder functions that we use here are slightly different from those in [KMO07,
Section 11] since global gauge fixing conditions never give rise to compactly supported
perturbations, in the sense of Definition 7.1. Inspired by holonomy perturbations from
instanton Floer homology, we will look at embeddings of S* x D? into Y instead. The
construction is carried out in details in Part 3, as the counterpart of [KMO07, Section 10,
11].

Linear Analysis. This part is more or less standard. The extended Hessian of £, on
Y as a self adjoint operator has essential spectrum, since Yisa non-compact manifold.
This is a main difference of our case from that of closed 3-manifolds. Fortunately, the
essential spectrum of L, is still away from the origin, allowing us to speak of spectrum
flow and construct Fredholm operators once we stick to compact perturbations. We will
follow the setup of [RS95] and summarize relevant results in Part 4, as the counterpart of
[KMO07, Section 17] of the book.

Unique Continuation. As our perturbation space is not large enough, we need a
better unique continuation property to attain transversality. The non-linear version is
stated as follows: if two solutions 1,2 to the perturbed monopole equations on R; x Y
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are gauge equivalent on the slice
{0} x Y where Y = {s <0} c Y,

then they are gauge equivalent on the whose space. The proof will rely on the Carleman
estimates from [Kim95].

Part 5 is the counterpart of [KMO07, Section 7, 12, 15] of the book. The proof of
transversality will be accomplished in Section 16.

Orientations. To work with a Novikov ring R defined over Z (instead of Fa), we
have to orient moduli spaces in a consistent way. For closed 3-manifolds, this is done by
first looking at reducible configurations in the blown-up configuration space. See [KMO7,
Section 20] for details. In our case, we have to adopt a different approach as configurations
are never reducible and the action of the gauge group is free.

The situation we have here is similar to that of [KM97] in which case a Riemannian
4-manifold with a conic end is considered, so one may follow the argument of [KM97, Ap-
pendix] to orient moduli spaces consistently. The key ingredients are relative determinant
line bundles or relative orientations that compare two Fredholm operators. We will
adopt a more direct approach to this notion without referring to either K-theory or the
proof of the index theorem [AS68]. This combinatoric construction is based on a simple
proof of excision principle due to Mrowka and is carried out in Appendix B.

Part 6 is the counterpart of [KMO07, Section 20, 22, 28] of the book. The canonical
grading of HM (Y) by homotopy classes of oriented relative 2-plane fields is introduced
in Section 18. We will first define monopole Floer homology of Y using Fa-coefficient in
Section 17, while orientations are addressed in Section 19.

Most results and proofs in the present paper are intended to generalize the ones in
[KMO07]. Readers are assumed to have a reasonable understanding of the monopole Floer
homology of closed 3-manifolds, at least in the case when ¢;(s) is non-torsion.

Remark 1.9. On the other hand, we point out what will not be proved in the present
work:

e the exponential decay of solutions in the time-direction, cf. [KMO07, Section 13];
e the gluing theorem, cf. [KMO7, Section 18, 19].

Once we have set up the rest of the theory correctly, these results follow immediately
from corresponding sections of [KMOT]. &
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Part 2. Three-Manifolds with Torus Boundary

In this part, we define the strict cobordism category Cob, of oriented 3-manifolds with
torus boundary and study the Seiberg-Witten equations on their completions. Throughout
this paper, we will use (3, g») to denote a disjoint union of 2-tori. Although most results in
the first paper [Wan20] do not require the metric g, to be flat, we will also always assume
that gy is flat in this paper so that we can exploit Theorem 2.6 in our construction.

For any compact oriented 3-manifold (Y, 0Y") with torus boundary 0Y =~ ¥, we attach
a cylindrical end to obtain a complete Riemannian 3-manifold

Y=Y ]][0,0), x .
b

For any strict cobordism between two such manifolds,
(X,[-1,1] x ¥) : (Y1,0Y1) — (Y3, 0Y3),
we associate a complete Riemannian manifold X with a planar end:
X = (=0, —1]; x Y1 U X U[1, +00); x Y2 where
X =Xu[-1,1]; x [0,00)s x .

The end point of this part is to prove the compactness theorem (Theorem 6.1) for the
Seiberg-Witten moduli spaces on Ry x Y and &', which is the cornerstone in any Floer
theory. The proof relies on three key ingredients:

(K1) a uniform upper bound on the analytic energy;

(K2) finite energy solutions are trivial on Cx X; in other words, they are gauge equivalent
to the unique C-translation invariant solution on C x ¥; see Theorem 2.4 below.

(K3) finite energy solutions on Ry x 3 are trivial; in other words, they are gauge equiv-
alent to the unique Rs-translation invariant solution on Ry x 3; see Theorem 2.6
below. This result is due to Taubes and requires gs, to be flat.

Part 2 is organized as follows. In Section 2, we give a brief review of the Seiberg-Witten
equations and summarize results from the first paper [Wan20], which gives (K2) and (K3).
In Section 3, we define the strict cobordism category and set up the configuration spaces
onY and X respectively. In Section 4, we prove that the quotient configuration space in
our case is still Hausdorff and remains a Hilbert manifold after Sobolev completions.

Section 5 is devoted to the derivation of energy equations, which gives (K1). At this
point, the existence of certain bounded harmonic forms on Y or X is crucial (see Lemma
3.2 and 3.5 below), and relevant results are summarized in Appendix A. Finally, the
compactness theorems are stated and proved in Section 6.

2. RESULTS FROM THE FIRST PAPER

In this section, we summarize results from the first paper [Wan20], which are essential
to the proof of the compactness theorem (Theorem 6.1) in Section 6. In particular, they
ensure properties (K2) and (K3). Throughout this section, we will work primarily with
the product manifold X = C x ¥ or Hi X 2.
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2.1. Review. Recall that a spin® structure s on a smooth Riemannian 4-manifold X is a
pair (Sx, ps) where Sy = ST @ S~ is the spin bundle, and the bundle map ps : T*X —
Hom(Sy, Sx) defines the Clifford multiplication. A configuration v = (A, ®) € C(X,s)
consists of a smooth spin® connection A and a smooth section ® of S*. Use A! to denote
the induced connection of A on A?S™*. Let w be a closed 2-form on X and w* denote its
self-dual part. The Seiberg-Witten equations perturbed by w are defined on C(X,s) by
the formula:
(2.1) { 304(F 1) — (29%)g — pa(w™) = 0,

D@ =0,
where D} : T'(ST) — I'(S7) is the Dirac operator and (®®*)) = ®®* — 1|®|? ® Idg+
denotes the traceless part of the endomorphism ®®* : ST — S+,

The gauge group G(X) = Map(X, S!) acts naturally on C(X,s):

G(z)2u:C(X,s) — C(X,s), (A,®)— (A—u du,ud).
The monopole equations (2.1) is invariant under gauge transformations.

Let ¥ = (T?, gs) be a 2-torus with a flat metric. In the special case when X = C x &
is a Kahler manifold furnished with the product metric and the complex orientation, the
equations (2.1) can be understood more explicitly, as we explain now.

Let dvolc and dvolsy; denote volume forms on C and 3 respectively. The symplectic
form on X is given by the sum wgym := dvolc + dvols,. The spin bundle ST splits as
LT @ L™: they are F2i eigenspaces of the bundle map ps(wsym) : ST — S*. The spin
section ® decomposes as (®,,®_) with &1 € I'(X,L*). We are only interested in the
spin® structure on C x 3 with

c1(ST)[Z] =0,
so both L™ and L~ are topologically trivial.

Let z = t +is be the coordinate function on C. The Clifford multiplication py : T*X —
Hom(S, S) can be constructed by setting:

0 —Id 0 - _
p4(dt) = (Id 0 >7 P4(ds) = (Ul OS) : S+@S —’S+@S )

where o1 = (é _OZ> ST =LT@®L™ — LT @®L™ is the first Pauli matrix. If we identify
Lt ~Cand L™ =~ A”' %, then
- 0 —1(v2wO) -
patw) = @) paw) = (g TR )est s,

for any z € ¥ and w € T,.X.

Remark 2.1. We will frequently work with Clifford multiplications in dimension 3 and

4, denoted by ps and py respectively. Identify C as R; x Ry, then they are related by
pa(w) = pa(dt) " - pa(w) : ST — 5*,

for any w e T*(Rs x X). In particular, p3(ds) = 0. &
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The symplectic form wgyy, is parallel, so is the decomposition S* = LT @ L~. Any
spin® connection A must then split as

_ (Va, 0
V. _< : VA_).
We regard LT = C and L™ = /\0’1 > as bundles over X, and they pull back to spin
bundles over X via the projection map X — ¥. Let By, = (d, V) be the reference

connection on C @ /\0’1 ¥ — Y. We obtain a reference connection A, on ST — X by
setting

0 2
(2.2) Va, =dt® = +ds® 2+ V.

One can easily check that A, is a spin® connection. Any other spin® connection A differs
from A, by an imaginary valued 1-form a = A— A, € I'(X,iT*X). Their curvature tensors
are related by

Fy=Fjp, +dxa®Idg, so Fyt = FA; + 2dxa.

2.2. Point-Like Solutions. For this subsection, we will always work with the product
4-manifold X = C x ¥. For our primary applications, the closed 2-form w in the Seiberg-
Witten equations (2.1) will take the special form

wi=p+ds A

where
e X e Q) (X,iR) is an imaginary-valued harmonic 1-form on X, and
e ue Q7 (X,4R) is an imaginary-valued harmonic 2-form.
Since the metric gy, is flat, the 2-form w is parallel on X = C x X.
Assumption 2.2. The pair (\, 1) € Q} (3;4R) x Q2 (3;4R) is said to be admissible if A # 0
and one of the following two conditions holds:

(V1) p#0;
(V2) X is not a multiple of any integral class in H*(X;iZ) < Q} (Z,iR).

We always assume (A, ) is admissible in this paper.

For the rest of this section, we will recollect a few theorems from [Wan20] and explain
why Assumption 2.2 is crucial. Before that, let us first introduce the notion of local energy
functional associated to a configuration (A4, ®) on X.

Definition 2.3 ([Wan20] Definition 8.3). For any region {2 ¢ C and any configuration
v = (A, ®) on C x X, define the local energy functional of v over Q as

1
Ean( 4,00 1= | [ IE0P 4 [TABP 4 (@870 + palwh)P o
QJY

A solution v to the Seiberg-Witten equations (2.1) is called point-like if its global
energy Eqn(7v;C) is finite. Let us first describe a constant solution 7, = (As, Px) to (2.1)
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with Eup(74;C) = 0. The spin® connection of 7, is provided by the formula (2.2), while
the spinor ®, can be written as

(ry, V220 ) e D(X,C @A"Y,

where 71 are real numbers subject to relations:

1
rors = Land S(lref2 = I PAR) = — 5 1

In particular, ®, is a parallel section with respect to A,.

One consequence of Assumption 2.2 is that v, will be the only point-like solution on
X up to gauge. For practical reasons, we give a more general statement. Let I, =
[n—2,n+2]; € R;. Choose a compact domain Q¢ < Iy x [0,00)s with a smooth boundary
such that

(2.3) Iy x [1,3]s € Qo < Iy x [0,4]s.
For any n € Z and S € R, define Q,, g = C to be the translated domain
(2.4) Qs :={(t,s): (t—n,s—S5) e Qo} < I, x [0,00)s.

Theorem 2.4 ([Wan20] Proposition 8.3). If A # 0, then there exists a constant €, > 0
depending only on (gs, \, ) with following significance. If a solution v = (A, ®) to (2.1)
on X = C x X satisfies the estimate

gan(A7P§ Qn,S) < €4

when |n| + |S| » 1, then 7 is gauge equivalent to the constant configuration (Ax,®4). In
particular, a point-like solution on X s necessarily trivial.

On the other hand, we are also interested in solutions on H%r x 3. where the upper half
plane H2 = R; x [0, +00)s is furnished with the Euclidean metric. The next theorem
says that if a solution v on Hi x 3} is close to 4 everywhere, then ~ converges to .
exponentially in the spatial direction:

Theorem 2.5 ([Wan20] Theorem 9.1). There exists constants €,( > 0 depending only
the boundary data (gs, \ # 0, 1) with the following significance. Suppose a configuration
v = (A, ®) solves the Seiberg-Witten equations (2.1) on H2 x X and Ean(v; Qn.s) < € for
anyn € 7Z and S = 0, then

gan(7§ Qn,S) < e_CS'

We will improve this theorem in terms of Sobolev norms of v — 4 in Section 6; see

Theorem 6.2.

2.3. Solutions on Ry x 3. We also study the dimensional reduction of (2.1), the 3-
dimensional Seiberg-Witten equations, defined on Ry x X:

(2.5) { 3p3(Fpe) — (W¥*)g — ;B;w\ﬁ - 8?
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where w = 1+ ds A XA and § = (B, V) is a configuration on the 3-manifold. To go back to
the 4-dimensional case, one may set

A:dt®%—|—B, O(t) =¥ on R x Ry x X.

Then &y, (A, ;[0,1]; x Ry) comes down to the energy of (B, ¥):

1
Eun(B, U R,) — f TV + V502 4 (@20 + py(w™)P
Regx>

The trivial solution 44 = (Bx, U4) of (2.5) can be written as

0 d 0
(26) B* = dS@ % + (O VLC> ,\I/* = (7’+, \/5)\0717._)’
in which case with £y, (3%;R) = 0. In fact, this is the only solution with finite energy if
Assumption 2.2 holds.

Theorem 2.6 ([TauOl], Proposition 4.4 & 4.7). If gs is flat and Assumption 2.2 holds,
then any solution % of (2.5) with Eun(7;Rs) < 00 is gauge equivalent to the ungive Rg-
translation solution .

Remark 2.7. This result is due to Taubes. Readers can find a short discussion on its
proof in [Wan20, Section 10]. Theorem 2.6 is the only reason why we insist that gs is
flat. In fact, Theorem 2.4 and 2.5 also hold for any non-flat metric gx, of ¥ with a slightly
different expression of &,,; see [Wan20]. %

3. THE STRICT COBORDISM CATEGORY

The cobordism category Coby is said to be strict, because objects and morphisms are
subject to certain constraints. Roughly speaking, each object of Coby is a 3-manifold
(Y, 0Y") with torus boundary together with a choice of cylindrical metric gy and boundary
data (gs, A\, ). A morphism of Coby is a manifold with corners

(X, W)« (Y1,0Y1) — (Y2,0Y2)

together with some coherence conditions on boundary data (gs,, Ai, ;). The restriction of
a strict cobordism between boundaries is required to be a product, so W = [—1,1]; x ¥
and Y1 = Yo. Some of these constraints might be circumvented in the future by looking
at the Seiberg-Witten moduli spaces on 4-manifolds with more complicated geometry. For
now, we restrict attention to this smaller category Cob; for the sake of simplicity.
Subsection 3.1 and 3.2 are devoted to the definition of Cobg. Once this is done, we will
continue to set up the configuration spaces on Y and X respectively in Subsection 3.3.

3.1. Objects. Let (,g5) = [ [, (T?,¢;) be a disjoint union of 2-tori with a prescribed
flat metric. Each object of the strict cobordism category Cobg is a quintuple Y =
(Y, %, gy,w, q) satisfying the following properties:
(P1) Y is a compact oriented 3-manifold with boundary and v : 0Y — X is an orienta-
tion preserving diffeomorphism. The identification map 1 might be dropped from
our notations when it is clear from the context.
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(P2) The metric gy of Y is cylindrical, i.e. gy is the product metric
ds® + ¥ gx,
within a collar neighborhood (—2,0]s % 0Y of Y. We form a complete Riemannian
3-manifold Y by attaching cylindrical ends along 3::

Y = Y Uy [—1,0)s x 3,

whose metric is denoted also by gy.
(P3) w e Q*(Y,iR) is an imaginary valued closed 2-form on Y such that within the
collar neighborhood [—1,0]s x Y, w restricts to an s-independent form

w+ds A A,

so w extends naturally to a closed 2-form on 1’}, denoted also by w.
(P4) X € Q} (X,4R) is an imaginary-valued harmonic 1-form on X. Moreover, #s\ lies
in the image
Im(H(Y,iR) — H(Z,iR)).
(P5) we Q%(Z,iR) is an imaginary-valued harmonic 2-form on ¥. Moreover, y lies in
the image
Im(H?(Y,iR) — H*(%,iR)).
(P6) The cohomology class [w] € H?(Y,iR) is called the period class. Let i : ¥ — Y
be the inclusion map, then i*([w]) = [u] € H%(X,iR). The closed 2-form w in
(P3) can be reconstructed from (A, p, [w]) as follows. Choose a cut-off function
X1 :[0,00)s — R such that

x1(s)=1if s = —1; xi(s) =0if s < —3/2.

By Corollary A.5, we can find a closed 2-form @ on Y in the class [w] such that
w=pon[—1,0]s x X. Set

(3.1) w=w+ xi(s)ds A A

The period class [w] is independent of \.
(P7) Let (\;, i) be the restriction of (\, 1) on each connected component (T?, g;) of X.
Then Assumption 2.2 holds for (A, y;) for any 1 < i < n. In particular, A; # 0.
(P8) {q} is a collection of admissible perturbations (in the sense of Definition 13.3) of
the Chern-Simons-Dirac functional £, for each relative spin® structures s.

Remark 3.1. The closed 2-form w is used to perturb the Chern-Simons-Dirac functional,
see Definition 3.8 below. (P7) will allow us to apply Theorem 2.4—2.6 in Section 6, so the
Seiberg-Witten moduli spaces will have the right compactness property. We will address
the issue of perturbations in Part 3, so readers may ignore the last property (P8) at this
point. O

Properties (P5) requires some further explanation: it is used to find certain bounded

harmonic forms on Y, which play essential roles in the energy equations in Section 5,
cf. Theorem 5.4. The next lemma is a consequence of (P5) and Corollary A.6.
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Lemma 3.2. For any object Y € Cobyg, there exists a bounded harmonic 2-form wy, on Y
such that wy, converges exponentially to ds A X as s — . In particular, wp, — x1(s)ds A\ €

LQ(}/}). Such a harmonic 2-form wy, is unique up to an L?-harmonic form. By [APST75,
Proposition 4.9], the space of L?-harmonic forms on'Y is isomorphic to

Im(H*(Y, Z;iR) — H*(Y;iR)).

3.2. Morphisms. Having described objects in the strict cobordism category Cobg, we
now turn to describe the set of morphisms in this subsection. Since each object Y is
coupled with a closed 2-form w, morphisms must take these forms into account. Given
two objects Y; = (Y;, ¥i, gi, wi, qi), % = 1,2 in Cobg, a morphism

XZY1—>Y2

is a quadruple X = (X, ¢ x, W, [wx]cpt) with the following properties.

(Q1) X is a manifold with corners, i.e. X is a space stratified by manifolds
XoX 150X 90X 3=0
such that the co-dimensional 1 stratum X _; consists of three parts
X_1=(-Y1)u(Ya) uWx.

where Wx is an oriented 3-manifold with boundary dWx = 0Y1 n 0Y,. Moreover,
0Y; = Y, nWx and X_o = 0Y7 u 0Y5. For more details on the definition, see
Definition A.7.

(Q2) W =[—1,1]; x ¥ is the product cobordism of X to itself.

(Q3) v¥x : Wx — W is an orientation preserving diffeomorphism compatible with
and 5. To be more precise, we require that

VYxloy; = 1 : 01 — {~1} x X,

Vxloy, = P21 Y2 — {1} x %,
which also hold in a collar neighborhood of 0Wx. When no chance of confusion is
possible, ©¥x might be dropped from our notations. Such a pair (X, x) is called
a strict cobordism from (Y7,%1) to (Y2, 12).

(Q4) The closed 2-form w; on Y; contains a bit more information than the period class
[w;] € H?(Y;). We first require that

= pa = p € Q(S,iR),

then the triple (w1, i1, ws) determines a class [a] in H2((—=Y7) u W U Ya,iR). [a]
is required to lie in the image

Im <m; - H*(X) —» H*((-Y1) u W U Y?), i]R)),
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where mg : (=Y1) U W U Yy — X is the inclusion map, and let [wx]| be a lift of
[a]. As a result, [wx] generates all cohomology classes in the diagram below:

w(v) s () n] —T s (]

- [wx] ﬁ*m;f[wx] .
\ \ N [wo] >2)[ ]
wa| ———> U2

*>H22)

H?(X)

(Q5) [*QAl] = [*2)\2] € H (Z,’LR)
(Q6) There exists a closed 2-form wy € Q%(X) on X with the following properties:
e W realizes the class [wx] € H2(X,iR);
e Wy = w; (see (P6)) within a collar neighborhood of Y; ¢ X_; for i = 1, 2;
e within a collar neighborhood of W < X_;, Wx = p.
The existence of such a form wyx is equivalent to the cohomological condition
defined in (Q4). Finally, set wy = x1(s)ds A A (with A = ;) and

wx =wx +wy =wx + x1(s)ds A XA on X.
(Q7) For any two closed forms wx and w satisfying the condition in (Q6), they are

said to be equivalent if W, —wy = da for a compactly supported smooth 1-form
a € QY(X,iR). Denote by [wx]ept the equivalence classes of wx.

Example 3.3. The product cobordism X = [-1,1] x Y : Y — Y. In this case, X =
[-1,1]¢ x Y and 9x = Id[_; ), x% is the product map. We obtain wx by pulling back
the 2-form w from Y. O
Example 3.4. Take Y1, Yy € Cobg with Y7 = Y5 =Y and v isotopic to 1. Suppose in
addition that ws — w; = dyb for a compactly supported 1-from b € Q'(Y,iR), then one
may construct a cobordism X : Y; — Ys as follows. Let X = [—1,1]; x Y and ¢x be an
isotopy from 11 to ¥9. Set wx = dx(x(t)b) + w1 where x(t) is a cut-off function such that

Xt)=0ift < —1/2;x(t) =11if t > 1/2. ¢
Similar to the deﬁnition Aof 1’/\', for each strict cobordism X : Y7 — Y5, we obtain a
cobordism between Y; and Y5 by attaching a cylindrical end to X:
X=X Upy [-1,1]s x [-1,00)s x ©: V] — Va.

A planar metric gx on X is a metric compatible with the corner structure (see Definition
A.8). We insist that the metric gy of W = [—1,1]; x ¥ is the product metric

T2dt? + gx
for some constant 1" > 0. One might alternatively normalize T" to be 1 by rescaling the

interval [—1, 1];. For the sake of simplicity, we set "= 1 in the sequel.
The planar metric gx is required to be the product metric

dt* + ds® + g5,
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in a neighborhood (—¢, 0]; x (—1,0]s x X_2 of the co-dimension 2 stratum X_o = (=X)uU.
For a strict cobordism X : Y7 — Y5, gx is also required to be cylindrical near the co-
dimensional 1 stratum X _;:
9xl[-1,-14+exvy = &t + g1, 9x|(1—e1)xyy = d*t + g,
gX|[7171]t><(71,0]sX2 =ds® + gz = d*t+ d%s + gs.

Such a metric extends to a cylindrical metric on X compatible with that of (—}A/l) U )’}2.
When it is clear from the context, we also use gx to denote this extended metric on X.

Although a planar metric gx of X is not encoded in the definition of a morphism

X :Y; — Yo, it is used to define the functor HM, in Theorem 1.5. Nevertheless, the
resulting maps on morphism sets are independent of the choice of gx.

The property (Q5) is also used to find certain bounded harmonic 2-forms on ()’(\' L 9X),
which is crucial for the energy equations in Section 5, c¢f. Theorem 5.1. The next lemma
follows from Lemma 3.6 and Corollary A.15 in which we set

Ye = [_17 1]t x ¥ and Y;) = (—Yl) U Ys.

Lemma 3.5. For any morphism X € Coby, there exists a bounded harmonic 2-form wx
on X such that wx j converges exponentially to ds A A as s — o0 and

(3.2) sqwx,p =0 on (=Y1) U Ya,
s0 wx,p, satisfies the Neumann boundary condition. In particular, wx p — wy € L2()?).
Lemma 3.6. For any morphism X : Y1 — Yo, the class
[dt A #9\] € H*(W, 0W;iR)
lies in the image Im (HQ(X,Yl U Ya;iR) — H2(W, 6W;iR)) where A = \{ = Ag.

Proof of Lemma 3.6. By (P4), take z to be a lift of [*xA] in H!(Y,iR). In the diagram
below, all cohomology groups take value in ¢R:

H'(Y) 0 H'(Y1) @ H'(Y2) ° HY(X,Y1 U Ya)
mi(x) B0 gy sy e H({1) x ) 5 H2(W, 0W)
0

3.3. Relative spin® Structures and Configuration Spaces. Let s5q = (Sstd, Pstd,3)
be the standard spin® structure on Ry x ¥ as described in Section 2 with

Syq = C®AY'Y.

For each object Y = (Y, 1, gy, w, q) € Cobs, a relative spin® structure s is a pair (s, ¢)
where s = (5, p3) is a spin® structure on Y and

@ : (S, p3)|loy — ¥ sstalov
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is an isomorphism of spin® structures near the boundary that is compatible with . The
set of isomorphism classes of relative spin® structures on Y’

Sping, (V)
is a torsor over H2(Y,0Y;Z). There is a natural forgetful map from Spin§(Y) to the set
of isomorphism classes of spin® structures:

Sping(Y') — Spin“(Y), 5 = (s,¢) — s,

whose fiber is acted on freely and transitively by H(3,Z)/Im(H'(Y,Z)) reflecting the
change of boundary trivializations. Any & € Spin§ (Y) extends to a relative spin® structure

on Y, denoted also by 3.

Let (B, ¥,) be the translation invariant configuration on R, x 3 such that the restriction
(3.3) (B*v‘l’*)’Rsfo

on each connected component is defined by the formula (2.6) for any 1 < ¢ < n. Take

(Bo, ¥p) to be a smooth configuration on Y which agrees with (By, @) on the cylindrical
end [0,00)s x X. Recall from (P3) that the closed 2-form w € Q%(Y,iR) defined on Y

extends to a closed 2-form on the completion Y by setting
Wl[—1,m)xx =+ ds A A,
and [w] € H2(Y;iR) is the period class of w.
Consider the configuration space for any k > %:

Ce(Y,8) = {(B, W) : (b,1)) = (B, V) — (By, W) € L3(Y,iT*Y ® 5)}.

Remark 3.7. Since Y is non-compact, the condition that (b,v) € Li includes a mild

decay condition on the section (b,%) on the cylindrical end of Y. It turns out that this
decay is always exponential for solutions to the Seiberg-Witten equations, cf. Theorem

6.2. ¢

Definition 3.8. The perturbed Chern-Simons-Dirac functional on Cx(Y,3) is defined as
1 1 1

(3.4) L,(B,¥) = —f (Bt—Bé)A(FBt-i-FBt)-i-f <DB\II,\I/>+f (B—Bo)'rw. ¢
8 Jy o2y 2 )y

Remark 3.9. L, is the analogue of the gauged action functional Ay in the context of
gauged Witten equations, see [Wan20, Definition 4.1]. O

The configuration space Ck(f/,g) is acted on freely by the gauge group
Gr1(Y)={u:Y > S'cC:u—1eL} (V,C)},
via the formula:
w(B, V) = (B —u ‘du,u®).
The Lie algebra of Gi.q is Lie(Gri1) = Lzﬂ(f/,iR). The exponential map f — el is
surjective onto the identity component G jof Gk 1; they fit to a short exact sequence:

0= Giy1 = Gr+1 — mo(Gr1) = HY(Y,%;Z) — 0.
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The Chern-Simons-Dirac functional £, is not fully gauge-invariant in general:
Lemma 3.10. For any v = (B, V) € Cx(Y,38) and u € Gyir (Y), we have
Lo,(u-7) = Lo(y) = 2r%[u] U e1(S) — 2mifu] U [w])[Y, Y],
where [u] = [“;rf“] e HY(Y,0Y;Z) is the relative cohomology class determined by u and
[w] is the period class of w.

The tangent space at each ~ € Ck(?,g) is naturally identified with Li(f/, iT*Y @ S).
We compute the gradient of £,, with respect to the L? inner product:

1
(3.5) grad Lo,(B, W) = (5 *3 Fpe + p3 L (WT*)g — #3w, DpW).

Hence, a configuration v € Ck(?,g) is a critical point of L, if and only if it solves the
perturbed Seiberg-Witten equations on Y:
Definition 3.11. For any object Y = (Y1, 9y,w,q) € Cobs, the Seiberg-Witten map
defined on Ci(Y,5) is given by (ignoring the perturbation q for a moment)

Su(B W) = (2 ps(Fye — %) — (WT*)y, D).

2
and the equation
(3.6) Su(B,¥) =0
is called the 3-dimensional Seiberg-Witten equations. &

Remark 3.12. The reference configuration (By, V) defined in (3.3) is the unique R-
translation invariant solution of (3.6) on Ry x X up to gauge. &

The downward gradient flowline equation of L,

%(B(t), \I’(t)) = —grad Ew(B(t)v \Il(t))

can be cast into the 4-dimensional Seiberg-Witten equations:

' D}® =0,
on Ry x ¥ with A = 4+ B(t),® = ¥(t) and wy = 7*w where 7 : Ry x Y — Y denotes the
projection map. This corresponds to the product cobordism [—1,1] x Y in Example 3.3.

In general, let (A, @) be the C-translation-invariant solution on C x ¥ with

0
(3.8) Ay =dt®a+B*,CI>*(t)=\I/*.
Let X = (X, ¥x, W, [wx]ept) : Y1 — Y2 be a morphism in Cob, and suppose X: 1’}1 — }72
extends to a relative spin® cobordism:

(3.9) (X,8x) : (Y1,81) — (Y2,%9).
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Remark 3.13. For a relative spin® cobordism, we insist that identification maps
(X,EX)]};Z_ ~ (Y;,5:),i = 1,2
are implicitly baked in the definition. &

Let (Ao, @) be a reference configuration on X whose restriction on [—1,1]; x [0, 00)5 x &
agrees with (A, ®). For each k > 1, define

Ch(R,5x) = {(A,8) : (a,0) = (4,) — (A, Do) € LI(R,iT* R @ 57)}.
In this case, we take wx € QQ()/(\', iR) to be the closed 2-form constructed in (Q6) and
extended constantly over the cylindrical end [—1,1]; x [0,00)s x 3; so for some € > 0,
e Wy = wp on ?1 X [=1,—=1+ €)

e wy =wg on Yy X (1 —¢, 1]
e wy =pu+dsAdon [—1,1]; x [0,00)s x X.

Then the left hand side of (3.7) defines a smooth map:
(3.10) Fx : Ce(X,5x) > L (X, isu(ST) @ S7)

called the Seiberg-Witten map on X. For 0 < J < k, let V; be the trivial vector bundle
with fiber L3 (isu(S*) ® S™) over Cyx(X,5):

V; 1= L3(isu(ST) @ S7) x C(X,5).
The Seiberg-Witten map §x defines a smooth section of Vi_1 — Ck()A(,’s\X).

3.4. The Strict spin® Cobordism. Now let us introduce the strict spin® cobordism
category SCobg, which plays the central role in Theorem 1.5:
e each object of SCoby is a pair (Y,5) where Y is an object of Cob, and § € Sping (V)
is a relative spin® structure on Y;
e for any objects (Y1,51) and (Y2, 55),

Homgcob, ((Y1,51), (Y2,82)) = Homcop, (Y1, Y2).

3.5. Homotopy Classes of Paths. To define the monopole Floer homology HM . (Y,3)
for each object (Y,5) € SCobg, we will look at the moduli spaces of the Seiberg-Witten
equations (3.7) on Ry x (Y,5) and define a Floer chain complex:

The underlying idea is an infinite dimensional Morse theory in the quotient configuration
space:

Bi(Y,5) := Ci(Y,5)/Gr41(Y).
For any a,b € Cx(Y,5), the relative homotopy classes of paths w1 (Bg(Y,5); [a],[b]) is a
torsor over

71 (Be(Y,3); [0]) = 70(Grs1) = H(Y,0Y; 7).
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Moreover, for any [y] € 71 (Bx(Y,5); [a], [b]), the relative loop space Qp)(Bx(Y,5); [a], [b])
in the class [v] is simply connected, since
mo(By(Y,5); [b]) = m1(Grr1) = {0}.
There are three additional ways to think of a path 4 : [—1,1] — B(Y,5) with §(—1) = a
and §(1) = b, and we shall use them interchangeably:
(1) a path 41 : [-1,1] — Cx(Y,5) that connects a and w - b for some u € ng(f/);
(2) a configuration v on the 4-manifold I x (Y, s) with I = [—1, 1], such that 7|{71}><§7 =
a and 7|{1}><ff = u - b for some u € Gyyq (V);
(3) a configuration +' for a relative spin® cobordism
()2 =1x ?7§X) : (}/},3) - (?7/5\)
such thé’l\t '7|{—1}><f/ = a and 7|{1}X? = b. Indeed, all such relative spin® structures
on I x Y form a torsor over
H*(IxY,0(IxY))=HYY,0Y;Z) x H'(I,0I;Z) =~ H(Y,0Y; Z).

The last standpoint makes it easier to think about a general morphism X : Y; — Ys. To
make HM . into a functor from SCobg to R-Mod as in Theorem 1.5, we attach cylindrical
ends to X and obtain a complete Riemannian manifold X:

X = <(—oo, —1]; x ﬁ) uUXu ([1,oo)t x f@).
The closed 2-form wx extend over X by setting
(3.11) wx =wy on (—0, —1]y x Y1; wx = wg on [1,0); x Ya.
The goal is to analyze the Seiberg-Witten equations (3.7) on X and construct a chain
map:
(3.12) CF4(X) : CF4(Y1,51) — CF4(Y2,59)
that is independent of the choice of

e the planar metric gx compatible with (gv;, gv,, 9%);

e the closed 2-form wy € w?(X,iR) in the class [wx]ep;

e any auxiliary perturbation of (3.7) defined in Subsection 14.1;
up to chain homotopy. To do so, we have to take into account of all isomorphism classes
of relative spin® cobordisms:

Sping; (X;51,82) := {all possible (3.9) : (Y1,5;) — (Y2,82)} modulo isomorphisms

which is a torsor over H2(X,0X;Z). Indeed, any two relative spin® cobordisms §x.1,5X,2
that cover the 4-manifold X with corners are related by a complex line bundle Lis — X:

S§x2=5x1® Lia,
and a trivialization L5 = C is specified along 0X. Some of elements of Spin§ (X;§1,82)
may arise from different underlying spin® structures, but they all contribute to the chain
map (3.12) and will not be separated from each other. For any a; € Ci(Y;,5;), i = 1,2,
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an element of Spin§, (X;5;,82) can be viewed a homotopy class of X-paths that connect a;
and as.

4. THE QUOTIENT CONFIGURATION SPACE AND SLICES

Configurations in Cj,(Y,8) and Cy(X,5x) are required to converge to a fixed limit in
the spatial direction, so by definition, they are never reducible, i.e. ¥ or ® £ 0. This
prevents us from finding a global slice of the gauge action as in [KMO07, Section 9.6] over
the non-compact manifold Y or X. Nevertheless, local slices always exists. In this section,
we prove that:

Proposition 4.1. For either (M,3y) = (Y,8) or (X,3x), the quotient space
By (M,5n) := Cu(M,501)/Grr1 (M)
is a Hilbert manifold when 2(k + 1) > dim M and k € 7Z.

It is clear from the formula
(ww—1)=@w—-1Dw-1)+w—-1)+ (v—1), Yu,v € Gx41(M)

that Gr.1(M) is a Hilbert Lie group when 2(k + 1) > dim M. Following the book [KMO07,
Section 9], we base the argument on a general principle:

Lemma 4.2 ([Pal68],[KMO07] Lemma 9.3.2). Suppose a Hilbert Lie group G acts smoothly
and freely on a Hilbert manifold C, and the quotient space C/G is Hausdorff. Suppose
that at each c € C, the differential

de . T.G - T.G
has closed range, then C/G is also a Hilbert manifold.

It remains to verify the condition of Lemma 4.2.

Lemma 4.3. For either (M,3y;) = (Y,3) or (X,5x), the quotient configuration space
Bi.(M,5,) is Hausdorff.

Proof. Suppose we have a sequence of configurations v, = (4,,®,) € Cx(M,s) and a
sequence of gauge transformations u,, € G+1(M) such that

Yo — v and up -y —
for some v = (A4,®) and ' = (A, ®'). We wish to show that u -~ = 4/ for some
u € Gry1(M). We prove that v, := 1 —wu,, has uniformly bounded L%H norm, so there is a
weakly converging subsequence among {v,,}. Let v be the weak limit and define u := 1—wv.
We begin with the L?-norm of v,. Since |[vy]le < 2, |vn]3 contributes to a bounded

integral over any compact region of M. It suffices to estimate |v,|3 over the cylindrical
end of M. Note that

[on®@ll2 = [(1 = un)®l2 < [|[® = @2 + |2 — tn®p2 + Jun(Pn — @)z,

which is uniformly bounded. As s — o0, ® approximates the standard spinor and is
non-vanishing everywhere. It follows that [lv,|2 < C for some uniform C' > 0.
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To deal with derivatives of vy, let w, = u,'du,. Then HwnHLi < | - — %HLi <
|y — 7,"Li + 1 when n » 1. The estimate for |[V'v,||;2 (1 <1 < k+ 1) now follows from
the relation

Vv, = Vi, = w, — vy - Wy

and an induction argument. If we already know 2k > dim M, then Li is a Banach algebra
itself; otherwise, the first a few steps in the induction requires special treatments. For
instance, if dim M = 3 and k£ = 1, then we have to bound

|V, for 2 < p < 6 and |V, a.
If dim M = 4 and k& = 2, then we have to bound
|V, for 2 < p < o0, |V, for 2 < p < 4 and | V3o

For the Sobolev embedding theorem on cylinders, see [KMO7, Section 13.2]. O

Let Ty be the tangent space of Cx(M,55). For each configuration v = (4,®) €
Ci(M,5nr), let d be the map obtained by linearizing the action of G411 (M), extended to
lower Sobolev regularities (0 < j < k):

dy: L?,(M,iR) — L3(M,iT*M & 5%) = T; ,
[ (=df, f®).
Let Jj < Tj~ be the image of d, and K; . be the L?-orthogonal complement of J; ,:
Kjni=1{v € Tjn : (v,dy(f))r2ary = 0,¥f € L2, (M,iR)}
= {v = (6a,6¢) € LF(M,iT*M @ S*) : d%(v) = 0,{a, ) = 0 at dM}
where 71 is the outward normal vector at M and
d¥: L3 (M,iT*M & S*) — L3 | (M,iR)
(0a,0¢) — —d*da + i Re(i®, d¢).
is the formal adjoint of d,.

Lemma 4.4 (cf. [KMO07] Proposition 9.3.4). As ~ varies over Cp(M,5r), Jjny and Kj

form complementary closed sub-bundles of T;, and we have a smooth decomposition
Tileyuz) = T @K;,0< j < k.

In particular, TCx,(M,s) = Tr, = T ® K.

Proposition 4.1 now follows from Lemma 4.3 and 4.4.

Proof of Lemma 4.4. For any v = (da,d¢) € T;~, we need to find the unique element
f e L?H(M, iR) such that v — dy(f) € Kj,. Such an element solves the Neumann
boundary value problem:

' ddf, iy = {(0a,7iy at OM.
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The left hand side of (4.1) forms a Fredholm operator (1 < j < k):

0

(4.2) (A + @2, —=
01 | 01

)i L3 (M,iR) — L2 (M,iR) x L7, 5(0M,iR)

which is in fact invertible. If M is compact, this follows from [Tay11, Proposition 7.5]. In
general, one may start with the special case when

(M, ®) = (Ry x X, ¥,) or ([—1,1] x Ry x X, D)

using Fourier transformation on the real line R, and the positivity of |[¥,|2. To show (4.2)
is Fredholm, apply the parametrix patching argument. To compute the index of 4.2, note
that the restriction map

0 . ,
2|, L3 1(MAR) — L3, 5 (0M,iR)

is surjective, and the operator
A+ |®|2 : {f € L3(M,iR) : {df, @) = 0} — L*(M,iR)

is positive and self-adjoint. This proves that the operator (4.2) is invertible.
Alternatively, one may follow the proof of [Tayll, Proposition 7.5]. Details are left as
exercises. O

We record the next proposition for convenience:

Proposition 4.5. Over the configuration space Ck(}/},ﬁ), the gradient (3.5) of the Chern-
Simons-Dirac functional L, defines a smooth section of Ky_1 — Cx(Y,5) when k > 1.

5. ENERGY EQUATIONS

This section is devoted to the energy equations of the Seiberg-Witten equations (3.7)

on X , which will play an important role in the proof of the Compactness Theorem 6.1
in Section 6. In particular, it gives property (K1). The main results of this section are

Theorem 5.1 and Proposition 5.4. The existence of bounded harmonic forms on X (cf.
Lemma 3.5) is essential here.

5.1. The 4-Dimensional Case. Following the book [KMO07, Section 4|, we prove an
energy equation associated to the perturbed Seiberg-Witten equations (3.7):

Theorem 5.1 (cf. [KMO07] P.593). For any morphism X : Y1 — Yy in the strict cobordism
category Co/l\)s, choose a planar metric gx on X and consider a relative spin® cobordism
(X,sx) : (Y1,51) — (Ya2,82). Then for any configuration v = (A, ®) € C(X,sx), the
L2-norm of the Seiberg-Witten map §x (A, ®) can be expressed as

Lz Fx (A, D)2 = Eunl(A, D) — Erop(A, D),
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where

1 S
(5.1)  Eu(A, D) = j 4|FAt|2 + VAR + |(@D*)g + pa(wh)|? + Z|<1>|2 — (Fyt,wx)
X

- JA<FAt7WA —WX,h) — JA Fyt A #4wx b,
X X
1
(5.2) c“:top(A, (I)) = 2£w1 (Bl7 \Ill) — 2£w2 (BQ, \112) + Z JA FA6 N FA6 — JA FA6 N WX,
X X

and (B;, ¥;) = (A, @), are restrictions of v at Y; fori=1,2. Here, wx = wx +wy is the
closed 2-form constructed in (Q6) with wy = x1(s)ds A A. The bounded harmonic 2-form
wx,p, 15 subject to the Neumann boundary condition and wy —wx p, € LQ()A(). Its existence
is guaranteed by Lemma 3.5.

Remark 5.2. Let us explain why (5.1) is a useful expression. Errors terms in the second
line of (5.1) are bounded below by
1 2
~1elFa ez — (Ao, wx, gx)

for some constant C'(Ag,wx, gx) > 0.

The first line of (5.1) is consistent with the local energy functional Ey,(A, ;) in
Definition 2.3. Indeed, over the cylindrical end I x [0,0)s x 3, (5.1) becomes (with
I=[-1,1]):

1
63) [ G VAR (@ 4 )P~ ER)
Ix[0,00)s IS
where w = 1 + ds A A. The last term in (5.3)
SRG A
>

is always zero. Indeed, if we writea = A—Ag € LQ()A(, iT*)A(), then Fft = 2dxa is an exact
form on the surface 3. Since p is harmonic on ¥, their inner product is always zero. Hence,
(5.3) has a definite sign. The integral in (5.1) over the compact region X = {s < 0} ¢ X
can be treated in the usual way. We summarize this remark into a lemma. O

Lemma 5.3. Under the assumption of Theorem 5.1, there exists a constant Co(Ap, wx, gx)
independent of (A, ®) such that

1 S
Ean(A, ®) + Cp > JX gl Facl® + [Va®® +[(@0%)g + pa(wi)|” + ]2
Proof. Note that
_ _ 1
| Faeml = 1| Fae0l < FgIFw gz, + Caldocox. ). 0

Proof of Proposition 5.1. Let 79 = (Ao, o) be the reference configuration in C()’(\',EX).
For convenience, take its restrictions at the boundary

(Bio, ®i0) = Y0ly, € C(Vi)
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as reference configurations in the definition of £, for i = 1,2. It suffices to prove the

theorem when the section

(a,0) = (A, @) — (Ao, ®o) € CX(X,iT* X ® ),

is compactly support, and the rest will follow by continuity. Let Xg = {s < S} ¢ X be

the truncated manifold and Y; ¢ = Yin X 5. The boundary of Xg consist of three parts:

_Y1,57Y2,S and {S} x W = [—1, 1]t X {S} X .

Since (a, ¢) is compactly supported, we may discard any boundary integrals over {S} x
W < 0Xg when S » 1. By the Lichnerowicz-Weizenbock formula [KMO07, (4.15)], we have

1
(5.4) f IDY®[? = f VP + S{pa(F1)P, ) + Z@IQ
Xs

Xs
—f <D31@1,@1>+J <D32(I)2,‘I)2>.
Y1 s Ya s

Now consider the first equation of (3.7):

1 1 1
| 1gmitE =200 — @8NP = [ LEE - S0uER.®) + (007 + )
S

Xs
1
(5.5) —J FAtAFAz—Qf <FAt,w;r(>.
4 Xs Xs
Only the second line requires some further work. Note that

1f 1 1
—— FAtAFAt——j Ft/\Ft—f a/\(FAz—i-FAt).
4 Jxg Ay M7 T2 Jayg 0

Finally, using the relation wx = wx + wy, we compute

2 f (Faoywh) = f (Fpeswx + tax)
Xg Xs

= f (Fat,wx) + (Far,wy) + (Fae, xawx) + 2da, #4wx)
Xs
=J1+J2+J3+J4.

Ji and J3 already show up in (5.1) and (5.2). As for Jy and Ju, note that

Jy = —2f awazj (Bt — B, /\wl-l-J (BY — B) A wa,
X Yi,s Y25

Jo

<FAt,w>\> = — Fut A *qWX p T+ <FAt,W)\ — wX7h>.
Xg Xg Xg

Since wx ;, is harmonic, the first term in J3 is a pairing in cohomology:

[iFAt] U [% sy wyn] € HY(X,0X) << HX(X,Z) @ H2(X, Y1 U Ya),

so one may replace A by Ay. Now the energy identity follows by adding (5.4) and (5.5)

together.

O
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5.2. The 3-Manifold Case. Let I = [t1,t2];. In the special case when X = IxY:Y — Y
is the product morphism Theorem 5.1 takes a simpler form.

The 4-manifold X = T X Y i is furnished with the product metric. Let wxy = m*w be the
pull-back of w where 7 : X — Y is the projection map. Any spin® connection A on X can
be written as

(5.6) A= %+B() c(t)dt ® Idg .

where B(t) is a path of spin® connections on (Y, §) and c(t) € Lz(f/, iR). Any configuration
v € (A, ®) € Cp(X,5x) gives rise to a path §(t) = (B(t), ¥(t)) in Cy_12(Y,5) by setting

U(t) = By, 5

Moreover, v solves the Seiberg-Witten equations (3.7) on X if and only if the path
(3(t), c(t)) forms a downward gradient flowline of L,:

d

271(1) = = grad Lo, (v(1)) = dy ) e(t)-

~

Let Ag = % + By be the reference connection on ()A( ,5x) = I x(Y,s). The curvature form
Fy does not involve any dt-component, so F' Ay A Fap =0,

Proposition 5.4. For any configuration v = (A, ®) on (X,8x) = I x (Y,3), the L®-norm
of the Seiberg-Witten map §x (A, ®) can be expressed as

[ x4 P = £un(.8) - (2. 0)
where Eop(A, P) 1= 2L,(F(t1)) — 2L, (F(t2)) and
(67)  EmlA®) f E peO g, + 8rad LoD 5,
= GNP TP @07+ pa ) + IO~ (Fpr
The last term can be written as
LX?<FAMW> = LX?<FA’5=W> + LX?<FA%W,\ —wp) — || LA/ Fpe A w3wh,

where w = W+ wy and wy = x1(s)ds A A. The bounded harmonic 2-form wy, is constructed
by Lemma 3.2 such that wy — wy, € L?(Y). In particular, for any (B, ¥) € C1(Y,5),

1 s
lgrad Lo (B, W)|2, 5, = f JIFse 2+ (VW2 4 (W09 + py() 2+ 2|02 = (Fpe, ).
Y
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6. COMPACTNESS

6.1. Statements. With all machinery developed so far, we are ready to state anc}\ prove
the compactness theorem for the (unperturbed) Seiberg-Witten equations on R; x Y. The
result easily generalizes to a complete Riemannian manifold X induced from a morphism
X :Y; — Yo in Cobs. Nevertheless, we will focus on the first case for the sake of simplicity.
The analogous results for perturbed equations will be addressed in Section 9, after we set
up tame perturbations in the next part. Now let

Yo 1= (Ag, o) with A = % + Bo, ©(t) = Vo,

be the reference configuration on R; x }A/, then it agrees with the standard configuration
(Ay, @) over the planar end Ry x [0,00)s x X. For any k > 2, define

Crrtoc(Re x (Y,5)) = {(A,®) : (A,8)|,, ¢ € Ck(I x (Y,3)),V finite interval I < R;}

and G4 1,10c(R¢ % (f’, 5)) in a similar manner. We will set up the Fredholm theory of moduli
spaces in a different way in Section 13. For now, let us stick to these loosely defined spaces.
For any <y € Cj joc and I < Ry, define the analytic energy £,,(7; I) over the interval I to

be the integral of (5.7) over I x Y and

gan(’Y) = Ean(’ya Rt)

One standard assumption below is the finiteness of the total energy &u,. Since Eun(7v; 1)
is alway non-negative, it implies that

Ean(V; 1) < Ean(1;Ry) < 00 for any I < Ry.
The primary result of this section is the compactness theorem.

Theorem 6.1. Suppose {v, = (An, Prn)} < Ciioc is a sequence of solutions to the Seiberg-
Witten equations (3.7) on Ry x Y and their analytic energy

Ean(Mm) 1= Ean(m, Ry) < C

is uniformly bounded by a positive constant C > 0. Then we can find a sequence of gauge
transformations uy, € Gii110c(Re X Y') with the following properties. For a subsequence
{71} of {un(vn)} and any finite interval I < Ry, the restriction of each ), on I XY

Vé‘lx?
lies in Cy(I x (}7,3)) In addition, they converge in L3 (I x }A/)—topology for any 1 = 2.

The main difficulty is to deal with the cylindrical end of Y and the proof relies on the
exponential decay of L%—norms. To state the result, recall that Q, g (n € Z, S € Ry)
defined in (2.4) is a bounded sub-domain of C with smooth boundary, which is centered
at (n,9) € Ry x R;.
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Theorem 6.2. For any C > 0 and l € Z>1, there exists constants C(}A/,g), M,;(C, f/,g) >0
with the following significance. For any solution v = (A, ®) € Cy 10c(Ry X Y') to the Seiberg-
Witten equations (3.7) on Ry x (Y,8) with analytic energy Equn(A, @) < C, we can find a

gauge transformation u € Gry1 j0c(Ry x Y') such that
—¢S
(6.1) ()~ oz, (0 g5y < Mie™5,

foranyl>1,neZ and S > 0. Here vy is the reference configuration in C joc(Ry X f/)

Theorem 6.1 is an easy corollary of Theorem 6.2.

Proof of Theorem 6.1. It suffices to prove the case when I = [—2,2]. The rest will follow
by a patching argument (cf. [KMO7, Section 13.6]). By Theorem 6.2, for any ~, in that
sequence, we may assume the exponential decay (6.1) holds for 7, —~y . Take S » 1 and
let Ys = {s < S} be the truncated 3-manifold.

With the energy equation in Proposition 5.4, the classical compactness theorem [KMO7,
Theorem 5.2.1] implies that a subsequence of {7,} converges smoothly (up to gauge) in
the interior of the compact manifold I x Ys. Suppose {u, : I x Yg — S} is the sequence
of gauge transformations, then the restriction

Uy I x [S—1,8]sx ¥ — S

must lie in the same homotopy class when n » 1 (by (6.1)). We may correct {u,} so their
restrictions lie in the trivial homotopy class. By a patching argument, we extend wu,, over
the whole space I x Y by setting u, = 1 when s > S+ 1. By Theorem 6.2, a subsequence
of {uy(ys)} converges in fact in L?-topology on [—2 +€,2 — €] x Y for some small € > 0.
This completes the proof of the theorem (some details are left to the readers). g

The proof of Theorem 6.2 will dominate the rest of the section.

6.2. Decay of Local Energy Functional. Recall from Definition 2.3 that the local
energy functional of v = (A4, ®) over Q, ¢ = H2 is defined as

1
Ean(A, ®;00) = LJ HEw? + Va0 + [(90%)o + pa(w™)[2
P

with w = p + ds A X\. We wish to first get an estimate on &, (A, ®;2, g) for a solution
(A, ®) to (3.7) on Ry x Y when S » 1. The main results are as follows.

Theorem 6.3. For any C,e > 0, there exists a constant Ry(e, C, }A/,’s\) > 0 with the
following significance. For any solution (A, ®) € Cx,(RyxY") to the Seiberg- Witten equations
(3.7) on Ry x (Y, 5) with analytic energy Eun(A, ®) < C and any S > Ry, we have

Ean(A, ;. 5) < e

The uniform decay in Theorem 6.3 can be improved into exponential decay using The-
orem 2.5:
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Theorem 6.4. For any C > 0, there exists constants C(f/,’s\),Mo(C,}/},E) > 0 with the
following significance. For any solution (A, ®) € Cr,(RyxY") to the Seiberg- Witten equations
(3.7) on Ry x (Y, 5) with analytic energy Eun(A, ®) < C, anyne€ Z and S > 0,

gan(Aa P; Qn,S) < MOe_CS-

The proof of Theorem 6.3 will dominate the rest of Subsection 6.2 and it relies on
Theorem 2.4 and 2.6 in an essential way. Let us first state a lemma in which we set
QS = QO,S-

Lemma 6.5. Let J = [-3,3] o I = [-2,2]. For any ¢ > 0, there exists constants
Ro(Y,€),n(Y,€) > 0 with the following significance. For any solution (A, ®) to the Seiberg-
Witten equations (3.7) on J x (Y,5) with Egn(A, ®@;J) < n and any S > Ry, we must have

Ean(A, @;Qg) <e.

Proof. Suppose on the contrary that there exists a sequence {(A,,®,)},>1 of solutions

to the Seiberg-Witten equations (3.7) on J x (Y,5), a sequence of numbers 7, — 0 and
R,, — oo such that

Ean(A, ®; ) <ny and Eqgp(An, ©p; QR ) = €.
By Proposition 5.4 and Lemma 5.3,
Ean(An, @p; J x [0,00),) < C4
for some uniform constant C, > 0. Let 8, = (A4}, ®})(t,s) = (An, Ppn)(t,s — Ry) be the

translated configuration defined on J x [—R,,, R,] x 3. Since we have a uniform bound on

gan(ﬁm J x [_Rm Rn])7

the classical compactness theorem [KMO07, Theorem 5.2.1] ensures that there is a subse-
quence of {3,} that converges in C;°. topology to a solution Sy, = (Aw, Pyy) on J x Ry x X.

loc
On the other hand, if we write B, as

(7(07 C(t)) = (B<t)7 \I’(t), C<t))7
then Proposition 5.4 implies
Ory(t) + dyy) c(t) = —grad L,(3(t)) = 0,

since 1, — 0 as n — 00. By making S, into temporal gauge (i.e ¢(t) = 0), we conclude
that 4(t) is independent of ¢ € I and solves the 3-dimensional Seiberg-Witten equations
(3.6) or (2.5).

This is the place where the property (P7) is used. By Theorem 2.6, up to gauge, ()
has to be R,-translation invariant, so

San(ﬁoo,]- X [—3,3]) =0.
This contradicts the assumption that &,y (Ay, ®n; Qg, ) = € for each n. O
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Proof of Theorem 6.3. Suppose on the contrary that there exists a sequence
{Bm = (Amv (bm)}mzl c Ck,loc(Rt X ?)

of solutions to the Seiberg-Witten equations (3.7) on R; x (}7,3), a sequence of integers
Ny, = 0 and numbers R, — o0 such that

5an(ﬁm) < C and gan(Ama Dy, Qnm,Rm) = €.
Let J, = [n — 3,n + 3] for each n € Z. For each m, define the significant set of 3, as
Kp={neZ:EmnBm,Jn) >nl,

where 7 = n(e, Y, §) is the constant obtained in Lemma 6.5. Then n,, € Kp,. Since there
is a uniform upper bound on &, (B, Ry), we know that

| K| < C1:=6C/n.

By passing to a subsequence, we assume |K,,| are the same for all m. Place elements of
K, in the increasing order:

al' <ay' <---<apt, k=|Kpl
By passing to a further subsequence, we require that lim,, .« |a]}; — a]"| exists (either
finite or infinite) for each 1 < ¢ < k and it is infinite precisely when 7 is one of

0= —1<i] <ig<---<ip<ipyq:=k.

m
1541

B = (Ap, @7y,) with (Ay,, ©1,)(8,5) = (A, @) (t — 1o, s — B

Let N = maxo<j<imso0 |a]”, — a?; +1|- Now consider the translated configuration

defined on Ry x [—Ry,, Ry,] x 3. What we have shown so far implies that

o Ean(Bl,,[—N, N|; x [—=Rp, Rn]s) is bounded above by a constant Cy independent
of 8/,. This follows from energy equations and the assumption that Eq,(8m) < C.

e For any j € Z with |j| > N and any S € Ry, Eumn(B),,Qj,5) < € when m » 1.
Indeed, by the choice of N, when m » 1, n,, + 5 ¢ K,, and R, » Ryp — 5. Now
apply lemma 6.5

By the classical compactness theorem [KMO07, Theorem 5.2.1], up to gauge, a subse-
quence of {3} will converge in CS -topology to a solution Sy = (A, Py) defined on
R; x Rg x 3. Moreover, we have the following estimates on its analytic energy:

e For some large constant M > 0, Eun (B, 2j,5) < € whenever |j| > N or |S| > M;
L4 ga’n(/B007 [_Na N]t X [_M’ M]S) < OO?
i gan(/BoOa Q0,0) 2 €.

Now we draw a contradiction from Theorem 2.4 which rules out such solutions. O
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6.3. Decay of L%—norm. Having addressed the exponential decay of the local energy
functional
gan (A7 (I); Qn,S)
in Theorem 6.4, let us estimate the L?-norm of (A4, ®) over the sub-domain ©,, g in terms
of Ean(A, ®; 8, 5). Aside from Remark 5.2, this is the second reason why the local energy
functional is useful. For the sake of simplicity, let us state the results for the compact
domain
Qo c[-2,2]; xR C
defined in (2.3). Let M = Qg x X. Recall that 7, = (As, ®x) defined by (3.8) is the
standard configuration on C x ¥. For any smooth v = (A, ®) € C(M), set (a,d) = v — 7«
and consider the gauge fixing condition
(6.2) { dj, (a, ?) = —d*a + iRe{¢,iPy) =0
{a,7iy =0at oM.
The proof of Theorem 6.2 requires three additional lemmas, summarized as follows:
e Lemma 6.6: put «v into the Coulomb-Neumann gauge slice of vy;
e Lemma 6.7: once 7 is in the slice, estimate the L%A*—norm of (a,¢) =y — % in
terms of Eqn (75 Q0);
e Lemma 6.8: once + is in the slice, estimate the LZA*—norm of (a,9) = v — 7« in
terms of & (7y; Qo) for any [ > 1.

Lemma 6.6. There exist constants ey, Cy > 0 with the following significance. For any
configuration v € C(Qy x X) with

(6.3) Iy =z, ) <€

then we can find a smooth function f : M — iR such that el -~ satisfies the Coulomb-
Neumann gauge fizring condition (6.2). Moreover,

I = lag ,, any < Colr = wlag ,, any

Proof. Let K2 be the subspace of 73, = L3(M,iT*M @® S™) subject to the gauge fixing
condition (6.2). Consider the non-linear map:
U : L3(M,iR) x K2 — Tz,
(f.(a,9)) = (a—df,(ef —1) @y +e - 9).

The linearized operator DyU of U at (0, (0,0)) is invertible. Now our lemma follows from
the implicit function theorem. O

Suppose now that v already lies in the Coulomb-Neumann gauge slice of ;. The next
step is to estimate |(a, ¢)HL§ . in terms of the local energy functional Ean(A, @; Q).
sk

Lemma 6.7. There exist constants €1, C1y > 0 with the following significance. For any ~y
subject to the gauge firing condition (6.2), if |(a, ¢)HL% L, <c¢1, then
[ERt

H(a7 (b) H%%,A* < Cl : gan(77 QO)
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Proof. Consider the non-linear operator:
Fla,¢) = F1 + Fa where
Fi(a,¢) = (da,Va, ¢+ a® Py, (P:0™ + )0, d3, (a,9)),
Fala,¢) = (0,a® ¢, (¢¢™)o,0),

so F is the linear part of F and |F(a, ¢) H%Q(M) = Eun (7, Qo) by Definition 2.3. Using the
identity

[(@20" + ¢@L)ol* + |Tmdg, ®)[* = @ [6]%,
we calculate that

|71, &)z ar) = Idal3 + |d*al3 + |Va, 8l3 + [a® D3 + [[]|P4]]3 + K3 where

K3 =2Re JM<VA* $,a ® i) — (o, (d*a)Ps)

_ 2Rej 0 ((6,Bs) - a) + (a® b, Va, B, = 0.
M
In the last step, we used the facts that ®, is V4, -parallel and {a,7) = 0 at 0M. Hence,

”]-'1 (a, gb)HLQ(M) = ” (CL, ¢)HL%A* )

for some ¢; > 0. Finally,

2 a
172 > 1l ~ 1Bl = eal(@ )iz, —mal@.9)l3 > a0z,
if ||(a, qb)HL? LS c1/2mg, where mg is the constant that appears in the Sobolev embedding
[ERt
L3 x L? — L% O

Now we come to estimate the LZ-norm of (a, ¢). Consider a closed subset € = Qg with
a smooth boundary such that

(1,1 x [1,3] © (@)° < % < (2)°.
Lemma 6.8. There exist constants €, Cy, > 0 for each k = 1 with the following signif-

icance. For any smooth solution v € C(M) to the Seiberg- Witten equations (3.7), if v is
subject to the gauge fizing condition (6.2) and |(a, gb)HL%A () < €k, then
sk

(a, d)I72

k,

Ay (2xE) < G Ean(7, o).

Proof. The case when k = 1 is settled in Lemma 6.7. For k£ > 1, this follows from the
standard bootstrapping argument [KMO07, P.107]. To illustrate, consider the case when
1 < k < 2. Take a cut-off function y4 such that

x4 =1 on Qf; suppxs < (20)°.
The section v := (a,¢) € C°(M,iT*M @ S) is subject to a non-linear elliptic equation:
Dv +v#v =0
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where # stands for a certain bilinear form that involves only point-wise multiplication.
By Garding’s inequality, for any 0 < n < 1,
Ixavlz, o) < [DOav)lLzany + [ollz < malvlze + [(xav)#o 2

< mallolzz +mslxavlzz, o]z

If |v] g2 < 1/(2ms), then we use the rearrangement argument to show that

HUHL%+W(Q{)><E) S HX4UHL%+W(M) < 2mylvlp2 < 2man/C1 - \/Ean (7, D),
so we set €14, = min{er,1/(2ms5)}. In the last step, we used Lemma 6.7 to estimate
[v] 12, in terms of &y, (v, Q). When k > 2, we need more cut-off functions to separate
Q from Qp and use inductions. In fact, we can take
€x = min{eg, 1/(2ms)}
for any k > 1. O
Proof of Theorem 6.2. We divide the proof into three steps. Lemma 6.6 and 6.8 will be

used only in the last step. In Step 1 and Step 2, we arrange so that the assumptions of
these lemmas can be satisfied.

Step 1. By the classical compactness theorem [KMO07, Theorem 5.2.1], for any € > 0,
we can find a constant n(e) > 0 with the following property. Under the assumption of
Theorem 6.2, if £, (7, Qo) < n(e€), then there exists a gauge transformation u’ : Qy — S*
such that

Ju' () = ’Y*HL%(QBXZ) <€
At this point, we have no controls of the function n : Ry — R,.

Step 2. We wish to find a gauge transformation ui € Gr1 10c(Ry % f/) such that

. €]
(6.4) J1(3) = o1z, .55 < minfen, -

for any n € Z and S » 1, where ¢y and ¢; are positive constants constructed in Lemma
6.6 and 6.8. (6.4) is provided by the uniform L* decay of the local energy functional. Let
S =m € Z=g be an integer and apply Step 1 to the domain

Qym, V€ Z,m > Ry(n(e), C),
where Ry is the constant obtained in Theorem 6.3. We find gauge transformations uy, ,, €
G(Qpm x X) such that

|t m () — ’YO”L%(Q;LMXE) <€

Here €], ,, is the translated domain of 0 < Qo:
Q= {(t,s) : (t—n,5 —m) € Q} < Q.

The collection of domains {(€2;, ,,,)°} still forms an open cover of Ry x [Ro+1)s x X. By a
patching argument (cf. [KMO7, Section 13.6]), we can find a global gauge transformation
uq such that

lur () — VOHLf(Qn,mxz) < Nie.
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for a constant N; > 0. Then one may achieve (6.4) by starting with e small enough.

Step 3. Now apply Lemma 6.6 to u;(y) on each Qy,, with m > Ry. We find some
smooth functions fy, m : Qpm x X — iR such that

lefmm - ug (y) — VOHL;A*(Qn,mxz) < el uy(y) — VoHL;A* (D %)
< Colur(v) =01z, (@umxs) S €

and efrm -1 () lies in the Coulomb gauge slice (6.2) of 7. Using Lemma 6.8 and Theorem
6.4, we estimate the L12 A,-horm of the resulting configuration:

Hef"’m . Ul('}’) - ryOH%lQA* (Q,n,mxz) < Cl : gan(’% Qn,?ﬂ) < CZMOe_Cm'

Finally, using the patching argument once again, we find a global gauge transformation
© € Git1,0c(Ry X Y) such that

Hu(’Y) - ’YOH%?’A* (Qnm xX) < NQCZMOQ_Cm

for a constant Ny > 0. This completes the proof of Theorem 6.2. 0
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Part 3. Perturbations

In order to make the moduli spaces on Ry X Y smooth and define the Floer homology
of the 3-manifold (Y, 0Y = ¥), a suitable perturbation £, = L, + f of the Chern-Simons-
Dirac functional £, is needed. We follow the construction of tame perturbations in [KMO7,
Section 10-11]. However, there is one distinct feature of our situation, which requires some
technical tricks to deal with:

() We want the perturbation supported within a compact region of Y so that the
Seiberg-Witten equations (3.7) defined on R; x Y remains unperturbed on the
planar end Hi x ¥, and Theorem 2.5 is applicable.

Hence, the error term f must factorize through the restriction map to the truncated
manifold Y, := {s < n} c Y for some n > 0:

Cro1/2(Y,5) = Cp_1/2(Yn,5).
As a result, the perturbation space is not large enough to separate all tangent vectors
and points of Ck._l/z(Y,g) as in [KMO07, Proposition 11.2.1]. Nevertheless, we can still
achieve the transversality of moduli spaces on R; x }A/, even with this smaller perturbation

space. In fact, one may even require that n =0, s0 Y,, =Y = {s < 0}.

Part 3 is organized as follows. In Section 7, we introduce the so-called tame perturba-
tions (Definition 7.3) and state the formal mapping properties that they enjoy.

In Section 8, we take up the task to construct tame perturbations. The separation prop-
erties are examined carefully in Subsection 8.2. The Banach space P of tame perturbations
is constructed in Subsection 8.5.

Section 9 is devoted to the compactness theorems for perturbed Seiberg-Witten equa-
tions. Since tame perturbations are made compactly supported, the proofs in Section 6
apply verbatim to this case.

7. ABSTRACT PERTURBATIONS

The perturbation that we deal with is a continuous section (k > 1)
q: Ck—%(i}ﬂg) - 76

where g is the L?-completion of the tangent bundle 7Cj,_, /2(}7,3) introduced in Section
4. The perturbation q is required to be the formal gradient of a Qkﬂ/g(f/)—invariant

continuous function f: Cp_y/ (}A/,E) — R, and we write q = grad f. This means that

1
FGL) — F(3(0) = L Gra(3 () padt

for any smooth path ¥ : [0,1] — Ck_l/g(f/,’s\). Take
jéw = ,Cw + f
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to be the perturbed Chern-Simons-Dirac functional. Let I = [¢;, 2] and Z be the product
spin® manifold I x (Y,5). The down-ward gradient flowline equation of £, becomes

(r.1) D5(1) = —grad £,3(1)) — sy (1)

= —grad L, (Y(t)) — ds) c(t) — q(¥(2)),
where §(t) = (B(t), ¥(¢)) is a underlying path in Ck 1/2(1? 5) and
(7.2) A % L B(t) + e(t)dt ® Ids, By = U()

is the corresponding 4-dimensional configuration v = (A, ®) in 6(2) In this way, the
continuous section q extends to a section of the trivial bundle Vy over C(Z):

(7.3) §:C(Z) > Vo = L3(Z,isu(ST) @ S7) x C(2)

by sending v = (A, ®) to q(5(t)) at each time slice t € I. Here we use the 3-dimensional
Clifford multiplication p3 to identify the bundle ¢T*Y with isu(S™) over Z. We wish that

this section q extends to a smooth section of Vj, — Ck(é) for any k£ > 2, so (7.1) is cast
into the perturbed Seiberg-Witten equation § 0= 0 where

Fsq:= 85 +0:C(2) > Vi,
and § 5 is defined as in (3.7).

We do not have a canonical L? norm on the space F(2 ,isu(ST) @ S7). For each
v=(A®)¢€ Cu(Z ), we define a norm at the fiber V;|, using A as the covariant derivative,

i.e.

vz , : ZHVAUH2

for any v € Vj|,. This family of norms on V] is equivariant under the gauge action of
Gr+1(Z). Similarly, we define the L?,A norm on 7; — Cp(Z). Then the I-th derivative of
q at 7 is a bounded multi-linear map:

Dhge Mult! (X ZL;A(Z {T*Z®S), L} 4(isu(ST) @ S7))
= Mult'( X Tk, Vi).

The bundle map Dlwq might not be a local operator: it does not necessarily send com-

pactly supported sections on Y to another section with the same or smaller support. How-
ever, this is a property enjoyed by derivatives DZWS’ 5 of the unperturbed Seiberg-Witten
map § 5, which motivates the next definition:

Definition 7.1. For any closed subset QAC l’}, a perturbation q is said to be supported
on 2 if supp q(§) < Q for any 5 € Cy_1/5(Y,5) and

(1) = a(52)
for any configurations %1, J2 € Ck,l/g(f/,g) such that 41 = 42 on €. o
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We are primarily interested in the case when Q =Y, = {s < n} for some n > 0. It
turns out that the choice of the integer n is inconsequential for the Floer homology, so we
may safely set n = 0 and focus on the case when 2 =Y.

Remark 7.2. One may even take 2 = [0,1]; x ¥ < Y and the construction in Section 8
would be simplified if one uses the gauge fixing condition along each fiber {s} x X. &

For technical reasons, we also need completions of bundles and the configuration space
with respect to other Sobolev norms Lz with p # 2. Let

C]gp) , 7;(]9) , V]gp)

be the resulting space and bundles when k£ > 1 and 1 < p < c0. Note that CIEQ)(E) = ck(é)
and so on.
Let us state the constraints on the perturbation q = grad f.

Definition 7.3. Let Y’ be a smooth co-dimension 0 submanifold of ¥ with possibly non-
empty boundary. We usually take Y’ to be either Y = {s < 0} or Y. For each integer
k = 2, a perturbation g given as a section

q:C(Y,8) > T.
is called k-tame in Y if it is the formal gradient of a continuous G (Y )-invariant function
f on C(Y) such that
(A1) the corresponding 4-dimensional perturbation g defines an element:
qe C”(Ci(2),V;)
for any integer j € [2, k];
(A2) When p > 3, q also defines an element in

®) 5y v,®)
C*(C;7(2),V}")

for any integer j € [1, k];
(A3) q extends to a continuous map:

01(2) - Vom)

for any 2 < m < 4.
(A4) for each integer j € [—k, k], the first derivative

D e O (Cu(Z), Hom(TC(Z), Vi)
extends to a smooth map
Di e C(Cr(Z), Hom(T;, Vy);
(A5) for any (B, ¥) € Cy(Y), the L?-section q(B, V) is supported on Y':
supp q(B,¥) c Y'.

Moreover, there exists a constant mg > 0 such that

la(B, W) L2y < ma([¥] L2y + 1),
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for any (B, ) € Ci(Y).
(A6) For any 0 < € < 1, q extends to a continuous map

Ci—c(Z) = Vo
(A7) the 3-dimensional perturbation q defines a C!-section
q:C(Y) > To.

We simply say that q is tame in Y if q is k-tame in Y’ for any & > 2. We may not mention
the support Y’ when Y/ =Y. %

Remark 7.4. When V' = }7, Definition 7.3 agrees with [KMO7, Definition 10.5.1], with
some minor changes in properties (A2)(A3)(A5)(A6). Our construction of tame perturba-
tions in Section 8 ends up with weaker mapping properties, in exchange for having them
compactly supported. O

Remark 7.5. Let us briefly explain where these properties will be used:

e (A1)(A2)(A3)(A6) will be used in the compactness theorem for the perturbed
Seiberg-Witten equations, i.e. Theorem 9.5. They give intermediate steps in the
bootstrapping arguments;

e (A5) is used in the energy equation for the perturbed Seiberg-Witten equations,
i.e. Proposition 9.1;

e (A4) is relevant with the linear theory in Part 4;

e (A7) will be used in the proof of the exponential decay result in time direction,
which we will not actually work out in this paper, cf. [KMO07, Section 13.4], in
particular [KMO7, Lemma 13.4.3]. O

8. CONSTRUCTING TAME PERTURBATIONS

8.1. Cylinder Functions. The construction of cylinder functions in the book [KMO7,
Section 11] involves a global gauge slice, which prevents perturbations being local. Instead,
we adopt a variation that is reminiscent of the holonomy perturbations in instanton Floer
homology to achieve our goal.

First, we fix a smooth embedding of S* x D? into 1’}, where D? = B(0,1) < R? is the
unit disk:

LS x D2 Y.

To find such an ¢, one may first embed the core S! x {0} into Y and extend this map to a
tubular neighborhood of the image. We pull back the metric and the spin bundle S — Y
via ¢. The induced Riemannian metric g1 := ¢*gy might not agree with the product metric

std 1= L7 gpls1 g0} + Ip25

on St x D?, where gp2 is the standard Euclidean metric of D?. They are related by a
smooth symmetric bundle map K : T*(S! x D?) — T*(S' x D?) (with respect to gsq)
such that

(b1, ba)1 = (K (b1),b2)sta-
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for any co-vectors by and by. The volume forms of g; and g4 differ by a smooth positive
function 1 > 0:
dvoly = 1 - dvolgyq.

It is only important to know that K and 7 are smooth; the Clifford multiplication p3 is
never needed for the purpose of perturbations.
Let (By, ¥p) be the reference configuration in Ci(Y'). For any (B, V) € Ck(f/), take the
difference R R
(b,)) := (B, W) — (By, ¥g) € Li(Y,iT*Y @ 5).
There are three classes of perturbations to be considered. The first two concern the
imaginary valued 1-form b. The last one deals with the spin section V.

(B1) For any compactly supported 1-form c € QL(S* x D2 iR), define
Te Ck(f/) — R

(b, ) — b A de
S1x D2

= f (b, *1dc)g, dvoly = J (b, #stqdc)g,,,AVOLstq,
Slx D2 Stx D2
where #1 and *44 stand for the Hodge star operators of ¢g; and gsq respectively.
The formal gradient of r, is
gradr. = *1dc,
while using gsq we obtain
gradg re = *gqdc = nK (gradr.).
(B2) Fix a compactly supported 2-form v € QL(D?,4R) on the disk D? with

v =1,
D2

ry: Cu(Y) > R

and define

(b, ) b AT,
S1x D2

where 7 : S' x D? — D? is tAhe projection map. Unlike r., r, is not fully gauge-
invariant. For any u € Gg+1(Y),
o (u(b, ) — 1, (b,9) = —2mdeg(u o : ST x {0} — S1) € 27Z.
Hence, r, descends to a circle valued function
[r] : Cu(Y) — R/(2maZ)

where a € Z=q is the multiplicity of ¢, ([S! x {0}]) in H1(Y,X;Z), i.e t«([S* x {0}])
is a times a primitive class in Hy(Y,¥;Z). Using the Euclidean metric of D?, one
may conveniently set

v = ix2(z)dvol p2
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where Y3 is a cut-off function on D? with y2(z) = 1 when |z| < %
Fix a gauge transformation u; : Y — S with the following properties:

e 1y is smooth on f/;

e The composition uj o¢: St x {0} — S! is harmonic and has degree a.

e ujou: St x D? - S is constant in D?.

Let the transformation u; act on the bundle R, x S — R, x (S x D?) by the
formula:

ul(z, ®) — (x — 2mna, ul ®).

Passing to the quotient space, we obtain a bundle S over (R/2maZ) x (S x D?).
If T is a compactly supported smooth section of S, let T denote its lift as a section
of Ry x S — R, x (S! x D?). Then T is an equivariant section, as

Y (x — 2mna, 6, z) = ul Y (z,0, 2)
for any (0,z) € S' x D? and « € R,. Let b, = b|g1(,y be the restriction of the
1-form b over the S'-fiber at z € D?. Using the product metric gyq, we write
b, = bl + "
in terms of the Hodge decomposition along each fiber S! x {2} with
b! exact and b harmonic (the coexact part b2 = 0).
Let d¥, be the adjoint of the exterior differential dg1 over S* x {0} and
G : C*(S'iR) — C™(S',iR)
be the Green operator. Then the exact part bl can be explicitly written as
b = dg1 Gd b,

and b" stands for the harmonic part of b,. It is tempting to form the map:

. Cc(Y) - C*(S" x D%, 5)

(b, ) > e~ CLtP= T (1, (0), 0, 2) on S x {21,

which is equivariant under the action of u}. However, YT is not equivariant

under the action of the full gauge group G (}7) (compare [KMO07, P.173]). In fact,
YT is invariant under Map(D?, S1), the space of gauge transformations that are
constant along each fiber S x {z}.

To circumvent this problem, let ¥, and Tl be the restriction of ¥ and YT along
the fiber S* x {z} for any z € D%, Fix an S'-invariant function h : C,, — R. For
instance, set

h(w) = x3(|w]*),Yw e C,

for some cut-off function x3 : R — R>q such that

x3(t)=1ift <1; x3(t) =0if t > 2.
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Then the composition h(o(z)) : C (}A/) — R is fully gauge invariant, where
o(z) = f (W, 1.
Stx{z}
Finally, define
re(b0) = [ hlo()a(:)dvoln,

where 3 is the cut-off function on D? defined in (B2).

By choosing a finite collection of 1-forms ¢y, - - - , ¢, and smooth sections Y1, -+, T,, of
S, we obtain a map

—_

E=(reys s Tens [Tv]sary, - 5 ar,,) :C(}Af) — R" x (R/2raZ) x R™.

Definition 8.1. A function f defined on C (f/) is called a cylinder function if it arises as
the composition g o = where
e the map = : C(SA/) — R" x (R/2raZ) x R™ is defined as above, using any compactly
supported forms ¢; (1 < i < n) defined on S* x D? and compactly supported
sections Y; (1 < j <m) on (R/21aZ) x (S' x D?), for any n,m > 0;
e the function
g:R" x (R/2raZ) x R™ - R
is any smooth function with compact support.
A cylindrical function is fully gauge invariant. &

Theorem 8.2. For any cylinder function f : C(}A/) — R, its formal gradient
grad f : C(SA/) —To

is a perturbation tame in Y' = Imu, in the sense of Definition 7.3, where ¢ : S* x D? «— 1%
is the embedding used to define f.

We will prove Theorem 8.2 in Subsection 8.4.

8.2. Cylinder Functions and Embeddings. In this subsection, we examine the sepa-
rating property of cylinder functions. The main results are Proposition 8.4 and 8.6.

Fix an embedding ¢ : S! x D? «— }A/, and define
Cylin(¢) := {f : f is a cylinder function defined via ¢}.

It is reasonable to ask: to what extend elements of Cylin(:) separate points and tangent
vectors of C(}A/) Apparently, if (B, V) is identical to (Bz, ¥2) over the image of ¢ up
to gauge, then they can not be separated by any element of Cylin(¢), because only local
information is employed when defining cylinder functions. In addition, they can not be
separated if By = By and
€ie(z)\111 = \IJQ

for some smooth function 6 : D? — R as the function h(o(z)) defined in (B3) is fully gauge
invariant. In fact, this is the worst case that can happen:
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Proposition 8.3. Take ; = (B;, ¥;) € C(f/) (i = 1,2). Suppose for any cylinder function
f € Cylin(¢), we always have

fm) = f(1),

~

then there exists a gauge transformation v € G(Y') and some function 6 : B(0,1/3) —» R
such that

v(B1) = By, @@y . Wy = Ty
over the smaller solid torus 1(S* x B(0,1/3)). The function 0 might not be continuous
because of the zero locus of V1.

PTOOf. Take (bl,ﬂ)l) = (BZ, \I’l) — (Bo, \I’Q) and set
0b = by — by.

By our assumptions, v; and 7, can not be separated by any functions of classes (B1)(B2)
and (B3). First, we claim that &b is closed on S' x D?, since

0 = ro(by) — ro(by) = re(0b) f 5 A dé = f d(ob) A
Sl><D2 S1xD2

for any compactly supported 1-form c. Moreover,
r,(0b) = 1y (be) — 1, (b1) = 2mna e R

for some n € Z, since [r,](b1) = [r,](b2). Using the gauge transformation u; from (B3),
we may place v1 by

up " ()
to make 7,(b2) — r,(b1) zero. From now on, let us assume 7, (db) = 0.

This allows us to conclude that b is exact on S' x D?, so 6b = d¢ for some function
¢: 8! x D? - iR. By cutting off ¢ outside B(0,2/3), we extend & to the whole manifold
Y (by zero outside of Im¢). Finally, replace v by e~ - ;.

It remains to show that U; = Wy along the core S' x {0} up to an overall phase ¢ € S*
when 6b = 0 on S* x B(0,1/2). Let

V10, %20

be their restriction along the core S x {0}. If they do not generate the same complex
plane in I'(S* x {0},5), then we can always find a section Yo € I'(S! x {0}, S) such that

\1’1’0 1 TO and \1/2’0 & To
or the other way around. Extending Yq to a section T of
S — (R/2raZ) x S' x D?,

supported near {r,(b1)} x S' x {0} will result in a function gy of class (B3) that separates
71 and 2.

When ¥ o and Wy g do generate the same complex plane, but || ¥ o
one can construct Y in a similar way.

We obtain the function 0 : B(0,1/3) — R, by applying the same argument to the fiber
St x {2} for any z € B(0,1/3). O

z2(s1) # P20 L2(s1),
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Hence, it is necessary to take into account all possible embeddings of S' x D? into Y
in order to obtain the desired separating property:

Proposition 8.4. Recall that Y = {s <0} = Y. Let
Cylin(Y) := U Cylin(e)
Im.cY

be the union of all possible cylinder functions with Ime c Y. If v1 and o € C(f/) can not
be separated by any element in Cylin(Y'), then there is a gauge transformation v € G(Y)
that identifies v1 with vo over'Y, i.e.

v(1) =72 onY.
Proof. Again, take (b;, ;) = (B;, ¥;) — (Bo, Vo) and set
0b = by — by.
By the proof of Proposition 8.3, we deduce that 0b is closed over Y, and there is a gauge
transformation v € G(Y') such that v(B;) = Bz. The remaining step is to verify
v P = Py
up to a global constant ¢ € S'. By Proposition 8.3, the equality |®;| = |®3| holds
point-wise on Y, and '
619(y)’l) . CI)l = CI)Q
for some function 6 : Y° — R defined in the interior of Y. Suppose for some yi,y2 € Y°,

®1(y1), P1(y2) # 0. Choose an embedding S* x {0} < Y that passes y1, 2 and extend it
into an embedding of the solid torus:

L:S'xD?5Y Y.
By Proposition 8.3, the function e has to be constant along the core S* x {0}, so e¥w) —
¢?(v2)  This allows us to modify 6 to be a constant function 6 = 6, so
oy . P = Py, O
Now we state the infinitesimal version of Proposition 8.3 and 8.4 concerning the sep-
arating property of tangent vectors. They are essential for the proof of transversality in
Section 16. Proposition 8.6 is a direct consequence of Proposition 8.5, so we focus on the
proof of the latter.
Proposition 8.5. Take v = (B, W) € C(Y) and V = (6b,6¢) € T,C(Y). For a fized
embedding v : S* x D?> < Y and any f € Cylin(1), suppose we always have
df(V) =0,
then either
o there exists some ¢ € Lie(G(Y)) and some function 6 : B(0,1/3) — R such that
(00, 6¢)) = (—d&, (§ +1i0(2)) V)
over the smaller solid torus t(S* x B(0,1/3)); or
e U =0 on S x {2} for some z € B(0,1/3).
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Prop/\osition 8.6. Suppose for some v = (B,V) € C(}/}) and some tangent vector V €
T,C(Y), we always have
df(V) =0
for any f € Cylin(Y'). Then either
e U=0o0nY, or R
o for some & € Lie(G(Y)), V is generated by the infinitesimal action of § overY , i.e.

V = (—d&, V) on'Y.

Proof of Proposition 8.5. Since V' = (b, 1) can not be separated by any functions in
classes (B1)(B2), 6b has to be an exact 1-form on S! x D? so b = —d¢ for some € :
S x D? — iR. Since this problem is linear and the vector (—d¢, £W¥) can not be separated,
it remains to deal with the case when db = 0 and show

) = i0(z)V

on St x B(0,1/3) for some function 6 : B(0,1/3) — R. For a fixed section Y of S, consider
functions o, 01 : D?> — C:

o(z) = J W, Y1y, o1(2) = f (8, 1.
Stx{z} Stx{z}
Then the differential of gy along V' = (0, %) can be computed directly as

dare (0, 616) = fm 20(2)X4 (|01 |?) Re(o ()71 (2))dvol pe,

where 3 is the cut-off function used to define the S'-invariant function A in (B3). For any
z € B(0,1/3), if ¥, and 67, do not lie in the same complex direction in I'(S! x {z},5),
then for some section YL e T({r,(b)} x S* x {z},5), Re(o(2)57(2)) is non-zero (it suffices
to verify this statement for two vectors in C2?). By properly extending T! to a section YT
of S, we can make dgy(0,v) # 0.

Finally, if ¥, £ 0 and d¢, = w¥, for some w € C, then w has to be imaginary for the
same reason. This proves the existence of 6(z) € R when ¥, # 0. O

8.3. Estimates of Perturbations on Cylinders. In this subsection, we take up the
proof of Theorem 8.2. Unlike the case of closed 3-manifolds (cf. [KMO07, Section 11.3]),
gradients and Hessians of f can not be estimated in a straightforward way; the use of
anisotropic Sobolev spaces is already necessary. We will only state the estimates for the
3-manifold Y whose proof will follow from their analogue on the 4-manifold [¢1,t2] x Y

Proposition 8.7 (cf. Proposition 11.3.3 in [KMO07]). For any k > 2 and any cylinder
function f defined using an embedding v : S' x D> - Y, q = grad f determines a smooth
vector field on Ci(Y'), and for each | = 0, there is a constant C with

ID{gal < COL+ [Bllz_ ) D+ W] )

where DéB )4 is viewed as an element of Mult; (X ; Ti, Ti) and Y’ = Ime.
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In addition, for any j € [—k, k], the first derivative Dq extends to a smooth map
Dq:: Cx(Y) — Hom(T;, T;)

whose (I — 1)-th derivative viewed as an element of Mult;(X,_y T x T;,T;) satisfies the
same bound.

Remark 8.8. The author was unable to prove this proposition when k& = 1. We will come
back to this point in Subsection 8.4. O

Let I = [t1,t2] < Ry and 7 =1 xY. As described in the beginning of Section 7, each
smooth perturbation q gives arise to a section

d:Ce(2) > Vo
of the trivial bundle
Vo = L2(Z,isu(ST) @ S7) x Cu(Z) — Cr(2),
where the bundle iT*Y @ S* is identified with (isu(S*) @ S™) using the bundle map
(p3, pa(dt)),
over the 4-manifold Z. For any ~ = (A, D) e Ck(f), write
(a,0) = (A, D) = (Ao, ®) € LA(Z,iT*Z @ S7),
where 79 = (Ag, Pg) is the reference configuration of Ck(2 ).

Proposition 8.9 (cf. [KMO07] Proposition 11.4.1). For any k > 2 and any cylinder
function f defined via the embedding v : S* x D?* — Y, consider its induced perturbation

on the 4-manifold 7:
q=grad f: Cp(Z) — V.
(C1) The map q extends to a smooth map
Ck(Z) = Vi,
whose l-th derivative regarded as a multi-linear map
Dl s 0)d € Mult (X Ti(2), Vi),
satisfies the estimate:
ID{aayil < OO+ llal 12@)* VA + 2] 12, 0)
where Q=1 xImic Z.
(C2) For any j € [—k, k], the first derivative Dq extends to a smooth map
D4 : Cx(Z) — Hom(T;(Z),V;)
whose (I — 1)-the derivative regarded as a multi-linear map

Diaayd € Mult'(X | Ta(Z) x T;(2), V),

satisfies the same bound as in (C1).
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(C3) When p > 3 and k > 1, the map q extends to a smooth map

C’(CP)(E)_) lgp)7

whose l-th derivative regarded as a multi-linear map
Dfy g8 € Mult' (X 7,P(2), 1),
satisfies the estimate:
DLy gl < O+ alp)? 01+ @]y o)
(C4) For any 2 < p < 4, the map q satisfies the estimate
[l < O+ (@, 6]z ) with m(p) = 4p/(4 — p).
(C5) When 2 < p < 4, the map q extends to a continuous map from
C{p)(é) - Vém) for any m < n(p).
(C6) For any 0 < e < %, the map q extends to a continuous map from
Ci_(2) > .

Remark 8.10. Properties (C1)(C3)(C5)(C6) are essential in the proof of compactness of
perturbed Seiberg-Witten equations in Section 9. Starting with p = 2, we have n(p) =
4 > 3. &

Before we proceed to the proof, let us add a few remarks to simplify the situation. For
a fixed cylinder function f, one can either compute its gradient using the pull-back metric
g1 on S' x D2, or using the standard product metric ggq:

grad, f or q := grad f.
If we write grad f = (grad® f, grad! f) as entries of Li(f/, iT*Y @ S), then
grady, f = (nK (grad” f),ngrad’ f),

where the function n and the bundle map K were introduced in Section 8.1. Since they
are related by a smooth bundle map of T’ Vs |tm ., it suffices to prove estimates for
gradg,, f. The change of metrics of S* x D? will also affect the LJQ.’ 4-norms on 7; and V;,
which is again inconsequential for our estimates.

From now on, we assume g; = gstq, and the length of the core S x {0} is 2.

The second remark concerns the anisotropic Sobolev spaces, which involves different
orders of differentiability in different directions. In what follows, let

Y' =8 x D? = (R/27Z) x D*> C Y,
Q=1Ix8"xD>=t),ts]) xY' < Z,
M =1 x D>
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Within the product manifold Q only the direction along S'-fibers is special. Let 6 be
the coordinate function of the circle R/27Z, and define the Lfml norm (I < m) of functions

on () to be 5
p — Z VI gl
Il 0= | 1557 ie

1+i<m,
i<l

and let LP (Q) be the completion of smooth functions (or sections) with respect to this
norm. We are mostly interested in the case when p = 2. There are two useful lemmas:

Lemma 8.11. Consider the Banach space LZH p Withk>2ifp=2andk>11ifp>3.
Then LiJrLk is an algebra under the point-wise multiplication and L£+1,k c C°; Moreover,
for any |r| <k +1 and [q| < k, L74(Q) is a module of L}, ..

Proof. Note that Li+17k(9) — L3(SY LE(M)) — C°(S',CY(M)) when k > 2, and

12,1 4(9) — LR(SY, IR(M)) — CO(S1, CO(M))
when k£ > 1 and p > 3. O
Lemma 8.12. For any (m,l) and p € [1,00), the slicewise operator dg1G and Gd§, are

bounded linear operators from Lfml(Q) — L€n+1,Z(Q)7 where

G:C®(S8Y — Cc™(sh
is the Green operator associated to the Hodge Laplacian operator.
Proof. It follows from the fact that G extends to a bounded linear operator
G:LE,(SYR) —» L? ,(S"R)
for any p € [1,00) and m = 0. O
Proof of Proposition 8.9. Suppose the cylinder function f arises as the composition go E:
Ce(Y) S R" x (R/2raZ) x R™ L R

where 2 = (rey, -, 7e,, [Tv]s g1y, + 5 qr,,) is induced from a collection of 1-forms ¢y, ¢a, - - - ¢,
and sections Y1, -+, . Let 2; (1 <4 < n), z and y; be the coordinate functions on R",
R/2waZ and R™ respectively. Then set

X; = grad(z; o ) = (x3dc;, 0),
X, = grad(z o 2) = (*37*r,0) and
Y; := grad(y; o E).

The expression of Y requires some further work. First, we compute the differential:

d(yj 0 2)(6b,09) = 2Re JD2 Xg(z)(i]j}(a(z))dvolm ~d(o(2))(6b,0v)

and

d(o(2))(6b, 61) = f

R Y1) + (s, (8.05)D0b, Xy )yr + (., (—Gdi0b:) YT ).
Stx{z}



MONOPOLES AND LANDAU-GINZBURG MODELS II: FLOER HOMOLOGY 49

where Y’ = S' x D* < V. This allows us to write ¥; = (Y, Y}') = 2(Im W2, W}) with
oh

(8.1) Wj = XQ(Z) ow

As sections of S — (R/2maZ) x (S' x D?), 0,Y; denotes the derivative of T; along the
first factor. Finally, we obtain that

(0(2)(=ds1 Q)W YTy + (W, (0:75)Hy X,, 1),

og
Z;

~LoD)X; + (%9 omyx, + Z(ig 0 E)Y;.

(8.2) gq=grad f = ) (
Z.; ox oyj

j=1
To study the mapping properties of ¢, we first examine the map:
Tt CL(Y) — L*(S' x D%, 9)
and its extension in dimension 4:
Tt Cu(Z) > L*(9,57) where Q =1 x §* x D?,
(A, @) — YT(A(t), D(t)), Vte T = [ty ta].
for any compactly supported section T of S — (R/27maZ) x S! x D2.

Lemma 8.13 (cf. Lemma 11.4.4 in [KMO07]). For any k > 2 and any j € [k, k], T
extends to a smooth map

Ce(Z) » L3y ;4(2,57)
with the following properties.
(D1) For each | = 0, there is a constant C > 0 such that the differential

Dl gy TF € Mult'( X Ti(2), L1 54(Z,57))
satisfies the bound
ID{a.0) Yol < O+ flal 2) (1 + lall 12)*, V(A, @) € Cu(2).
(D2) The l-th derivative extends to an element of
Mult (X | Te(Z) x TH(2).L3415,4(2.57))
whose norm satisfies the bound
ID{a0) THI < C(L+ [al2)*, V(A @) € Cr(2).
(D3) For any k =1 and p > 3, Y* extends to a smooth map
C§p)(z) - L;Ijr)lyij(Z, S7).
whose [-th derivative extends to an element of
Mult!( X 1717;6@)(2) x T(Z), L0, 4(Z,57))
with norm bounded by

Dy gy TH < CO+ [l 1), (A, ®) e CP(2).
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(D4) Fori=0,1 and any p € [2, 0], we have the bound
1455, < COU+ lal ), W(A.9) € Cu(D).
(D5) For any 1 <m < p, Y} extends to a continuous map from
P2y > LmZ,57).
(D6) For any 1 <p',p < o, Yt extends to a continuous map from
cP)(Z) - LV (Z,57).

Proof. The proof of (D1)(D2)(D3) carries though with little changes as in [KM07, Lemma
11.4.4], using Lemma 8.3 in place of [KM07, Lemma 11.4.3]. In what follows, we will focus
on (D4)(D5)(D6).

As this point, it is convenient to have a lemma that is slightly stronger than [KMO07,
Lemma 11.4.5]:

Lemma 8.14. Let Hi,Hs be any separable Banach spaces and dim H; < 0. Suppose
X : H1 — Hao be a smooth map with bounded C'-norm. Then the composition map x* :
& — x o0& is continuous from

Ll(Q*, Hl) - LP(Q*, HQ)
for any finite measure space Qs and any 1 < p < 0. Moreover, ||x o &|w < ||X]ow0-

Proof of Lemma. Tt is clear that y o & lies in L®(Qy,C) with |x o &llee < |x[w. Since
Q. has a finite measure, y o £ € LP. We prove that x* is Holder continuous. For any
61752 € Ll(Q*aHl)a

|XO§1—XO§2|£=J ’XO&—XO@H%Q<||2X||§o_lf Ix o &1 —xo&lu,

Qs Qx

= [2x1% 1V Xl JQ 61— &by = 12X IV x oo [€1 = €21 (0.74)- O
*

Back to the proof of Lemma 8.13. Let (a,¢) = (A, ®) — (Ao, ®o) € LX(Z,iT*Z & S+),
then T*(A, ®) is defined as

(8.3) e~ 1Y (1, (a))

as a section supported on
QO=1Ix8"%xD?

with r,(a) = TV(a‘{t}xf/) e LP(1,R).
Step 1. Proof of (D6). It follows from Lemma 8.14 directly: the exponential map
£t
is continuous from LP(2,iR) — L2p/(Q, C) for any 1 < p,p’ < 0, so the map

¢ :a— exp(—Gdia)
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is continuous from L? — L?'. On the other hand, we view the map a — T(r,(a)) as the
composition

L/(Z) = IP(LR) — L¥(1, 1*(V)) = L*V'(2),
a— ry(a) — T(r,(a)),

so Lemma 8.14 applies. Finally, L2’ x L2 — L?' is continuous.
Step 2. Proof of (D5). Now we deal with the first derivative of T*. Write VY =
K, + Ky + K3 + K4 with
(8.4) Ky = (—dg1 Gd%a) Yt Ky = (e 51"V 4, (1, (a)),
Ky = (—Gd¥%idya)YH, Ky =a® T

where M = I x D?. To prove (D5), we verify that each K; is continuous from L} — L™
for any m < p. It is clear that each of the following terms:

—ds1Gdgia, —Gdgidya, a
is continuous from L? to LP. To analyze K3, we expand V 4, (r,(a)) as
- —~ d
(Vi T)(rv(a)) + (0 T)(ru(a)){a, Xu)yr,

which is continuous from L — L¥ for any 1 < p/ < p. Now we use Step 1 to complete
the proof of (D5).

Step 3. Proof of (D4). It follows directly from the expression of T+ and V4%, (8.3)
and (8.4), using the fact that |p(a)|o = 1. O

Back to the proof of Proposition 8.9. The proof of (C1)~(C3) follows from (D1)~(D3)
in the same line as [KMO7, Proposition 11.4.1], using Lemma 8.12.

In what follows, we will explain how (C4)(C5)(C6) follow from (D4) and (D6). In fact,
(D6) provides better bounds than (D5). To estimate q, we investigate the section
oh
Wi =xa(2) 5 (0(2))((~ds: G)(®, T + (@, (0.7 Hy X, Y1),

in place of Y}, so

L w0
:;(69

We break W into four simpler pieces: W = w (Vi + V4 + V3) where

0
X + (52 0 E)X, +2Z o Z)(Im WP, W}).

S XQ(Z)%(U(Z)), Vi = (—dgi G)(®, T,

Vo = (@, (0, 1)y Xy, Vs = TH
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Step 1. Proof of (C5). The map V; : C§p)(2) — L™(Z,iT*Z) is continuous for any
m < n(p) when 2 < p < 4. Indeed, V; can be viewed as the composition

(@,TH) € IP x L — L) 5 [ % pm ~9519,

when p’ is sufficiently large.

L,

For any p’ » 1, the map V5 : Cfp ) o Lp/(é ,iT *Z ) is also continuous since the map
(®, (0, 7)) — (@, (0, X))y can be viewed as the composition:
L x LY — LP(I, LP(Y)) x LF' — C°(I, LP(Y)) x LY (I, L” (Y))

X () S (.

By Lemma 8.13 (D6), V4 is a continuous map into L™P). Tt remains to deal with o,
which is viewed as the composition of g—g with the map

o:CP - LY(M,C), M =1 x D?,

(A, @) — ((t,z) — (P, Ti>).
{t} xSt x{z}
The map o is continuous, since it is the composition:

(@, YH e P x L* 5 L' = LY(M, L' (SY)) st ).
Since g—g : Cyp — C is a smooth function with compact support, it follows from Lemma
8.14 that w : C’fp) — LP is continuous for any 1 < p/ < o0.
The same argument shows that
&
oo, —oo, —
0x; ox oyj
are continuous functions into L? (I, R) for any 1 < p/ < oo. This completes the proof of
(C5).
Step 2. Proof of (C4). Tt follows by replacing LP by L through out Step 1, using (D4)

from Lemma 8.13.

Step 3. Proof of (C6). It follows by replacing L} by L3?__ through out Step 1 with
1

0<€<§

The proof of Proposition 8.9 is now completed. O

=99 2 99

8.4. Proof of Theorem 8.2. In this subsection, we verify that a cylinder function f
satisfies conditions in Definition 7.3 and prove Theorem 8.2.

(A1) and (A2) follows from (C1) and (C3).

(A3) is satisfied on account of (C5), as n(2) = 4.

(A4) is a consequence of (C2), while (A6) follows from (C6).

As for (A5), the statement on the support of q = grad f is clear from the con-
struction. The estimate on | g2 is a consequence of the explicit formulae (8.1) and

(8.2).
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Only (A7) requires some further explanation, as Proposition 8.7 does not extend to the
case when k£ = 1. The proof of [KMO07, Proposition 11.4.1] fails here, as L%71(51 x D?)
fails to be an algebra:

L3,(8" x D?) = Li(S", L1(D?)) — C°,

Nevertheless, it is at the borderline. As we are merely interested in 7y, losing a tiny
amount of regularity is affordable. In fact, one can still prove that

q:C(Y) > To
is smooth. This completes the proof of Theorem 8.2.

8.5. Banach Spaces of Tame Perturbations. In this subsection, we construct a Ba-
nach space of tame perturbations as described in Section 7. Since only minor changes are
needed, we will only state the theorem and refer to [KMO07, Section 11.6] for the actual
proof. R

First, we introduce a broader class of functions defined on Cj,_; /Q(Y,E), called general-
ized cylinder functions. In the definition of cylinder functions (cf. Definition 8.1), one may
allow entries of = to come from different embeddings of S' x D? into Y. This motivates
the next definition.

Definition 8.15. A function f’ defined on Ck_l/z(f/,’ﬁ) is called a generalized cylinder
function if it arises as the composition ¢’ o Z' where

e the map =’ is defined using a collection of cylinder functions fi,--- , fi:
2= (fr,-, fi): ck_%(y,g) — R

Their underlying embeddings ¢; : S* x D? — f/, 1 < j < I might be different.
e the function
q : R' >R
is any smooth function with compact support. O
Theorem 8.16. Let Y' is a smooth co-dimension 0 submanifold of Y. Suppose a gen-
eralized cylinder function f’ is defined using a collection of embeddings {ix}1<k<i with

Ime, < Y’ for all vy, then grad f' is a perturbation tame in Y’ in the sense of Definition
7.3.

The proof of Theorem 8.16 is not essentially different from that of Theorem 8.2.

Theorem 8.17. Fiz an open submanifold Y' < Y. Let ¢ (1 € N) be any countable
collection of tame perturbations arising as gradients of generalized cylinder functions on
Ck,l/Q(Y,g) with support in'Y'. Then there exists a separable Banach space P and a linear
map:

O:P— CO(Ck—l/Q(Aag)a%)
A g
with the following properties:



54 DONGHAO WANG

(F1) For each \ € P, the element ¢ is a tame perturbation in Y' in the sense of
Definition 7.3.

(F2) The image of O contains all the perturbations q° from the given countable collec-
tions. ~

(F3) If Z = [t1,t2] X Y is a cylinder, then for all k > 2, the map

P x Cu(Z) - Vy
A7)~ a()

s a smooth map of Banach manifolds.
(F4) For allk =1 and p = 7/2, the map
P xCP(2) - VP

(A7) = 3 ()
s a smooth map of Banach manifolds.
(F5) For e = 1/4, the map
P xCi_e(Y) > To(Y)

(A, B) = a*(8).
s continuous and satisfies the bound:
[aMB, )2 < |Alp - ma(| ] 2¢yry + 1).
Proof. See [KMO07, Theorem 11.6.1]. O
We do not distinguish A € P with its image ¢ in CO(Ck,l/Q(S/},’s\), To).

Remark 8.18. In property (F4), any index 3 < p < 4 will make the Compactness
Theorem 9.5 work. In property (F5), one may take any 0 < e < 1/2. &

Corollary 8.19. Suppose {q,} < P and ||q,|p — 0 as n — . Then for any bounded
region O < C(Y,5), the C'-norm of q, converges to zero, i.e.

lanlcto,cp—sm) — 0 as n— .

Our primary interest is in the case when Y/ =Y = {s < 0}, and let us specify the
countable collection of tame perturbations associated to Y’ in Theorem 8.17. We make
the following choices in order:

e a positive integer [;
e a compact subset K’ of R!;
e a smooth function ¢’ on R! with support in K’
and for each j € {1,--- 1},
e an embedding ¢ : S' x D? < (Y')° into the interior of Y’;
e a pair of positive integers n and m;
e compactly supported 1-forms ¢y, - - - , ¢, and compactly supported sections Y1,--- , T},
of §;
e a compact subset K of R" x (R/2raZ) x R™;
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e a smooth function g on R™ x (R/2wraZ) x R™ with support in K.

We require the resulting collection {q'};en to be dense in the space of all possible choices,
in C*-topology; see [KMO7, P. 192] for a complete description. For the rest of the paper,
we presume that such a collection {q'};ey is chosen, once and for all, for Y’ = Y. Let P
be the resulting Banach spaces constructed by Theorem 8.17.

Each configuration and gauge transformation on Y can be restricted to Y, giving rise
to maps:

Re:C 1 (V,8) > C 1(V,5)
Ry : gm%(yag) - Q,H%(Y,E).
Let C*(Y,s) be the irreducible part of C(Y,5) and form the quotient configuration space:
B*(Y,8) = C*(V,5)/Im(R, : G(Y,5) — G(Y,3)).

Let us now state the separating property enjoyed by P: it is a direct consequence of
Proposition 8.4 and 8.6 and the proof is omitted here.

Theorem 8.20. Given a compact subset K of a finite dimensional C*-submanifold M —
B*(Y,5), suppose the restriction map to the truncated manifold Y

[R.] : B(Y,3) — B(Y,3)

gives an embedding of K into B*(Y,5). Then we can find a open neighborhood U of K in
M, a collections of embeddings

LSt x D > Y, 1<j<1
and cylinder functions fi defined using v such that the product map
& = (1, ) B(Y,8) - R

gives an embedding of U into R'. If in addition, a tangent vector V € T3B* (17,3) at some
B € K is given (V is not necessarily tangential to M) and [r:]+«(V) # 0, then we can
arrange so that

=L.(V)# 0e TR

9. COMPACTNESS FOR PERTURBED SEIBERG-WITTEN EQUATIONS

With the Banach space P of tame perturbations defined as in Subsection 8.5, we start
to analyze the moduli space of perturbed Seiberg-Witten equations. The primary goal of
this section is to prove the compactness theorem for solutions on Ry x Y. Before that, we
have to generalize results from Section 5 and 6 for the perturbed equations.



56 DONGHAO WANG

9.1. Energy Equations. Choose a tame perturbation q = grad f € P with
(9-1) lallp < 1.

For all estimates and theorems below, (9.1) will be a standard assumption. Following
the notations in Section 7, let I = [t1,t2]y and Z = T x (Y,E). Consider a solution
veCi(Z ) to the perturbed Selberg Witten equations

(9.2) =T5,(0) =Fz(v) +a(7).
Write v as (c(t), B(t), ¥(t)) where §(t) = (B(t), U(t)) is the underlying path in Ck_l/Q(}’}).
Then the equation (9.2) can be cast into the form
d . .
93) 93(1) = —grad £ (5(1)) — s elt) — a(3(1).
Proposition 9.1. For - any pertmbatwn q = grad f € P with |q|p < 1 and any configu-

ration v = (A, ®) on Z=1x (Y 5), the L?-norm of the perturbed Seiberg- Witten map
S; CI(A, ®) can be expressed as

| Bza 4. - et(a. ) - e, (4.

where

gq

top
(A B) = [ 530 + doel0s g, + lrad £, s

and £, = Ly,+ f is the perturbed Chern-Simons functional. Moreover, there exist constants
C1,Cy > 0 such that

(4, @) 1= 2£,(7(t)) — 2£4,(7(t2)),

Ean(A, @) < C1-E1 (A, D) + Oy,

where Eqy 1s the analytic energy defined in Proposition 5.4.

Proof. Only the last clause requires some work. By the Cauchy-Schwartz inequality, we
have

(0.0 268,(7) 2 Ean(1) =2 | 1aGO) e,
since grad £, = grad L, + q. By the property (F5) from Theorem 8.17,
(9.5) | 19D 5, < 2030 + 10

Hence, it remains to estimate [®||7, (Ixy) In terms of Ean(7). Recall from Lemma 5.3 that
1 s
(9.6) Ean(A, @) + C) > f LI Fa 4 VAR + (@00 + paw ) + ] @F,
IxXY

S
> [ @00 + prlehP + Sl
IxY



MONOPOLES AND LANDAU-GINZBURG MODELS II: FLOER HOMOLOGY 57

for some C% > 0. Combining (9.4)(9.5)(9.6) together, we obtain that

9.7 289 (4) + CY = 71<I>4—03<I>2>
an 2 1
IxY

Ix

|®]? — Cy.
Y

for some C¥, C5,Cy4 > 0. This completes the proof. O

Now the proof of Lemma 6.5 and Theorem 6.3 can proceed with no difficulty. Let us
record the results for perturbed equations:

Theorem 9.2. For any C,e > 0, there exists a constant Ry(e, C, f/,g) > 0 with the
following significance. For any tame perturbation q € P with |q|p < 1, let v = (A, ®)

be a solution to the perturbed Seiberg- Witten equations (9.3) on Ry x (Y,8) with analytic
energy Ean(A, ®) < C. Then for any n € Z and S > Ry, we have

Ean(A, ;. 5) <€
Here Q, s  C, is the translated region of Qg defined in (2.4).

A~

Theorem 9.3. For any C > 0, there exist constants My(C, ,3),{(0,1?,’5\) > 0 with
the following significance. For any perturbation q € P with |q| 1, suppose (A, ®) is a

solution to the perturbed Seiberg- Witten equations (9.3) on Ry x (Y, 8) with analytic energy
Ean(A,®) < C, then for anyne€Z and S > 0

Ean(A, ®,Q,, 5) < Moe 5,

P/\
(

Remark 9.4. The analogous result for the exponential decay in the time direction follows
from the standard argument as in [KMO07, Section 13], assuming the non-degeneracy of
critical points (cf. Definition 12.2). Indeed, once we obtain the exponential decay of £,
one starts to estimate the L3-norm and L?-norm of (A4, ®) as in Subsection 6.3. The proof
is omitted here. O

9.2. Compactness. The next theorem is the analogue of Theorem 6.1 when ¢ # 0.

Theorem 9.5. For any perturbation q € P with ||q|p < 1, suppose {vn = (An,Pn)} <
Chioc(Re % (Y,5)) is a sequence of solutions to the perturbed Seiberg- Witten equations (9.3)
on Ry X Y and their analytic energy

g;ln(fyn) = ggn(lyant) <C

is uniformly bounded. Then we can find a sequence of gauge transformations uy, € Gii1 joc(Re X

~

Y') with the following properties. For a subsequence {v},} of {un(vn)} and any finite interval
I c Ry, the restriction of each 7, on I x Y

77/1‘I><}A/
lies in Cy(I x (}7,3)) Additionally, they converge in L?(I x f/)—topology for any 1 > 1.

Proof. 1t suffices to deal with the compact region I x Y] where Y7 = {s < 1} is the truncated
3-manifold. Fix a reducible configuration 7, on I x Y] as reference. The bootstrapping
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argument works as follows: by passing to a subsequence and applying appropriate gauge
transformations, we obtain that

Yn — 74 bounded in L3 = ~,, — 7o weakly in LI for some 7o,
=Y = Yoo in L3, = G(m) — G(7e0) in L? by (A6) with € = 1/4
=75 — Yo in L? on interior domains = §(7n) — (7s) in L7/ by (A3)
=75, — Yoo IN LI/Q on interior domains = q(7s) — q(V») in LZ/2 by (A2)
=Y — Yoo IN L;/Z on interior domains = q(v,) — q(7e) in L;/z < L3 by (A1)
=Y — Yo In L§ on interior domains - - -

Once we arrive at L?),, one may proceed as in [KM07, Theorem 10.7.1]. To conclude
convergence of ,, on interior domains from the convergence of q(7,,), we use the properness
of the Seiberg-Witten map, cf. Theorem [KMO7, Theorem 5.2.1]. O

Remark 9.6. It is not clear to the author whether the L?-norm of q(7) can be estimated
in terms of the L?-norm of v — 7, so we adopt a different approach to arrive at the
L2-convergence of q(7,), ¢f. [KMO07, Theorem 10.7.1]. &

Proposition 9.7. Suppose {q;} < P is a convergent sequence in P with ||q;||p < 1 and let
Bi € Cr(Y,5) be solutions of the equation

(grad Lo, + q:)(8i) = 0.

Then there is a sequence of gauge transformations u; € Gi+1(Y') such that the transformed
solutions u;(;) have a convergent subsequence in Cp(Y,5).

Proof. The proof follows the same line of argument of Theorem 9.5. To conclude the
convergence of

qi(Bi) = 90 (B0),
use (F3)(F4)(F5) from Theorem 8.17. O
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Part 4. Linear Analysis

Over the non-compact manifold 1’}, the inclusion map
L (Y) = L(Y)
is no longer compact. As a result, the spectrum of the extended Hessian of the Chern-
Simons-Dirac functional £, as a unbounded self-adjoint operator, is not discrete.

The goal of this part to understand the essential spectrum of extended Hessians and
show that it is disjoint from the origin, in which case one can still speak of the spectrum
flow. Moreover, we will show the linearization of the Seiberg-Witten equations together
with the linearized gauge fixing equation form a Fredholm operator on the complement
Riemannian 4-manifolds R; x Y and X ; so we have a well-posed moduli problem.

Part 4 is organized as follows. In Section 10, we review an abstract formalism of spectral
flow following the work of Robbin-Salamon [RS95]. In Section 11 we collect some criterion
from functional analysis that computes the essential spectrum following the tex/tb\ook
[HS96] by Hislop and Sigal. These results will be applied to the extended Hessian Hess of
£, in Section 12. The key observation here is that Hess can be cast into the form (up to
a compact perturbation):

o(0s + Dx) : T(Ry x £, E) > (R, x 3, E)

such that 02 = —Idg and Dy, : I'(3, E) — I'(3, E) is a first order self-adjoint operator
that anti-commutes with o, i.e.
oDy, + Dso = 0.

This observation was due to Yoshida [Yos91]. A short discussion in the context of the
gauged Witten equations can be found in [Wan20, Subsection 4.2].

Section 13 and 14 are devoted to the linearization of the Seiberg-Witten map on Ry x Y
and X respectively. We will study the Fredholm property and the Atiyah-Patodi-Singer
boundary value problem following the book [KMO07, Section 17].

10. SPECTRAL FLOW AND FREDHOLM INDEX

In the section, we summarize the axioms that characterize the spectral flow. Let us first
introduce a few notations before we state the main result: Theorem 10.1.

Let Hg be a real separable Hilbert space and Ag : Hy — Hy be a self-adjoint operator
with domain Wy := D(Ag) dense in Hy. We assume that 0 does not lie in the essential
spectrum of Ag:

(10.1) 0 ¢ Gess(A).
Wy becomes a Hilbert space with respect to the graph norm
|3y, = |AozlF, + |23, Vo e Wo,

The inclusion map Wy — Hj is not assumed to be compact, S0 gess(Ag) might be non-
empty. A pair (W, H) of Hilbert spaces is called admissible if one can find a finite dimen-
sional space V = R" such that

W=Wy®V, H=Hy®V.
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A symmetric operator A : W — H is called admissible if one can find a symmetric
compact operator K : W — H such that

_(Ag 0O
A_<0 0>+K.

By the Kato-Rellich theorem, A is self-adjoint with domain D(A) = W. Let Zsym (W, H)
be the affine space of all admissible operators between (W, H). It is topologized using the
operator norm on the compact perturbation K. Let (R, W, H) be the space of continuous
maps A : R — Z,,, such that the limits

AT = lim A(t): W - H

t—+00
exist. The C*-distance between two paths A; and Ay is defined as
d7
di(A1,Ag) :=sup ] |57 (A1 (t) = A2 (t)) [w— -
teR : t
0<j<k
Denote by 2*(R, W, H) c B(R,W, H) be the subspace consisting of paths having finite
CF-distance with a constant path, endowed with C*-topology. Note that 2°(R, W, H) =
(R, W, H). Finally, define an open subset

o = (R,W,H):={Ae BR,W,H): AT invertible}

and set &% = o n %B*. Given paths A, A;, A, € o/ (R, W, H) such that A;(t) = A(0) =
A,(—t), t =0, A is said to be the catenation of A; and A, and write
A = Aj#A,
if ®
(At ift<0
Alt) = { At) ift>0
Given any two reference operators (Agi, Wo1, Ho1) and (Aga, Woe, Hp2) satisfying the con-
dition (10.1) and any two paths A; € &/(R,W;, H;), i = 1,2, one can form the direct
sum
AL ® Ay e (R, W1 @ Wa, Hi @ H3).
Let us now state the axioms that characterize the spectrum flow along a path A €
of (R, W, H).

Theorem 10.1 (cf. [RS95] Theorem 4.23). For any reference operator (Ao, Wo, Hp) sat-
isfying the condition (10.1) and any finite dimensional auziliary space V', there exists a
UNIGUE Map
p:d (RW H)—>Z

satisfying the following axioms

e (Homotopy) p is constant on the connected components of o/ (R,W, H);
Constant) If A is a constant path, then p(A) = 0;
Direct Sum) p(A1 @ Az) = p(Ar) + p(Ag);
Catenation) If A = A #A,, then p(A) = p(A;) + p(A);

* (
* (
* (
e (Normalization) For W = H = R and A(t) = arctan(t), u(A) = 1.
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The integer u(A) is called the spectral flow of A € o/ (R,W, H).

Proof. The proof follows the same line of argument as [RS95, Theorem 4.23]. The idea
for existence works as follows. Define

L ={A € Loy(W,H) : dimker A = k},

then .Z); is a smooth Banach submanifold of .Z;,,, of real co-dimension k(k+1)/2. For any
path A € &7, find a C'-path A’ € &7! that is homotopic to A and intersects each %, k > 1
transversely. Then p(A) is defined as the algebraic intersection of A’ with .. For details,
see [RS95]. O

There is another way to think of the spectral flow. For any path A € o/*, define the
differential operator:

Dp: Wy = LA(R,W) n L}, (R, H) — Li(R, H)

E(1) = S e(6) + ADE),
where the Wy-norm is defined as
Ry, = | <02k I2el + Y gl o € W)
Theorem 10.2 (cf. [RS95] Theorem 3.12). For any k > 0 and any A € &/* such that
A(t) — AT in CF -topology as t — +oo,
then Dy : Wy — Li(R, H) is a Fredholm operator of the index ju(A).

Proof. As our situation is slightly simpler than [RS95, Theorem 3.12], we present a direct
proof using parametrix patching argument. The theorem holds when A(t) = A* is a
constant path and AT is invertible. Indeed,

d @
G+ Ay = 3 j I+ At = 5 [ el +14* (1
0<j<k
di+1 )
- Z [ Vet + 1250 ey,

0<j<k

In general, let A* = lim;_, 14 A(t) be the limiting operators of A and Q* : L2(R, H) —
W be the inverse of Dy+. Choose cut-off functions 54+ on R; such that

e B_+ B+ =1
e B4(t)=1when t>1; f4(t) =0 when t < —1.

Take Qr, = Q B_ + Q1B and KT = Dy — Dy+ = A — AT. We compute:
QLDA=Q Daf-+Q [B-,Dal + Q" DaBy + QF[B+,Dal
= Idw, +Q (K7 8-) + Q" (K" 1) + (QF — Q7)af-
=Idw, +Q (K7 B-) + QT (K1) — QT (AT —A7)aB-)Q™.
(For the right parametrix, take Qr = 8_Q~ + +Q7).
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To show that each error term gives arise to a compact operator, apply the next lemma
to operators:
K B_,K"3, and (AT —A7)o;,8_.

Lemma 10.3 ([RS95] Lemma 3.18). For any k = 0, suppose K (t) : W — H is a C*-family
of compact operators that converges to zero in Clk;c—topology ast — oo, i.e.

Jim K+ )lerg-1,07) = 0.
Then the multiplication operator Ky : £(t) — K (t)&(t) is compact from Wy, to L2 (R, H).

Proof of the Lemma. We follow the argument of [RS95, Lemma 3.18]. It suffices to show

the operator {(t) — %(K(t)f(t)) is compact from Wy to L2(R, H) for any 0 < j < k.
This reduces the problem to the case when k = 0.

Let Comp(W, H) be the space of compact operators from W to H. The function
K : R — Comp(W, H) can be approximated in C°-topology by linear combinations of

characteristic functions. Each approximation K, is a finite sum
n .
Z X, K
j=0

where x; is the characteristic function of a finite interval I; = R and K e Comp(W, H)
is a compact operator. As (K,). — K, in the norm topology, it suffices to prove each
(Ky)« is compact. We reduce to the case when K = y, K (1) consists of a single term.

The final step is to approximate K1) by a sequence of finite rank operators. When
KW ig a finite rank operator, K, is the composition of three operators:

Wo 25 L3(1,U) — L3(1,U) — LA(R, H),

where U = Im K1) is a finite dimensional real vector subspace of H, so the middle map
is compact. This completes the proof of the lemma. O

Back to the proof of Theorem 10.2. To prove Ind(Djy) = p(A), it remains to verify
the assignment A — Ind(D,) satisfies all axioms of spectral flow in Theorem 10.1 when
k = 0. Only the catenation axiom is not obvious. However, by [RS95, Proposition 4.26],
the catenation axiom follows from the homotopy, direct sum and constant axioms. This
completes the proof of Theorem 10.2 O

11. ESSENTIAL SPECTRUM

To apply the general theory from the previous section, it is important to verify the
condition (10.1) for operators of interest. In this section, we discuss a class of model
operators following the setup of [Yos91]. The main result is Proposition 11.2. This general
formalism will be applied to the extended Hessians Hess of £,, in the next section.

Recall that Y = Y U [—1,0) x ¥ is a 3-manifold with cylindrical ends. Suppose E — Y
is a real vector bundle over Y such that

El[_1,w),xx = 7" Ep
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and Fy — ¥ is a vector bundle over . Here 7 : [—1,00)s x ¥ — X is the projection map.
Bundles F and Ejy are endowed with Riemannian metrics. We investigate a special class
of first order differential operators

Dy : CP(Y,E) —» CP(Y, E);
satisfying the following constraints on Dy:

e Dy is elliptic and symmetric with respect to the L?-inner product;

e Dy = G(d% + Dy) on the cylindrical end [—1,00)s x 3, where

e 0: Fy — Ej is skew-symmetric bundle map of Ey — X, i.e. 0 +0* = 0; moreover,
g 2 — 1d Egs

e Dy : C*® (X, Ey) —> C*(3, Ey) is a first order self adjoint elliptic differential oper-
ator; moreover, Dy anti-commutes with o, i.e. ¢Dx + Dyo = 0.

Example 11.1. The simplest example of Dy is the Dirac operator. Let £ = S be the
spin bundle and Dy = Y}, _; 4 p3(e;)VE for some spin® connection B. On the cylindrical
end [—1,00)s x X, we require B to take the form

d .
B="1418
ds *
for some spin® connection B on ¥. Set 0 = p3(ds) on [~1,00)s x 2. %

Proposition 11.2. Under above assumptions, Dy is a unbounded self-adjoint operator
on L*(Y, E) with domain L2(Y, E). Moreover, the essential spectrum oess of Dy is

(—OO, —)\1] U [)\1, OO)

where Ay is the first non-negative eigenvalue of Dy. In particular, if Dy, is invertible, then
0 ¢ Oess (DY)

Remark 11.3. Since Dy anti-commutes with o, —A; is also the first non-positive eigen-
value of Dy. The spectrum of Dy is symmetric with respect to the origin. O

The proof of Proposition 11.2 will dominate the rest of this section. To compute the
essential spectrum of Dy, we need two additional results from functional analysis: Weyl’s
criterion and Zhislin’s criterion.

Definition 11.4. Suppose A : H — H is a self-adjoint operator with domain W :=
D(A) ¢ H. For any A € C, a sequence {u,} is called a Weyl sequence for (A, \) if
{un} € W, |un|z = 1, up 2> 0 weakly in H and (A — \)u, = 0 strongly in H. %
Theorem 11.5 (Weyl’s Criterion, [HS96] Theorem 7.2). Under the assumption of Defi-
nition 11.4, X\ € gess(A) if and only if there exists a Weyl sequence for (A, X).

When H = L? (}7, E), Weyl’s criterion can be refined into Zhislin’s criterion for locally
compact operators.

Definition 11.6. Suppose H = L2(}/}, E) and xp is the characteristic function for a
subset B < Y. A self-adjoint operator A on H is called locally compact if the operator
xB(A —i)~!': H — H is compact for any compact subset B < Y. &
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Definition 11.7. Let Y,, = {s < n},n € Z>¢ be the truncated 3-manifold. For any A € C,
a sequence {u,} < W is called a Zhislin sequence for (A, \) if |u,| g = 1, supp(u,) < Y,¢
and (A — \)u, > 0in H. o

As u, is supported on the complement of Yy,, u, — 0. As a result, a Zhislin sequence
is always a Weyl sequence.

Theorem 11.8 (Zhislin’s Criterion, [HS96] Theorem 10.6). Suppose H = LQ(EA/, E) and
A : H — H is self-adjoint and locally compact. If A satisfies the commutator estimate:

(11.1) I[A, ¢n](A =)~ — 0 as n — oo,

where @, = @(s(-)/n) and ¢ : R — R is some cut-off function such that ¢(r) = 1 when
r <1 and o(r) = 0 when r = 2, then \ € 0es5(A) if and only if there exists a Zhislin
sequence for (A, ).

Idea of the Proof. The ”if” part follows from Weyl’s Criterion. Suppose \ € g¢s5(A) and
{um} is a Weyl sequence for (A, X). We wish to construct a Zhislin sequence for (A, \) out
of {up}. For any n € Z=¢, choose a large number m(n) and define

Up = (1 - Son)um(n)

First of all, (A — i)um = (A — Ny, + (A — 9)upm — 0 as m — 0. Because @, (A — i)~
is compact, Qptm = ¢p(A —i)"" o (A —i)u, = 0 as m — oo for any fixed n. By taking
m(n) » n, we ensure that v,z > 1.

The second step is to use the commutator (11.1) estimate to prove (A — A)v, > 0
as n — 0. Finally, {v,/|vn|m} is the desired Zhislin sequence. For details, see [HS96,
Theorem 10.6] 0

Remark 11.9. Zhislin’s Criterion shows that the essential spectrum of A is determined
completely by its behavior along the cylindrical end [0,00)s x X. &

Proof of Proposition 11.2. Dy is a locally compact operator as xp(Dy —4)7! : LQ(SA/) —
L%(Y) factorizes through L?(B) when B = Y,,. The commutator estimate is also satisfied

as
1 dy s
[Dy, on] = o %(H)P(ds)

and its L*-norm decays to zero. Applying Zhislin’s criterion, we reduce to the case when

Y =R, x ¥ is a cylinder and
d
Dy = 0’(@ + Dz)

To study the spectrum of Dy in this case, apply Fourier transformation in R,-direction.
Our goal is to find eigenvalues of

Dy (€) = o(i€ + Ds) : T(2, Ey) — I(Z, Ep)

for any fixed £ € Re. Let ¢y be an eigenvector of Dy, with eigenvalue A > 0. As Dy,
anti-commutes with o, —\ is also an eigenvalue; indeed,

Ds:(0(9r)) = —Aa(da).
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As a result, spanc{¢x, o(¢x)} is an invariant subspace of l/); (&):

= (0 =1\ [A+i& 0 B 0 A—i€

Dy () = <1 o) ( 0 —>\+i£> = ()\—H'f 0 >
whose eigenvalues are +4/£2 + \2. Let gb;\—r (&) be their associated eigenvectors respectively
and set

n(s) 1= (p(s — 2n) — p(s — n))Py (€) exp(i€s).
where ¢ : R — R is the cut-off function defined in Theorem 11.8. Then {¢,/|onl2} is a
Zhislin sequence for (Dy, £4/&2 + A\2), and £4/&2 + A2 € 0¢s5(Dy) by Theorem 11.8.

When X € (=A1, \1), (l/);(f) — X) is invertible for each & € Rg; their inverses are
uniformly bounded. As a result, the operator

Dy — X
is invertible, so ' ¢ 0¢ss(Dy). This completes the proof of Proposition 11.2. O

12. EXTENDED HESSIANS

In this section, we apply the abstract formalisms in Section 11 to the extended Hessians
of £,, and compute its essential spectrum. The main result is Proposition 12.1. The proof
relies on the key observation from the first paper [Wan20, Proposition 7.4]: the Seiberg-
Witten equations on C x 3 is secretly the gauged Witten equations on C. The structural
results from [Wan20, Subsection 4.2] then becomes essential here. The formalism from
Section 11 in fact applies to any gauged Witten equations.

Recall from Section 4 that the quotient configuration space
Bi(Y,5) = Ck(Y,8)/Grsr (V)
is a Hilbert ’I\nanifold when k > % For any v € Ck(f/,g), (Aienote by [v] its gauge equivalent
class in By (Y,s). By Lemma 4.4 the tangent space of Cx(Y,5) at v admits a decomposition:

iy o= TyC(Y5) = iy @ Ky
where
Tiry = Im(d, : L2, (Y, iR) — Tp.,) and
Ky = ker(d] : Ty — Lifl(?a iR))
form L?-complementary sub-bundles of T, — Cj, (f/,’ﬁ). Moreover,
Ty Bi(Y,5) = K-
Take a tame perturbation q = grad f € P. As the perturbed Chern-Simons-Dirac

~

functional £, = L, + f is invariant under the identity component of Gi1(Y), its gradient
grad £, = grad L, + q

defines a smooth section of Kx_1 — Ck(f/,’s\) and its Hessian is a symmetric bundle map:
Dgrad £, : T — Tr_1
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which is equivariant under the action of G (}7) As Cy, (f/, §) is an affine space, the tangent
bundle 7 — Ci(Y,5) is endowed with the trivial flat connection, but the decomposition
Te = Ji ® Ky, is not parallel. Consider the composition of maps:

Hessq :=Ilx, , o Dgrad £, : Ky — Kp_1,

and write D grad £, into a block form:

(Y z
(12.1) Dgrad £, = <$* Hess,

> Tk @K > Te1 K1,

where x = II 7, o Dgrad £, |k, and y =115 _, o Dgrad £,|7,. Note that
r=0,y=0
when v € Crit(£,) is a critical point. Here is the another way to think of Hessqy. £,

descends to a circle valued functional £, on the quotient configuration space Bk(f/,g).
The Hessian of £, at [y] € B(Y,5) regarded as a map

Kk,’y = T['y]Bk(i}’g) - Kk—lﬁ
is precisely given by Hess;. However, Hess; is not the convenient notion to work with from
the gauge theoretic point of view. One looks instead at the extended Hessian }Té;sq of
£,, whose expression at y € C,(Y,§) is defined by

= 0 d* 2/ 2 O
Hessgy 1= (d'y D, gr;d £w> P Li(YiR) @ Tey — Lo (Y, iR) @ Tie—1,5-

Proposition 12.1 (cf. [KMO7] Proposition 12.3.1). The operator Hessq : K — Ky—1 is
symmetric. If v is a critical point of £, then it is invertible if and only if the extended
Hessian Hessg , at 7y is invertible. Moreover, the spectrum of Hessy ~ is real and

Uessaqés\sqﬁ) = (=0, =A1] U [A1,0)

where A\ > 0 is a positive number depending only on the boundary data (gs, A\, p) of
Y € Cobs. In particular, Hessy ., is a Fredholm operator of index 0 for any k > 1.

Definition 12.2. A critical point v € Cx(Y,5) of the perturbed Chern-Simons-Dirac

functional £, = L, + f is called non-degenerate if the extended Hessian ﬁe?sw at ~y is
invertible. ¢

The proof of Proposition 12.1 will dominate the rest of this section.

Proof of Proposition 12.1. We focus on the essential spectrum of ﬁe?slm; the rest of state-
ments follows from the same line of argument of [KMO07, Proposition 12.3.1].

Let v9 = (Bo, V) be the reference configuration of Ck(?,g). Then v — 9 = (b,¢) €
L%()’}, iT*Y @ S) and

Hossy., — ooy + h(b, 1) + (g Doq) |
Y
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where h(b, ) is an operator that involves only point-wise multiplication of (b,1)). When
g€ L2( ) is fixed, the Sobolev multiplication

Li(Y) x Li(Y) > L},
(f,9) — fg

is a compact operator in the first argument when k > 1 (see [KMO07, Theorem 13.2.2]), so
the error h(b,1) is compact. As q is tame, by property (A4) D.q: L7 — L? is bounded

linear. In addition, since its image is supported on Y Y the operator D.q : L2 — Li 1
is also compact.

By the Kato-Rellich theorem, the essential spectrum is invariant under compact per-
turbations. It suffices to compute the essential spectrum of Hessg .. The general theory

from Section 11 applies here, so we may concentrate on the special case when Y = Ry x X
is a cylinder and vy = (By, ¥4) is the Ry-translation invariant solution defined by (2.6).

At this pomt we have to recall some results [Wan20 Subsection 4.2]. The extended
Hessian Hess70 can be cast into the form o (0 + D ) as an operator

L3(Y,iIR® (IRQds) DiT*S @ S) — LAY, iR® (iRQds) ®iT*S ® S)

with
0 1 0 0
o — -1 0 0 0
0 0 =x 0
0 0 0 ps(ds)
and D, defined as in [Wan20, P.36]. It is shown in [Wan20, Proposition 7.9] that D, is
an invertible operator. Now we use Proposition 11.2 to conclude. O

13. LINEARIZED OPERATORS ON CYLINDERS

In this section, we study the Seiberg-Witten moduli space on the cylinder R; x Y and
prove the Fredholm property of the linearized operator using the formalism of Section 10.
In Subsection 13.2, we will prove a separating property of the cokernel of the linearized
operator, which will be crucial in the proof of transversality in Theorem 16.1.

We have to justify that the proof of gluing theorem in [KMO07, Section 18, 19] continue to
work in our case, in the presence of essential spectra. This is done in Subsection 13.3 and
13.4, where the relevant Atiyah-Patodi-Singer boundary value theory is also developed.

13.1. Linearized Operators. Here is the second reason why the extended Hessian is a
natural object: it is more consistent with the 4-manifold theory. Suppose

a,b € Crit(£,) < C(Y,3)

are non-degenerate critical points of the perturbed Chern-Simons functional £, in the
sense of Definition of 12.2. To describe the moduli space of flowlines from a to b, we fix a
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smooth configuration ~ on 7= R; x Y such that v is in the temporal gauge and
() =aif t < —1,
F(t) =bif t > 1.
Consider the configuration space
Chla,b) = {(A, @) =70 + (0,6) : (a,6) € LA(Z,iT*Z ® 57)}.
and the gauge group
Gri1(2)={u:2Z2—S':u—1€eL}, (Z,C)}.
We are interested in solutions of the perturbed Seiberg-Witten equations on Z:

(13.1) 0=32,00) =320 +307),
where § 5 is defined by (3.7) and q is defined as in (7.3). We form the moduli space

Mi(a,b) = {7 € Ci(a,0) : 85, (7) = 0}/G11(2).

We focus on the linearized theory of the moduli space in this section. Take a configu-
ration v = (A, ®) € Cx(a, b), then a tangent vector V at ~y is a section

(8c(t), 8b(t), 0p(t)) € Li(Ry x YV, iR@®iT*Y @ S).

It lies in the kernel of the linearized operator Dy§ 5 (i.e. the tangent map) of §, , if and
only if it solves the equation

d
(13.2) . < ;Z((?)) + Dspy grad £, (gi%) +dsp) dc(t) = 0, VEeR.

(13.2) is obtained by formally linearizing the equation (7.1). The convention of (7.2) is
also adopted here: %(t) stands for the underlying path in C(Y,5).
On the other hand, the linearized action of G(Z) at + is given by:

d, : Lie(Gr1(2)) = 13,1(Z.iR) — T,C(a,b)

FUE) = (0 (0) sy £(1),
whose L?-formal adjoint is
d* : T,C(a,b) — L}_,(Z,iR)
V(t) = (de(t), b(t), b (1)) r— %&(t) cdz, (ﬁf;((?)) .
It follows that D, 2. together with the linearized gauge fixing operator d: can be cast
into the form:

d —
(13.3) V() = = V(1) + Hessg 500V (1),

for V(t) = (dc(t), db(t), 01 (t)). By Theorem 10.2, we have
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Proposition 13.1. For any 7 € Cx(a,b), the operator
(A2, D53 5,) : Li(Z,iR@T*Y @ §) — Lj_,(Z,iR®iT*Y ®S)

is Fredholm. Its index is independent of v and equals the spectrum flow from }Te?sqva to
Hessg p-
q,b

Proof. The operator (d,D,§ 5 q) differs from the (d3, D, & 5 q) by a compact term. When

~v = 7y is the reference configuration, apply Theorem 10.2. 0

Definition 13.2. The moduli space My(a, b) is called regular if the linearized operator
(d3, D435 q) at ~y is surjective for any [y] € Mg(a,b). O

Definition 13.3. A tame perturbation q = grad f € P is called admissible if

(E1) all critical points of the perturbed Chern-Simons-Dirac functional £, = L, + f
are non-degenerate in the sense of Definition 12.2;

(E2) for any pair of critical points a, b € Crit(£,), the moduli space My(a, b) is regular
in the sense of Definition 13.2. &

One may think of My(a,b) as the moduli space of down-ward gradient flowlines in the

quotient space Bj,_; /2(1?,’5\). The reference configuration 7y determines a homotopy class
of paths connecting [a] and [b], so it is more appropriate to write

(134) M[’y]([a]v [b]) = Mk(ﬂ, b)a [’Y] € Wl(Bk—l/Q(ng)v [a]a [b])
By Theorem 9.5, this space is independent of the Sobolev completion that we choose, so
the subscript k is dropped in our notation.

Remark 13.4. To identify a finite energy solution v in Theorem 9.5 with an element
of My (a,b), we have to know the exponential decay of 7 in the time direction using the
non-degeneracy of critical points, which is omitted in this paper; cf. Remark 9.4. O

Since the Seiberg-Witten equations on Z = R; x Y has an apparent R;-translation
symmetry, M,([a], [b]) is acted on freely by R; if the topological energy &, along the
path

[7] € ™ (Bi—1/2(Y,3), [a], [6])
is positive. We form the unparameterized moduli space by taking the quotient space
(13.5) Msy([al. [6]) = My ([al. [6])/R.
When q is admissible, M (] ([a], [b]) is a smooth manifold of dimension Ind(d7, D~§ Z,q) —1.
13.2. Sections in the Cokernel. Our ultimate goal is to show that admissible pertur-

bations, in the sense of Definition 13.3, are generic, cf. Theorem 16.1. To do this, we have
to understand sections in the cokernel of (dF, D, ), when it is not surjective.

Suppose U € LQ(Z R®iT*Y @ S) is L2-orthogonal to the image of (d3, D, q) at a
solution [y] € Mg(a,b), then U solves the equation

d —
(13.6) - ﬁU(t) + Hessg 5 U(t) = 0 by (13.3).
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By elliptic regularity, U is smooth and U € L?. We write U as
U(t) = (3¢ (t), 06/ (t), 09'())-

The proof of Theorem 16.1 in Section 16 relies on a separating property of the section U:
Lemma 13.5. Under above assumptions, dc¢'(t) = 0. Moreover, if U # 0 and (t) is

never reducible on {t} x Y, then there exists a time slice ty € R such that the tangent
vector (60 (to),dv (to)) at (to) can be separated by a cylinder function f tame in Y.

A

Here, Y = {s <0} c Y is the truncated 3-manifold.

Remark 13.6. By the unique continuation property, cf. Theorem 15.3 below, if 5(t) is
reducible at some slice {t} x Y, then a solution 7 € Cx(a, b) has to reducible globally, which
is absurd. So the condition of Lemma 13.5 is fulfilled. &

Proof of Lemma 13.5. Consider a smooth function & € LiH(Z iR) and the section
Ve = (0,d,€) € L2(Z,iR@®iT*Y @ S).
Since €"¢ - v also solves the equation § 24 = 0 for any r € R, taking the derivatives yields
Dwgzq(d«, §) =0,
so the vector
(d3, D535, )Ve = (d5d,€,0,0) € L*(Z,iRDIT*Y @ S)

is L*-orthogonal to U. Since the composition d*d, : L%(Z,iR) — L2(Z,iR) is an in-
vertible operator and L7, is dense in L3, 6¢(t) = 0. Now (13.6) is reduced to a pair of
equations:

(13.7) 0 = d3,) (db'(t), 39" (t)),
d
(13.8) ﬁ(éb/(t)’ ' (t)) = Dyy) grad £,(6b'(t), 5 (1)).
For the second clause of Lemma 13.5, suppose on the contrary that U(t) can not be
separated for any t € R;. By Proposition 8.6, we can find a function £(¢) € L(Y,iR) such
that

(00'(t), 09(t)) = dyr) §(t) = (—dp&(t), (1) ¥(¢)) on {t} x V"
for each t € Ry. If we write grad £,, as
(grad £2, grad! £,) € LY ,iT*Y & 9),
then
grad £, (u- %) = (grad® £,(5),u - grad® £,(7)).
In particular,
D p) grad £, (dsp) £() = (0,£(t) - grad’ £,(5(1)).
Even though ds) £(t) and (dV'(t), 9%’ (t)) only agree over {t} x Y, we still have

Dy sy grad £,,(8V (1), 6¢'(£)) = (0,€(2) - grad’ £.,(3(1)) on {t} x Y,
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since the perturbation q is supported on Y in the sense of Definition 7.1. The equation
(13.8) then implies

d
%613’ =0on R; xY.

As U e L?, —dp&(t) = 6b'(t) = 0. Now the equation (13.7) yields
0= AgE(t) + [W(HPE() = [W(1)PE(E) on (¢} x V.

As aresult, U =0 on R; x Y. An elliptic operator of the form (13.6) satisfies the unique
continuation property, so U =0 on Ry x Y. Il

13.3. Spectral Projections. Having discussed the linearized operator on an infinite
cylinder R; x Y, we start to look at a finite interval I = [t1,t2] < Ry and consider
the Atiyah-Patodi-Singer boundary-value problems. As noted in the beginning of Section
13, we have to justify that the proof of gluing theorem in [KMO07, Section 18,19] remains
valid in our case, in the presence of essential spectra. This subsection is devoted to an
abstract formalism, while the application in gauge theory will be explained in Subsection
13.4. However, the results in these subsections will not be used elsewhere in this paper.

As we will work in a slightly abstract setting, define
Ey:=iR®iT*Y ®S -V
Take a reference operator Ay that acts on sections of Ey, extending to bounded linear
operators
Ao : LAY, Ey) — L?_ (Y, Ey).

for any j > 1. Moreover, assume that Ag is a unbounded self-adjoint operators on L? and
its spectrum is disjoint from the interval (—A1/2, A1/2):
(13.9) o(Ag) < (=00, —A1/2] N [A1/2,00) with

Oess(Ag) = (—00, =A1] N [A1, 00),
for some A; > 0 as in Proposition 12.1. One may think of Ay as a first-order self-adjoint

elliptic differential operator plus a compact perturbation. For convenience, suppose the
sz—norm on CL(Y, Ep) is defined using Ay:

I8l 2y = 1L+ |A0l)Y sl L2y, Vs € C (Y, Eo).
Let K : Cgo(f/, Ey) — C®(Y, Ey) be an operator acting on sections of Ey extending to
a compact operator:
K : L3(Y,Ey) — L3(Y, Ey)
for any j > 0. Assume that K is self-adjoint on L?(Y, Ep). When the sum A := Ag + K
is invertible, L?(Y, Ep) is the direct sum of the positive and negative spectral spaces of A:

L*(Y, Eo) = Hi @ Hy,
and for any j = 0,

(13.10) L3(Y,Eo) = (Hf n L) @ (Hy n L.
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Let E — 7 := (—o0,0] x Y be the pull-back bundle of Ey over the half cylinder and
consider the operator:

Dy = % +A:C®(Z,E) > C*(Z,E).
The next result is a direct consequence of Functional Calculus, cf. [KMO07, Theorem
17.1.4).
Proposition 13.7. Let 7= (—00,0] x Y be the half cylinder. Suppose the operator
A=Ag+ K :L3Y,Ey) — L*(Y, Ey)
18 invertible, then the operator
Dy @1l or: LY(Z,B) - Li_(Z,E) @ (Hy n L}y (Y, Eo))

is also invertible for any k > 1, where r : Li(?, E) — Lz_l/Q(f/, E) is the restriction map
at the boundary {0} x Y and
G Ly By L (P )

2

k12 is precisely the image of ker Dy under

is the spectral projection. The subspace Hy N L
r.

As A differs from Ag only by a compact operator, it is expected that I, forms a
“compact” family as A varies. We make this precise in the next proposition.

Proposition 13.8. Given an invertible operator A = Ay + K, the difference of their
spectral projections

I, — H,&O : Li—l/z(Y,Eo) - Li—l/Q(YaEO)

is compact for any k = 1, i.e. I, and Iy are k-commensurate in the sense of [KMO7,
Definition 17.2.1].

Proof. We follow the trick from [KMO7, Proposition 17.2.4]. It suffices to show for any
bounded sequence {w;} < LZ_I /2 it image under II; — II} = contains a converging subse-
quence. In terms of the decomposition (13.10), we can deal with entries of {w;} separately.
By the symmetry of HA—F, we focus on the case when {w;} < H, n L? By Proposition

13.7, there exists sections {v;} < L%(Z E) such that o
Dpv; =0 and r(v;) = w;.
Apply Proposition 13.7 again for Ag to find solutions {u;} < L%(z , E) with
Dy u; = —K(v;) and I, o r(u;) = 0.
Since Dy, (u; —vi) = 0, r(u; —v;) € H, . So

(I, — I ) (ws) = (1 = I ) (wy) = L o7 (v;) = T o7 (uy).
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One may write the last term explicitly in terms of v; using formulae on [KMO07, P.299]:
0
(13.11) v T o (i) = g = f 40 (¢ (v5(1))) .
—a0

where (-)™ denotes the positive part in Hgo. As this point, approximate K by finite rank
operators. The operator v — y defined by the expression (13.11) is also approximated by
finite rank operators in the norm topology, so (13.11) is also compact.

Here is the main difference of this proof from that of [KMO07, Proposition 17.2.4]: the
operator

0 A~ ~
2 f P (u(t)) dt, LA(Z,B) — L2, (T, Ey),
—00

is not compact as A has essential spectrum, so the compactness of 1T, — I, really arises
from K. O

With Proposition 13.8 in mind, we are ready to study the boundary value problem on
a finite interval.

Proposition 13.9. Let I = [t1,t2]; be a finite interval and 7 =1xY. Given invertible
operators A; = Ag + K;,1 = 1,2 as compact perturbations of Ay, consider the operator

p ~ ~
D= p + A+ K(t): Li(Z,E) > L}_1(Z,E)

on Z and spectral projections

where K : [ — Hom(L?,L?),j = 0 is a smooth family of self-adjoint compact operators.
Then the operator

P:=D® (H;{NHKQ) o (ry,m2)

is Fredholm, whose index is equal to the spectrum flow from Ay to As. In particular, the
restriction map on the kernel of D:

(I}, T, ) o (r1,72) sker D — Hf A L}y (Y, Eo) @ Hy, n Li_, (Y, Ey)
is Fredholm of the same index.

In the sequel, we will abbreviate H; n Lifl /2(17, Ey) into H, when the regularity of

sections is clear from the context.

Proof. We start with the model case when K; = K9 = K(t) = 0. The operator

Py = DAO ) (HXO or @H&O o 7‘2)
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is then invertible by direct computation using Functional Calculus. For the general case,
note that D — Dy, is a compact operator. As for the boundary projections, Proposition
13.8 implies that

+ .o+ +
I - Hy, — Hy,
+ .o+ +
Wy - Hy — Hy,
are mutual inverses modulo compact operators, which also holds for the negative projec-

tions {HXO, IT, }. To compute the index, we use the concatenation trick and compare P
with the operator on the infinite cylinder:

d ~ ~
o T Ao+ K'(t): Li(Ry xY,E) > L2 (R x Y, E).

where K’ is a smooth path of compact operators connecting K7 and Ks:
K(t)=Kift <t;; K(t)= Ky if t > to.
Now apply Proposition 13.1 or Theorem 10.2. If we write Lz(é ,E) as a direct sum
C®ker D

where C' is the Li—orthogonal complement of ker D, then P is cast into a lower triangular
metric

D 0
13.12 _ .
( ) <* (HX17HA2) o (rl,r2)>
As D|¢ is a bijection by [KMO7, Proposition 17.1.5] and the unique continuation property,
the other diagonal entry has to be Fredholm of the same index as that of P. O

Remark 13.10. Here is a major difference of our case from [KMO07, Proposition 17.2.5]:
the projection map onto the complementary spectral subspaces:

(HXI,H&) o(ry,re) : ker D — Hy & HXQ

is not compact. To see this, consider the model case when A; = Ay = Ag and K (t) =0, so
ker D is parametrized by the image of (HXO, IT, ) o (r1,72). Sticking to the positive part,
the composition map

H n Ly p({th} x Y, Eo) = H 0 Li_yp({ta} x Y, E)
w— v:= P 10, w,0) € ker D
— H;{O o1g(v).
is simply e #0(t2="1) acting on H, which has essential spectrum [0,e M (2=1)] Ag a
result, it is never compact. O

To circumvent this problem, we have to refine the estimates when the 3-manifold Y is
not compact. Recall that a Fredholm operator P is invertible modulo compact operators.
A right (left) parametrix @ is a right (left) inverse of P modulo compact operators, i.e.

PQ =1d + a compact term.

Such a @ is unique up to a compact term and is also a (two-sided) parametrix.
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The difference up to a compact term is always insignificant. This motivates the next
definition and lemma:;:

Lemma 13.11. Let H;, i = 1,2 be Hilbert spaces. For any operator Q) : Ho — H1, define
its essential norm as

1Qlless == K inf ||Q + K|my—m, -
compact

For any Fredholm operator P : Hi — Hs with a parametriz Q, the perturbed operator
P + F is Fredholm if [|FQlless < 1.

Proof. As (P + F)Q and @ are Fredholm, P + F is Fredholm as well. O

Now let us recast Proposition 13.9 into a more convenient form for applications. Recall
that the essential spectrum of Ag is away from the origin:

Jess(AO) = (—OO, >\1] o [)\1,00),
for some A\; > 0.

Proposition 13.12. Under the assumption of Proposition 13.9, the operator P is Fred-
holm. The essential norm of its parametriz Q) is bounded by a constant C1 that depends
only on A1. The same conclusion applies to the projection map

(I}, 10, ) o (r1,m2) tker D — H[ n L} 1/2({t1}><Y Eo)®Hy, nLi_ m({tQ}xfon).

and its parametrix (). Moreover, the essential norm of the complementary projection pre-
composed with Q:

(I, T} ) o (ri,m2) 0 Q : Hy @ Hy % ker D — H,, @ Hj
is bounded above by e M| where |I| = |ty — t1| is the length of I.
Proof. We divide the proof into four steps:
Step 1. Estimate @ When K; = Ky = K(t) = 0, we obtain the model operator
Py =Dy, ® (I} or1 ®TI, oro) : L}(Z,E) — L} _(Z,E) ® (H{, ® Hy, ).
Let @0 = (R, Qo) be the inverse of Py with
Qo: Hf @ H, — Li(Z,E),
R:L} (Z,E)— L}(Z,E).
The norm HQOH is bounded by a constant C independent of the length |I]. In the general
case, set Q := (R, Qg o (HX I, ) with
(I, 1) Hy, @ Hyy — HJ ©H,,

Then |Q| < [Qol, since we have used Ag to define the L3-norm on C*(Y,Ey). By
Proposition 13.8, projection maps:

gt + * . gt +
I} - HY — Hf, T HE — Hf i=1,2

are mutual inverses modulo compact operators; so ) is a parametrix of P.
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Step 2. Estimate (. Using the block form (13.12), we write @ as a 2 by 2 matrix:
Q11 Q12
Qa Q)"
Take @Q := Q22 to be the bottom right entry, then
Q : H&l @ng — ker D
is a left parametrix of (HL,H&Q) o (r1,r2) and

QI <14l
since C' is Li-orthogonal to ker D in (13.12).
Step 3. Estimate the complementary projection. It suffices to estimate the norm of
M := (HXD,HXO) o(ry,re) 0 Q.
First of all, the estimate holds for the model case when A; = Ay = Ay and K (t) =0, by
Remark 13.10. Define
My := (ngo’ HXO) o (r1,72) © Q.
Now we allow K(t) # 0, but A; = Ay = Ag. Write @’ for the parametrix constructed in
Step 2. We have to compare
M= (I 10 ) o (r1,72) 0 Q"

with the model operator My, and show the difference M — My is compact.
For any (wq,ws) € HXO ® H, , sections u := Q' (w) and v := Qu(w) obey the following
equations respectively:

Dp,(u) =—-K(t)u Dy,(v) =0,
H;{O org(u) =wi — ki(w), H;{O org(v) =wi,
I, ora(u) = wsy — ka(w), I, © ro(v) = wy,

where (k1, ke) is a compact operator acting on HXO DH, It follows that

w = (Q = Qo)(w) = u—v =Py (~K(1)Q (w), —k1(w), —k2(w))
is a compact operator.

Step 4. In the most general case, we allow K(t) # 0 and Ay, As # Ag. Recall that
Q=Q o (Hgg,ﬂ;o), so M =M o (HXO,H&)) and

M |less < HM,”ess = | Molless < e~ Ml O

Spectral projections are not the most relevant boundary conditions for the main appli-
cations in gauge theory, although they serve important intermediate steps.

Proposition 13.13. Under the assumption of Proposition 13.7 with 7 = (—o0,0] x f/,
suppose 11y is any linear projection on Li—l/Q (Y, Ey) whose kernel is a complement of H :

(13.13) ker(ILy) @® (Hy 0 L3, 5 (Y, Eo)) = L}y o(Y, Ey).



MONOPOLES AND LANDAU-GINZBURG MODELS II: FLOER HOMOLOGY 7

and let H; be the image of II;. Then the operator
Dy®Myor: LY(Z,E) - L}_(Z,E)® Hy
is an isomorphism.
Proof. See [KMO07, Proposition 17.2.6] or [KMO07, P.340-341]. O

Proposition 13.14 (cf. [KMO07] Proposition 17.2.6). Under the assumption of Proposition
13.12 with Z = I x Y and I = [t1,ts], suppose I and 115 are any linear projections on
L%_I(Y,Eo) whose kernels are complements ofH;{1 and H, respectively, i.e. (13.13) holds
for (117, HL) and (IIy,H, ). Let H; and HJ be images of 11 and 115 respectively. Then
there exists a constant To(IIT,1I;) > 0 such that the operator
D® (I, 1) o (r1,m2) : LY(Z, B) — Li_1(Z, B) ® Hy ® Hy,

is Fredholm when |I| > Tj.

Proof. There are two ways to proceed. In the first approach, one may use Proposition
13.13 to construct a parametrix of D @ (II,II;); see Proposition 14.1 below. In the

second approach, we use the estimate on essential operator norms from Proposition 13.12.
It suffices to show the restriction map

(I, 115 ) o (r1,m2) : ker D — H{ ® Hy
is Fredholm. We focus on H; and pretend the other boundary does not exist. Write
Iy = Il oIl + 11y o (I}, — IT} ) + 1Ty o [T} .
The middle term is compact. Since II; : H, — Hj is an isomorphism of Hilbert spaces,
by Proposition 13.12,
Tl 0Tl o7y : ker D — Hy —2> Hy

is Fredholm with parametrix Qo (IL;)~!. To apply Lemma 13.11, we have to estimate the
essential norm of

(I o ITf ) o (Qo (Ily) 1) = Iy o (I} 0 Q) o (M)~

which is bounded above by C(IT; ) - e/l < 1 if |[I| » 1. The constant C(IT, ) depends
only on the operator norms of

I : Hy — Hy and (II;)~' : Hy — Hj_ . 0

13.4. Applications in Gauge Theory. Having developed the abstract theory in Sub-
section 13.3, let us explain now how various operators are defined in gauge theory. For
each tame perturbation q € P and a configuration a € Cj,_1 (?,3), consider the extended
Hessian -

A= Hessg q,

The reference operator Ag is taken to be a compact perturbation of A such that the
conditon (13.9) holds.



78 DONGHAO WANG
Recall that the space L%—1/2(f/7 Ey) admits a decomposition for each a € Ck_l/g(f/,’s\):

Lz—l/Q(i}ﬂ Ep) = Lz—m(f/’iR) D Tr—1/2,05
= qu/z(Y, iR) ® Ti—1/2,0 ® Ki—1/2,0;

on which ﬁe?sq,a takes a block form:

0 d; 0 0 0 O
d, 0 0 +10 vy =z
0 0 Hessqq 0 z* 0

The operators z,y are defined as in (12.1) and they are compact. Denote the first matrix
by A and consider its spectral decomposition:

g L (Y, Eg) — Hy.
As Hessg q acts on Kj_y1/3 4, we also have the spectral decomposition of Hessgq:
K120 = K& ®@ K.
Define subspaces:
Hy = L7 »(Y,iR) @ {0} @ K5 < Li_, (Y, Eo),

and the projection maps
05 L}y (Y, Eo) > HE,

a

whose kernels are
{0} ® Ti—1/20 DK -

The pairs (113, HK) that satisfy the condition (13.13), cf. [KMO07, P.316]. By Proposition
13.14, the first statement of [KMO7, Theorem 17.3.2] continues to hold in our case, and
the proof the gluing theorem from [KMO07, Section 17-19] remains valid. Proposition 13.12
is the replacement of [KMO07, Proposition 17.2.5] in the presence of essential spectra.

Remark 13.15. In practice, we will take g to be an admissible perturbation and a to be
a non-degenerate critical point of £,,, in which case A=A Moreover, £, has only finitely
many critical points by the compactness theorem. Since only finitely many configurations
are involved in the gluing theorem, we have a uniform upper bound on the constant 7y in
Proposition 13.14, so it does not cause a problem. &

Finally, let us compute the spectrum flow from Hessq o to Hessg.q as an application of
Proposition 13.9.

Lemma 13.16 (cf. [KM07] Lemma 14.4.6). Consider the cylinder Z =R, x (f/,’s\) and
the operator (d7, DS q) defined in Proposition 13.1 with b = w-a and u € Gi11(Y), then

Ind(d, D,3 ;) = ([u] U c1(8))[Y 0Y] € 2Z, ¥y € Cr(a,u - a).
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Proof. We may use Proposition 13.9 and [KMO07, Proposition 14.2.2] to identify this index
to the index of an operator on S x Y. The spin bundle ST — S x Y is constructed as
[0,1] x S/(0,v) ~ (1,u - v).

Using the Atiyah-Patodi-Singer index theorem [APS75, Theorem 3.10] instead, the proof
of [KMO07, Lemma 14.4.6] can now proceed with no difficulty. Indeed, over the cylindrical
end of S x Y, the operator is cast into the form (up to a compact term)

0y +0(0s + Dy) =0(0s — 0 - 0 + Dy) on St x [0, +00)s x 2.

Following the proof of Proposition 11.2, the spectrum of (—o - &; + Dx) on S x X is
discrete and symmetric with respect to the origin, so its n-invariant is zero. Moreover,
(=0 - 0¢ + Dxy) is invertible, so its kernel is trivial. O

14. LINEARIZED OPERATORS ON COBORDISMS

Having addressed the linearized operators on the product manifold R; x )A/, in this
section, we explore the case for a morphism X : (Yq,51) — (Ys2,52) in the strict cobordism
category SCobg. In this case, we have a relative spin® cobordism

(X,8x) : (Y1,81) — (¥1,39).

By attaching cylindrical ends, we obtain a complete Riemannian manifold

X = ((—oo, —1], % ﬁ) uXu ([1,oo)t x ffz)

together with a closed 2-form wx on X defined as in (3.11). There are two main tasks for
this section:

e define the perturbation space of the Seiberg-Witten equaions on X. This is crucial
for the transversality result in Section 16, c¢f. Theorem 16.5;
e prove that the linearized operator on X is Fredholm.

They are addressed in Subsection 14.1 and 14.2 respectively.
14.1. Perturbations. Given a morphism X : (Y1,51) — (Y2, 55) in the strict spin® cobordism
category SCobyg, the perturbation g; € P(Y;) encoded in the definition of (Y;,5;) is admis-
sible by (P8). Take a critial point
a; € Crit(éw, f/) (@ Ck(ﬁ,/ﬁ\l),
for each ¢ = 1,2. Pick a smooth configuration v on X such that
() =ayift < —1/2;
() =ayift>1/2
~(t) is in the temporal gauge when [t| > 1/2,
’y!X € Ck(X,g)
Now consider the configuration space on X

Cr(ar, X, a2) = {(A,®) =y + (a,¢) : (a,¢) € Li(X,iT*X ® ST)}.

(14.1)
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and the gauge group
Grp1(X) ={u: X - S iu—1e L7, (X, C)}.
The linearized action of G y1(X) at v = (A, ®) € Cx(ay, X, ag) is given by:
d,: L7 (X,iR) — T,C(a1, X, az)
f(#) = (=df, f®)
whose L2-formal adjoint is
d?: T,C(a1, X, a2) — L _(X,iR)
(0a,d¢) — —d*a + i Reld¢, i®).

Let us now specify the class of perturbations involved in the Seiberg-Witten equations.
Choose a cut-off function § : R, — R with g(¢) = 1 if |[¢| > 3 and B(¢) = 0 if || < 2.
Pick another cut-off function 5y : Ry — R supported on [1,2]; = Ry, equal to 1 when
t € [5/4,7/4]. Now consider the perturbed Seiberg-Witten equation:

(14'2> gé’ﬁP(’Y) =0, ve Ck<a17 X, Clg),
Sap(y) = Fx(y) + BO[E(Y) + T2(0)] + Bo(t)(@3(7)) + (pa(wy),0),

where Fy is the unperturbed Seiberg-Witten map defined by the formula (3.7). Here p
denotes the quadruple

p = (91,92, g3, w3) € P(Y1) x P(Ya) x P(Y2) x Q2([1,2] x Ya,iR).

where q3 € P(Y3) is a tame perturbation supported on Y5 and ws is an imaginary-valued
exact 2-form compactly supported on [1,2] x Y. The effect of ws is to deform wx into
wx — ws, so the first equation of (3.7) is changed into

1

§P4(FXt - QW;;') - @‘I’*)o = _p4(w;)v
modulo perturbations from ¢;’s. In practice, it suffices to consider wj in the special form:
(14.3) w3 = d;((ﬁo(t)fgdt) = —50(t)dt N dy2f3.

for a compactly supported smooth function f3:[1,2]; x Y5 — iR.

Within the space of all compactly supported smooth functions on [1,2]; x Ya, we choose
a countable subset that is dense in C'®-topology and form a Banach space as in Theorem
8.17:

PForm .

The space Prorm is dense in CP([1,2]; x Y2,iR), and we define w3 by the formula (14.3)
with f3 € Pprorm. In all, the quadruple p takes value in a Banach space

p = (91,92, 93, w3) € P(Y1) x P(Y2) x P(Y2) X Prorm-

Here q; and g2 are encoded in the cylindrical ends of &X’; only the last two terms

(93,ws3)
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give rise to the actual perturbation in (14.2), allowing us to achieve transversality in
Section 16. Note that

Bo(t)as(v) and (pa(wy),0)

are both supported in the compact region [1,2]; x Y. Finally, we form the moduli space
Mi(a1, X, az) by taking the quotient space:

(14.4) M (a1, X, az) := {Sxp(y) = 0: v € Car, X, 02)}/Gry1(X),

which is in fact independent of the subscript k, due to the exponential decay of the local
energy functional, c¢f. Theorem 9.3.

14.2. Linearized Operators. Similar to the case for 7 = Ry x }A/, the linearization of
Sx,p together with di; forms a Fredholm operator. In particular, the cokernel is finite
dimensional.

Proposition 14.1. For any ¢ = 1,2, let a; be a smooth non-generate critical point of £,
in Cy(Y;,8;). Then for any v € Cx(ay, X, az2), the operator

(A%, DyFap) : LE(X,iT* X @ ST) — Ly (X, iIROIATX ®S™)
is Fredholm.

Definition 14.2. The moduli space My (a1, X, a2) is called regular, if the operator (d7, DS x )
is surjective at any solution [y] € Mg(a, X, az), O

Proof of Proposition 14.1. It suffices to deal with the case for the reference configuration

v = = and when (q3,w3) = 0. As q; is non-degenerate, the operator on the infinite
cylinder

d — ~ ~ ~ ~
D; i= = + Hessg g : LI (R, x Y, iR@®iT*Y; ® S) — Li_1 (R, x Vi, iR®iT*Y; ® S)

is invertible for ¢ = 1,2. Denote the inverse by @;. Unlike Theorem 10.2, the cut-off
functions involved in the parametrix patching argument are more sophisticated, as we
explain now. There are three of them:

b1, B2 and Bx with 81 + B2 + Bx = 1 and Sx compactly supported

Over the region {s < 2} < X, choose a partition of unity {8}, 55, Bx} subordinate to the
open cover Uy u Us U Ux:
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S = 2 --------------------------------
0 ZL. R
) memmdeceepie——— e e e e e -
I Ux
(-0, —1] x V1 X 01 [Lo)xY
] ] ]
t= —2 -1 0 1 2

FIGURE 1. An open cover of {s < 2}

Over the region {s > 2}, Bx = 0 and Bi(s,t) = BL(t),i = 1,2 where {87,581} is a
partition of unity on the real line R; subordinate to the cover
R = (=0, T v [T, ),

such that |dB]| < 4/T. The value of §; in the transition area {1 < s < 2} is filled in
by interpolation. To be more precise, pick a partition of unity {a,aV} on R, such that
aV(s) =1 when s > 2 and aV(s) =0 when s < 1. Set

Bi = aL(S)Bz{ + O‘U(S)/BiT(t)v i=1,2.
Finally, we take 3 ~ ~
Q = B1Q151 + P2Q262 + BxQxPx,
with Bz constructed in a similar manner. Here we require that ﬁ] = 1 on supp fS; so that
Bi3i = Bi. The same holds for (fx, Bx); and also supp fx is compact.
The parametrix ()x is given by a local patching argument as usual. By taking T" » 0,
one verifies that @ is indeed a parametrix for the operator (d7,D,Sx ) O
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Part 5. Transversality

The primary goal of this part is to prove the key transversality result: Theorem 16.1,
which states that admissible perturbations on (Y,5), in the sense of Definition 13.3, ex-
ist and are in fact generic. Because the perturbation space P(Y) that we consider are
supported on the truncated 3-manifold Y = {s < 0}, only a weak separating property
is satisfied, cf. Theorem 8.20. As a result, a stronger unique continuation property is
required in order to achieve transversality.

Section 15 is devoted to the proof of unique continuation properties, which uses the
Carleman estimates from [Kim95]. In Section 16, we prove Theorem 16.1 as well as its
analogue for a general morphism X : (Yq,51) — (Y3,52) in the SCobyg, cf. Theorem 16.5.

15. UNIQUE CONTINUATION

15.1. Statements. In this section, we prove the unique continuation properties of the
perturbed Seiberg-Witten equations (13.1), which are crucial for the proof of Theorem
16.1. The main results are listed as follows:

e the non-linear version: Theorem 15.1;

e the linearized version: Theorem 15.2; and

e the irreducibility of spinors: Theorem 15.3.

These theorems are summarized in the first subsection, while the rest of section is

devoted to their proofs. Let us start with the non-linear version of unique continuation:

Theorem 15.1. Let I = (t1,t2): be an open finite interval. Consider a tame perturbation
q € P supported on the truncated 3-manifold Y = {s < 0} € Y and the perturbed Seiberg-
Witten equations on Z :=1 x Y :

(15.1) 0=53,(0):=58;(3)+a(y).

If two solutions 1,72 are gauge equivalent on the slice {to} x Y at some tg € I, i.e there
exists a gauge transformation u € G(Y') such that

u(’71|{t0}><§') = 72|{t0}><f/ on Y7
then v1 and o are gauge equivalent over the whole manifold Z.

The analogous result for closed 3-manifolds is [KMO07, Proposition 7.2.1]. The main
difference here is that ; and o are not assumed to be gauge equivalent on the whole
time slice {tc} x Y thus, the proof of [KMO07, Proposition 7.2.1] does not apply directly
here.

Theorem 15.1 will follow from the strong unique continuation of the Seiberg-Witten
equations if ¢ = 0. The problem arises from the tame perturbation ¢, which gives rise to
non-local operators. We will provide a toy model in the next subsection to clarify this
point, cf. Remark 15.5. It is essential here that the region {to} x Y over which ; and 2
agree contains the support of g.

Before we proceed any further, let us state the linearized version of Theorem 15.1 and
the version that concerns the irreducibility of spinors.
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Theorem 15.2 (The Linearized Version). Let I = (t1,t2); < Ry be an open interval.
Consider a tame perturbation q € P supported on the truncated 3-manifold Y = {s <
0} < Y and a smooth solution v to the perturbed Seiberg- Witten equation (15.1) on the
4-manifold Z=1x (f/,g). Suppose a smooth tangent vector at ~

V() = (3c(t), 6b(t), 5¢(t)) € LY(Z,iT*Z @ S)
lies in the kernel of the linearized Seiberg- Witten map:
(15.2) 0="D,F5,(V),

or equivalently, it solves the equation (13.2). If V is generated by the linearized gauge
action on {to} x Y at some ty € I, i.e. there exists a smooth function £ € LiHQ(Y,iR)
such that

(66(0),6¢(0)) = dy) & on {to} x Y.

then V is generated by the linearized gauge action on the whole manifold 2, i.e. there
exists a smooth function ¢ € L?_,(Z,iR) such that

V=d, £ onZ.

Theorem 15.3 (Irreducibiliy of Spinors). Let I = (t1,t2): < Ry be an open interval. For
any tame perturbation q € P and a solution v = (A, ®) to the perturbed Seiberg-Witten
equations (15.1) on the 4-manifold Z = I x Y, if the spinor

O =0 on {to} x Y,
for some tge I, then ® =0 on Z.

The proofs of Theorem 15.1-15.3 will not be used elsewhere in this paper. They will
dominate the rest of the section.

15.2. A Motivating Problem. To better explain the ideas and point out the difference
from the standard theory [KMO7, Section 7], let us first discuss a motivating problem that
concerns the d-operator on the complex plane. Let

f:C,—-C

be a holomorphic function and z = t + is be the complex coordinate of the domain. It is
well-known that if f vanishes along the interval {0} x [0, 1]s, then f =0 over C,.

We investigate a class of perturbations of the d—operator. The equation df = 0 can be
formally cast into an evolution equation:

orf = =D(f)

where D(f) = i0sf is a self-adjoint operator on L?(R,,C) (although we do not assume
f(t) € L*(Ry, C) for any time slice {t} x R,). Consider a smooth function K; : Ry x Ry — C
with

supp Kl = [07 1]8 X [07 1]5
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and form the convolution operator
K : C*(Rs,C) - C®(Ry, C)

f o K(f)(s) = fR Ky (s, 8) (')

Then Dy := D+ K is a compact perturbation of D, not necessarily self-adjoint anymore.
More generally, let V' : C, — C be any smooth function and consider the equation

(15.3) Otf = —Dg(f)—V - fonC=R; xR;.
The potential V' can be viewed as a time-dependent perturbation of Dg.

Proposition 15.4. Suppose f € C*(C,,C) is a solution to the perturbed 0-equation (15.3)
and f(z) =0 for any z € {0} x [0,1]s, then f =0 on C,.

Remark 15.5. If we only assume f = 0 on {0} x [¢,1]s for some small ¢ > 0, then for
some kernel K7 and potential V', the conclusion fails. Indeed, set f(¢,s) = g(s) and V = 0.
Let g be a cut-off function such that

g(s) =0,Vs = e and g(s) =1,Vs < ¢/2.
Then one can find K; with Ky * g = —D(g) = —idsg, so g € ker Dy. o

The problem here is that the convolution operator K is not local: even if a function
g : [0,1]s — C is supported on a small interval [0,¢] < [0,1]s, K(g) = K1 * g might be
non-vanishing on a much larger region. This is the analogue of the tame perturbation q
in the Seiberg-Witten equations.

The proofs of Theorem 15.1-15.3 are modeled on that of Proposition 15.4, which involves
Carleman estimates, as we discuss in the next subsection.

15.3. Carleman Estimates. There are two classical ways to prove a strong unique con-
tinuation property like Proposition 15.4. The first follows Agmon and Nirenberg [AN67]
and relies on a differential inequality. This is the approach adopted in the book [KMO07,
Section 7]. In this paper, we follow the second strategy and base our works on Carleman
estimates [Car39]. The primary result that we consult is [Kim95, Theorem 1].

Let us first state a result in an abstract Hilbert space.

Proposition 15.6. Let H be a Hilbert space and L; : H — H, i = 1,2 be (unbounded)
self-adjoint operators on H satisfying the relation

(15.4) (Li + 7Ly + )* =1Ly = 0
for any r >0 and o > ag(H, L1, La); or equivalently,
(15.5) I(Ly + rLa + a)v|3 — Redv, (rLa)v) = 0 Vv € D(Ly) n D(Ls).

Here, ag > 0 is a fized large number depending only on H, L1 and Lo.

Suppose w : [0,79], — D(L1) n D(L2) is a smooth function such that
e for a constant Cy > 0, the following estimate holds for any r € (0,r]:
1
(15.6) 10 + - L1+ Lo)w(r) |1 < Colw(r)|m;
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e w(r) vanishes at the origin to the infinite order, i.e (07w)(0) = 0 for any n = 0.
In practice, we will only need the property that

(15.7) lw()a, [Orw(r)[a = OF™) as r— 0,
for anyn = 1.
Then w = 0.
With loss of generality, we assume rop = 1 and let z := Inr € (—00,0]. Then the
inequality (15.6) becomes
(15.8) g(x) := (0 + L1 + " Loy)w(x),

lg(@) |z < Coe®|w(z)|m, Va e (—0,0].

The key ingredient is the Carleman estimate. We follow the idea from [AB80]. For any
e € (0,1), consider the weight function ¢ : (—o0,0] — Ry implicitly determined by the
relation —p(z) + exp(—ep(x)) = z, so p(r) ~ —z and

1 1
(15.9) Orp(z) = ) € (-1, —5)7

626—5@(3:)

> 2 2ex
(1 + eoeoms = €€

(15.10) Pp(x) =

for a constant Cq > 0. In what follows, we will always treat € € (0,1) as a fixed constant.

Proposition 15.7 (Carleman Estimates, [Kim95] Theorem 1). Under the assumptions of
Proposition 15.6, for any € € (0, 1), there is a constant C(€) > 0 such that for any 7 > 2«
and u € CF((—0,0),D(L1) n D(L2)), we have

; f 7@+ () < O(e) J 1@ (8, + Ly + e Lo)u(a)|% dx.
(—00,0) (—0,0)

This estimate is uniform in 7.

Proof of Proposition 15.6. Fix some zg < 0. To apply Carleman estimates, choose a cut-
off function y : (—0,0], — [0, 1] such that x(z) = 1 when = < zg and x(0) = 0. Set
u(x) = x(x)w(z). The function u(x) is not compactly supported on (—o0,0), but its decay
is faster than any exponential function as © — —oo, by (15.7). In this case, Proposition
15.7 still applies, cf. Remark 15.8; so

T T
eﬂp($)+e:vw x 2 dr < J e’r<p(:v)+exu T 2 d$,
2@ )] @i < g | @)
1
< J 1€7@) (8, + Ly + e Lo)u(x)| % dx,
2 (_0070]

< f |9 g () |3 de + f | @ 0y, x(@)]w(a) |3 dz,
(—00,0] [%0,0]

(by (15.8)) < Co f

o7 (o) e + Coe ) [y,
(_0070]

[:E(),O]
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where Cy = [0,x||%,. The upshot is that this inequality holds for any 7 » 1, so when
T > 4CyC(€), we use the rearrangement argument to derive that

2 g s < 2000 | ulfyaa.
(—w,ﬁ()] [$()70]
Let 7 — o0. We conclude that w(z) =0 when x < xg. Since xg < 0 is arbitrary, w =0
on (—o0,0]. O

To complete the proof of Proposition 15.6, it remains to prove Carleman estimates.

Proof of Proposition 15.7. 1t is essentially the same argument as [Kim95, Theorem 1]. We
record the proof here because a slight modification will be made in our actual applications.
Set v(z) := e™?®y(z), then
e™@)(9, + L1 + €*Lo)e ™" @y(z) = (9, + L1 + €*Lo + 7(—050(x)))v(2).
Define L(x) := L1 + e* Ly + 7(— 0z (7)) and compute
o oo Lz = | el + 1@l
—00,

(_OO)O]
+ j 2Re(0zv(z), L(z)v(z))ypde.
(_0010]
Using the fact that L(z) : H — H is a self-adjoint operator, we integrate by parts:

(15.11) f 2Re(0zv(z), L(z)v(x))g = — J Re(v(z), (0 L(z))v(x))
(—o0,0] (—00,0]

=f Reu(z), e*(~La)o(x)) + 7 f (@), (e (@))o())
(—00,0]

(70070]

(by (15.10)) >f

Re(v(x), e®(—Lo)v(x)) + C’1€27'f le®v(z)|%.
(—0,0]

(70070]

Set a = 7(—0yp). If 7 > 2ayp, then by (15.9), a = 7(—0dzp) > 7/2 > ap. Now we use
the relation (15.4) to conclude that

|1+ et de = i | eutaly
(—0,0] (=0,0]
for any 7 > 2ap and € € (0,1). O

Remark 15.8. When u(zx) : (—0,0) — D(L1) n D(L2) is not compactly supported and
yet u(0) = 0, we have to verify that the boundary term in (15.11) vanishes:

lirzloo Rev(z), L(z)v(x)).
Then one may assume that |u(z)| g, |0zu(x)| g and |(L1+ € Lo)u(z)| g decay faster than

any exponential functions as * — —oo0. In Proposition 15.6, this is guaranteed by (15.8)
and (15.7). ¢
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15.4. Applications. In this subsection, we give a few examples of (H, L1, Lo) for which
the assumption (15.5) is fulfilled and derive Proposition 15.4 from the abstract Proposition
15.6. We will work out the Seiberg-Witten equations in the next subsection.

Lemma 15.9. If self-adjoint operators Ly, Ly : H — H anti-commute, i.e.
{Li, Lo} := L1Lo + LoLy =0,

then the condition (15.5) holds.

Proof. We rewrite the left hand side of (15.5) as

N Re(Lyv, (rL2)v)

a
The last term vanishes because {L1, Lo} = 0. O

1 1 1
(a4 (1= 5o )rka + @)l + (1= (1= 5 (Lol >0ifa> 1.

Example 15.10. The first example is the Dirac operator on C, x 3 where ¥ = 0Y is a
union of 2-tori endowed with a flat metric. We choose a spin® connection A on C, such

that

d d -

for a fixed spin® connection B on the surface 3.
Using the polar coordinate (r,#) on the complex plane, the Dirac operator DZ can be
written as

1
D3 = pa(dr)(0, + p3(rdf) - (;59 + D3))
where Dg is the Dirac operator associated to B on the surface. Unlike py(rdf),
p3(rdf) = pa(dr)~t - ps(rdf) = —pa(dr A rdf)
is a constant bundle map. Proposition 15.6 applies to the operator pzl(dr) - D} with
LY = p3(rdf) - 0, Ly = p3(rdf) D3
and H = L%(S! x £, 8%). Indeed, by Lemma 15.9, {L? LY} = 0. %
Example 15.11. The second example concerns the self-dual operator
QN(X,iR) —» QT (X,iR),
b dth,
on the 4-manifold X = C, x . Using the polar coordinate at the origin 0 € C,, we regard
b as an 1-form on
X' =1[0,70), x S' x X.
Suppose b does not contain the dr-component and write
b(r) = by(r)(rdf) + ba(r)
with b1(r) € Hy := L?(S! x ,R) and by(r) € Hy := L*(S? x ¥, T*Y). As the metric on
X' is given by
dr* + (rdf)* + gs,
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the equation d*b = 0 is equivalent to that

()6 )+ (2 ) o

To apply Proposition 15.6, set H = H; ® Hy and

s (1 O s (0 Ly
ao(s ) a-(3 %)
with L3 := #x0p : Hy — Hy and Ly := #xdyx, : Hy — H;. To verify the condition (15.5),

we calculate for each v = (by,bs) € H that

H(L? + T‘Lg” + a)vH}Qg — v, TL§U> = |ab; + TL4b2H%{1 + |rLiby + (L3 + Oé)bg”%b
1
+ (2a+ )bz, = 0if a > —5

In this case, Lemma 15.9 is not applicable because the anti-commutator {L?, L%} #0. &

In the proof of Proposition 15.4 below, we will work with operator Lq, Lo that are not
self-adjoint on H. Nevertheless, the abstract Proposition 15.6 still applies, since we can
verify the first step of (15.11) directly: this is the only place the self-adjointness was used.
Proof of Proposition 15.4. Let I = [0,1]s;. For any r > 0, consider the contour I', =
Y+ 1 41 4 1 with

)= {r} x 1, T® —{i+re?:0<0 <},

e — {—r} x I, N :{rew cm < 0 < 27},

and define
0i(r) = flpo pw € Hi= LI ] [(-1),C),
va(r) = flpe pw € Ha == L*([0,7]g | [[m, 27]5, C).
where (—1I) stands for the orientation reversal of I. Finally, set
w(r) = (wi(r),wa(r)) := (vi(r),rvz(r)) € H := Hi © Ha.

Our assumptions imply that the function w : [0,1) — H vanishes to the infinite order
at the origin. To apply Proposition 15.6, we look for the differential equation that governs
w(r). As the function f solves the perturbed J-equation, we have

1
(15.12) orw(r) + (;Ll + Ly)w(r) = h(r)
with .
L1 = (O,i(?g - 5) and L2 = (i(?s,()) on H = H1 (—DHQ.

The error term h(r) in (15.12) is determined by the convolution operator K and the
smooth potential V', so the assumption (15.6) is satisfied in our case.
Neither Li nor Ls is a self-adjoint operator on H, but we still have

(15.13) Re(( Ln + La)u(r), dyu(r)) = Rew(r), (L1 + Lo)éru(r)
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which justifies the equality (15.11) in the proof of Proposition 15.7. Indeed,
1 1 ]
((=L1 + La)w(r), opw(r)) — (w(r), (= L1 + L) yw(r)) = o~ J dplva(r,0)|*d6
r r 2r Jjom) [{m.2n)

is purely imaginary. As the relation
2Re(Lyv, Lov)y = 0,Yv € D(L1) n D(L3)

still holds in our case, the proof of Lemma 15.9 remains valid. Now we use Lemma 15.9
and Proposition 15.6 to complete the proof. O

15.5. The Seiberg-Witten Equations. Having discussed some toy problems, we are
now ready to prove the strong unique continuation property for the perturbed Seiberg-
Witten equations, by combining Example 15.10 and 15.11.

Proof of Theorem 15.1. With loss of generality, assume I = [—1,1] and to = 0. It suffices
to show that ; and 72 are gauge equivalent in an open neighborhood of {0} x Y, then
one may use induction to extend this neighborhood to the whole space Z =1 x Y.

To imitate the proof of Proposition 15.4, consider the closed 3-manifold Y, = ﬁl) V)

7@ U y§3) where
YW= {1} x Y, VO — (re? 0< <7} x X,
y,£3) = (—{-r} xY), Vr e [0,1].

Here y£3) is the orientation reversal of {—r}xY. Let By be the reference spin® connection
on Y, so By agrees with the R;-invariant connection

d .
—+ B
ds *
on the cylindrical end [—1,0), x X. Set 79 = (B, 0).

Extend the gauge transformation u constantly in the time direction and replace v, by
u(y1). Construct gauge transformations wu;, i = 1,2 such that u; = Id on {0} x Y and
i = u;(7;) is in the temporal gauge (the di-component vanishes). Consider the difference

5i(t) == Vil gy — 20 € CP(V,iT*Y @ 5)
Formally, §; is subject to an evolution equation:
0u8i(t) + Ly 65(t) + 6:(£)#0:(t) + q(8i(t) +70) = .

where # is a symmetric bilinear form that involves only point-wise multiplications. Here
c is a constant error term determined by vy and

Yy *3(1{, 0
2= (% o)

Now take the difference §(t) := d2(t) — 01(¢). Over the space [—1,1]; x Y, we have
(15.14) 00(t) + LY (6(t)) = hi(t) € C*(Y,iT*Y @ 5)
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and ||h1(t)l|2vy < Cl6(t)| L2(yy for a uniform constant C' > 0. Moreover,
0;0(0)=0on Y for any n > 0.

When n = 0, this follows from the assumption that 47 = 72 on {0} x Y. When n > 1, this
is a consequence of the equation (15.14) and its higher time derivatives. As a result, all
derivatives of § vanish on {0} x Y.

Set Hy = L*(Y,iT*Y @ S) and define

vi(r) = (0(r)ly,d(=r)|y) € H1 @ Hi.

Then 07'v;(0) = 0 for any n > 0.

To deal with the middle part yﬁ”, consider the polar coordinate at 0 € C, and restrict
0 to a section of

iT*X' @8 — X' :=1[0,1], x [0,7]g x L Ry x {s >0} x .

The section ¢ is not necessarily in the radial temporal gauge: the dr-component of § only
vanishes when 6 = 0, 7. One has to construct gauge transformations v} : X’ — S* on X’
such that u;|(o}x[0,x], x> = Id and w;(v;) is the radial temporal gauge. Then we define

va(1) = uh(V4) (1) — uy (7)) (r) € Hy := L*([0,7]p x X, iIR@iT*L @ S).
Then the path ve(r) is subject to the equation

B (r) + <i <L§ LOP) + ([f L%,) >vg(7‘) — ha(r) € Ho.

and |[ha(r)| g, < Clva(r)|m, for a constant C' > 0. The Seiberg-Witten equations are not
perturbed on X', so the error term ho(r) involves only point-wise multiplications with
va(r). Operators LY and LP,i = 1,2 are defined as in Example 15.10 and 15.11.

As all derivatives of § vanish on (0,0) x 3, dv2(0) = 0 for any n = 0.

Finally, let H = (H1 @® H;) @ Hs and define

w(r) = (wi(r), wa(r)) := (v1(r), Vroa(r)) € H.

Now the path w : [0,1), — H is subject to the equation

1
(15.15) Orw(r) + (- L1 + Lo)w(r) = (ha(r), —ha(=7), Vrha(r)).
with S S
Ll - (ana (0 L?) *§)aL2 - (L2’*L27 0 L]]2]> )
To apply Proposition 15.6, we have to verify:
e the positivity condition (15.5);
e the symmetry condition (15.13); note that neither Ly nor Lo is self-adjoint.

At this point, we have reduced the problem to some formal properties of Ly, Lo and
w(r). We will treat the form component and the spinor component of (15.15) separately.
The verification of (15.5) and (15.13) will dominate the rest of the proof.

Step 1. The Form Component and the Self-Dual operators. In this case, the positivity
condition (15.5) follows from the same argument as in Example 15.11 and Proposition
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15.4. It can be checked separately on each of yﬁi), 1 <i<3. As for (15.13), we focus on

the common boundary of yﬁl) and yﬁz). Suppose the form components of v (r) and vy(r)
are given respectively by

V1 |{ryx (—1,0], xx W a1ds + ag, ai(r) e C*°((—1,0]s x 3,iR),
as(r) € C*((—1,0]s x X,iT*Y),
Vg v bl(rdH) + bo, bl(T) € COO([O,W]Q X E,iR),
bg(?") € COO([O,W]Q X E,iT*Z)

Near the boundary of y,(,”, we have

(x3dy ) ay(r) _ 0 sndy\ (a1(r)
N aa(r)) T \memds 90, ) \aa(r) )
Then we calculate (the operator L§ is ignored here as it is always self-adjoint):

((#3dy )v1, (Orv1)) (ryxy — €01, (33dy ) (001 (ryxy = (xmaz(r,0), (0raz)(r,0)) 0y x -
L, (Gpwa)n, — Cwn, L5 @)ty = —~Cosba(r, 0), (2rb2) (r,0)) 0y

1
+ f Db, bays + -+ - .
r [0,71’]9

" J

v

=0
It remains to verify that as(r,0) = b2(r,0) on A Y@ Suppose the restriction of
the form component of § on X’ = [0,1], x [0,7]g x X is fdr + ¢1(rdf) + co with
f(r),c1(r) e CP([0,]g x ,iR), ca(r) € CP([0,7]p x X,iT*Y).

It is clear that as and ¢y agree along the common boundary of y,ﬁl) and 34@. Moreover,
f(r,0)=0if § =0 or =.
To put § into radial temporal gauge, we applied further gauge transformations, so (b1, b2)
is related to d by the formulae:
1 T T
) =al) = [[@HEr. () = o)~ | ()
0

0
As a result, ag(r, $)|s=0 = ba(r,0)|p=o. This equality does not a priori hold for a; and
b1, but it is not needed in the proof.

Step 2. The Spinor Component and the Dirac operators. The proof of (15.13) proceeds
in the same way as in Step 1. We focus on the positivity condition (15.5). Suppose the
spinor components of v;(r), 1 < i < 3 are given respectively by

Ul‘{r}xY e @1(T> € COO(Ya S)a V2 > @2(7’) € COO([O>7T]9 x X, 5)7
V3| {ryxy > @3(r) € CF(Y, S).
‘We focus on sections

(®1(r), ®3(7), /T ®2(r)) € LA(Y,S) ® L*(Y, S) @ L*([0,7]s x 2, 5)
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and operators:

1

"\o o LP-

0 0 0 Dp, 0 0

00 0 + 0 —-Dp, O

: 0 0o LY
Unlike Example 15.10, LllD) is not self-adjoint in this case. In general,
O=m

# 0, ve L*([0,7]g, S).

2 R6<L]?'U7 LH2)U>L2([O,7r]g x3) f <'U, D§U>
{0} x 2 0=0

Let v = 4/r®,(r) and follow the proof of Lemma 15.9:

1
LR 4 1L + (o= 2 )Vralag sy — Re(y/r, (rLE)/ris)
2r? D D
>ﬁ Re(Ly @2, Ly ®2)12([0,7],x %)

r2

= by _ by
N 20 — 1 (J~{7r}><2<(1)27 DB(I>2> LO}XE<(I)27 DB(I)2>> ‘

Just as in Step 1, sections @1 and ®5 have the same boundary value along y(” N y,@

<I>1(r,s)| 0= = Dy(r,0) |0 o

Therefore, it remains to verify the inequality:

2
(D, + @)1y ~ ReCr, (rDg )81 > 5 | (@1, Dy
20( —1 {O}XZ

The left hand side can be rewritten as

1 (2a — 1)? 72 402 — 6+ 1
(=5 Dpy + = =)@ 172 SO — ||DBO<I>1||L2 W\@lﬂiz(y)-

Using the Weitzenbock formula [KMO7, (4,15)], the last two terms are bounded below by

7,.2

2 by s 2 1
- (anofanz(Y) e[, e [ e o)

o — 7"2

P
H 1HL2 20{—1

+

(6% (6%
LO} (B DGR + T
X

100

Then we take a > ag := e max{|s|co, | Fipet o0, 1}

The common boundary %@) nyﬁ3) is dealt with similarly. Hence, the positivity condition
(15.5) holds when o > ag. Now we use Proposition 15.6 and 15.7 to complete the proof. [

15.6. Irreducibility of Spinors. We accomplish the proof of Theorem 15.3 in this sub-
section, following the idea above. The spinor part of the equation (15.1) is cast into the
form

2 V() + Dy ¥(t) +a' (B(t), ¥(t)) = 0.
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where q' is the spinor part of the perturbation q = (¢°,q'). As q'(B(t),0) = 0, we have
la'(B(6), ¥ (1)) = la* (B(1), ¥(£)) — q*(B(1),0)[2
= JOI IDBa) rwena (2()|2dr < CIE ()] r2v),

for a constant C' > 0 and any t € [ty — €,tp + €¢]. Now the proof of Theorem 15.1 can
proceed with no difficulty.

15.7. The Linearized Version. In this subsection, we accomplish the proof of Theorem
15.2. To some extent, it suffices to “linearize” each step of the proof of Theorem 15.1.
Again, assume [ = [—1,1]; and ¢y = 0.

W) =¢— L t Sc(t)dt' e C*(Z,iR),

and set V1 =V —d, ¢ (1. This new section V; is smooth, and
Vi(t) = (0,0b1(t), 6¢1 (1)) € LE(Z,iT*Z ® S),
Vi(0) =0 on {0} x Y.

As v solves the non-linear equation (15.1), d, M) is a solution to the linear equation
(15.2), and so is V4. The equation (13.2) is formally an evolutionary equation on I x Y:

(1516 i (o) + (0 o) (300) =70 (i)t ®

where n(t) : L2(Y) — L?(Y) is a family of bounded linear operators determined by #(t).

To borrow the proof of Theorem 15.2, we focus on yﬁ”. Using polar coordinates, we
write

Vi(r) = (6ci(r), a0y (r), 641 (r)) € C* (X, iR @ 4T ([0, 7]p x 1) ® S),

on X’ =[0,1], x [0,7]p x ¥ < HZ x . To put V;(r) into radial temporal gauge, consider
the function

FAr) = —f 5cy (r')dr" on X'
0
Then f(2) (r,0) = 0 when 6 = 0,7, and the section V; — dvf@) solves the linear equation
(15.2) on X. The proof of Theorem 15.1 is now applicable. We conclude that
(15.17) Vit)=0on I xY
Vi — dvf(z) =0on X'

We extend f®) by zero over the product I x Y. One might worry that £ does not
form a smooth function on the union

(I x| Jx,
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as we pointed out in Step 1 in the proof of Theorem 15.2. However, once the unique
continuation property is established, the smoothness of £ follows from (15.17) and the
smoothness of V. As a result,

Vi=d,f® on (IxY)| X"

By induction, we can extend the region where this equality holds. This completes the
proof of Theorem 15.2.

16. TRANSVERSALITY

With all machinery developed so far, we are ready to prove the transversality result on
the cylinder Ry x Y in this section. Here is the main result:

Theorem 16.1. For any relative spin® manifold (17,3) satisfying constraints in the strict
cobordism category Cobg, one can find an admissible perturbation q € P(Y,5), in the sense

of Definition 13.3. Here 73(37,’5\) is the Banach space of tame perturbations constructed
Subsection 8.5.

Pick an admissible perturbation ¢(s) for each relative spin® structure § on Y. By
putting them altogether, we obtain an object Y = (Y,1, gy,w,q) in the category Cobs:
the property (P8) is fulfilled. In this case, the moduli spaces M|,(a,b) defined in Section
13 will become a smooth manifold, and the Floer homology of (Y,s) will be defined in
Part 6.

Theorem 16.1 is a formal consequence of the unique continuation properties, Theorem
15.1-15.3 and the separating properties of cylinder functions, Theorem 8.20. The transver-
sality result for a general morphism X : (Y,5;) — (Y2,55) in the category SCobg is proved
in Subsection 16.3, cf. Theorem 16.5.

16.1. Transversality for the 3-Dimensional Equations. Consider the Banach space
of perturbations P and a tame perturbation q = grad f € P. We start with the first
condition (E1) in Definition 13.3 which concerns the 3-dimensional equation

grad £,(a) = 0,

Recall from Definition 12.2 that a critical point a € Ck(f/,g) of £, = L, + f is called
non-degenerate if the extended Hessian at a

is invertible. In fact, this is a generic condition for a perturbation q € P.

Theorem 16.2 (cf. [KMO07] Theorem 12.1.12). There is a residue (and in particular non-
empty) subset of P such that for every q in this subset, any critical point a € Crit(£,,) is
non-degenerate. For such a perturbation, Crit(£,) comprises a finite collection of gauge
orbits.
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Proof. The proof follows the same argument as in [KMO07, Section 12.5] with one slight
modification, as we explain now. Suppose for some q € P and a € Crit £, the tangent
vector v = (0,60b, 1)) # 0 lies in the kernel of Hessg q:

(16.1) (0, 8b, 6¢)) € ker Hessgq.

We have to show that v is separated by a cylinder function. To apply Proposition 8.6.
we verify that v is not generated by the infinitesimal gauge action on Y. Suppose on the
contrary that

(16.2) (0b,01)) =dg & onY
for some £ € L% +1(1’}, iR), then by the unique continuation property of tangent vectors,
Theorem 15.2, for a possibly different function ¢ € L7 H(}A/, R), the equation (16.2) holds
onY:

(6b,59) = d, €.
By (16.1), d%(6b,0) = 0 , so (3b,d4)) is L?-orthogonal to the subspace Ji 4 < Tqo. This
implies that v = 0, which a contradiction. Alternatively, we may apply the linearized
version of [KMO7, Theorem 7.2.1] on the 4-manifold

St ox }A/,
which possesses a cylindrical end S x [0,0)s x ¥. Now we use Proposition 8.6 to find a
cylinder function f € Cylin(Y’) supported on Y < Y such that
df (v) # 0.

The rest of the proof then follows [KMO07, Section 12.5]. O

16.2. Transversality on Cylinders. Suppose a tame perturbation q; = grad f; in the
residue subset of Theorem 16.2 has been chosen. Then the critical set of £ := £, + fi
consists of a finite collection of gauge orbits; let their representatives be

a;, 1<i<r.

We wish to find a closed Banach subspace P’ of P such that for any generic q2 € P’
with |P| « 1, the sum

q9=4aq1+aq2
is an admissible perturbation. The Banach subspace P’ that we consider is
(16.3) 'Pl = {qz eP: qg(ai) = O,D;iqz = O,Vi =1, ,T’},

so the perturbation g2 vanishes to the first order at each representative a;. The subspace
P’ is clearly closed inside P. Let us first verify the property (E1) for q = q1 + qq.

Lemma 16.3 ([KMO07] Lemma 15.1.2). There exists some n > 0 such that for any q2 =
grady fo € P" with |qz|p < n, the critical set of £, = L, + (f1 + f2) agrees with that of
£l = L, + fi. As a result, the first condition (E1) of Definition 13.3 continues to hold
for the sum q = q1 + q2.
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In particular, for any q2 € P’, the critical points of £, in the quotient configuration
space By_15(Y,3) are still given by [a;],1 < i <7 and

Dy, grad(Ly, + f1) = Dy, grad(Ly, + f1 + f2), 1 <i <

So each a; is still non-degenerate in the sense of Definition 12.2. Here [a;] is the image of
a; in By_12(Y,5).

Proof of Lemma. Suppose on the contrary that there is a sequence of tame perturbations

q(zj ) e P’ and a sequence of configurations 3; € Cj,_, /2(5773) such that

la;l» — 0, (grad £% +q5)(8;) = 0

and each 3; is not gauge equivalent to any of a;,1 < ¢ < r. By Proposition 9.7, a
subsequence of {f3;} converges to some a; up to gauge. Fix 0 < € « 1 and let O;(¢) be
the e-neighborhood of a; in Ck+1/2(i},g). When j » 1, each 3; € O;(e), and one may use
gauge transformations to put 3; into the Coulomb gauge slice at a;, i.e.

d:i (ﬂ — Cl,‘) =0.
Then

(16.4) grad £1(8;) — grad £1(a;) = — (a5 (8;) — 45 (a,))-

2

ji—1/2-0OrM of the left hand side is

As a; is non-degenerate as a critical point of £1, the L
bounded below by

clB; —ailez, ..
504
©))

for some ¢ > 0. On the other hand, as g5’ — 0 in P, the C?-norm of q over the bounded
neighborhood O;(¢€) converges to zero, by Corollary 8.19:

2

205 — 0 as j — oo

sup ||D
v€0;(e€)

As a result, the Lz_l Jo-norm of the right hand side of (16.4) is bounded above by

a2 a2 _q.
Hﬁj alHLifl/z,ai S HBJ alHLiH/Q,ai < EHBJ az”L%H/Z%’

when j » 1, which yields a contradiction if € < c. O

Theorem 16.1 now follows from the strong unique continuation property Theorem 15.1-
15.3 together with Lemma 13.5. The proof is modeled on [KMO7, Section 15]. In what
follows, we will only point out the necessary changes to be made.

Proof of Theorem 16.1. Let a,b € Crit(£,) be critical points of £, and Z =Ry x Y be
the infinite cylinder. Following the scheme of [KMO7, Section 15] and notations from
Subsection 13.1, it suffice to show for any g, € P’ and any solution v € Ci(a,b) to the
perturbed equation

0=57,=8;+8
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the operator
(16.5) P x L} Z,iR@iT*Y ®5) — L} (Z,iR@®iT*Y & S)
(60, V) = 83(7) + (%, D35 ) (V)

is surjective. The section dq(7y) lies in L7 | as the underlying path ¥ : R — Ck,l/Q(?,g)
decay exponentially to either a or b as t — +o0 and J§q vanishes at a and b to the first
order.

Suppose first that §q = 0 in (16.5), then (16.5) becomes a Fredholm operator by Propo-
sition 13.1, and its cokernel is finite dimensional. It remains to show that for any section

U = (6 (t),86'(t), 8¢/ (1)) € L*(Z,iR®iT*Y & S)
that is L?-orthogonal to the image of (d,”;, D,§5 q), there exist some dq € P’ such that

(16'6) <5a(’7(t))v U>L2(Rx}7) # 0.

We first explain how to achieve (16.6) for a generalized cylinder function f : Cj,_; (}A/, 5) —
R:
(16.7 (grad f(3), U()) a5 # 0.
tGRt
By the unique continuation properties, Theorem 15.1, 15.2 and 15.3, the underlying
path 4 : R — Cj,_12(Y,5) satisfies the following properties
e for any t; # ty € Ry, §(t1) and J(t2) are not gauge equivalent over Y
e for any t € Ry, ¥(¢) is not gauge equivalent to a; on Y for any 1 < ¢ < r; moreover,
F(t) is irreducible on Y
e for any ¢t € Ry, its derivative 0,5(t) is not generated by the infinitesimal gauge
action over Y.
As for the section U in the cokernel, by Lemma 13.5, we have
e 0C(t) = 0;
e for some ty € Ry, Ul(to) = (0,06 (to), 09’ (to)) are not generated by the infinitesimal
gauge action over Y.

Take a large constant 7" > 0 such that ty € [-T,7T]. To apply Theorem 8.20, let the
compact subset K be the image of

{a:1<i<ri {30 te[-T,T]

in the quotient configuration space Bj_, /2(}?3). Then we can find a finite collection of

cylinder functions {f;j, 1 < j <} defined using embeddings ¢; : S* x D? < Y such that
the map

== (fi,- f): Bk—l/?(i}>§) — R’
gives an embedding of K and Z'(U(tg)) # 0. Choose a smooth function
g :R >R
supported in a small neighborhood Q of Z/([¥(t0)]) with the following additional properties
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o Z([a;]) ¢, VI<i<m

e (2 0%)71(Q) is a small connected interval [to — €1,to + €3] around to; to achieve
this, we take T > 1;

e lastly, the integral

(16.8) fR dg/ (Z.(U(1)))dt + 0.

The last property would be impossible if for some constant a € R, =, (U (t)) = o=, (0+%:)
for any t € [ty — €, to + €]. However, this cannot hold for the whole real line; otherwise one
may draw a contradiction from equations (13.2) and (13.8). Then we can achieve (16.8)
by taking a different time slice ty € R; and possibly a different Z’.

As a result, the inequality (16.7) is achieved for the composition:
fi=g 0oZ :By_1(Y,5) —R,

Note that f = 0 in some L%_l/Q—neighborhood of {[a;] : 1 < i < r}, so grad f satisfies the
constraints in (16.3). By the density of the Banach space P, we can approximate grad f
by an element dq in P’ and the inequality (16.6) holds for this approximation.

The rest of the proof follows the same line of argument as in [KMO7, Proposition
15.1.3]. O

16.3. Transversality on 4-Manifolds in General. Recall the set up from Section 14.
For a morphism X : (Y1,51) — (Y2,52), the Seiberg-Witten equations Fx, = 0 on the
complete Riemannian 4-manifold X is perturbed by a quadruple

p = (d1, 92, 93, w3).
While (g1, q2) are encoded in the objects Y1 and Yo, the pair

(C|3,0.)3) € P(n) X PForm

is the actual perturbation that allows us to achieve transversality.

Definition 16.4. The quadruple p is said to be admissible if
e cach q; € P(Y;),i = 1,2 is admissible in the sense of Definition 13.3;
e for any spin® cobordism (X,8x) : (Y1,81) — (Y2,8,) (with a prescribed planar
metric gx), the moduli space M(ai, X, az) is regular in the sense of Definition
14.2. Here a; € Crit(£ ) is a critical point of the perturbed Chern-Simons-Dirac

wi, Y
functional éwi,f’i onY;, i=1,2. &

Theorem 16.5. Under above assumptions, for any fized admissible perturbations (q1,q2)

on Vi and Vs respectively, there is a residue subset of P(Y2) X Prorm Such that for every
pair (qs,ws) in this subset, the quadruple p is admissible.

Proof. Following the proof of Theorem 16.1, it suffices to verify that the operator
(16.9) P(Y2) X Prorm X Li(X,iT*X ® ST) — Li_(X,iR®isu(ST) @ S—)
(093, 6w3, V) = (d2, Dy Fxp)V + Bo(t)das(y) + pa(dwy),
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is surjective, for any solution v € Cy(a1, X, az) to the perturbed equation §x, = 0. We
begin with (dqs3, dws) = 0, then (16.9) becomes a Fredholm operator by Proposition 14.1.
Suppose U € L*(X,iR @ iATX @ S~) is L*-orthogonal to the image of (dX,DyFx ). it
remains to find (4¢3, dws) such that

(16.10) (U, Bo(t)dds(7) + pa(dws )yrz # 0.
Let I = [1,2]; and write
U = (8¢, 0w, ¢) with 6¢ € L*(X,iR).
The same argument as in the proof of Lemma 13.5 implies that ¢ = 0. The inner product
(16.10) is supported on the compact submanifold
Z:=1x }A/g,

over which the formal adjoint of (dJ,D,§x ) is cast into the form (13.6). If instead we
write

U(t) = (0,6b(t),6¢(t)) € L3(Z,iR®iT*Yo® S) on I x Ys,
then we are back to the cylindrical case. Here we have used the bundle map

(p3, pa(dt))

to identify iT*Yo @ S with isu(S*) ® S~ over Z.

However, Lemma 13.5 does not apply directly here, so we argue as follows. If there
exists some to € suppfy < [1,2] such that U(tg) is separated by some cylinder function f,
then we set dws = 0 and proceed as in the proof of Theorem 15.1.

If not, then by the proof of Lemma 13.5, for any t € [5/4,7/4], there exists some function

£(t) e L%(}A/, iR) such that
(0b(t),6v(t)) = dsr) (1) on {t} x Ya.
Moreover,

(16.11) %deg(w = 0 and Ay,£() + €8T = 0 on [5/4,7/4] x Y.

Recall that dws = —Sy(t)dt A dy, f3 for a compactly supported function f3: I x Y — iR,
SO
pa(dwy) = p3(dy, (Bo(t) f3))-
If U is orthogonal to p4(5w§) for any dws € Prorm, then Ay,£(t) = 0. By (16.11),
U(t) =0 on [5/4,7/4] x Y. By unique continuation, U = 0 on the whole manifold X'. O
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Part 6. Floer Homology

Let (Y,5) € SCobg be an object in the strict spin® cobordism category, as defined in
Section 3. The underlying 3-manifold Y of Y is compact connected and oriented, whose
boundary is identified with a disjoint union of 2-tori 32 by the diffeomorphism % : 0Y — X..
The quintuple Y = (Y, v, gy,w, {q}) also dictates a cylindrical metric gy and a closed 2-
form w € Q*(Y,iR). § € Spin (V) is a relative spin® structure of the 3-manifold Y.

The primary goal of this part is to define the functor

HM, : SCobs; — R-Mod

which assigns the monopole Floer homology HM .(Y,s) for each object (Y,s) € SCobsg,
generalizing the construction of Kronheimer-Mrowka for closed 3-manifolds.

So far we have addressed two fundamental problems in order to define the functor HM ,.:

e the compactness issue; see Theorem 6.1 for the unperturbed equations and Theo-
rem 9.5 for the perturbed ones;

e the transversality issue; see Theorem 16.1 for the case of cylinders and Theorem
16.5 for morphisms in SCobs.

Although the proof of the gluing theorem is omitted in this paper, it follows from the
standard procedure in [KMO07, Section 17-19], as noted in Subsection 13.4.

Now the construction of monopole Floer homology becomes straightforward by following
the standard argument. Part 6 is organized as follows. In Section 17, we explain the basic
construction using Fo-coefficient. Section 18 is devoted to the canonical grading as well
as the canonical mod 2 grading of HM ,(Y,3).

In Section 19, we address the orientation issue, which allows us to define the monopole
Floer homology HM ,(Y,5) using Z-coefficient. The key ingredient is the notion of relative
orientations, which compare the orientations of two Fredholm operators using the excision
principle, cf. Theorem 19.2 and Definition B.2. The proof is postponed to Appendix B.

17. THE BASIC CONSTRUCTION: F9-COEFFICIENT

In this section, we define the monopole Floer homology HM .(Y,s) for each object
(Y,5) € SCobg using Fao-coefficient. For the most general case, we have to use a Novikov
ring Ro. To work with the field Fy of two elements, we will pass to a subcategory of SCobg
in which case a monotonicity condition is required.

17.1. Novikov Rings. Let us first explain the construction of HM ,(Y,5) using a Novikov
ring
Ro = {Z a;q"" : a; € Fa, n; € R, limn; = —oo},
(]
n;

which is a complete topological group. Each element of R is a Laurent series in a formal
variable g with possibly infinitely many terms in negative degrees. For any object (Y,5) €
SCobyg, the perturbation q = grad f encoded in the quintuple Y is admissible in the sense
of Definition 13.3. Let €(Y,5s) be the set of critical points of £, = L, + f in the quotient



102 DONGHAO WANG

configuration space By(Y,§), then €(Y,3) is a finite set by Theorem 16.2. Then the chain
group C4(Y,3) is freely generated by €(Y,s) over Ro:

Ci(Y,5) = @ Ro - [a].
[a]ee (Y }3)
with differential ¢ defined as

(17.1) ola] = 3 [6] - #M. ([a], [6]) - g~ Erer(lel8]:2),

The unparameterized moduli space MZ([a], [6]) := M. ([a], [b])/R; is defined as in (13.5).
The topological energy Sfop([a], [b]; ) for a homotopy class of paths z € w1 (B (Y,5); [a], [6])
equals twice the drop of £, along ~

2(£w(a) - éw(b))

if v : [0,1] — Cu(Y,5) is a lift of z with 4(0) = a and v(1) = b. This expression is
suggested by Proposition 9.1. To ensure the sum in (17.1) is convergent in Rg, we need a
finiteness result:

Lemma 17.1. For any C > 0, there are only finitely many homotopy classes of paths
z € m(Br(Y,5); [a], [b]) such that E} ([a],[b],2) < C and M.([a],[b]) is non-empty.
Moreover, each Mz([a], [b]) is compact if its dimension equals zero.

To show 02 = 0, we follow the standard argument and look at the compactification of

moduli spaces M 2([a],[b]) when dim = 1. Readers are referred to [KMO07, Section 22] for
the details. The monopole Floer homology of (Y, %) is then defined as the homology of the

chain complex (Cy(Y,3), ):
HM . (Y,8) := Hy((C+(Y,3),0)).
To make HM , into a functor:
HM , : SCoby — Rs-Mod,
we assign for each morphism X : Y; — Yo a chain map:
m(X;gx,p) : (Ci(Y1,51),01) — (Cx(Y2,52), 02)
which relies on a planar metric gx of the strict cobordism X : Y7 — Y5 and a quadruple
p = (q1,92,q3,w3) € P(Y1) x P(Y2) x P(¥2) X Prorm-

Here p is required to be admissible in the sense of Definition 16.4. While (q1,q2) are
encoded in the objects (Y1, Y2), (q3,ws) are the actual perturbations to the Seiberg-Witten
equations on the complete Riemannian 4-manifold X'. Now define

~ _cb e
(17.2) m(X; gx, q)[a1] = > [a2] - #M (a1,5x, ap) - g Srer(®19X:82),
5x€Spin®(X;s1,52)
dim M(a1,5x,a2)=0
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where a; is a lift of [a;] € €(Y;) in Cy(Y,3) for i = 1,2. The moduli space M(ay,5x, az)
is defined as in (14.4) with the admissible quadruple q as perturbations. The topological
energy is given by the formula

(17.3) Efop(al,gx, CLQ) = 2£w1 (al) - 2£wQ(Cl2> + C(Ao,wX)

where Ag is a background spin® connection on X such that the restriction A0|?_ is the

reference connection on Y; that defines the Chern-Simons-Dirac functional £y, fori=1,2.
The constant C'(Ag,wy) is given concretely by

1
(17.4) C(AQ,(.L)X) = 4JA FAB /\FAE JA FA(t) NWX,
X X

as suggested by (5.2). To make sense of the expression (17.2), we need another finiteness
result:

Lemma 17.2. For any C > 0, any pair of critical points ([a1],[az]) € €(Y1) x €(Ys)
and any admissible quadruple p, there are only finitely many relative spin® cobordisms
§x € Spin§(X;81,82) such that Sfop(al,gx,ag) < C and M(ay,5x,a2) is non-empty.
Moreover, each moduli space M(ay,5x,a2) is compact if its dimension equals zero.

Lemma 17.1 and Lemma 17.2 follow from the Compactness Theorem 9.5 and its ana-
logue for a general cobordism. Readers are referred to [KMO07, Corollary 31.2.5] for more
details; their proofs are omitted here. By analyzing the moduli space M(ay,5x,az) with
dim = 1, we conclude that m(X; gx,q) is a chain map by the standard argument. The
chain maps induced from different auxiliary data (gx,q) are all chain homotopic to each
other, so the resulting maps on the homology are independent of (gx, q)

HM . (X) := [m(X; gx,p)] : HM +(Y1,51) = HM . (Y2,5).

To show that HM , defined this way is a functor and satisfies the composition law, we
follow [KMO07, Section 26].

17.2. Monotonicity. To define the monopole Floer homology using Fs-coefficient, it is
necessary to pass to a subcategory of SCobg, as we explain in this subsection.

Definition 17.3. An object (Y,5) = (Y, 9, gy,w,q,5) € SCoby is called monotone if the
period class [w] € H?(Y;4R) is proportional to the image of ¢;(8) in Im(H?(Y,dY;Z) —
H?(Y;R):

[ﬁ] = - ci(s) € H*(Y;R) for some o € R.

i

In addition, (Y,35) is called

e positively monotone if o < 1;
e balanced if o = 1;
e negatively monotone if o > 1. &

In light of Lemma 3.8, under the monotonicity assumption, we have

£,(u-) = £u(y) = 2(1 = a)r?[u] U ea(s),
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for any v € Cy (}7,’5\) and u € ng(f/). In particular, £, becomes a real valued functional
if (Y,5) is balanced. One necessary condition of monotonicity is that u = 0. The con-
struction described below will work in general for any monotone objects, but let us focus
on the special case when the period class [w] = 0 € H?(Y;iR) and the form @ defined in
(P6) vanishes, for the sake of simplicity; so

w=uwy = x1(s)ds A A.

In this case, (}A/,g) is always positively monotone, since o = 0.
Under this assumption, the chain group Cy(Y,s;Fy) is a finite dimensional Fao-vector
space:
Cu(Y,5F2) = @ Fa-[a].
[alee(Y 5)
with differential defined by

(17.5) ola] = > [o]-#M.([a].[6])
zem1 (B (Y 8);i[al, [6])
dim M. ([a],[6])=0
In light of Lemma 17.1, to make sense of this expression, we need an upper bound on
the topological energy &, ([a], [b]; 2):

Lemma 17.4. For any [a],[b] € €(Y,5), there exists a constant C' > 0 such that
Efop([a], [6];2) < C,
for any homotopy classes of paths z € m (Bi(Y,3), [a], [b]) with dim Mz([a], [b]) = 0.

As for a morphism X : (Yy,81) — (Yo,5) with wy = we = w), Wy is a compactly
supported 2-form (see (Q6)) on X. We require that the class defined in (Q7) vanishes:
[wx]ept = 0 € H*(X,0X;7Z). This time the chain map m(X;gx, q) is defined as

m(X; gx,q) : Cu(Y1,81;F2) — Cy(Yo,52;Fa)
[a1] — > [az] - #M (a1, 5x, a2).

5 x€Spin®(X;51,52)
dim M(a1,5x,a2)=0
Again, we need a upper bound on &p(a1,5y, az) to ensure the sum in the expression
above is finite:

Lemma 17.5. Under above assumptions, for any pair of critical points ([ai],[az2]) €
€(Y1,51) x €(Ys,59), any planar metric gx and any admissible quadruple p, there is a
constant C > 0 such that

gfop
which holds for any sx € Sping, (X;81,82) with dim M(ay,5x,az) = 0.

(a1,8x,0a9) < C

Lemma 17.4 and 17.5 follow directly from a general statement relating the dimension
with the topological energy &;,,. In Proposition 17.6 below, we will think of a homotopy
class of paths as a relative spin® cobordism, following the ideas in Subsection 3.5.
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Proposition 17.6. Under above assumptions, for any relative spin® cobordism sx,8"y €
Sping (X;81,82), we have

Etop(al,E’X, CIQ) - 5top(a1,§x, ag) = —47r2(dimM(a1,§'X, Clz) - dim/\/l(al,gx, Clz))
In particular, the topological energy 5fop(a1,§X,a2) is independent of the choice of
3)( € Spinﬁ(X;/S\l,/ﬁ\g) if dim/\/l(al,ﬁx, CIQ) =0.

Proof. Suppose 8y = sx ® L for a relative complex line bundle in the class [L] €
H?(X,0X;Z). In terms of (17.3) and (17.4), we compute the difference of the topological
energy
Erop(a1,8, a2) — Erop(ar,5x,a2) = C(Ao(8y),wx) — C(Ao(5x), wx)
= —2m?[L] U (e1(8x) + e1(By))[X, 0X]
= —4m*[L] U (e1(5x) + [L])[X, 0X].
2(X

where ¢ (§x) and ¢1(8'y) are understood as elements in H*(X,[—1,1] x X;Z). On the

other hand, pick an arbitrary non-vanishing section ®¢ of
Stlox — 0X.

Any relative spin® structure 5x € Spin§, (X;8;,52) dictates an identification of 5x|sx with a
standard spin® structure on the boundary 0.X, so it makes sense to define the relative Euler
number e(5y; ®o)[X, dX] for any non-vanishing section ®( of the spin bundle ST — 0X.
In particular,

(B @) — e(Ex: ®0))[X, 0X] = [L]  (e1 Bx) + [L)[X. 2]

In Proposition 18.6 below, we will associate a homotopy class of non-vanishing sections
[®o(a1,a2)] to any pair (a1, as) such that

(17.6) e(gx;Qo(al,ag))[X, aX] = dimM(al,gx,ag)

for any 5x € Sping (X;81,82). In fact, (17.6) follows from the Index Axiom (A-I) of the
canonical grading of HM 4(Y,5). Another approach is to show

(e(glx; (I)O) — e(gx; (I)())) [X, 5X] = dimM(al,E'X, as) — dimM(al,EX, as)

for any non-vanishing section ®q directly using the excision principle. This completes the
proof of Proposition 17.6 O

Finally, one has to verify that m(X;gx,q) is a chain map and a generic homotopy of
auxiliary data (gx,q) gives rise to a chain homotopy of m(X; gx, q). The argument is not
different from that of [KMO07, Section 25].

18. CANONICAL GRADINGS

In this section, we introduce the canonical grading of the monopole Floer homology
HM ,(Y,5). Tt is more natural to think of the grading set of HM ,(Y,5)

=7(Y, 8)
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as the space of unit-length relative spinors on Y modulo gauge transformations, identified
also as a subset of homotopy classes of oriented relative 2-plane fields on Y. In particular,

ET(Y,5;) = E7(Y,59)

if 51 and 5o come down to the same spin® structure on Y.

The main result of this section is Proposition 18.6, which characterizes the canonical
grading in terms of the Index Axiom (A-I) and the Normalization Axiom (A-II). They
are inspired by the following index computation for a closed Riemannian 4-manifold X:

dim M (X, sx) = e(sx)[X]

where M(X,sx) is the Seiberg-Witten moduli space and e(sx) is the Euler class of the
spin bundle S;E — X. The canonical mod 2 grading will be discussed in Subsection ?77.

18.1. Homotopy Classes of Oriented Relative 2-Plane Fields. For a closed 3-
manifold Y, recall that the three flavors of monopoles Floer homology:

HMJ(Y), HM (Y), HM.(Y)

defined in the book [KMO7] are graded by the homotopy classes of oriented 2-plane fields
over Y. The analogous statement continues to hold in our case, using relative oriented
2-plane fields instead, as we explain now. The following lemma from [KMO07] explains the
relationship between 2-plane fields and spin® structures:

Lemma 18.1 ([KMO07] Lemma 28.1.1). On an oriented Riemannian 3-manifold Y, there
18 a bijection between
(i) oriented 2-plane fields &;
(ii) 1-forms 0 of length 1; and
(#ii) isomorphism classes of pairs (s, W) comprising a spin® structure and a unit-length
spinor V.

Over the infinite cylinder Ry x 33, we defined in (2.6) a preferred Rg-translation invariant
solution

Vs = (Bu, V)
to the perturbed Seiberg-Witten equations (3.6). The perturbation is provided by a co-
variantly constant 2-form
Wy = +ds A A
The correspondence in Lemma 18.1 then identifies

Wy

v
> the unit length spinor ——

(18.1) the unit length 1-form 6, := 7 3 o,
*

|ws]
Indeed, as 74 solves the equations (3.6), (V,.U¥)y = p3(#3ws), SO
CU, and C(T,)*

are ¢ and —i eigenspaces of p3(0y) respectively. In particular, (18.1) determines a preferred

oriented 2-plane fields &, on R; x ¥ by Lemma 18.1. Now we return to a 3-manifold Y
with cylindrical ends and state a relative version of Lemma 18.1.
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Definition 18.2. An oriented 2-plane field £ on Y is called relative if £ agrees with &,
over the cylindrical end [0,0); x . Similarly, we define

e relative 1-forms and
e relative spinors

using 6, and W, /| V.| as the models along the end [0,00)s x X. %

Lemma 18.3. For any object Y € Cobyg, let Y be the extended 3-manifold with cylindrical
ends. Then there is a bijection between:

(i) oriented relative 2-plane fields &;
(ii) 1-forms relative 6 of length 1; and
(iii) isomorphism classes of pairs (s, V) consisting of a spin® structure s with c1(s)|s =
0 € H?(X,7Z) and a unit-length spinor ¥ that is gauge equivalent to a relative
spinor.

Remark 18.4. In the last description, the identification of 5|y is not specified and a
gauge transformation does not necessarily lie in the identity component when restricted
to 2. O

For each relative spin® structure 5 € Spin§ (Y), let E(}A/,E) be the space of unit-length
relative spinors on Y. The index set for the monopole Floer homology HM (Y, 5) will be

(18.2) =7(Y,38) = mo(2(Y,3))/H (Y, 0Y; Z)
where HY(Y, 0Y;7Z) = mo(G(Y,3)) acts on mo(2(Y,3)) by gauge transformations. The last
description in Lemma 18.3 suggests that

EN(Y, :5\1) = Eﬂ-(Y, gg)

if 51 and 55 come down to the same spin® structure on Y. In this way, 27 (Y, ) is identified
with a subset of homotopy classes of oriented relative 2-plane fields.

Now let us introduce the axioms that characterize the canonical grading of HM ,(Y,5).

Definition 18.5. For any configuration a € Ck(l’},’s\) and any tame perturbation ¢ €

P(Y), the pair ¢ = (a,q) is called non-degenerate if the extended Hessian P/Ie?sm is
invertible. ¢

For any non-degenerate pair ¢ = (a, q), we will assign an element
gr(c) € mo(E(Y,39)).
which descends to a map
(18.3) gr™ ¢ (Ck(Y,5) x P)/Grs1 (V) --» E7(V,5), [c] > [gr(c)],

on the “non-degenerate locus” of the quotient space. To state the axioms that characterize
the grading function gr, consider a relative spin® cobordism

(X,5x) : (Y1,81) — (Y1,39).

We defined the moduli space My (ai, X, az2) in Section 14, when a; is a critical point of
£y, y; for i = 1,2. However, if we are interested only in the linear theory, one may take
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a; and as to be any configurations. Pick a reference configuration v on X satisfying
conditions (14.1). Then the linearized operator:

(184)  Q(c1,8x,¢2) i= (A, DyFap) : LI(X,iT* X @ ST) —» L*(X,iR®INTXDS)
with p = (q1,492,0,0)
is Fredholm, by Proposition 14.1, provided that ¢; = (a;, q;) is non-degenerate for i = 1, 2.
Any such choices of v will provide the same operator Q(¢1,5y,¢2) up to compact terms,
so the underlying path v is omitted from our notations.
Now we are ready to state the axioms that characterize the grading function gr.
(A-I) (Index Axiom) The Fredholm index of Q(c¢y,5x, ¢2) equals the relative Euler num-

ber:
e(ST; Wy, U, /|Wy], Us)[X,0X] € Z.
where W, is a unit-length relative spinor on Y; representing gr(c;). Since Uy, U, /||
and ¥y form a unit-length spinor of S* on the boundary
0X = (*Yl) U [*1, 1],5 X XU YQ,
the relative Euler class e(S*; Wy, U, /|W,|,Uy) € H*(X,0X;Z) of this spinor is
well-defined.
(A-II) (Normalization Axiom) Suppose a = (B, ¥) € C,(Y,3§) is a configuration such that
(V1) W is nowhere vanishing;
(V2) & =V, on [0, +w0)s x X, where U, is the standard spinor on R, x ¥;
(V3) for any 7 > 1, define the rescaled configuration a(7r) := (B,7¥); then the
extended Hessian Hess,(;) at a(7) is always invertible for any 7 > 1.
We define that
gr(c) = [/|]] € mo(2(7.9)) if ¢ = (a,0).
Note that a(7) lies in a different configuration space obtained by rescaling the
boundary date (A, u).
(A-IIT) (Equivariance Axiom) The grading function

gr: Ci(V,8) x P --» m(E(Y,5))
is equivariant under the action of ng(f/) meaning that

gr(u-a,q) = [u] - gr(a,q)

for any non-generate pair (a,q) and u € Gy 1(Y).
The Index Axiom (A-I) can not determine the grading function gr completely. On the
other hand, the Equivariance Axiom (A-III) is redundant, since it follows from (A-I)(A-
IT). It is added to justify the quotient map gr™ in (18.3). Here is the main result of this

section:

Proposition 18.6. There exists a unique grading function
gr: Cu(Y,8) x P --» 2(Y,3)

satisfying axioms (A-I)(A-II)(A-III).



MONOPOLES AND LANDAU-GINZBURG MODELS II: FLOER HOMOLOGY 109

The proof of Proposition 18.6 will dominate the rest of this subsection. It relies on two
additional lemmas. On the one hand, we have to show the desired configurations in the
Normalization Axiom (A-II) exist at least for some special metrics on Y.

Lemma 18.7. For any 3-manAz'fold Y with 0Y = X, there exists some cylindrical metric
gy and a configuration a € Ci(Y,5) that satisfies all constraints in Aziom (A-II).

On the other hand, we have to show that Axioms (A-I) and (A-II) are consistent.

Lemma 18.8. For any relative spin® cobordism ()?,%\X) : (171,31) — (171,32), suppose
non-generate pairs ¢; = (a;,0),7 = 1,2 are given as in (A-1I), then

LR T 2
W] W] W

Ind Q(C17§X7C2) = 6(S+ )[X,&X],

where U; € I‘(SA/Z-, S) is the spinor component of a; € Ck(}/}l,ﬁz)
Proof of Lemma 18.8. This lemma is in the spirit of [KM97, Theorem 3.3] and we follow
the argument therein. When X is a closed Riemannian 4-manifold, the index formula:
dimM(Xl,/E\Xl) = e(S+)[X1]
is a consequence of the Atiyah-Singer Index Theorem and [KMO07, Lemma 28.2.3]. Using
the excision principle, this allows us to reduce Lemma 18.8 to the special case when
e(S+; \Illa \P*y \112)[X7 aX] =0.
At this point, choose a reference configuration v = (A, ®) on X such that the spinor ® is
non-vanishing everywhere, and
’7|H2+><Z = (Ax, u)
is the standard configuration on the planar end. By rescaling the spinor ®, we define
V(1) = (A, 7D).

which lies a different configuration space on X. As the pair ¢;(7) := (a;(7),q; =0),i = 1,2
are non-degenerate for any 7 > 1 by assumption (V3), the linearized operator at (1)
gives rise to a continuous family of Fredholm operators:

Q(7) := Q(c1(7),5x, c2(7)).
The proof of [KM97, Lemma 3.11 & Corollary 3.12] is valid here, as q; = 0,7 = 1,2. As a

result, Q(7) is invertible when 7 » 1; so
Ind Q(1) = lir%o Ind Q(7) = 0. O
T

Proof of Lemma 18.7. Following the proof of Lemma 18.8, one can easily show the ex-
tended Hessian Hessy(,) is invertible when 7 >» 1 for any fixed configuration a = (B, ¥)
satisfying properties (V1) and (V2), but we have to pick a good metric on Y so that this
range is [1, +00).

If Y7 is a closed 3-manifold, one may instead rescale the metric:

Yl(T) = (}/177—295/1)'
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and regard a as a configuration on the pull-back spin® structure on Y (7). The Seiberg-
Witten theory does not tell the difference between:

(Y(7),a) and (Y, a(7)),
so for 79 » 1, (Y (79), a) satisfies constraints (V1)(V3) in Axiom (A-II).
In our case, instead of rescaling the whole manifold
Y =Y U[0,0)s x X,
we rescale the compact region Y and insert a long cylinder:
Y(7):=Y(r) U[0,R(T)]s x © U [0,00)s x .

The metric of [0, R(7)]s x ¥ interpolates the metrics 72gs; and gy at boundary. We make
this interpolation mild enough by taking R(7) » 1. The extension of a over the cylinder
[0, R(7T)]s x X

(B, ¥')
must interpolate (By, V) at boundary in a mild way. One may use the oriented relative
2-plane field &, and construct the spinor ¥’ using Lemma 18.1. Now [KM97, Lemma 3.11]
applies, and all constraints in (A-II) are satisfied by

~

(Y(70), )
when 79 » 1, where a is the extension of a on 37(7'0). O

Proof of Proposition 18.6. The proof is modeled on that of [KMO07, Subsection 28.2] which
can now proceed with no difficulties. We first deal with the existence of gr and divide the
proof in six steps.

Step 1. Construction. Fix a reference relative spin® 3-manifold (170,30). Let ¢y = (ap,0)
be a non-generate pair constructed by Lemma 18.7, then the value gr(c) is determined by
(A-II). Take ¥ as a unit-length relative spinor on Y|, that represents gr(c).

By [KMO7, Proposition 28.1.2], any two relative spin® manifolds (Yp,5) and (Y7,51)
admit a relative spin® cobordism (X,sx)

(18.5) (X,3x) : (Yo,50) — (Y1,51)

The Index Axiom (A-I) then determines a unique homotopy class [¥;] of unit-length

relative spinors on Y] such that
Ind Q(c,5x,¢1) = e(SH; Wo, U/ |V, |, ¥q)[ X, 0X].
As noted in Remark 3.13, an isomorphism

o1 (X,5x)]g, = (V1,51)
is always encoded in a relative spin® cobordism. Define gr(c;) := (¢1)«[¥1] € m(2(Y1,51)).
Step 2. gr is well-defined. Suppose there is another relative spin® cobordism

(18.6) (X1,8x,) : (Y0,80) — (Y1,81),
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then we reverse the orientation of ()2 1,5x,) and form the composition:
(X,5x)# 9, ) (=X1),5-x,) : (Y0,50) — (Y0, 50).

By Lemma 18.8 and the additivity of Fredholm indices and relative Euler classes, the
values of gr(cy) defined using either (18.5) or (18.6) are equal.

Step 3. Axiom (A-I) holds for gr. The proof is similar to Step 2. Instead of (18.6),
given any spin® cobordism (X2,5x,) : (Y1,81) — (¥1,52), we take the pre-composition
with (18.5):

(X,5x)# 9, 5,)(X2,5x,) © (Y0,50) — (Y2,52).

The rest of the argument is unchanged.
Step 4. Axiom (A-IT) holds for gr. This is by Lemma 18.8.
Step 5. Uniqueness. This is clear from Step 1.
Step 6. Axiom (A-III). There are two ways to proceed. In Step 1, one may change the

isomorphism ¢; by an automorphism of (Y;,81), i.e a gauge transformation u € Gr+1(Y).
As a result, the grading function gr is gauge equivariant.

In the second approach, we verify the following fact: for the product manifold X =
[-1,1]; x Y and X =R, x Y,

(18.7) Ind Q(c,5,u-¢) = e(ST; ¥, Uy, u- V)[X,0X].

~

for any non-generate pair ¢ and any gauge transformation u € Ggy1(Y') such that u = 1

on [0,00)s x X. Here ¥ is a relative spinor on Y representing gr(c). The identity (18.7)
now follows from Lemma 13.16. O

18.2. Canonical Mod 2 Gradings. Now we focus a single relative spin® 3-manifold
(Y,5). In order to define the Euler characteristic of the monopole Floer homology

X(HM (Y ,5))

we need a mod 2 reduction of the canonical grading gr™. For each non-generate pair
¢ = (a,q), in the sense of Definition 18.5, we will assign a number

(18.8) gr®(c) e 2/22,

characterized by the following axioms:

(B-I) (Reduction Axiom) Let (X,5x) = [—1,1]; x (Y, 5) be the product spin® manifold.
For any c1, ¢2 non-generate, we have

gr(2)(c1) — gr(z)(cg) = IndQ(¢1,5x,¢2) mod 2,
B-II) (Invariance Axiom) The mod 2 grading function
(B-1I) ( grading
gr® . Cu(Y,8) x P --» Z)2Z

is invariant under the action of ng(f/).
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Again, the Invariance Axiom (B-II) is redundant, as it follows from (B-I). One may fix
the value gr(®(c;) for one particular pair ¢; and decide the other value gr(®(cy) using the
Reduction Axiom (B-I), so such a mod 2 grading function gr(? clearly exists. It is not
unique, as the value of gr(?)(¢1) is arbitrary.

This ambiguity is fixed simultaneously for all relative spin® structures s € Sping (Y),
once a homological orientation of (Y, 0Y") is chosen, as explained in [MT96], which is
also reminiscent of the case of 4-manifolds as treated in [KMO07, Subsection 24.8]. Since
this story has been standard nowadays, we only give a brief sketch here.

One may alternatively think of gr(z)(c) as an orientation of the extended Hessian

—

Hess..

As ¢ is non-generate, an orientation of this invertible operator ITe?sc is equivalent to a
choice of signs in {+1}. However, this standpoint allows us to extend the domain of gr(?

to the whose space Ck(f},g) x P. Indeed, {}Te?sc} forms a continuous family of Fredholm
operators, and as such gives rise to a determinant line bundle over the base:

R =~ det Hess, —— L

|

Ck(i}, g) x P.

The real line bundle L is trivial as C, (}7,’5\) x P is contractible. To orient L, it suffices to
orient one particular fiber L.; we choose the one at ¢ = (a,0) such that a agrees with the
standard configuration:

(B*J \IJ*)
on the cylindrical end [0,00)s x X. As explained in the proof of Proposition 12.1, the
extended Hessian Hess, in this case is cast into the form

(05 + D)
on the cylindrical end [0, 0)s x 3, where
(18.9) Dy, : L3S, ROIROT*S®S) — L*(Z,iROROTES® )

is an invertible self-adjoint elliptic operator. For the precise expression, see [Wan20, Sub-
section 7.4]. Let H* be the (+)-spectral subspaces of D, . Instead of Hess,, we consider

the operator with a spectral boundary projection:
(18.10) Hessa @I~ or : LE(Y,iR®IT*Y ®S) — L} (Y, iR®IT*Y ®S)@(H™ nL}_, ).

on the truncated 3-manifold ¥ = {s < 0}. At this point, we can further deform a so that
¥ = 0, in which case
- 0 —d O
Hessq = | —d* *d 0 onY
0 0 Dg,
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for a reference spin® connection By, and

— A D O
Hessq = 0(0s + Do) with Dy = ( Form >

b
0 D B
in the collar (—1,0]s x X. Here
0 0 — ¥y dz
Drom=| 0 0 —dt | L3(Z, i ROIR@IT*Y) — L*(Z,iR®R®iT*Y)

*EdZ —dz 0

is a self-adjoint operator with kernel H°(X,iR) ® H°(2,iR) ® H'(%,iR) and
D :Ii(%,S) — L*(%,5)

is the Dirac operator on the surface, which is complex linear. Consider the projection map

Mporm = 1L @y LA(X) — HY(X,iR) ® H,

Form Form*

where Ilg,m, is the projection map onto the negative spectral subspace of Dgyrm and IIp
is the projection onto H'(X,iR) < ker Dporm.

Lemma 18.9. The kernel and the cokernel of the operator:

(18.11) <—?1* ?j)@(ﬂpormor):L%(R@iT*Y) — L*(R@IT*Y)OH'(Z,iR)® Hpy, -

are isomorphic to HO(Y;iR)@HY (Y, 0Y;R) and H(Y, 0Y; R)@ H' (Y ;iR) respectively. In
particular, an orientation of (18.11) is equivalent to a homological orientation of (Y,3Y).

Finally, to relate the operator (18.10) with (18.11), we have to deform the boundary

projection II™ in (18.10). Notice that the operator D, in (18.9) relies on the standard
spinor ¥,. The deformation is then made by taking

U, — 7V, 7—0.

In the limit, lA)H* will recover ﬁo, which is no longer invertible. At this point, one has
to examine the deformation of spectral projections very carefully, which is independent of

relative spin® structures. In this way, an orientation of (18.11) gives rise to an orientation
of L.

19. FLOER HOMOLOGY WITH Z-COEFFICIENT
Let R be the Novikov ring of Laurent series with integral coefficients

R = {Z a;q™ . a; €7, n; €R, lilmni = —0}.
ng

To define the monopole Floer homology over R, we have to orient moduli spaces in a
consistent way. Since the space Ck(f/,ﬁ) does not contain any reducible configurations,
the strategy used in [KMO7, Section 20] does not work directly here. Moreover, our
cobordism maps are induced from oriented 4-manifold with corners. It is not crystal clear
what is meant to be a homology orientation in this case.
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We will address this problem using an analytic approach. The main result of this section
is Theorem 19.2, which leads to the replacement of homology orientations in Definition
19.4. The proof of Theorem 19.2 relies on the notion of relative orientations that compares
the determinant line bundles of two Fredholm operators in the excision principle. We will
develop the relevant theory in Appendix B and accomplish the proof of Theorem 19.2 in
Subsection B.10. The construction of the functor

HM . : SCobyj — R-Mod
is explained in Subsection 19.3.

19.1. Determinant Line Bundles and Direct Sums. To start, let us recall the basic

theory of determinant line bundles of Fredholm operators from [KMO7, Section 20.2].

Given two real Hilbert spaces E and F', consider a continuous family of Fredholm operators
A,:E—>F, ze Z,

parametrized by a topological space Z. The determinant line bundle of this family is
a real line bundle over Z
detA —» Z

such that the fiber det A, at each z € Z is identified with
A" ker A, ® (A™** coker A, )*.

When the determinant line bundle det A — Z is orientable, denote the 2-element set of
orientations by
A(A) or A(det A).

Example 19.1. Let A, : E — F be a reference Fredholm operator and Z be the space
of all compact operators:

Z={z:F — F:z compact}.
Then the family {A, = A, + z : z € Z} is parametrized by a contractible space Z. An
orientation of A, is meant to be an orientation of this contractible family. Denote the
2-element set of orientations by

A(Ay) or A(det Ay). %

Given two families of operators A’ — Z and A” — Z parametrized by the same space,
we form a new family by taking the point-wise direct sum of Fredholm operators
A,=AN@A:FoE" > FaF"
Then there is a natural isomorphism of real line bundles constructed in [KMO07, P.379]:

(19.1) q:det A’ ®@det A” — det A.

Suppose o, and o are elements in A™** ker A, and A™** ker A” respectively, while 3, and
B2 are corresponding elements in A™#* coker A/, and A™** coker A”. Then the bundle map
q is locally defined (up to a positive scalar) by the formula:

(a1 @ (8)7) @ (@l @ (B)7) = (<17 (@ A a)) @ (8L A )" where
r = dim coker A/Z X Ind(AID-
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The sign (—1)" is added here to ensure that the bundle map ¢ is continuous as the base
point z varies in Z. Moreover, the bundle map ¢ becomes associative when we consider
the direct sum of three families of operators parametrized by the same space Z.

For any 2-element set A, let Z/2Z act on A by involutions. For any A; and Ay with
Z,/27. action, we form their product set

A1A2 = A1 XZ/2Z AQ.

As a result, by passing to the 2-element sets of orientations, the bundle map ¢ descends
to an associative multiplication, denoted also by ¢:

q:AA) x A(A") - A(A" @A),
or an isomorphism preserving the Z/2Z-action:

q: AAHYAA") S AA @A").

19.2. Homology Orientations. Having discussed the abstract properties of determinant
line bundles, let us explain now the primary application in gauge theory. Given a morphism
X : (Yy,51) — (Yo,82) in the strict cobordism category SCobg, consider non-degenerate
pairs (in the sense of Definition 18.5)

¢ = (ai,q:) € Ce(Vi, 3;) x P(Y3),i = 1,2.

By looking at the linearized Seiberg-Witten map and the linearized gauge fixing equation
on the complete Riemannian 4-manifold X', we obtained in (18.4) a Fredholm operator
Q(c1,5x, ¢2) for any relative spin® cobordism (X,5x) : (Y1,51) — (Y2,52). Define

Ae1,5x,¢2) = A(Q(c1,8x, ¢2))

for any non-degenerate pairs ¢, ¢y and any 5x € Spin§(X;81,82). The 2-element set
A(c1,5x, ¢2) is understood in the sense of Example 19.1. Since the different choices of the
reference configuration v will give rise to the same operator Q(c1,5x,¢2) up to compact
terms, A(c1,5y,c2) is independent of the choice of 7.

Our goal is to identify these 2-element sets A(c1,5x, c2) in a canonical way for all relative
spin® cobordisms §x € Spin§ (X;81,82). As a result, if the orientation is fixed for one
particular 5y, then it automatically fixes the choice for any other relative spin® cobordisms.

Recall that Spin§ (X;81,82) is a torsor over H(X, 0X;Z).

Theorem 19.2. For any isomorphism classe of relative line bundles [L] € H*(X,0X;7Z),
there exists a matural bijection

er, : A(c1,8x,¢2) = Ae1,5x ® L, ¢2),

for any sx € Spin$ (X;51,52) satisfying the following two properties:
R

(UJ) €L, ©€Ly = €L1®Los
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(U2) the collection {er} is compatible with the concatenation map q meaning that the
diagram
A(Cl,:ﬁ\lQ, CQ)A(C27§237 C3) —q> A(c17§137 C3)
(19.2) leLm@eng km
A(c1,512 ® L1, c2)A(c2, 523 ® Loz, ¢3) —— A(c1,513 ® Li3, ¢3)

18 commutative for any relative spin® cobordisms:
(X12,812) : (Y1,81) — (Y2,52),
(X23,893) : (Y2,83) — (V3,83).

Here ()?13,313) = ()?12#)?23,312#’5\23) is the concatenation of relative cobordisms
and L3 = Lyio# Log is the concatenation of relative line bundles.

Remark 19.3. The proof of Theorem 19.2 is constructive: we will construct each ey,
explicitly and verify properties (U1)(U2) by hands. The key ingredient is the notion of
relative orientations, which allows us to reduce the problem from a non-compact manifold
X to a closed 4-manifold. In the latter case, we know how to construct ey, since the Dirac
operator and the self-dual operator are now decoupled. The relevant theory is developed
in Appendix B. The proof of Theorem 19.2 will be accomplished in Subsection B.10. ¢

The horizontal maps ¢ in the diagram (19.2) require some further explanations. Take
non-degenerate pairs ¢; on Y; for 1 < ¢ < 3. Instead of Q, we look at operators on Xj;
with spectral projections:

(193> Ql(ciagija c]) = DZ,] ® (H;{Z?H&J) © (7"7;,7']‘), I<i< .7 < 37
understood in the sense of Proposition 13.9 and Subsection 13.4 adapted to the case of
general cobordisms. In particular, Hi are spectral projections of the extended Hessians
at ¢;:

Hess,, : L3 (Y;, iR@iT*Y; ® S) — Li(V;,iR@®iT*Y; ®S), 1 <i < 3.
The 2-element set A(cy, 512, c2) can be defined using Q’(c;, 5;5, ¢;) instead. As explained in
[KMO7, P. 384], there is a canonical bundle isomorphism defined using the map (19.1),

(19.4) q : det Q'(c1,519, c2) ® det Q' (ca, 823, ¢c3) — det Q'(c1, 513, c3).
which descends to an associative multiplication:
q: A(c1,812, ¢2)A(c2, 523, ¢c3) — A(cq,513, 3).
Our construction of homology orientations is based upon Theorem 19.2.

Definition 19.4. Following the notations in Theorem 19.2, for any triple (¢1, X, ¢2), define
the 2-element set of homology orientations as the quotient space

A(Cl,X, CQ) = ]_[ A(C173X7CQ)/{GL}[L]EH2(X76X;Z)a

5x€Sping (X;51,52)
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where X : Y; — Y5 is any morphism in Cob, and for i« = 1,2, ¢; € Ck(?;,’s\i) x P(Y;) is
a non-degenerate pair. By the property (U2) in Theorem 19.2, the concatenation map ¢
descends to an associative multiplication:

q : Ac1, Xq2, c2)A(c2, Xog, ¢3) — A(cr, Xy3, ¢3). %

Remark 19.5. If we replace X by a closed Riemannian 4-manifold X, the construction
above will recover the original definition of homology orientations of X7, i.e. orientations
of the real line

A™ 2 (X, R) @ (A H (X, R))*.
Here H2 (X1,R) is any maximal positive subspace of H?(X1,R) with respect to the inter-
section form. &

Now let us specialize to the case when X = [—1,1] x Y is a product cobordism and
51 = 59 = 5. This is relevant for orienting moduli spaces on the cylinder R; x Y. The
non-degenerate pairs ¢1, ca now lie in the same space:

Ce(Y,8) x P(Y).

Definition 19.6. Let I = [—1, 1]. Define the 2-element set A([c1], [c2]) to be the homology
orientations of (¢i, ] x Y, ¢2) in the sense of Definition 19.4, where [¢;] denotes the class in
the quotient configuration space By (Y ,§) x P(Y). More concretely, A([c1], [¢2]) is realized
as the quotient space

11 Ac1,3® L, ) /{er}. o
[LIeH2(IXY,0(IxY);Z)

A~

When ¢; = ¢3 € Ci(Y,5) x P, there is a canonical element v(c1) in A([c1], [¢1]) induced
from R
1e A(Q(c1, Ry x (Y,5),¢1)).

In this case, we choose an Rs-invariant configuration v on Ry x Y to define the operator
Q(c1, I x (Y,5),¢1). Because ¢; is non-degenerate, Q is invertible. The canonical element
1 denotes the positive orientation of this invertible operator.

Remark 19.7. Here we have identified the homotopy classes of paths 71 (B, (Y, 8); [e1], [c2])
with the space of relative spin® cobordisms Spin§ (I xY';8,5), following the ideas in Subsec-
tion 3.5. When ¢ = (a, q) is a critical point of the perturbed Chern-Simons-Dirac functional
£,,, the canonical element v(c) orients automatically the moduli space Mz(c, ¢) in (13.5)
for any z € m; (Bk(f/,g); [a]). Moreover, this orientation is compatible with concatenation
of paths by the associativity of the concatenation map gq. &

19.3. Floer Homology with Z-coefficient. Having defined homology orientations on
cylinders and general cobordisms, let us now explain the construction of HM ,(Y,5) using
the integral coefficient. In the most general case, we have to use a Novikov ring defined
over Z:
R = {Z a;q"" : a; € Z, n; € R, limn; = —oo}.
ng t
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To work with Z directly, we have to assume the monotonicity condition in Definition 17.3
for the object (Y,5) and pass to a sub-category of SCobs.

To better illustrate our construction below, we focus on the first case. Only formal
adaptations are actually needed for the second case. At this point, we have to enlarge the
strict cobordism category SCobyg slightly to incorporate a base point for each object.

Definition 19.8. An object of the based strict cobordism category SCobgy is a triple
(Y,3,¢,) where (Y,3) is an object of SCob, and ¢, = (ax,q) € C(Y,3) x P(Y) is a non-
degenerate pair. We require that the tame perturbation q = grad f is the one encoded in
the object Y € Coby for the relative spin® structure . A morphism of SCoby is a pair

(19.5) (X, O) : (Yl,/ﬁ\l, C*J) il (Yl,gl, C*72)
where X : Y; — Y5 is a morphism in Cobg and o € A(cy 1,X, ¢4 2) is a choice of homology
orientations in the sense of Definition 19.4. &

The based strict cobordism category SCob, is only a formal enlargement of SCob.
The base point ¢, is included here to remove the ambiguity of orientations on the cylinder
R; x Y. More precisely, for any object (Y,5,¢,) € SCobsy and for any critical point
a € Crit(£y) of £, = L, + f, define

A([a]) = A([es], [(a, 9)]),
and form the chain group
Cy(Y,5,¢,) = G—) ZA([a]) ®z R
[a]e€(Y,s)

where Z/27 acts non-trivially on Z and ZA([a]) := Z xz/27 A([a]).
Remark 19.9. For closed 3-manifolds, the role of ¢, is played by a reducible configuration

¢/, in the blown-up configuration space; see [KMO07, Section 20.3]. In that case, the choice

of ¢/, does not matter, since there is a canonical element in
A([el ] [ei])
when ¢, and ¢ are both reducible. However, this property does not hold in our case. ¢
In the formula of the differential ¢ below, we take the sum over all possible triples
([a],[6],2) € €(Y,5) x €(Y,5) x 71 (Br(Y,s);[a], [b])
such that dim M. ([a], [6]) = 0:
(19.6) 3= 2> > Tl Cul(Y,5,c) = Cu(Y,5, ).
[a] [6] % [y]eM:([a].[6])

Since each unparameterized solution [y] € M 2([a], [b]) is a point, the positive orientation
of  defines an element v([v]) in A([(a,q)],[(b,q)]). Combining with the concatenation
map ¢, this provides a homomorphism of abelian groups:

e[v] = 1dz ®q(-, v[7]) - ZA([a]) — ZA([b]).
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The R-module homomorphism I'[y] in (19.6) is then defined by taking into account the
topological energy Eiop:
T[y] := e[y] ® ¢ EorBH12) . ZA([a]) @ R — ZA([b]) ® R.
The differential 0 on Cy(Y,5,c,) is formed by taking the sum of all T'[7].
Now we come to define HM, for the morphism sets of SCoby;. For any morphism
(X,0) : (Y1,51,¢61) — (Y2,82,¢42) of the based cobordism category SCobsy, pick a
planar metric gx and an admissible quadruple p as the perturbation. The chain map is

now defined as
(19.7)

m(X,0;9x,q) = Z ZZ Z Tlo,7] : Cu(Y1,51,c41) = Cu(Y2,52, ¢4 2),
[a1] [a2] 5x [v]eM(a1,5x,a2)
where the sum is over all possible triples
([al], [ag],gX) € Q:(Y,gl) X C(Y,gz) X Spin%(X,gl,gg),

such that dim M(ay,5x,a2) = 0. Each solution [y] in M(ay,5x,az2) is a O-dimensional
manifold, whose positive orientation determines a class v([7y]) in

A((Cl1, ql)? X, (02, q2))
We obtain a morphism
elo,7] : ZA([a1]) — ZA([a2])
by chasing around the diagram:

Aear, (a1,01)) a(, (1))

» Acy1,X, (a2,q2))

o] |

Alcx 2, (a2, q2)) o) » Alcs 1, X, (a2, q2))

Here 0 € A(cx1,X, cx2) is the reference homology orientation that we picked up in the
morphism (X 0). The R-module homomorphism I'[0,7] in (19.7) is defined by the formula

Ifo,] i= eo,7] @ g~ “ler b2 ) ZA([a1]) @ R — ZA([a2]) @ R.

One can verify that each (C«(Y,5, ), 0) is indeed a chain complex and m(X, 0; gx, q)
gives rise to a chain map by following the standard argument in [KMO7, Section 22]. Then
the functor

HM . : SCobgp — R-Mod
is obtained by taking their homology groups.
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APPENDIX A. HARMONIC FORMS

In this appendix, we summarize some results on the existence of bounded harmonic
forms on manifolds with cylindrical ends, which are crucial to the energy equations in
Theorem 5.1 and 5.4. Let us point out where these results are used exactly in Section 3:

Corollary A.6 — Lemma 3.2,
Corollary A.15 — Lemma 3.5.

Our intention is to sketch a quick proof to the results that we need. No originality is
claimed for this appendix, since most of which are already standard nowadays. Unless
otherwise specified, all cohomology groups in this appendix are taken over the field R of
real numbers.

A.1. A Review of Classical Theories. Let (X", Y"!) be a compact oriented Rie-
mannian manifold with boundary. Suppose that the metric gx of X is cylindrical near
0X =Y, ie. gx is a product metric

d’s + gy
within a collar neighborhood (—1,0]s x Y < X of Y. By attaching a cylindrical end, we
obtain a complete Riemannian manifold X:
X =X u0,00), x Y.

Let H*(X) be the space of L2-harmonic forms on X and Hy (X) be the space of bounded
harmonic forms. Each element w € ”H*()? ) decays exponentially as s — o0, and each
e Hf (X) converges exponentially to ¢ +ds A A, for some \; € H¥(Y) and A\, € HF~1(Y)
along the cylindrical end of X. Here H*(Y) denotes the space of harmonic forms on the
boundary (Y, gy). Using either tl1e Dirichlet or Neumann boundary condition at infinity,

we obtain two subspaces of H(X):
HH(X) 1= (A e HF(X): A = O},
Hy(X) = {Ae Hi(X): Ay = 0},

~

By [APST75, Propositon 3.15], each bounded harmonic form A € H;(X) is both closed and
co-closed.

Proposition A.1. [APS75, Proposition 4.9] The map that associate each L?-harmonic
form to its cohomology class

a:H (X) > H*(X) = H*(X)
w = [w]
is a bijection from 7—[*()?) to the image
Im(H*(X,Y) L5 H*(X)),
with j* induced from the inclusion map j : (X, &) — (X,Y).
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To recover the singular cohomology of X, we have to look at bounded harmonic forms

with boundary conditions at infinity: H7, (X) and HN (X).
Proposition A.2. H;;,(f() ~ H*(X) and HE()A() ~ H*(X,Y). Moreover, H; (X) =
HiH(X) + Hy(X).
The proof of Proposition A.2 relies on an index computation.
Proposition A.3. dim #; (X)/H*(X) = dim H*(Y).

Proof of Proposition A.3. This follows from the Atiyah-Patodi-Singer Index theorem [APS75,
Theorem 3.10]; see the discussion on [APS75, P.65]. An easier approach is to exploit the
symmetry of the Dirac operator d + d* on the product manifold (—1,0]s x Y and deduce
this index computation from some formal properties, using the setup of [Yos91, Section
4]. Proofs are omitted here. O

Proof of Proposition A.2. We follow the argument in [APS75, P.65]. For each bounded
harmonic form A € H3 (X)), we assign its de Rham cohomology class:

~

a()) =[N e H*(X) = H*(X).
The goal is to show the map o : H} ()2') — H*(X) is a bijection. For injectivity, we follow
].

the proof of [APS75, Proposition 4.9

To prove the surjectivity, note that the restriction of o on the subspace H*(X) < Hy (X)
is already surjective onto its image by Proposition A.1. It remains to show that the
quotient map

& HE(X)/HH(X) — Coker j* =~ Im(H*(X) 2> H*(Y)).

is surjective, where i* is induced by the inclusion map ¢ : Y < X. We prove this by a
dimension counting argument. The domain of o extends to the larger space H;(X), and
the composition

#Foa: HEX) S HYX) S HY(Y)

~

maps each bounded harmonic form A € H;(X) to the tangential part of the limit ;.

~

Hence, ker(i* o a) = H},(X). As a result, we obtain that

(A1) dimHE(X)/HH(X) < dim H (X)/HE(X) < dimIm(H*(X) 2> H*(Y)).
The Hodge star operator
1 Q5 (X) > Q"*(X)
interchanges ’H,*D()?) with 7—[7\,7*(_;() and H*()A() with H”_*()A(). The inequality (A.1)
together with Poincaré duality then imply that
(A2) dimHj(X)/H*(X) = dim H3* (X)/H"*(X) < dimIm(H"*(X) 5> H*(Y))
= dimIm(H* 1Y) > H*(X,Y)),



122 DONGHAO WANG

where ¢ is the co-boundary map. Now, (A.1) and (A.2) imply

Zn] dim HJ (X)/H7 (X Z dim H7 (V).

J=0 J=0

By Proposition A.3, they are actually equal. All equalities in (A.1) and ( 2) are
). T

/\

A.
achieved. In particular, & is surjective and Hj (X X) is spanned by ¥ N(X X) and H* ()2
)-

statement on ’HE()Z' ) is obtained by applying the Hodge star operator on Hj (X D

Remark A.4. The isomorphism H%()A( ) = H*(X,Y) is only implicitly constructed using
Poincaré duality in our proof. For a direct construction and a proof using Hodge theory
on b-manifolds, see [Mel93, Section 6.4] and in particular [Mel93, Proposition 6.18]. ¢

There are two immediate corollaries of Proposition A.2.

Corollary A.5. For a harmonic form p € HI(Y), the following three conditions are
equivalent:

(1) [n] & Tm(HI(X) 5> HI(Y);

(2) There exists a closed form w e Q(X) on X such that w = p on the cylindrical end
[0,00)s X Y .

(3) There exists a bounded harmonic form wy € H)\(X) on X such that wp, — p
exponentially as s — o on the cylindrical end [0,00)s x Y.

Proof. The equivalence (1) < (3) follows from Proposition A.2. The implication (2) = (1)
is obvious. It remains to verify (1) = (2).
Let w e (X) be a closed form on X such that i,[w] = [p]. Write w as

pi(s) +ds A A(s) in the collar neighborhood (—1,0]s x Y,

then 11(0) — p = df for some § € Q/~1(Y). Using a cut-off function y : (—1,0] — [0, 1]
with suppx = [—2/3,0] and x =1 on [—1/3,0], one may replace w by w — dx(x(s)0).
This allows us to assume p1(0) = p to start with and define

0
s) = j s )ds' € P71((—1,0] x V).

Replace w by w + d(x(s)f1). As the ds-component of w vanishes on (—1/3,0] x Y and
dxw = 0, w = p in this collar neighborhood. This completes the proof. O

Corollary A.6. For a harmonic form X € H’(Y), the following two conditions are equiv-
alent:

(1) [y Al € Tm(H"HI(X) =5 HI(Y))
(2) There exists a bounded harmonic 2-form wy, € H},(X) on X such that wy, — ds A A
exponential as s — o on the cylindrical end [0,00)s x Y.
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A.2. Manifolds with Corners. Our next step is to generalize Proposition A.2 in the
case when X is a manifold with corners and Y has a compact boundary.

Definition A.7. A compact oriented manifold (X,Ye,Ys, Z) with corners is a compact
space stratified by manifolds:

X=X,2Xp125Xp 22X, 3= @7
with the following additional properties:
(1) X,,_o = Z" 2 is a closed oriented manifold of dimension (n — 2);
(2) Xp—1 = Ye U Ys; both Yo and Y, are compact manifolds of dimension (n — 1);
Z =Y, NYis the common boundary of Y, and Yj;
(3) for any y € Y.\Z, a neighborhood of 5 in X is diffeomorphic to (—1,0]s x R*~1;
(4) for any y € Y3\ Z, a neighborhood of y in X is diffeomorphic to (—1,0]; x R*~1;
(5) for any z € Z, a neighborhood of z in Z is diffeomorphic to (—1,0]; x (—1,0]s x R"~2
and s(z) = t(z) = 0;

(6) The orientation of X is determined locally by dt A ds A dvoly. o
Ye W — wy+ds Awpy as s — 0
X P -
// | X
l /!
| A~
t=0 ! ,’/ Y
| //
| 7
Y, VA w‘f,:wnﬁi-dt/\wA

FIGURE 2. A manifold with corners and its completion.

For any such manifold with corners (X, Y, Y}, Z), we can find a “collar neighborhood”
U of 0X =Y, uY, such that U is diffeomorphic to

(—=1,0]s x Yy u (—1,0]s x Ye

and (—1,0]; x Y, n (—=1,0]s x Yo = (—1,0]t x (—1,0]s x Z. In particular, when ¢ = 0,
(—1,0]s x Z is a collar neighborhood of Z < Y;. The same holds for (Y, Z) when s = 0.

Definition A.8. A metric gx is called planar if gx restricts to a product metric on a
collar neighborhood of Y, U Y;. In particular, within (—1,0]; x (—=1,0]s x Z,

gx = d*t + d*s + gz,
for a Riemannian metric gz on Z. O

By attaching a cylindrical end [0,00)s x Y. to X, we obtain a manifold with a non-
compact boundary:

=X v [0,0), x Y,
=Y =Y, u[0,00) x Z

>y <)

0
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[1P%}]

The subscript “e” stands for ends, while “b” stands for boundaries. Definition A.8
ensures that the metric g ; of the completion X is a product metric in a collar neighborhood

(—1,0]; x Y of Y. For each smooth form w € Q*(X) let wr + dt A wa be the restriction
of won Y, with wg € Q*(Y) and wy € Q*1(Y).

Definition A.9. A smooth form w € Q¥(X) satisfies the absolute (relative) boundary
condition if wy = 0 (wgr = 0). For either &« = A or R, consider the space of L? (and
bounded) harmonic forms on X with the a-boundary condition:

HE(X) = {we QF(X) : dw = d*w = 0,ws = 0,w € L2(X)},

and ngé’b(X) = {we QF(X) : dw = d*w = 0,wa = 0,w € L(X)}. &

Remark A.10. On manifolds with boundaries, a smooth form w is called a harmonic
field if it is both closed and co-closed. A harmonic form (i.e. Aw = 0) is not necessarily
a harmonic field in general. But there is no need to distinguish them in the case we are
interested in. O

Analogous to Proposition A.1, we have:
Proposition A.11. By sending each harmonic field w to its cohomology class, we have
HA(X) = Im(H*(X, Y.) — H*(X)),
Hi(X) = In(H*(X,Y. U Y;) — H*(X,Y)).
The boundary of X at infinity is (Ye, Z). For either « = A or R, let
HE(Ye) == {we Q*(Y.) : dw = d*w = 0,ws = 0}.

be the space of harmonic fields on Y, with the a-boundary condition. The classical Hodge
theory on compact manifolds with boundary then identifies these spaces with the singular
cohomology of Y. and (Y, Z) respectively:

Proposition A.12. [Tayll, Section 5.9] H%(Ye) = H*(Ye) and H},(Ye) = H*(Ye, Z).
It is also true that each bounded harmonic field w e Ha (X ) converges exponentially to

a harmonic field w; +ds A wy as s — 00 with w; € HE(Y,) and w,, € HE7L(Y,). Consider the
subspaces of Hk p(X ) satisfying the Dirichlet or Neumann boundary condition at infinity:

5 p(X) = {we Hiy(X) s w = 0},
;N()’(\') ={we ’sz()/(\') twp, = 0}.
Proposition A.13. In analogy with Proposition A.2, we have isomorphisms:
Wi p(X) = H*(X,Ye), Han(X) = H*(X),
i p(X) = H*(X, Y. UY)), Hp v (X) = HY(X, V).

Moreover, for either a = A or R, we have H;yb()?) = zD()?) + H;N()A()
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As the metric of X is cylindrical along f/, Proposition A.11 and A.13 are deduced from
Proposition A.1 and A.2 using a doubling trick, as we explain in the next subsection.
Their proofs do not require new inputs from analysis.

There are two immediate corollaries of Proposition A.13 that are crucial for the en-
ergy equations of the perturbed Seiberg-Witten equations. They are generalizations of
Corollary A.5 and A.6 respectively.

Corollary A.14. For a harmonic form p € Hf;l(Ye) satisfying the absolute boundary
condition on Y, the following two conditions are equivalent:

(1) [n) € Tm(HI(X) > HI(Y,)); |
(2) There exists a bounded harmonic 2-form wy, € H’y \(X) on X such that wy, — p
exponentially as s — o on the cylinder [0,00)s x (Ye, Z).

Corollary A.15. For a harmonic form X\ € Hf;l(Ye) satisfying the absolute boundary
condition on Y, the following two conditions are equivalent:

(1) [y, Al € In(H" (X, Yi) &5 H' (Y, Z2));
(2) There ezists a bounded harmonic 2-form wy, € 7—[347[) (X) on X such that wp, — dsA\
exponentially as s — o0 on the cylinder [0,00)s x (Ye, Z).

A.3. The Doubling Trick. Take a CW pair (X,Y). Let X; and X2 be two copies of X
with inclusions j; : Y — X;, ¢ = 1,2. We form the double of X over Y by gluing X; and
X5 along the sub-complex Y:

X =X [ [Xo:= X1 [ [Xo/ir(y) ~ faly) ¥y Y.
v

The double space X is again a CW complex and carries an involution 7 : X > X
interchanging X; and X5. The fixed point set of 7 is precisely Y. Let 7 : XX 1 be the
quotient map. The cohomology group H *()A( ,R) is acted on by 7% with (7%)2 = 1. Let
H be the +1 eigenspaces of 7% respectively.

Lemma A.16. H} = 7*H*(X1) and H* =~ H*(X1,Y). In particular,

H*(X) =~ H*(X)® H*(X,Y).

Proof. Consider the Mayer-Vietoris sequence associated to the decomposition X=X 11U
Xo:

* ey, ¥ k%
17Dy J1 2
—

— H*(X) H* (X)) ® H*(X>) H*(Y) — -+

| }* ym

¢ der it
—— H*(X) —> H*(X1)® H*(X9) —= H*(Y) —— ---

(A.3)

where ¢; : X; — X is the inclusion map. The involution 7 acts on the whole sequence.
The middle vertical map is given by

(a,b) = (77(b), 7 (a)).
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The first square is commutative, while the second one is commutative with a negative
sign. The sequence (A.3) decomposes into eigenspaces of 7. For the invariant part of

~

H*(X), we have

~

> H" = A:={(a,7"(a)) :a e H*(X1)} = {0} - --- .

Note that A being the image of 7*H*(X;) < H™ under (:§ @ ¢%). This proves the first
statement. As for H~, one combines (A.3) with the long exact sequence of the pair
(X1,Y):

- —— H*(X1,Y) ——— H*(X)) ——— H*(Y) —— ---

emcisionT

H*(X, X5) 1(1d,—7%)
J(%(k*_T*k*)
H- {(a,—7*(a)) :a e H*(X1)} — H*(Y) —— ---

with k* induced by the inclusion k : (X, &) — (X, X,). This diagram is commutative.
The middle and right vertical maps are isomorphisms. By the five-lemma, the left vertical
map is also an isomorphism. O
Remark A.17. For the proof of Proposition A.16, it is conceptually easier to think

of diagram (A.3) at the co-chain level, where H*(X) is computed by the sub-complex
C*(X1 + Xy) of C*(X), see [Hat02, P.203]. &

Lemma A.16 has a relative version. Consider a triple (X,Y, W) with sub-complexes
Y, W < X. We form the double spaces for pairs (X,Y) and (W, W nY):

WAY — W =—— W =W [[jp.y W2

L] i

Y —— X =X1]_IYX2.

<

Lemma A.18. The involution 7 acts on the pair ()A(, I//I\/) The +1 eigenspaces of T* on
H*(X,W) are isomorphic respectively to H*(X,W) and H*(X,W uY):

H*(X,W) =~ H*(X,W), H*(X,W) =~ H*(X,W U Y).

Using the relative Mayer-Vietoris sequence in [Hat02, P.204] instead, the proof of
Lemma A.18 is identical to that of Lemma A.16.

Proof of Proposition A.13. Consider the isometric double of X over Y:

X:)AQH)A(Q.
v



MONOPOLES AND LANDAU-GINZBURG MODELS II: FLOER HOMOLOGY 127

As oriented manifolds, )Afl — X and )Afg — —X is the orientation reversal of X. The

isometric double X inherits a complete Riemannian metric from X. Alternatively, we
start with the double of X over Y:

X=X, H Xo,
Yy
Wlth X1 = X and X9 = —X. Then X is a manifold with a compact boundary 0X =
Y Ye1 ], Yeo furnished with a cylindrical metric. X' is obtained from X by attaching
a cylindrical end
By applying Proposition A.2 to the pair ()? }7) we obtain that

(A.4) Hp(X) = H*(X), Hy(X) = H*(X,Ye).
Consider the involution 7* acting on (A.4). By Lemmas A.16 and A.18,
HY(X) = H*(X), HY(X,Ye) = H*(X,Y,),
H*(X) = H*(X,Y), H*(X,Ye) = H*(X,Y. U Yp).

It suffices to identify the action of 7* on H},(X) and H} (X). We claim that
(i) (X) = HAp(X), (Hi)-(X) = Hpy(X),

and therefore R R

(H3)+(X) = H p(X), (Hp)-(X) = HE 5(X),
for any 8 € {N,D}. We focus on the absolute boundary condition. By restricting the
harmonic field w € (H})+(X) on X, we obtain the forward map

¢ (Hy)+(X) = Hi (X))
Its inverse ¢ is constructed by the formula:

) H (X)) = (HE)+(X),

N w = A on {21
7*X  on Xs.

A priori, ¥(A) is only a bounded harmonic field in L%,l oe- By elliptic regularity, ¥(X) is
a smooth harmonic field; so ¢ a two-sided inverse of ¢. O

The proof of Proposition A.11 is similar and omitted here.
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APPENDIX B. RELATIVE ORIENTATIONS

The primary goal of this appendix is to present the proof of Theorem 19.2, which leads
to the notion of homology orientations in Definition 19.4. It allows us to orient the moduli
spaces in consistently when the complete Riemannian 4-manifold X possesses a planar end
H2 x ¥

To do this, we have to develop the theory of relative orientations in a systematic
way. One possible approach is to use the argument in [KM97, Appendix| in which case a
Riemannian 4-manifold with a conic end is considered. The construction that we present
here is slightly different. It is self-contained and combinatorial in nature, having the
advantage of being very explicit and concrete. It relies on a simple proof of the excision
principle of elliptic differential operators, which was due to Mrowka.

The main results are Proposition B.3 and B.12. As an application of this abstract
theory, we will prove Theorem 19.2 in Subsection B.10.

B.1. Statements. The situation that we have here is similar to the excision principle of
elliptic differential operators; we follow its setup. Given a oriented compact manifold Y,
consider vectors bundles E, F' — [—1,1] x Y and a reference first-order elliptic differential
operator:
D:T([-1,1] xY,E) > T([-1,1] x Y, F).
We are interested in two classes of elliptic differential operators

% and Z#.

Each element of .Z consists of a pair (X;, L;) satisfying the following properties:

(J1) X; is an oriented smooth manifold with boundary Y; moreover, there exists a
collar neighborhood W; ¢ X; of Y and a diffeomorphism

¢i : (Wlay) - ([_17 1] x Y: {1} X Y)
identifying W; with the standard cylinder; X; is not necessarily compact;

(J2) L; : I'(X;, E;) — I'(X,, F;) is a first-order elliptic differential operator where
E;, F; — X, are vector bundles over X;. The operator L; is cast into a standard
form on the collar neighborhood W; in the following sense. There exist bundle
isomorphisms

¢1E EZ|WZ — F, ¢1F E|W7, — F,
covering the diffeomorphism ¢; : W; — [—1,1] x Y in (J1) such that
Li=(¢)"'oDo¢{ on Wi

Similar properties are required for an element (X, R;) of # with one distinction: the
oriented boundary of X is (—Y"), so under the diffeomorphism ¢;, it is mapped to {—1} x
(=Y):

b5 - (Wi, (=) = ([=1,1] x ¥, {1} x (=Y)

For any operators (X;, L;) € £ and (Xj, R;j) € #Z, we first glue up their underlying

manifolds and obtain a manifold without boundary:

Xi#Xj : Xi HX]/ ~ij where (f)l(ajz) ~ij (ﬁj(itj) if T; € Wi,l‘j € Wj.
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Similarly we glue vector bundles and obtain E;#FE;, Fi#F; — X;#X; using (¢F, ¢JE )
and (¢f, q&f ) instead. Finally, we glue operators and obtain
Li#R; : T (E#E;) — T(F#F;).
Assumption B.1. The first-order elliptic differential operator
Li#R; : LY(E#E;) — L*(F#F))
is assumed to be Fredholm for any elements (X, L;) € £ and (X;,R;) € Z.
In terms of Example 19.1, define
A(L;#R;)

to be the 2-element set of orientations of this Fredholm operator L;# ;.

From now on, we will omit the underlying manifolds when it is clear from the context.
For any operators L, Ly € %, we wish to define a 2-element set A(Lj, Ly) such that any
element x € A(Ljy, Ly) defines a preferred Z/2Z-equivariant map

A(L1#R3) — A(L2#1R3)
for any R3 € Z. We will proceed in the opposite order and first define
A(Ly, Lo; R3) := Homy, oz (A(L1#R3), A(La# R3)).
Then the goal is to construct natural bijections:
(B.1) p(Rs, Ra) : A(L1, La; Rg) — A(Ly, Lo; Ry)

for any operators L1, Ls € .Z and L3, Ly € &% such that the following axioms are satisfied:
(C-I) p is associative meaning that for any three operators R; € Z,3 < j < 5, we have

p(R4, Rs) o p(R3, Ry) = p(R3, Rs) : A(L1, L2; R3) — A(L1, La; Rs);

(C-1I) p is reflexive meaning that p(Rs, R3) = 1d;
(C-III) When L; = Lo, p preserves the identity element:

p: 1le A(Ll,Ll;R3> —1le A(Ll,Ll;R4);

(C-IV) p commutes with compositions of Hom-sets, i.e. for any three operators L; €
Z,0 < i < 2, the following diagram is commutative:

A(Log, L1; R3) x A(L1, Lo; R3) —=— A(Ly, Lo; R3)
l(pﬁp) lp
A(Lo, L1; Ry) x A(L1, Lo; Ry) —— A(Lo, Lo; Ry),
where horizontal arrows m are given by compositions of maps.

Definition B.2. For any classes .Z and Z, a collection of bijections {p} satisfying axioms
(C-I)-(C-1V) defines an equivalence relation on the disjoint union:

H A(Ll, LQ; Rj)
RJE%
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Let A(L1, Lo) be the quotient space, then the composition map m descends to an associa-
tive multiplication:

m: A(Lo,Ll) X A(Ll,Lg) — A(Lo,Lg),
which admits a unit in each A(L;, L;). An element of A(Lj, Ls) is called a relative
orientation of L and Ls. O

Here is the main result of this appendix.

Proposition B.3. There exists a collection of bijections {p(Rs3, R4)} satisfying (C-I) —
(C-1IV) for any classes of operators £ and X such that Assumption B.1 holds.

One can prove that the collection {p(Rs3, R4)} is unique in a suitable sense:

Proposition B.4. Under the assumptions of Proposition B.3, suppose that there are two
collections of bijections {p} and {p'} satisfying axioms (C-I) — (C-IV), then one can find
a function:
L L XA — 127

such that

p(L1, Ly; R3, Ry) = (=1)"p' (L1, Lo; R3, Ry) : A(L1, La; R3) — A(L1, La; Ry)
with n = «(L1, R3) + ¢(L1, Ra) + t(La, R3) + (L2, R4). In other words, p' is obtained from
p by applying the automorphism
for each pair (L;, Rj) € £ x X.
Remark B.5. The proof of Proposition B.3 is constructive; see Proposition B.12 below
for a refined statement. In particular, we will pick up a preferred collection {p} for our

primary applications in gauge theory. Axioms (C-IT) and (C-III) are redundant, since they
follow from the other two axioms. O

B.2. Compatibility with Direct Sums. Proposition B.3 will guarantee the first prop-
erty (Ul) in Theorem 19.2, but (U2) will require an additional property of the collection
{p(R3, Ry4)}, as we explain now.
The class Z can be extended slightly to incorporate more operators. Denote this new

class by 2. Each element of Z is a triple Ej := (P}, Rj,Q;) where

o Rj € %;

o P Hja — H;? and Q) : H; — Hj‘-i are arbitrary Fredholm operators; here Hj“ ~ H]‘-i

are arbitrary Hilbert spaces.

Now instead of L;#R;, we look at

Li#R; = P;® (Li#R;) ®Q, : H{ @ L (E+#E;) ® Hf — H]’-’ ® L*(F#F) ® H;l.

To extend Proposition B.3 for this new class of operators %?, we impose a convenient
condition on the first class .Z.

Definition B.6. The class of operators .Z is called even if for any L1, Lo € &,
(B.2) Ind Ll#Rg — Ind LQ#R?, =0 mod 2, VRg EX. O
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Also, we look for a normalization property on the map
p(Rs, R3) : A(L1, La; R3) — A(Ly, Lo Rs).

Proposition B.7. Suppose Z is an even family of operators and Assumption B.1 holds
for (L, %), then there exists a collection of bijections {p(Rg, R4)} satisfying axioms (C-I)-

(C-1V) for the class £ and . This collection satisfies the following additional property:
for any }Alg = (P3,R3,Q3) € .%?, the following diagram fis commutative:

A(P3)A(L1#R3)A(Q3) TS A (Py) A (La# R3)A(Qs)

(B.3) lq J/q
A(Ll#ﬁzg) p(R3,R3)(x) N A(LQ#E:{,)

for any x € A(L1, Lo; L3). The vertical maps are induced from (19.1).

Proposition B.7 will be proved in Subsection B.9.

B.3. Construction of Bijections. Our construction of bijections {p} is motivated by a
simple proof of the excision principle which states that

(B.4) Ind(L1#Rs3) + Ind(Ly#Ry) = Ind(L1#Rys) + Ind(Ly#Rs)

for any Li,Le € Z and R3, Ry € %. The author learned this elegant proof of excision
principle in a graduate course at MIT, taught by Prof. Mrowka, who has kindly agreed
to present his proof here.

Consider a cut-off function 6 : [—1,1] — R such that

1 1
O(t) =0ifte[~1,—=]; O(t) = g if te [z,

1].
2 2
Over each manifold X;# X}, 6 extends to a global function by setting § = 0 on X;\W; and
6 =1 on X;\W;. Consider functions ¢, := cosf and ¢g := sinf, then the matrix

U= (iIL% _fLR) with inverse U™ = <—¢¢LR if)

defines an invertible operator between Hilbert spaces:
LY (B\#B3) © Li(Ex#Es) — Li(E\#Ey) © L (Ex#Es)

for any k € {0,1}. The same statement holds if we use bundles F; instead. In what follows,
we write F;; for E;#FE;, F; for Fi#F; and D;; for L;#R;.

Lemma B.8. The following diagram is commutative up to a compact operator:
L3(Er3) @ L} (Ey) —— L3(Ew) ® L3(Er)

(B'5) lD13(-BD24 le@Dzs
L%(Fi3) ® L?(Fa) SN L3(Fi4) ® L?(Fy3)

Proof. Note that the inclusion L?([—1,1] x Y) — L?([—1,1] x Y) is compact, since Y is
compact. O
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Apparently, the excision principle (B.4) is an immediate corollary of Lemma B.8. On
the other hand, the digram (B.5) also gives rise to an identification of orientations:

(B6) U* : A(D13 (—D D24) —> A(D14 @ ng)

understood in the sense of Example 19.1. Let us make a more precise statement:
Lemma B.9. Suppose {A, : Hi — Hs}.cz is a family of Fredholme operators parametrized
by a topological space Z. In addition, let {U, : Hy — Hi},ez and {V, : Hy — H3}.,ez

be families of invertible operators parametrized by the same space. Form the new family
{U,0A, 0V, : Hy — Hs},cz, then there is continuous bundle map:

(B.7) (U, V), :det A - det(U o Ao V),
whose restriction at each fiber is given by
a. ® 5 - U az) ® (Va(B2)*
if a, and B, are elements in A" ker A, and A" coker A, respectively.
Proof. One has to go back to the definition of determinant line bundles in [KMO07, Section

20.2] to verify that (U,V) is continuous, using the fact that U and V are families of
invertible operators. O

Remark B.10. It is clear that this construction is functorial with respect to compositions
of families of invertible operators. &

Lemma B.11. The bundle map (B.7) is functorial with respect to direct sums of operators

in the following sense. Suppose {A’, : H| — Hjy}.cz and {A] : HY — Hjy}.cz are two

families of Fredholm operators, and similarly we have families of invertible operators:
(UL AU AV AV

as in Lemma B.9 parametrized by the same topological space Z.Then we have a commu-

tative diagram:

(U/,V/)*®(U//,V//)*

det A’ ® det A” » det(U' o Ao V') @det(U" o A" o V")

(B.8) l" [s

det(A’ o) A”) U'U" V'®V")4 y det(U’ @ U”) o (A/ (‘BA”) o (V/ @ V”),

where vertical maps are induced from (19.1).

In our primary applications, Z is always a contractible space; see Example 19.1. In
light of Lemma B.9, the identification in (B.6) is in fact (U~!,U)., but we will keep using
the notation U, for convenience. Now consider the following diagram:

5(Rs,R
A(D13)A(Dag) —2E58) 0 A(D1)A (Do)

(B,9) lths;u lq14;23

—-1)"U.
A(D13 ® Doy) — 2% A(D1y® Do)
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where vertical maps are induced from (19.1). The top horizontal arrow p(Rs, R4) is equiv-
alent to a map:

p(Rs3, Ry) : Homg o7 (A(D13), A(D23)) — Homg,oz(A(D14), A(D24))

for which we are aiming in (B.1). One may define p(Ds, D4) by making the diagram (B.9)
commutative, but there is a choice of freedom for the sign (—1)". In fact, there is no
reason to believe that the identification map U, in (B.6) is just the natural one, as there
are different ways to set up the excision picture.

Proposition B.12. Suppose Assumption B.1 holds for the families of operators (£, %).
We construct the bijection in (B.1) by declaring the diagram (B.9) to be commutative with

(BlO) T(Ll, Lo; R, R4) = Ind Ds3 - Ind Doy + Ind Doy.
Then the collection of bijections {p(R3, R4)} satisfies Azioms (C-I)-(C-IV).
The proof of Proposition B.12 will dominate Subsections B.4-B.8.
B.4. A Toy Model. To convince ourselves that the formula (B.10) indeed provides the

correct convention, let us verify a degenerate case when Y = ¢#. In this case, we assume
that every L; and R; are Fredholm operators themselves, so

Dij = L; ® R,
and (B.9) fits into a larger diagram:

A(L)A(Rs)A(L)A(Ry) I A (1A (R)A(Lo)A(Ry)

lq1;3®Q2;4 lqh4®q2;3
p(R3,R.
(B.11) A(D13)A(Dsy) PRSI A(D1a)A(Dag)

J/Q13;24 l‘h4;23

—1)U
A(D13 ® Day) S > A(D14 @ Da3)

If we declare the top horizontal map p(R3, R4) to be the identity map, then the resulting
collection {p(Rs3, R4)} will satisfy all axioms we want. Hence, we can determine the sign
(—1)" on the bottom if the digram (B.11) is commutative. In this case, the matrix U is a
4 x 4 matrix:

1 0 0 O
000 1| )

U=10 01 0o |/ U(E1DEOEO®E) — Li(E1©Ei1® E: @ Es)
01 0 O

for k € {0,1} (which is also true for F;). To compute the sign induced from U, let us
record two lemmas:
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Lemma B.13. Given {A, : H{ — H}.cz and {A) : H/ — HJ}.cz two families of
Fredholm operators parametrized by the same topological space Z, consider the permutation
operator:

r = <(1’ é) H{® H) — Hy@ H] and HY @ HY — B ® H.

Then the following digram is commutative with r1 = Ind A’ - Ind A”:

A(AYA(A") d A(A”)A(A)
lq(A/7A//) lq(A//?A/)
_1\r 7_71 T
AN @A) ST A ).

where vertical maps are induced from (19.1).

Lemma B.14. Given a family of Fredholm operators {A, : Hy — Hs}.cz, consider the
operator
O'=—Id!H1—>H1 andH2—>H2.
Then the map (671, 0), defined by Lemma B.9 equals
(—1)dA A(A) - A(A).
By Remark B.10, we decompose U into a composition of permutations and o, so
r = Ind Lo(Ind L + Ind Ly) + Ind L3 Ind Ly + Ind Ly
= Ind Ds3 - Ind Doy + Ind Doy,

by Lemma B.13 and B.14.

B.5. Verification of Axiom (C-III). The toy model above can partially justify the
choice of r in (B.10). Let us give another reason by verifying Axiom (C-III), in which case
L1 = Ly. Consider the family of operators parametrized by 7 € [0, 1]:

(B.12) UT:(
with 0, = 04+ 7(7/2 —0) : X;; - R, so Up = U and
0 -1

(03,

We have to verify the top horizontal map p(Rs, R4) in (B.9) is the identity map. The
diagram (B.9) remains commutative if we carry out the homotopy {Ur} e[o,1]:

cosf, —sinb,
sinf,. cosf;

) : L3(Fa3) @ Lj(Eaa) — Lj(E24) ® Li(Eas), ke {0,1}

5(R3,R
A(Dag)A(Day) —2E2E) A (Do YA(Day)

(B'13) lQ23;24 lQ24;23

—1)" (U~
A(D23 @ Day) Bl A(D24 @ Da3)

When 7 = 1, by Lemma B.13 and B.14, p(R3, R4) = Id if we define r by (B.10).
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Remark B.15. By Proposition B.4, there exist other choices of signs (—1)" in Proposition
B.12 that also fulfill Axioms (C-I)-(C-IV), but (B.10) seems to be the preferred one by
what we have discussed so far. In fact, the toy model in Subsection B.4 may provide a
normalization axiom that removes the ambiguity in Proposition B.4. &

B.6. Verification of Axiom (C-II). In this case, R3 = Ry4. Analogous to (C-III), we
consider the family of operators parametrized by 7 € [0, 1]:

U — [ cos 0. —sind.
T \sin€. cos6. )’
with 6. = (1 — 7)0. Then Uy = U and U; = Id. In this case, r =0 mod 2.

B.7. Verification of Axiom (C-I). For operators R; € Z,j € {3,4,5}, we have to verify
that

p(Rs, Ry) ® p(R4, R5) = Id®p(Rs, Rs)
as maps:
A(D13)A(D24)A(D14)A(D25) — A(D14)A(D23)A(D15)A(Daa).
To do this, we introduce a huge diagram and explain the construction of each piece in

o steps:

p(R3,R4)®p(R4,R
A(D13)A(Daa) A(Dyg)A(Dgs) R8I IOP L)

A(D14)A(D23)A(D15)A(D24)

q13,24®q14;25 W1 q14,23®415;24
A(D13 ® D24)A(D14 @ Das) UuBls A(D14® D23)A(D15 @ Doy)
q1342;1425 Wo q1423;1524
A(D13® D24 ® D14 ® Das) () A(D14 ® D23 ® D13 ® D24)
(B.14) (V) W (Vi)
A(D14 ® D24 ® D13 ® Das) (12) A(D14 ® D24 ® D15 ® Da3)
q1424;1325 Wy q1424;1523
A(D14® D24)A(D13 @ Das) UuBls A(D14 ® D24)A(D15 @ Da3)
q14,24®413;25 W5 q14,24®415;23

Id ®[3(R3,R5)

A(D14)A(D24)A(D13)A(D25) A(D14)A(D24)A(D15)A(D23)

Step 1. The first square (W) is the tensor of two diagrams of the form (B.9), for
operators (L1, Lo; Rg, R4) and (L1, La; R4, R5). (W1) is commutative if we correct it by
(—1)* where

a1 := 112,34 + r12:45 With Tijikl 1= (L, L;; Ry, R;) defined by (B.10).
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Step 2. Similarly, the last square (W5) is the tensor of two diagrams of the form (B.9),
for operators (L1, Lo; Ry, R4) and (Lq, Lo; R3, R5). (W) is commutative if we correct it
by (—1)% with

as -= T12;35-
Step 3. In the second square (Ws), the bottom horizontal arrow is induced by the

diagonal matrix
U 0
i (o o)

The square (W) is constructed by Lemma B.11, and as such is commutative.
Step 4. In the fourth square (W), the top horizontal arrow is induced by the same

matrix
U 0
Vo=V, = (0 U) .

Similarly, the square (W3) is commutative by Lemma B.11.
Step 5. In the third square (W3), the two vertical maps are induced respectively by

00 —1 0 100 0
01 0 0 000 —1
(B-15) Vs=110 0 of*= {001 o
00 0 1 010 0

The commutativity of (W3) follows from the next lemma:

Lemma B.16. The matriz V5 is homotopic to the composition V4—1 oVioVs by a path of
invertible operators:

0 —¢r —¢r O L(E - . .
(B.16) V;'oVioVs = ¢r 0 0 or | Lip(£14 @ L24 © £14 © L25) —

%L —SSL ¢OR _gR L%(E14®E24®E15@E23),

for any k € {0,1}. The same statement holds for bundles Fj;.

Proof of Lemma B.16. We construct the homotopy in 2 steps. If we compare Vo with
(B.16), only positions of ¢, are different. It suffices to move them around by homotopy.
Step 1. Take 7 € [0,1] and define:

¢rcosy —¢rp —¢rsin’y 0

_ OR oL 0 0 4, 4 2,2 T
‘/2(7_) - QZ)LSin% 0 QZ)LCOS% _¢R ) det‘/Q(T) *¢L+¢R+2¢L¢RCOS 9 :
0 0 PR oL
Step 2. Take 7 € [1,2] and define:
0 —¢r —¢L 0

10} ¢ sin - 0 ¢rcosTt T
V)= T g, T T | detVa(r) = 6 + 0 — 201 6% cos -

T

0 —¢pcosy ¢r Grsini:
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Then V2(0) = Vg and Va(2) =V, * o V4 0 V4. O

Back to the proof of (C-I). To figure out the overall sign involved in the diagram (B.14),
we have to compute the compositions of all left vertical maps and all right vertical maps
using Lemma B.13 and B.14. They are induced by V3 and Vy respectively, so the outcomes
are

a; = Ind D13Ind D14 + (Ind D13+ Ind D14) Ind D24 + Ind D13,
ar = Ind Do3 Ind Doy + (Ind Ds3 + Ind D24) Ind D15 + Ind D»3.

We have to verify that
(B.17) a1 +as+a+a-=0 mod 2,
which is the sum of 14 terms. In the computation below, we use the excision principle
(B.6) and set
b=1Ind Dy; —Ind Dyj, 3<j <5,

SO

a1 + as + a; + a, = 2Ind Dy3 Ind Doy + 21Ind D5 + (Ind D13 + Ind Da3)
+ (Ind Das + Ind Doy)(Ind Dys + Ind Das)
+Ind Das(1 + Ind D14) + Ind Dy3(Ind D4 + Ind Doy)
= b+ (Ind Da3 + Ind Doy) - b
+ Ind Doy (1 + Ind Doyg) + Ind Doy - b + Ind D13 - b
=b+b2=0 mod 2.

This completes the proof of (C-I).

Remark B.17. The computation above is not enlightening at all. However, once we know
the sum (B.17) admits an expression that involves indices of D;; only, one may refer to
the case when Y = ¢ in Subsection B.4, as the computation does not see the difference.
In that case, there is much easier to see why {q(Rs, R4)} are associative. O

B.8. Verification of Axiom (C-IV). We have formulated the problem in a way that
is asymmetric in . and #. But Axiom (C-IV) is identical to Axiom (C-III) if one
interchanges the roles of .2 and Z. The proof (C-IV) follows the same line of arguments
as above. For any operators L; € .Z,0 < i < 2, we have to verify that

ﬁ(Lo, Ll; R37 R4) ®ﬁ(L17 LQ; R3a R4) = Id@ﬁ(‘[’o’ LQ; R37 R4)

as maps:

A(Do3)A(D14)A(D13)A(D2s) — A(Dog)A(D13)A(D14)A(D23),
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and the corresponding diagram is:

P(Lo,L1)®p(L1,L2)

A(Do3)A(D14)A(D13)A(D2y)

» A(Doa) A(D13)A(D14)A(Da3)

q04,13®q14;23

» A(Doy @ D13)A(D14 ® Da3)

q0413;1423

» A(Dos @ D13 @ D14 ® Da3)

4

(V3)s

» A(D14 ® D13 @ Doy ® Da3)

4

q1314;0423

q03,14®q13;24
Us®U.
A(Do3 @ D14)A(D13 @ Do) ==
q0314;1324
(V1)
A(Do3 @ D14 @ D13 @® Day)
(B.18) (V3)
(V2)x
A(D13® D14 @ Do3 @ Day)
414130324
Us®U
A(D13 @ D14)A(Do3 @ Day) ==
q13,14®q03;24

A(D14)A(D13)A(Do3)A(D2y)

1d®p(Rs,Rs)

» A(D13 @ D14)A(Dog @ Da3)

q14,13®q04;23

> A(D14)A(D13)A(Doa)A(D23)
with V3 defined as in (B.15). Again we have to verify the sum

a) +a5+a;+a, =0 mod 2
where

all = T01;34 T T12;34 = T'11;34 + 702;34 = Gfr,,
a; = Ind D13 Ind D14 + (Ind D13 + Ind D14) Ind Do3 + Ind Dog,
a, = Ind D13Ind D14 + (Ind D13 + Ind D14) Ind Doy + Ind Dyy.

If we set ¢ = Ind D;3 — Ind Dyy, i € {0,1,2}, then
a’1+a'5—|—a2+a1,502—|—cz() mod 2.

The last step is to show that the matrix V5 is homotopic to

S L2(E13® E14 @ FEop3 @ Fay)
ViloVioVs = 8 (Q;L —¢¢R 8 L (B3 @ B4 © oz © By
o oL L2(E1y @ E13 @ Eos @ Es3).
(/53 0 0 ¢L

The homotopy is again constructed by “rotating” the four entries colored red and the
other four entries colored blue. The proofs of Proposition B.3 and B.12 are now completed.
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B.9. Proof of Proposition B.7. We claim that the construction in Proposition B.12 still
works in this general setup, if .Z is an even Elass of operators in the sense of Definition
B.6. If we stick to operators R= (P,R,Q) € Z with P = &, then the proof of Proposition
B.12 remains valid, since it does not see the difference.

In the general case, let ﬁj = (Pj,Rj,Qj) € #,j = 3,4. We wish to compare p(ﬁg,]%;)
with p(Rs, Ry4). To illustrate, we focus on the special case when P3 = Q3 = ¢J and verify
the following digram is commutative:

1d ®p(R3,R4)

A(D13)A(P)A(D24)A(Qa) A(Py)A(D13)AMQ4)A(Da3)

lld ®q lq@ld
P(Rs,R

Rs.R
(B19)  A(Dy3)A(Ps @ Dy ® Q1) SEEL A(Py@® D1y ® Qi)A(Das)
LI13;24 l(h4;23
—1)"Uy
A(D13® Py @ Doy @ Q4) S APy @ D14 ® Q4@ Do3).

The second square comes from the digram (B.9) with R4 replaced by fi4; SO
0O -1 0 0

o 0 —9r O
U= 0 0 0 -1
or 0 op O

and
r = (1 + Ind D23) Ind(L2#1§4) = (1 + Ind DQg)(IHd Py + Ind D3 + Ind Q3)

One may verify that the first square of (B.19) also is commutative, using diagrams like
(B.14) and (B.18). The computation boils down to

Ind Py - (Ind D13 + Ind Da3) =0 mod 2,

so the assumption that .Z is even is crumally here In general, one has to verify that a
digram like (B.19) commutes for arbitrary Rg, Ry € %. This reduces the problem from #
to the smaller family Z: it suffices to verify axiom (C-I)-(C-1V) for (£, %), but this is
done in Proposition B.12. Details are left for the readers.

Finally, to verify the additional property (B.3), we set

-§3 = (@7 R37 @)7 -§4 = (P37 R37 Q3)7
in the diagram (B.19). Then we use the fact that the top arrow p(R3, R3) = Id to conclude.

B.10. Proof of Theorem 19.2. Having developed the abstract theory of relative orien-
tations, let us explain its application in gauge theory and prove Theorem 19.2. Consider
a strict cobordism X : Y] — Yo, let

Y =0X=(-Y1)u([-1,1] x ¥) u Y.

We regard Y as a compact oriented 3-manifold by smoothing the corners.
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For any relative spin® cobordism sy € Spin§ (X;51,82), let the operator
L;

be the restriction of the Fredholm operator Q(c1,5x,¢2) on X and R, be the restriction
on the complement X'\ X, then

Q(c1,5x,¢2) = Lz, #Rs.

Let .2 = {L;, : 5x € Spin§; (X;51,82)} be the space of all such operators. The underlying
manifold of Lz, is always the compact 4-manifold X. As for the other class #Z, let X3
be any smooth 4-manifold with boundary (—Y) such that X#X3 is a closed oriented
manifold and sx|sx extends to a spin® structure 53 on X#X3. Define R3 to be the
linearized Seiberg-Witten map together with the linearized gauge fixing equation on X# X3
restricted on X3. As a result

L; #Rs3

is the linearized operator at some configuration for the closed spin® manifold (X # X3, 5 x #83).
Set # = {R.} v {all possible (X3, R3)}. Our goal is to construct the natural bijection

for each relative line bundle [E] € H?(X,0X;Z). (Here we changed the notation for a line
bundle to avoid confusion). Using the set of bijections {p(R3, R4)} in Proposition B.3 or
B.12, we can define e using any compact piece (X3, R3) instead:

e : MLz #R3) — MLz oe#Rs)-

It is constructed as follows. The linearized operator at a reducible configuration on Xg#R3
is

(d*@d") @ Dj
The second operator is complex linear, while the first one is independent of the line bundle
[E] € H*(X,0X;7Z), so e is defined by the commutative digram

A(d* @ dHADY) 1% A(d* @ dT)A(DT)

I [

MLg #R3) —E— ALz or#Rs3),

where h : A(D}) — A(D},) preserves the complex orientations. Notice that {eg} is
independent of the compact piece (X3, R3) by our construction of {p(Rs, R4)}.

Now the first property (Ul) of Theorem 19.2 follows from Axiom (C-IV).

As for (U2), it suffices to address the special case when either [E12] = 0 or [Ea23] = 0.
Technically, we have to work with the operators Q' defined in (19.3), which involve mani-
folds with boundary and spectral projections. We can enlarge the family & to incorporate
such operators, so it is not a problem.

At this point, we conclude using the additional property (B.3) in Proposition B.7 by
setting either P3 = (J or (J3 = (. The assumption is verified by the next lemma.
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Lemma B.18. The class of operators £ := {Lz, : 5x € Spin§,(X;81,52)} is even in the
sense of Definition B.6.

Proof of Lemma. By the excision principle, it suffices to verify the condition (B.2) for a
special operator (X3, R3) € Z. In particular, we take (X3, R3) to be a compact piece. O
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