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Abstract. This is the second paper of this series. We define the monopole Floer homol-
ogy for 3-manifolds with torus boundary, extending the work of Kronheimer-Mrowka for
closed 3-manifolds. The Euler characteristic of this Floer homology recovers the Milnor
torsion invariant of the 3-manifold by a theorem of Meng-Taubes.
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Part 1. Introduction

1.1. Motivations. The Seiberg-Witten Floer homology of a closed oriented 3-manifold is
defined by Kronheimer-Mrowka [KM07] and has greatly influenced the study of 3-manifold
topology. The aim of this current paper is to generalize their construction for any compact
oriented 3-manifold pY, BY q with torus boundary, with the potential to recover the knot

Floer homology (for a knot in S3), both the hat-version zHFK and the minus-version HFK´

as special cases. The Euler characteristic of this Floer homology group will recover the
Milnor torsion invariant of pY, BY q by a theorem of Meng-Taubes [MT96].

In the first paper of this series [Wan20], we discussed an infinite dimensional gauged
Landau-Ginzburg model for any Riemannian 2-torus pΣ, gΣq

(1.1) pMpΣq,Wλ,GpΣqq
whose gauged Witten equations on the complex plane C recover the Seiberg-Witten equa-
tions on the product manifold CˆΣ. This allows us to borrow many ideas from symplectic
topology and interpret our construction as Lagrangian Floer homology in the infinite di-
mensional setting. The author would like to refer readers to [Wan20, Section 2] for more
details on this heuristic. For the present paper, we focus on the analytic details that
implement these ideas. The use of Landau-Ginzburg models will be minimized.

One motivation of this work is to define invariants for knots and links inside S3. Within
the framework of Heegaard Floer Homology, this goal has been accomplished via the con-
struction of knot Floer homology by Ozsváth-Szabó [OS04] and independently Rasmussen
[Ras03]. See [Man16] for a nice survey on their constructions. A long term goal of our
program is to interpret their works in the context of gauge theory and hopefully provide
new insights for future research.

It has been believed [Man16] that the knot Floer homology of pS3,Kq encodes something
about the Seiberg-Witten equations on Rt times the knot complement S3zNpKq. This
heuristic can be approached using the invariants constructed in this paper, which apply
to any knot and link complements. The conjectural relation is as follows

HM ˚pY q ù HFK´˚ pS
3,Kq if Y “ S3zNpKq,

HM ˚pY q ù zHFK˚pS
3,Kq or KHM ˚pS

3,Kq if Y “ S3zNpK Ymq,

where m is a meridian of K Ă S3. The evidence is not strong, but they do have the same
Euler characteristics.
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Some constructions of knot Floer homology that uses gauge theory already exist in the
literature. Motivated by the sutured manifolds technique developed by Juhász [Juh06,
Juh08], Kronheimer-Mrowka defined the monopole knot Floer homology KHM ˚ in [KM10],

as the analogue of zHFK in Heegaard Floer homology. By further exploring this idea, Li
[Li19] proposed a construction of HFK´ in the Seiberg-Witten theory using a direct system
of sutures on the knot complement.

Our construction will follow a more direct approach. We will make pY, BY q into a
complete Riemannian manifold by attaching cylindrical ends, and define the monopole
Floer homology as an infinite dimensional Morse theory, as we explain in the next section.
In particular, it is reminiscent of the original construction of Kronheimer-Mrowka [KM07]
for closed 3-manifolds.

1.2. The Setup. To state our results, let Y be a compact oriented 3-manifold whose
boundary BY – Σ :“

š

1ďiďn T2
i is a disjoint union of 2-tori. Throughout this paper, we

assume that Y is connected and its boundary BY is non-empty. The Floer homology of
pY, BY q that we construct will rely on some auxiliary data on the boundary Σ including

‚ a choice of flat metric gΣ of Σ;
‚ an imaginary-valued harmonic 1-form 0 ‰ λ P Ω1

hpΣ, iRq;
‚ an imaginary-valued harmonic 2-form µ P Ω2

hpΣ, iRq such that the triple pgΣ, λ, µq
satisfies conditions (P4)(P5)(P7) in Section 3;

We denote such a quadruple pY, gΣ, λ, µq by a thickened letter Y. The boundary data
pgΣ, λ, µq will play essential roles in the proof of compactness theorems. One may think
of them as a way to close up the boundary of Y , so analytically it behaves like a closed
3-manifold. The monopole Floer homology HM ˚pYq can be viewed as an invariant of Y
relative to the gauged Landau-Ginzburg model (1.1).

We are only interested in the spinc structure psstd on Σ such that

c1pS
`qrT2

i s “ 0

on each connected component of Σ. A relative spinc structure ps of Y is a spinc structure
s together with an identification of s with psstd on the boundary Σ. For each relative
spinc manifold pY,psq, we will associate a finitely generated module over a base ring R:

(1.2) HM ˚pY,psq.

called the monopole Floer homology group of pY,psq. This group will be constructed as an
infinite dimensional Morse theory of the perturbed Chern-Simons-Dirac functional Lω on
the complete Riemannian manifold:

pY :“ Y
ž

Σ

r0,`8qs ˆ Σ,

where the metric on the cylindrical end is d2s`gΣ and Lω is perturbed by a closed 2-form

ω P Ω2ppY , iRq (cf. Definition 3.8) such that

ω “ µ` ds^ λ
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on r0,`8qs ˆ Σ. We will always work with irreducible configurations: there is no need
to blow up the configuration space. Critical points of Lω are solutions to the perturbed

3-dimensional Seiberg-Witten equations on pY , while the Floer differential is defined by

counting solutions on Rt ˆ pY .

Remark 1.1. The Seiberg-Witten invariant SW of the 3-manifold pY, BY q is defined in

[MT96] as the signed count of critical points of Lω on pY . We are using exactly the same
setup here. ♦

The set of isomorphism classes of relative spinc structures on Y :

Spinc
RpY q

is a principal homogeneous space over H2pY, BY ;Zq. The desired invariant of Y is obtained
by forming the direct sum,

(1.3) HM ˚pYq :“
à

psPSpinc
RpY q

HM ˚pY,psq,

which admits an additional homology grading (cf. Section 18 for more details):

‚ the monopole Floer homology group HM ˚pYq carries a canonical grading by ho-
motopy classes of oriented relative 2-plane fields on Y ( i.e. oriented 2-plane fields
that take a standard form near Σ); If ps and ps1 come down to the same underlying
spinc structure, then their grading sets are the same;

‚ a homology orientation of Y determines a canonical mod 2 grading of HM ˚pYq.
As for the base ring R in the definition of HM ˚pYq,
‚ we take R “ Z if µ “ 0 and the perturbation is monotone in the sense of Definition

17.3;
‚ we take R to be a Novikov ring over Z otherwise.

1.3. The Euler Characteristic. By the work of Meng-Taubes [MT96], for any closed 3-
manifold Y0 with the first Betti number b1pY0q ą 0, the Euler characteristic of the reduced
monopole Floer homology HM red

˚ pY0q defined by Kronheimer-Mrowka recovers the Milnor
torsion invariant of Y0. The same statement continues to hold in our case. Since we have
followed the same setup of Meng-Taubes in [MT96], the Euler characteristic of HM ˚pYq
recovers the Seiberg-Witten invariant SWpY, BY q defined in their paper. In particular, it
is independent of the choice of pgΣ, λ, µq.

Theorem 1.2 (Theorem 1.1 [MT96]). For any compact oriented 3-manifold pY, BY q with
torus boundary, the Euler characteristic χpHM ˚pYqq recovers the Milnor torsion invari-
ant of pY, BY q; in particular, χpHM ˚pY,psqq is non-zero only for finitely many relative
spinc structures ps P Spinc

RpY q if b1pY q ą 1.

Remark 1.3. It is not clear to the author whether HM ˚pY,psq ‰ 0 only for finitely many
relative spinc structures if b1pY q ą 1. ♦

Remark 1.4. Turaev [Tur98] later refined their result by showing that χpHM ˚pYqq as a
map

Spinc
RpY q Ñ Z
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agrees with the Milnor-Turaev invariant of pY, BY q up to an overall sign ambiguity. The
version proved in [MT96] is slightly weaker: relative spinc structures differed by a torsion
line bundle in H2pY, BY ;Zq are not distinguished. Readers are referred to their original
paper for the precise statements. ♦

1.4. The TQFT Property and Invariance. To state the p3 ` 1q TQFT property en-
joyed by HM ˚, we introduce a class of cobordisms between 3-manifolds with torus bound-
ary:

(1.4) X : Y1 Ñ Y2

which are subject to certain constraints. On the level of manifolds, the cobordism

pX,W q : pY1, BY1q Ñ pY2, BY2q

is a manifold with corners carrying a cobordism W : BY1 Ñ BY2 of boundaries. We will
require W to be the product cobordism r´1, 1stˆΣ between BY1 and BY2, and as such must
have the same number of components. They form the so-called strict cobordism category
Cobs. The precise definition is given in Section 3. In the theorem below, we will work
instead with SCobs: each object pY,psq of SCobs is coupled with a relative spinc structure,
while morphism sets of SCobs are the same as those of Cobs.

Theorem 1.5. Let R be the Novikov ring with integral coefficients, then the monopole
Floer homology HM ˚ extends to a functor:

HM ˚ : SCobs Ñ R-Mod

from the strict cobordism category SCobs to the category of R-modules.

Remark 1.6. The strict cobordism category Cobs or SCobs will be large enough to prove
the invariance of HM ˚pY,psq under

‚ the change of tame perturbations of the Chern-Simons-Dirac functional Lω,
‚ the change of interior metrics of Y and
‚ the isotopy of the identification map BY – Σ,

as a corollary of Theorem 1.5. In the actual construction of HM ˚, we will use a formal
enlargement of SCobs to deal with the orientation issue; see Section 19. ♦

Remark 1.7. Although it is believed that the monopole Floer homology HM ˚pY,psq is
independent of the flat metric gΣ of Σ, this is not proved in this paper. The author wishes
to come back to the invariance of gΣ as well as general cobordism maps in a future paper.
If the restriction of X : Y1 Ñ Y2 on the boundary W : BY1 Ñ BY2 or

W : pBY1, gΣ1 , λ1, µ1q Ñ pBY2, gΣ2 , λ2, µ2q

is a general cobordism, then one would hope to construct a map:

HM ˚pY1q b HM ˚pWq Ñ HM ˚pY2q.

When W is the product cobordism r´1, 1st ˆ pΣ, gΣq, it recovers the functor in Theorem
1.5 by inserting the canonical generator 1 P HM ˚pWq – R. ♦
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1.5. Some Speculations: Relations with Knot Floer Homology. The simplest
examples of pY, BY q arise from the knot complements of knots inside S3. In this case,
there exist a unique spinc structure s on pY, BY q and Spinc

RpY q is a torsor over

(1.5) H1pBY ;Zq{ ImH1pY ;Zq – Z.

The technical conditions (P4)(P5)(P7) on the boundary data pgΣ, λ, µq now require that
µ “ 0 and

‚ r˚Σλs P ImpH1pY,Rq Ñ H1pΣ,Rqq and rλs P H1pΣ,Rq is not any multiple of an
integral class. In particular, λ ‰ 0.

The second condition is essentially a constraint on the flat metric gΣ. The choice of λ
will pick up an isomorphism of (1.5). Despite these unpleasant limitations, the monopole
Floer homology group HM ˚pYq carries a bi-grading of Z‘Z. The first grading arises from
relative spinc structures, and

HM ˚pY,ps` nq “ t0u
when n " 1 under (1.5). The second one arises from the homology grading by oriented
relative 2-plane fields. HM ˚pYq is analogous to HFK´pS3,Kq in Heegaard Floer homology,
but one important structure is missing: HFK´pS3,Kq is an F2rU s-module with degU “
p´1,´1q.

As noted in the first paper [Wan20, Section 2.3], we would hope to assign an A8-algebra
A to the fundamental Landau-Ginzburg model (1.1) and enhance HM ˚pYq into an A8-
module over A. By passing to the homology category, HM ˚pYq becomes a module over
the algebra H˚pAq. This is one way that U -action might arise in our picture. However, it
would require some new ideas and analytic tools to fully implement this picture, since the
proposals of Haydys [Hay15] and Gaiotto-Moore-Witten [GMW15] do not apply directly
here.

On the other hand, we pick a meridian m of the knot K Ă S3 and consider the link
complement YK :“ S3zNpK Ymq. By gluing the two boundary components of YK (using

any orientation reversing diffeomorphism), we obtain a closed 3-manifold ỸK . An internal
gluing theorem may then relate HM ˚pYKq with the monopole Floer homology of the

closure ỸK , which is isomorphic to the monopole knot Floer homology KHM ˚pS
3,Kq by

[KM10]. Interested readers are referred to [Wan20, Section 2] for more heuristics on this
gluing formula. It is left as an interesting future project and will not be explored in the
present paper. At this point, the only computation that we can make is for the unknot

U Ă S3, so YU “ r´1, 1ss ˆ T2 is a finite cylinder and pYU “ Rs ˆ T2.

Proposition 1.8. For YU “ r´1, 1ss ˆ T2, the monopole Floer homology HM ˚pY,psq is
isomorphic to R for the standard relative spinc structure ps “ psstd and is trivial when
ps “ psstd b L and rLs ‰ 0 P H2pYU , BYU ;Zq, regardless of the choice of the boundary data
pgT2 , λ, µq. However, we insist here that the restriction of the metric of YU on t1u ˆ T2

and t´1u ˆ T2 are the same.

Proof. This can be checked directly by working with the product metric on pYU “ Rs ˆ
T2. �
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1.6. Organizations. To define the monopole Floer homology HM˚pYq and implement
the construction sketched in Subsection 1.2, we address five analytic problems in this
paper, as summarized below. We will follow closely the plotline of the book [KM07].

Compactness. To obtain the right compactification of moduli spaces on Rt ˆ pY , we

have to address the planar end of Rt ˆ pY :

(1.6) H2
` ˆ Σ :“ Rt ˆ r0,8qs ˆ Σ,

where the upper half plane H2
` is furnished with the Euclidean metric. At this point,

we make essential use of results from the first paper [Wan20]. Our constraints on the
boundary data pgΣ, λ, µq are intended to make the following properties hold:

‚ finite energy solutions are trivial on CˆΣ, namely, they have to be C-translation
invariant up to gauge [Wan20, Theorem 1.2 or 8.1].

‚ finite energy solutions on RsˆΣ are trivial, namely, they have to be Rs-translation
invariant up to gauge. This result is due to Taubes; see [Tau01, Proposition 4.4 &
4.7] or [Wan20, Proposition 10.1 & 10.3] for a version that we exploit.

In Part 2, we will first set up the strict cobordism category Cobs and derive an energy
identity for the Seiberg-Witten equations. Combining results from the first paper [Wan20],
this will lead us to the compactness theorem in Section 6. Part 2 is the counterpart of
[KM07, Section 4, 5, 16] of the book.

Perturbations. To make moduli spaces regular, we have to apply a further perturba-
tion to the Chern-Simons-Dirac functional Lω. Any additional perturbations will happen
within the compact region

Y “ ts ď 0u

of pY . In particular, the monopole equations are always unperturbed on the planar end
H2
`ˆΣ. The cylinder functions that we use here are slightly different from those in [KM07,

Section 11] since global gauge fixing conditions never give rise to compactly supported
perturbations, in the sense of Definition 7.1. Inspired by holonomy perturbations from
instanton Floer homology, we will look at embeddings of S1 ˆ D2 into Y instead. The
construction is carried out in details in Part 3, as the counterpart of [KM07, Section 10,
11].

Linear Analysis. This part is more or less standard. The extended Hessian of Lω on
pY as a self adjoint operator has essential spectrum, since pY is a non-compact manifold.
This is a main difference of our case from that of closed 3-manifolds. Fortunately, the
essential spectrum of Lω is still away from the origin, allowing us to speak of spectrum
flow and construct Fredholm operators once we stick to compact perturbations. We will
follow the setup of [RS95] and summarize relevant results in Part 4, as the counterpart of
[KM07, Section 17] of the book.

Unique Continuation. As our perturbation space is not large enough, we need a
better unique continuation property to attain transversality. The non-linear version is

stated as follows: if two solutions γ1, γ2 to the perturbed monopole equations on Rt ˆ pY
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are gauge equivalent on the slice

t0u ˆ Y where Y “ ts ď 0u Ă pY ,

then they are gauge equivalent on the whose space. The proof will rely on the Carleman
estimates from [Kim95].

Part 5 is the counterpart of [KM07, Section 7, 12, 15] of the book. The proof of
transversality will be accomplished in Section 16.

Orientations. To work with a Novikov ring R defined over Z (instead of F2), we
have to orient moduli spaces in a consistent way. For closed 3-manifolds, this is done by
first looking at reducible configurations in the blown-up configuration space. See [KM07,
Section 20] for details. In our case, we have to adopt a different approach as configurations
are never reducible and the action of the gauge group is free.

The situation we have here is similar to that of [KM97] in which case a Riemannian
4-manifold with a conic end is considered, so one may follow the argument of [KM97, Ap-
pendix] to orient moduli spaces consistently. The key ingredients are relative determinant
line bundles or relative orientations that compare two Fredholm operators. We will
adopt a more direct approach to this notion without referring to either K-theory or the
proof of the index theorem [AS68]. This combinatoric construction is based on a simple
proof of excision principle due to Mrowka and is carried out in Appendix B.

Part 6 is the counterpart of [KM07, Section 20, 22, 28] of the book. The canonical
grading of HM ˚pYq by homotopy classes of oriented relative 2-plane fields is introduced

in Section 18. We will first define monopole Floer homology of pY using F2-coefficient in
Section 17, while orientations are addressed in Section 19.

Most results and proofs in the present paper are intended to generalize the ones in
[KM07]. Readers are assumed to have a reasonable understanding of the monopole Floer
homology of closed 3-manifolds, at least in the case when c1psq is non-torsion.

Remark 1.9. On the other hand, we point out what will not be proved in the present
work:

‚ the exponential decay of solutions in the time-direction, cf. [KM07, Section 13];
‚ the gluing theorem, cf. [KM07, Section 18, 19].

Once we have set up the rest of the theory correctly, these results follow immediately
from corresponding sections of [KM07]. ♦

Acknowledgments. The author would like to thank his advisor Tom Mrowka sin-
cerely for introducing him to this subject, for suggesting the present problem, and for
his patient help and constant encouragement throughout this project. The author would
also like to thank Siqi He, Jianfeng Lin, Matt Stoffregen, Guangbo Xu and Boyu Zhang
for helpful conversations. This material is based upon work supported by the National
Science Foundation under Grant No.1808794.
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Part 2. Three-Manifolds with Torus Boundary

In this part, we define the strict cobordism category Cobs of oriented 3-manifolds with
torus boundary and study the Seiberg-Witten equations on their completions. Throughout
this paper, we will use pΣ, gΣq to denote a disjoint union of 2-tori. Although most results in
the first paper [Wan20] do not require the metric gΣ to be flat, we will also always assume
that gΣ is flat in this paper so that we can exploit Theorem 2.6 in our construction.

For any compact oriented 3-manifold pY, BY q with torus boundary BY – Σ, we attach
a cylindrical end to obtain a complete Riemannian 3-manifold

pY :“ Y
ž

Σ

r0,8qs ˆ Σ.

For any strict cobordism between two such manifolds,

pX, r´1, 1s ˆ Σq : pY1, BY1q Ñ pY2, BY2q,

we associate a complete Riemannian manifold X with a planar end:

X “ p´8,´1st ˆ pY1 Y pX Y r1,`8qt ˆ pY2 where

pX “ X Y r´1, 1st ˆ r0,8qs ˆ Σ.

The end point of this part is to prove the compactness theorem (Theorem 6.1) for the

Seiberg-Witten moduli spaces on Rt ˆ pY and X , which is the cornerstone in any Floer
theory. The proof relies on three key ingredients:

(K1) a uniform upper bound on the analytic energy;
(K2) finite energy solutions are trivial on CˆΣ; in other words, they are gauge equivalent

to the unique C-translation invariant solution on Cˆ Σ; see Theorem 2.4 below.
(K3) finite energy solutions on RsˆΣ are trivial; in other words, they are gauge equiv-

alent to the unique Rs-translation invariant solution on Rs ˆ Σ; see Theorem 2.6
below. This result is due to Taubes and requires gΣ to be flat.

Part 2 is organized as follows. In Section 2, we give a brief review of the Seiberg-Witten
equations and summarize results from the first paper [Wan20], which gives (K2) and (K3).
In Section 3, we define the strict cobordism category and set up the configuration spaces

on pY and pX respectively. In Section 4, we prove that the quotient configuration space in
our case is still Hausdorff and remains a Hilbert manifold after Sobolev completions.

Section 5 is devoted to the derivation of energy equations, which gives (K1). At this

point, the existence of certain bounded harmonic forms on pY or pX is crucial (see Lemma
3.2 and 3.5 below), and relevant results are summarized in Appendix A. Finally, the
compactness theorems are stated and proved in Section 6.

2. Results from the First Paper

In this section, we summarize results from the first paper [Wan20], which are essential
to the proof of the compactness theorem (Theorem 6.1) in Section 6. In particular, they
ensure properties (K2) and (K3). Throughout this section, we will work primarily with
the product manifold X “ Cˆ Σ or H2

` ˆ Σ.
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2.1. Review. Recall that a spinc structure s on a smooth Riemannian 4-manifold X is a
pair pSX , ρ4q where SX “ S` ‘ S´ is the spin bundle, and the bundle map ρ4 : T ˚X Ñ

HompSX , SXq defines the Clifford multiplication. A configuration γ “ pA,Φq P CpX, sq
consists of a smooth spinc connection A and a smooth section Φ of S`. Use At to denote
the induced connection of A on

Ź2 S`. Let ω be a closed 2-form on X and ω` denote its
self-dual part. The Seiberg-Witten equations perturbed by ω are defined on CpX, sq by
the formula:

(2.1)

"

1
2ρ4pF

`

Atq ´ pΦΦ˚q0 ´ ρ4pω
`q “ 0,

D`AΦ “ 0,

where D`A : ΓpS`q Ñ ΓpS´q is the Dirac operator and pΦΦ˚q0 “ ΦΦ˚ ´ 1
2 |Φ|

2 b IdS`
denotes the traceless part of the endomorphism ΦΦ˚ : S` Ñ S`.

The gauge group GpXq “ MappX,S1q acts naturally on CpX, sq:
Gpxq Q u : CpX, sq Ñ CpX, sq, pA,Φq ÞÑ pA´ u´1du, uΦq.

The monopole equations (2.1) is invariant under gauge transformations.

Let Σ “ pT2, gΣq be a 2-torus with a flat metric. In the special case when X “ Cˆ Σ
is a Kähler manifold furnished with the product metric and the complex orientation, the
equations (2.1) can be understood more explicitly, as we explain now.

Let dvolC and dvolΣ denote volume forms on C and Σ respectively. The symplectic
form on X is given by the sum ωsym :“ dvolC ` dvolΣ. The spin bundle S` splits as
L` ‘ L´: they are ¯2i eigenspaces of the bundle map ρ4pωsymq : S` Ñ S`. The spin
section Φ decomposes as pΦ`,Φ´q with Φ˘ P ΓpX,L˘q. We are only interested in the
spinc structure on Cˆ Σ with

c1pS
`qrΣs “ 0,

so both L` and L´ are topologically trivial.
Let z “ t` is be the coordinate function on C. The Clifford multiplication ρ4 : T ˚X Ñ

HompS, Sq can be constructed by setting:

ρ4pdtq “

ˆ

0 ´ Id
Id 0

˙

, ρ4pdsq “

ˆ

0 σ1

σ1 0

˙

: S` ‘ S´ Ñ S` ‘ S´,

where σ1 “

ˆ

i 0
0 ´i

˙

: S` “ L` ‘L´ Ñ L` ‘L´ is the first Pauli matrix. If we identify

L` – C and L´ –
Ź0,1 Σ, then

ρ3pwq :“ ρ4pdtq
´1 ¨ ρ4pwq “

ˆ

0 ´ιp
?

2w0,1q ¨
?

2w0,1 b ¨ 0

˙

: S` Ñ S`,

for any x P Σ and w P TxΣ.

Remark 2.1. We will frequently work with Clifford multiplications in dimension 3 and
4, denoted by ρ3 and ρ4 respectively. Identify C as Rt ˆ Rs, then they are related by

ρ3pwq “ ρ4pdtq
´1 ¨ ρ4pwq : S` Ñ S`,

for any w P T ˚pRs ˆ Σq. In particular, ρ3pdsq “ σ1. ♦
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The symplectic form ωsym is parallel, so is the decomposition S` “ L` ‘ L´. Any
spinc connection A must then split as

∇A “

ˆ

∇A` 0
0 ∇A´

˙

.

We regard L` “ C and L´ “
Ź0,1 Σ as bundles over Σ, and they pull back to spin

bundles over X via the projection map X Ñ Σ. Let B̌˚ “ pd,∇LCq be the reference

connection on C ‘
Ź0,1 Σ Ñ Σ. We obtain a reference connection A˚ on S` Ñ X by

setting

(2.2) ∇A˚ “ dtb
B

Bt
` dsb

B

Bs
`∇B̌˚

.

One can easily check that A˚ is a spinc connection. Any other spinc connection A differs
from A˚ by an imaginary valued 1-form a “ A´A˚ P ΓpX, iT ˚Xq. Their curvature tensors
are related by

FA “ FA˚ ` dXab IdS , so FAt “ FAt˚ ` 2dXa.

2.2. Point-Like Solutions. For this subsection, we will always work with the product
4-manifold X “ CˆΣ. For our primary applications, the closed 2-form ω in the Seiberg-
Witten equations (2.1) will take the special form

ω :“ µ` ds^ λ

where

‚ λ P Ω1
hpΣ, iRq is an imaginary-valued harmonic 1-form on Σ, and

‚ µ P Ω2
hpΣ, iRq is an imaginary-valued harmonic 2-form.

Since the metric gΣ is flat, the 2-form ω is parallel on X “ Cˆ Σ.

Assumption 2.2. The pair pλ, µq P Ω1
hpΣ; iRqˆΩ2

hpΣ; iRq is said to be admissible if λ ‰ 0
and one of the following two conditions holds:

pV 1q µ ‰ 0;
pV 2q λ is not a multiple of any integral class in H1pΣ; iZq Ă Ω1

hpΣ, iRq.
We always assume pλ, µq is admissible in this paper.

For the rest of this section, we will recollect a few theorems from [Wan20] and explain
why Assumption 2.2 is crucial. Before that, let us first introduce the notion of local energy
functional associated to a configuration pA,Φq on X.

Definition 2.3 ([Wan20] Definition 8.3). For any region Ω Ă C and any configuration
γ “ pA,Φq on Cˆ Σ, define the local energy functional of γ over Ω as

EanpA,Φ; Ωq :“

ż

Ω

ż

Σ

1

4
|FAt |

2 ` |∇AΦ|2 ` |pΦΦ˚q0 ` ρ4pω
`q|2. ♦

A solution γ to the Seiberg-Witten equations (2.1) is called point-like if its global
energy Eanpγ;Cq is finite. Let us first describe a constant solution γ˚ “ pA˚,Φ˚q to (2.1)
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with Eanpγ˚;Cq “ 0. The spinc connection of γ˚ is provided by the formula (2.2), while
the spinor Φ˚ can be written as

pr`,
?

2λ0,1r´q P ΓpX,C‘ Λ0,1Σq,

where r˘ are real numbers subject to relations:

r`r´ “ 1 and
i

2
p|r`|

2 ´ |r´|
2|λ|2q “ ´ ˚Σ µ.

In particular, Φ˚ is a parallel section with respect to A˚.
One consequence of Assumption 2.2 is that γ˚ will be the only point-like solution on

X up to gauge. For practical reasons, we give a more general statement. Let In “
rn´2, n`2st Ă Rt. Choose a compact domain Ω0 Ă I0ˆr0,8qs with a smooth boundary
such that

(2.3) I0 ˆ r1, 3ss Ă Ω0 Ă I0 ˆ r0, 4ss.

For any n P Z and S P Rs, define Ωn,S Ă C to be the translated domain

(2.4) Ωn,S :“ tpt, sq : pt´ n, s´ Sq P Ω0u Ă In ˆ r0,8qs.

Theorem 2.4 ([Wan20] Proposition 8.3). If λ ‰ 0, then there exists a constant ε˚ ą 0
depending only on pgΣ, λ, µq with following significance. If a solution γ “ pA,Φq to (2.1)
on X “ Cˆ Σ satisfies the estimate

EanpA,P ; Ωn,Sq ă ε˚

when |n| ` |S| " 1, then γ is gauge equivalent to the constant configuration pA˚,Φ˚q. In
particular, a point-like solution on X is necessarily trivial.

On the other hand, we are also interested in solutions on H2
` ˆΣ where the upper half

plane H2
` “ Rt ˆ r0,`8qs is furnished with the Euclidean metric. The next theorem

says that if a solution γ on H2
` ˆ Σ is close to γ˚ everywhere, then γ converges to γ˚

exponentially in the spatial direction:

Theorem 2.5 ([Wan20] Theorem 9.1). There exists constants ε, ζ ą 0 depending only
the boundary data pgΣ, λ ‰ 0, µq with the following significance. Suppose a configuration
γ “ pA,Φq solves the Seiberg-Witten equations (2.1) on H2

` ˆ Σ and Eanpγ; Ωn,Sq ă ε for
any n P Z and S ě 0, then

Eanpγ; Ωn,Sq ă e´ζS .

We will improve this theorem in terms of Sobolev norms of γ ´ γ˚ in Section 6; see
Theorem 6.2.

2.3. Solutions on Rs ˆ Σ. We also study the dimensional reduction of (2.1), the 3-
dimensional Seiberg-Witten equations, defined on Rs ˆ Σ:

(2.5)

"

1
2ρ3pFBtq ´ pΨΨ˚q0 ´ ρ3pωq “ 0,

DBΨ “ 0.
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where ω “ µ` ds^ λ and γ̌ “ pB,Ψq is a configuration on the 3-manifold. To go back to
the 4-dimensional case, one may set

A “ dtb
B

Bt
`B, Φptq “ Ψ on Rt ˆ Rs ˆ Σ.

Then EanpA,Φ; r0, 1st ˆ Rsq comes down to the energy of pB,Ψq:

EanpB,Ψ;Rsq “
ż

RsˆΣ

1

4
|FBt |

2 ` |∇BΨ|2 ` |pΨΨ˚q0 ` ρ3pω
`q|2

The trivial solution γ̌˚ “ pB˚,Ψ˚q of (2.5) can be written as

(2.6) B˚ “ dsb
B

Bs
`

ˆ

d 0
0 ∇LC

˙

,Ψ˚ “ pr`,
?

2λ0,1r´q,

in which case with Eanpγ̌˚;Rq “ 0. In fact, this is the only solution with finite energy if
Assumption 2.2 holds.

Theorem 2.6 ([Tau01], Proposition 4.4 & 4.7). If gΣ is flat and Assumption 2.2 holds,
then any solution γ̌ of p2.5q with Eanpγ̌;Rsq ă 8 is gauge equivalent to the unqiue Rs-
translation solution γ̌˚.

Remark 2.7. This result is due to Taubes. Readers can find a short discussion on its
proof in [Wan20, Section 10]. Theorem 2.6 is the only reason why we insist that gΣ is
flat. In fact, Theorem 2.4 and 2.5 also hold for any non-flat metric gΣ of Σ with a slightly
different expression of Ean; see [Wan20]. ♦

3. The Strict Cobordism Category

The cobordism category Cobs is said to be strict, because objects and morphisms are
subject to certain constraints. Roughly speaking, each object of Cobs is a 3-manifold
pY, BY q with torus boundary together with a choice of cylindrical metric gY and boundary
data pgΣ, λ, µq. A morphism of Cobs is a manifold with corners

pX,W q : pY1, BY1q Ñ pY2, BY2q

together with some coherence conditions on boundary data pgΣi , λi, µiq. The restriction of
a strict cobordism between boundaries is required to be a product, so W “ r´1, 1st ˆ Σ1

and Σ1 “ Σ2. Some of these constraints might be circumvented in the future by looking
at the Seiberg-Witten moduli spaces on 4-manifolds with more complicated geometry. For
now, we restrict attention to this smaller category Cobs for the sake of simplicity.

Subsection 3.1 and 3.2 are devoted to the definition of Cobs. Once this is done, we will

continue to set up the configuration spaces on pY and pX respectively in Subsection 3.3.

3.1. Objects. Let pΣ, gΣq “
šn
i“1pT2

i , giq be a disjoint union of 2-tori with a prescribed
flat metric. Each object of the strict cobordism category Cobs is a quintuple Y “

pY, ψ, gY , ω, qq satisfying the following properties:

(P1) Y is a compact oriented 3-manifold with boundary and ψ : BY Ñ Σ is an orienta-
tion preserving diffeomorphism. The identification map ψ might be dropped from
our notations when it is clear from the context.
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(P2) The metric gY of Y is cylindrical, i.e. gY is the product metric

ds2 ` ψ˚gΣ

within a collar neighborhood p´2, 0ssˆBY of BY . We form a complete Riemannian

3-manifold pY by attaching cylindrical ends along Σ:

pY “ Y Yψ r´1,8qs ˆ Σ,

whose metric is denoted also by gY .
(P3) ω P Ω2pY, iRq is an imaginary valued closed 2-form on Y such that within the

collar neighborhood r´1, 0ss ˆ BY , ω restricts to an s-independent form

µ` ds^ λ,

so ω extends naturally to a closed 2-form on pY , denoted also by ω.
(P4) λ P Ω1

hpΣ, iRq is an imaginary-valued harmonic 1-form on Σ. Moreover, ˚Σλ lies
in the image

ImpH1pY, iRq Ñ H1pΣ, iRqq.
(P5) µ P Ω2

hpΣ, iRq is an imaginary-valued harmonic 2-form on Σ. Moreover, µ lies in
the image

ImpH2pY, iRq Ñ H2pΣ, iRqq.
(P6) The cohomology class rωs P H2pY, iRq is called the period class. Let i : Σ Ñ Y

be the inclusion map, then i˚prωsq “ rµs P H2pΣ, iRq. The closed 2-form ω in
(P3) can be reconstructed from (λ, µ, rωs) as follows. Choose a cut-off function
χ1 : r0,8qs Ñ R such that

χ1psq ” 1 if s ě ´1; χ1psq ” 0 if s ď ´3{2.

By Corollary A.5, we can find a closed 2-form ω on Y in the class rωs such that
ω ” µ on r´1, 0ss ˆ Σ. Set

(3.1) ω “ ω ` χ1psqds^ λ.

The period class rωs is independent of λ.
(P7) Let pλi, µiq be the restriction of pλ, µq on each connected component pT2

i , giq of Σ.
Then Assumption 2.2 holds for pλi, µiq for any 1 ď i ď n. In particular, λi ‰ 0.

(P8) tqu is a collection of admissible perturbations (in the sense of Definition 13.3) of
the Chern-Simons-Dirac functional Lω for each relative spinc structures ps.

Remark 3.1. The closed 2-form ω is used to perturb the Chern-Simons-Dirac functional,
see Definition 3.8 below. (P7) will allow us to apply Theorem 2.4´2.6 in Section 6, so the
Seiberg-Witten moduli spaces will have the right compactness property. We will address
the issue of perturbations in Part 3, so readers may ignore the last property (P8) at this
point. ♦

Properties (P5) requires some further explanation: it is used to find certain bounded

harmonic forms on pY , which play essential roles in the energy equations in Section 5,
cf. Theorem 5.4. The next lemma is a consequence of (P5) and Corollary A.6.
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Lemma 3.2. For any object Y P Cobs, there exists a bounded harmonic 2-form ωh on pY
such that ωh converges exponentially to ds^λ as sÑ8. In particular, ωh´χ1psqds^λ P

L2ppY q. Such a harmonic 2-form ωh is unique up to an L2-harmonic form. By [APS75,

Proposition 4.9], the space of L2-harmonic forms on pY is isomorphic to

ImpH˚pY,Σ; iRq Ñ H˚pY ; iRqq.

3.2. Morphisms. Having described objects in the strict cobordism category Cobs, we
now turn to describe the set of morphisms in this subsection. Since each object Y is
coupled with a closed 2-form ω, morphisms must take these forms into account. Given
two objects Yi “ pYi, ψi, gi, ωi, qiq, i “ 1, 2 in Cobs, a morphism

X : Y1 Ñ Y2

is a quadruple X “ pX,ψX ,W, rωX scptq with the following properties.

(Q1) X is a manifold with corners, i.e. X is a space stratified by manifolds

X Ą X´1 Ą X´2 Ą X´3 “ H

such that the co-dimensional 1 stratum X´1 consists of three parts

X´1 “ p´Y1q Y pY2q YWX .

where WX is an oriented 3-manifold with boundary BWX “ BY1 X BY2. Moreover,
BYi “ Yi X WX and X´2 “ BY1 Y BY2. For more details on the definition, see
Definition A.7.

(Q2) W “ r´1, 1st ˆ Σ is the product cobordism of Σ to itself.
(Q3) ψX : WX Ñ W is an orientation preserving diffeomorphism compatible with ψ1

and ψ2. To be more precise, we require that

ψX |BY1 “ ψ1 : BY1 Ñ t´1u ˆ Σ,

ψX |BY2 “ ψ2 : BY2 Ñ t1u ˆ Σ,

which also hold in a collar neighborhood of BWX . When no chance of confusion is
possible, ψX might be dropped from our notations. Such a pair pX,ψXq is called
a strict cobordism from pY1, ψ1q to pY2, ψ2q.

(Q4) The closed 2-form ωi on Yi contains a bit more information than the period class
rωis P H

2pYiq. We first require that

µ1 “ µ2 “ µ P Ω2
hpΣ, iRq,

then the triple pω1, µ, ω2q determines a class rαs in H2pp´Y1q YW Y Y2, iRq. rαs
is required to lie in the image

Im

ˆ

m˚0 : H2pXq Ñ H2pp´Y1q YW Y Y2q, iRq
˙

,
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where m0 : p´Y1q YW Y Y2 ãÑ X is the inclusion map, and let rωX s be a lift of
rαs. As a result, rωX s generates all cohomology classes in the diagram below:

H2pY1q H2pΣq rω1s rµ1s

H2pXq H2pW q rωX s m˚b rωX s

H2pY2q H2pΣq rω2s rµ2s.

k˚1 k˚1

m˚1

m˚b

m˚2

j˚1

j˚2

m˚1

m˚b

m˚2

j˚1

j˚2

k˚2 k˚2

(Q5) r˚2λ1s “ r˚2λ2s P H
1pΣ; iRq.

(Q6) There exists a closed 2-form ωX P Ω2pXq on X with the following properties:
‚ ωX realizes the class rωX s P H

2pX, iRq;
‚ ωX “ ωi (see (P6)) within a collar neighborhood of Yi Ă X´1 for i “ 1, 2;
‚ within a collar neighborhood of W Ă X´1, ωX “ µ.

The existence of such a form ωX is equivalent to the cohomological condition
defined in (Q4). Finally, set ωλ “ χ1psqds^ λ (with λ “ λi) and

ωX :“ ωX ` ωλ “ ωX ` χ1psqds^ λ on X.

(Q7) For any two closed forms ωX and ω1X satisfying the condition in (Q6), they are
said to be equivalent if ω1X ´ ωX “ da for a compactly supported smooth 1-form
a P Ω1pX, iRq. Denote by rωX scpt the equivalence classes of ωX .

Example 3.3. The product cobordism X “ r´1, 1s ˆ Y : Y Ñ Y. In this case, X “

r´1, 1st ˆ Y and ψX “ Idr´1,1st ˆψ is the product map. We obtain ωX by pulling back
the 2-form ω from Y . ♦

Example 3.4. Take Y1,Y2 P Cobs with Y1 “ Y2 “ Y and ψ1 isotopic to ψ2. Suppose in
addition that ω2 ´ ω1 “ dY b for a compactly supported 1-from b P Ω1pY, iRq, then one
may construct a cobordism X : Y1 Ñ Y2 as follows. Let X “ r´1, 1st ˆ Y and ψX be an
isotopy from ψ1 to ψ2. Set ωX “ dXpχptqbq`ω1 where χptq is a cut-off function such that

χptq ” 0 if t ď ´1{2;χptq ” 1 if t ě 1{2. ♦

Similar to the definition of pY , for each strict cobordism X : Y1 Ñ Y2, we obtain a

cobordism between pY1 and pY2 by attaching a cylindrical end to X:

pX :“ X YψX r´1, 1st ˆ r´1,8qs ˆ Σ : pY1 Ñ pY2.

A planar metric gX on X is a metric compatible with the corner structure (see Definition
A.8). We insist that the metric gW of W “ r´1, 1st ˆ Σ is the product metric

T 2dt2 ` gΣ

for some constant T ą 0. One might alternatively normalize T to be 1 by rescaling the
interval r´1, 1st. For the sake of simplicity, we set T “ 1 in the sequel.

The planar metric gX is required to be the product metric

dt2 ` ds2 ` gΣ
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in a neighborhood p´ε, 0stˆp´1, 0ssˆX´2 of the co-dimension 2 stratum X´2 “ p´ΣqYΣ.
For a strict cobordism X : Y1 Ñ Y2, gX is also required to be cylindrical near the co-
dimensional 1 stratum X´1:

gX |r´1,´1`εqˆY1 “ d2t` g1, gX |p1´ε,1sˆY2 “ d2t` g2,

gX |r´1,1stˆp´1,0ssˆΣ “ ds2 ` gZ “ d2t` d2s` gΣ.

Such a metric extends to a cylindrical metric on pX compatible with that of p´pY1qY pY2.

When it is clear from the context, we also use gX to denote this extended metric on pX.
Although a planar metric gX of X is not encoded in the definition of a morphism

X : Y1 Ñ Y2, it is used to define the functor HM ˚ in Theorem 1.5. Nevertheless, the
resulting maps on morphism sets are independent of the choice of gX .

The property (Q5) is also used to find certain bounded harmonic 2-forms on p pX, gXq,
which is crucial for the energy equations in Section 5, cf. Theorem 5.1. The next lemma
follows from Lemma 3.6 and Corollary A.15 in which we set

Ye “ r´1, 1st ˆ Σ and Yb “ p´Y1q Y Y2.

Lemma 3.5. For any morphism X P Cobs, there exists a bounded harmonic 2-form ωX,h
on pX such that ωX,h converges exponentially to ds^ λ as sÑ8 and

(3.2) ˚4 ωX,h “ 0 on p´pY1q Y pY2,

so ωX,h satisfies the Neumann boundary condition. In particular, ωX,h ´ ωλ P L
2p pXq.

Lemma 3.6. For any morphism X : Y1 Ñ Y2, the class

rdt^ ˚2λs P H
2pW, BW ; iRq

lies in the image Im
`

H2pX,Y1 Y Y2; iRq Ñ H2pW, BW ; iRq
˘

where λ “ λ1 “ λ2.

Proof of Lemma 3.6. By (P4), take z to be a lift of r˚Σλs in H1pY, iRq. In the diagram
below, all cohomology groups take value in iR:

H1pY1q H1pY1q ‘H
1pY2q H2pX,Y1 Y Y2q

H1pΣq H1pt´1u ˆ Σq ‘H1pt1u ˆ Σq H2pW, BW q

z ÞÑpz,0q δ

r˚2λsÞÑpr˚2λs,0q δ

�

3.3. Relative spinc Structures and Configuration Spaces. Let sstd “ pSstd, ρstd,3q
be the standard spinc structure on Rs ˆ Σ as described in Section 2 with

Sstd “ C‘ Λ0,1Σ.

For each object Y “ pY, ψ, gY , ω, qq P Cobs, a relative spinc structure ps is a pair ps, φq
where s “ pS, ρ3q is a spinc structure on Y and

ϕ : pS, ρ3q|BY Ñ ψ˚sstd|BY
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is an isomorphism of spinc structures near the boundary that is compatible with ψ. The
set of isomorphism classes of relative spinc structures on Y

Spinc
RpY q

is a torsor over H2pY, BY ;Zq. There is a natural forgetful map from Spinc
RpY q to the set

of isomorphism classes of spinc structures:

Spinc
RpY q Ñ SpincpY q, ps “ ps, φq ÞÑ s,

whose fiber is acted on freely and transitively by H1pΣ,Zq{ ImpH1pY,Zqq reflecting the
change of boundary trivializations. Any ps P Spinc

RpY q extends to a relative spinc structure

on pY , denoted also by ps.

Let pB˚,Ψ˚q be the translation invariant configuration on RsˆΣ such that the restriction

(3.3) pB˚,Ψ˚q|RsˆT2
i

on each connected component is defined by the formula (2.6) for any 1 ď i ď n. Take

pB0,Ψ0q to be a smooth configuration on pY which agrees with pB˚,Φ˚q on the cylindrical
end r0,8qs ˆ Σ. Recall from (P3) that the closed 2-form ω P Ω2pY, iRq defined on Y

extends to a closed 2-form on the completion pY by setting

ω|r´1,8qˆΣ “ µ` ds^ λ,

and rωs P H2pY ; iRq is the period class of ω.
Consider the configuration space for any k ą 1

2 :

CkppY ,psq “ tpB,Ψq : pb, ψq “ pB,Ψq ´ pB0,Ψ0q P L
2
kp
pY , iT ˚ pY ‘ Squ.

Remark 3.7. Since pY is non-compact, the condition that pb, ψq P L2
k includes a mild

decay condition on the section pb, ψq on the cylindrical end of pY . It turns out that this
decay is always exponential for solutions to the Seiberg-Witten equations, cf. Theorem
6.2. ♦

Definition 3.8. The perturbed Chern-Simons-Dirac functional on CkppY ,psq is defined as

♦(3.4) LωpB,Ψq “ ´
1

8

ż

pY
pBt´Bt

0q^pFBt`FBt0q`
1

2

ż

pY
xDBΨ,Ψy`

1

2

ż

pY
pB´B0q

t^ω.

Remark 3.9. Lω is the analogue of the gauged action functional AH in the context of
gauged Witten equations, see [Wan20, Definition 4.1]. ♦

The configuration space CkppY ,psq is acted on freely by the gauge group

Gk`1ppY q “ tu : pY Ñ S1 Ă C : u´ 1 P L2
k`1p

pY ,Cqu,
via the formula:

upB,Ψq “ pB ´ u´1du, uΨq.

The Lie algebra of Gk`1 is LiepGk`1q “ L2
k`1p

pY , iRq. The exponential map f ÞÑ ef is
surjective onto the identity component Gek`1of Gk`1; they fit to a short exact sequence:

0 Ñ Gek`1 Ñ Gk`1 Ñ π0pGk`1q – H1pY,Σ;Zq Ñ 0.
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The Chern-Simons-Dirac functional Lω is not fully gauge-invariant in general:

Lemma 3.10. For any γ “ pB,Ψq P CkppY ,psq and u P Gk`1ppY q, we have

Lωpu ¨ γq ´ Lωpγq “ p2π2rus Y c1pSq ´ 2πirus Y rωsqrY, BY s,

where rus “ ru
´1du
2πi s P H

1pY, BY ;Zq is the relative cohomology class determined by u and
rωs is the period class of ω.

The tangent space at each γ P CkppY ,psq is naturally identified with L2
kp
pY , iT ˚ pY ‘ Sq.

We compute the gradient of Lω with respect to the L2 inner product:

(3.5) gradLωpB,Ψq “ p
1

2
˚3 FBt ` ρ

´1
3 pΨΨ˚q0 ´ ˚3ω,DBΨq.

Hence, a configuration γ P CkppY ,psq is a critical point of Lω if and only if it solves the

perturbed Seiberg-Witten equations on pY :

Definition 3.11. For any object Y “ pY, ψ, gY , ω, qq P Cobs, the Seiberg-Witten map

defined on CkppY ,psq is given by (ignoring the perturbation q for a moment)

FωpB,Ψq “ p
1

2
ρ3pFBt ´ 2ωq ´ pΨΨ˚q0, DBΨq.

and the equation

(3.6) FωpB,Ψq “ 0

is called the 3-dimensional Seiberg-Witten equations. ♦

Remark 3.12. The reference configuration pB˚,Ψ˚q defined in (3.3) is the unique Rs-
translation invariant solution of (3.6) on Rs ˆ Σ up to gauge. ♦

The downward gradient flowline equation of Lω
d

dt
pBptq,Ψptqq “ ´ gradLωpBptq,Ψptqq

can be cast into the 4-dimensional Seiberg-Witten equations:

(3.7)

"

1
2ρ4pF

`

At ´ 2ω`Xq ´ pΦΦ˚q0 “ 0,
D`AΦ “ 0,

on Rtˆ pY with A “ d
dt `Bptq,Φ “ Ψptq and ωX “ π˚ω where π : Rtˆ pY Ñ pY denotes the

projection map. This corresponds to the product cobordism r´1, 1s ˆ pY in Example 3.3.

In general, let pA˚,Φ˚q be the C-translation-invariant solution on Cˆ Σ with

(3.8) A˚ “ dtb
B

Bt
`B˚,Φ˚ptq “ Ψ˚.

Let X “ pX,ψX ,W, rωX scptq : Y1 Ñ Y2 be a morphism in Cobs and suppose pX : pY1 Ñ pY2

extends to a relative spinc cobordism:

(3.9) p pX,psXq : ppY1,ps1q Ñ ppY2,ps2q.
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Remark 3.13. For a relative spinc cobordism, we insist that identification maps

p pX,psXq|
pYi
– ppYi,psiq, i “ 1, 2

are implicitly baked in the definition. ♦

Let pA0,Φ0q be a reference configuration on pX whose restriction on r´1, 1stˆr0,8qsˆΣ
agrees with pA˚,Φ˚q. For each k ě 1, define

Ckp pX,psXq “ tpA,Φq : pa, φq “ pA,Φq ´ pA0,Φ0q P L
2
kp

pX, iT ˚ pX ‘ S`qu.

In this case, we take ωX P Ω2p pX, iRq to be the closed 2-form constructed in (Q6) and
extended constantly over the cylindrical end r´1, 1st ˆ r0,8qs ˆ Σ; so for some ε ą 0,

‚ ωX “ ω1 on pY1 ˆ r´1,´1` εqt;

‚ ωX “ ω2 on pY2 ˆ p1´ ε, 1st;
‚ ωX “ µ` ds^ λ on r´1, 1st ˆ r0,8qs ˆ Σ.

Then the left hand side of (3.7) defines a smooth map:

(3.10) FX : Ckp pX,psXq Ñ L2
k´1p

pX, isupS`q ‘ S´q

called the Seiberg-Witten map on pX. For 0 ď j ď k, let Vj be the trivial vector bundle

with fiber L2
j pisupS

`q ‘ S´q over Ckp pX,psq:

Vj :“ L2
j pisupS

`q ‘ S´q ˆ Ckp pX,psq.

The Seiberg-Witten map FX defines a smooth section of Vk´1 Ñ Ckp pX,psXq.

3.4. The Strict spinc Cobordism. Now let us introduce the strict spinc cobordism
category SCobs, which plays the central role in Theorem 1.5:

‚ each object of SCobs is a pair pY,psq where Y is an object of Cobs and ps P Spinc
RpY q

is a relative spinc structure on Y ;
‚ for any objects pY1,ps1q and pY2,ps2q,

HomSCobsppY1,ps1q, pY2,ps2qq “ HomCobspY1,Y2q.

3.5. Homotopy Classes of Paths. To define the monopole Floer homology HM ˚pY,psq
for each object pY,psq P SCobs, we will look at the moduli spaces of the Seiberg-Witten

equations (3.7) on Rt ˆ ppY ,psq and define a Floer chain complex:

CF˚pY,psq;

The underlying idea is an infinite dimensional Morse theory in the quotient configuration
space:

BkpY,psq :“ CkpY,psq{Gk`1pY q.

For any a, b P CkpY,psq, the relative homotopy classes of paths π1pBkpY,psq; ras, rbsq is a
torsor over

π1pBkpY,psq; rbsq – π0pGk`1q – H1pY, BY ;Zq.
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Moreover, for any rγs P π1pBkpY,psq; ras, rbsq, the relative loop space ΩrγspBkpY,psq; ras, rbsq
in the class rγs is simply connected, since

π2pBkpY,psq; rbsq – π1pGk`1q “ t0u.

There are three additional ways to think of a path γ̌ : r´1, 1s Ñ BkpY,psq with γ̌p´1q “ a
and γ̌p1q “ b, and we shall use them interchangeably:

(1) a path γ̌1 : r´1, 1s Ñ CkpY,psq that connects a and u ¨ b for some u P Gk`1ppY q;

(2) a configuration γ on the 4-manifold IˆppY ,psq with I “ r´1, 1st such that γ|
t´1uˆpY

“

a and γ|
t1uˆpY

“ u ¨ b for some u P Gk`1ppY q;

(3) a configuration γ1 for a relative spinc cobordism

p pX “ I ˆ pY ,psXq : ppY ,psq Ñ ppY ,psq

such that γ|
t´1uˆpY

“ a and γ|
t1uˆpY

“ b. Indeed, all such relative spinc structures

on I ˆ pY form a torsor over

H2pI ˆ Y, BpI ˆ Y qq – H1pY, BY ;Zq ˆH1pI, BI;Zq – H1pY, BY ;Zq.
The last standpoint makes it easier to think about a general morphism X : Y1 Ñ Y2. To

make HM ˚ into a functor from SCobs to R-Mod as in Theorem 1.5, we attach cylindrical

ends to pX and obtain a complete Riemannian manifold X :

X :“

ˆ

p´8,´1st ˆ pY1

˙

Y pX Y

ˆ

r1,8qt ˆ pY2

˙

.

The closed 2-form ωX extend over X by setting

(3.11) ωX “ ω1 on p´8,´1st ˆ Y1; ωX “ ω2 on r1,8qt ˆ Y2.

The goal is to analyze the Seiberg-Witten equations (3.7) on X and construct a chain
map:

(3.12) CF˚pXq : CF˚pY1,ps1q Ñ CF˚pY2,ps2q

that is independent of the choice of

‚ the planar metric gX compatible with pgY1 , gY2 , gΣq;
‚ the closed 2-form ωX P ω

2pX, iRq in the class rωX scpt;
‚ any auxiliary perturbation of (3.7) defined in Subsection 14.1;

up to chain homotopy. To do so, we have to take into account of all isomorphism classes
of relative spinc cobordisms:

Spinc
RpX;ps1,ps2q :“ tall possible (3.9) : pY1,ps1q Ñ pY2,ps2qu modulo isomorphisms

which is a torsor over H2pX, BX;Zq. Indeed, any two relative spinc cobordisms psX,1,psX,2
that cover the 4-manifold X with corners are related by a complex line bundle L12 Ñ X:

psX,2 “ psX,1 b L12,

and a trivialization L12 – C is specified along BX. Some of elements of Spinc
RpX;ps1,ps2q

may arise from different underlying spinc structures, but they all contribute to the chain

map (3.12) and will not be separated from each other. For any ai P CkppYi,psiq, i “ 1, 2,
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an element of Spinc
RpX;ps1,ps2q can be viewed a homotopy class of X-paths that connect a1

and a2.

4. The Quotient Configuration Space and Slices

Configurations in CkppY ,psq and Ckp pX,psXq are required to converge to a fixed limit in
the spatial direction, so by definition, they are never reducible, i.e. Ψ or Φ ı 0. This
prevents us from finding a global slice of the gauge action as in [KM07, Section 9.6] over

the non-compact manifold pY or pX. Nevertheless, local slices always exists. In this section,
we prove that:

Proposition 4.1. For either pM,psM q “ ppY ,psq or p pX,psXq, the quotient space

BkpM,psM q :“ CkpM,psM q{Gk`1pMq

is a Hilbert manifold when 2pk ` 1q ą dimM and k P Z.

It is clear from the formula

puv ´ 1q “ pu´ 1qpv ´ 1q ` pu´ 1q ` pv ´ 1q, @u, v P Gk`1pMq

that Gk`1pMq is a Hilbert Lie group when 2pk` 1q ą dimM . Following the book [KM07,
Section 9], we base the argument on a general principle:

Lemma 4.2 ([Pal68],[KM07] Lemma 9.3.2). Suppose a Hilbert Lie group G acts smoothly
and freely on a Hilbert manifold C, and the quotient space C{G is Hausdorff. Suppose
that at each c P C, the differential

dc : TeGÑ TcG

has closed range, then C{G is also a Hilbert manifold.

It remains to verify the condition of Lemma 4.2.

Lemma 4.3. For either pM,psM q “ ppY ,psq or p pX,psXq, the quotient configuration space
BkpM,psM q is Hausdorff.

Proof. Suppose we have a sequence of configurations γn “ pAn,Φnq P CkpM, sq and a
sequence of gauge transformations un P Gk`1pMq such that

γn Ñ γ and un ¨ γn Ñ γ1

for some γ “ pA,Φq and γ1 “ pA1,Φ1q. We wish to show that u ¨ γ “ γ1 for some
u P Gk`1pMq. We prove that vn :“ 1´un has uniformly bounded L2

k`1 norm, so there is a
weakly converging subsequence among tvnu. Let v be the weak limit and define u :“ 1´v.

We begin with the L2-norm of vn. Since }vn}8 ď 2, |vn|
2
2 contributes to a bounded

integral over any compact region of M . It suffices to estimate |vn|
2
2 over the cylindrical

end of M . Note that

}vnΦ}2 “ }p1´ unqΦ}2 ď }Φ´ Φ1}2 ` }Φ
1 ´ unΦn}2 ` }unpΦn ´ Φq}2,

which is uniformly bounded. As s Ñ 8, Φ approximates the standard spinor and is
non-vanishing everywhere. It follows that }vn}2 ď C for some uniform C ą 0.
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To deal with derivatives of vn, let wn “ u´1
n dun. Then }wn}L2

k
ď }un ¨ γn ´ γn}L2

k
ď

}γ ´ γ1}L2
k
` 1 when n " 1. The estimate for }∇lvn}L2 p1 ď l ď k ` 1q now follows from

the relation

∇vn “ ∇un “ wn ´ vn ¨ wn

and an induction argument. If we already know 2k ą dimM , then L2
k is a Banach algebra

itself; otherwise, the first a few steps in the induction requires special treatments. For
instance, if dimM “ 3 and k “ 1, then we have to bound

}∇vn}p for 2 ď p ď 6 and }∇2vn}2.

If dimM “ 4 and k “ 2, then we have to bound

}∇vn}p for 2 ď p ă 8, }∇2vn}p for 2 ď p ď 4 and }∇3vn}2.

For the Sobolev embedding theorem on cylinders, see [KM07, Section 13.2]. �

Let Tk be the tangent space of CkpM,psM q. For each configuration γ “ pA,Φq P
CkpM,psM q, let dγ be the map obtained by linearizing the action of Gk`1pMq, extended to
lower Sobolev regularities p0 ď j ď kq:

dγ : L2
j`1pM, iRq Ñ L2

j pM, iT ˚M ‘ S`q “ Tj,γ
f ÞÑ p´df, fΦq.

Let Jj,γ Ă Tj,γ be the image of dγ and Kj,γ be the L2-orthogonal complement of Jj,γ :

Kj,γ :“ tv P Tj,γ : xv,dγpfqyL2pMq “ 0,@f P L2
j`1pM, iRqu

“ tv “ pδa, δφq P L2
j pM, iT ˚M ‘ S`q : d˚γpvq “ 0, xa, ~ny “ 0 at BMu

where ~n is the outward normal vector at BM and

d˚γ : L2
j pM, iT ˚M ‘ S`q Ñ L2

j´1pM, iRq
pδa, δφq ÞÑ ´d˚δa` iRexiΦ, δφy.

is the formal adjoint of dγ .

Lemma 4.4 (cf. [KM07] Proposition 9.3.4). As γ varies over CkpM,psM q, Jj,γ and Kj,γ

form complementary closed sub-bundles of Tj, and we have a smooth decomposition

Tj |CkpM,psq “ Jj ‘Kj , 0 ď j ď k.

In particular, TCkpM,psq “ Tk “ Jk ‘Kk.

Proposition 4.1 now follows from Lemma 4.3 and 4.4.

Proof of Lemma 4.4. For any v “ pδa, δφq P Tj,γ , we need to find the unique element
f P L2

j`1pM, iRq such that v ´ dγpfq P Kj,γ . Such an element solves the Neumann
boundary value problem:

(4.1)

"

∆Mf ` |Φ|
2f “ ´d˚γpvq

xdf, ~ny “ xδa, ~ny at BM.
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The left hand side of (4.1) forms a Fredholm operator (1 ď j ď k):

(4.2) p∆M ` |Φ|
2,
B

B~n

ˇ

ˇ

ˇ

ˇ

BM

q : L2
j`1pM, iRq Ñ L2

j´1pM, iRq ˆ L2
j`1{2pBM, iRq

which is in fact invertible. If M is compact, this follows from [Tay11, Proposition 7.5]. In
general, one may start with the special case when

pM,Φq “ pRs ˆ Σ,Ψ˚q or pr´1, 1s ˆ Rs ˆ Σ,Φ˚q

using Fourier transformation on the real line Rs and the positivity of |Ψ˚|
2. To show (4.2)

is Fredholm, apply the parametrix patching argument. To compute the index of 4.2, note
that the restriction map

B

B~n

ˇ

ˇ

ˇ

ˇ

BM

: L2
j`1pM.iRq Ñ L2

j`1{2pBM, iRq

is surjective, and the operator

∆M ` |Φ|
2 : tf P L2

2pM, iRq : xdf, ~ny “ 0u Ñ L2pM, iRq

is positive and self-adjoint. This proves that the operator (4.2) is invertible.
Alternatively, one may follow the proof of [Tay11, Proposition 7.5]. Details are left as

exercises. �

We record the next proposition for convenience:

Proposition 4.5. Over the configuration space CkppY ,psq, the gradient (3.5) of the Chern-

Simons-Dirac functional Lω defines a smooth section of Kk´1 Ñ CkppY ,psq when k ě 1.

5. Energy Equations

This section is devoted to the energy equations of the Seiberg-Witten equations (3.7)

on pX, which will play an important role in the proof of the Compactness Theorem 6.1
in Section 6. In particular, it gives property (K1). The main results of this section are

Theorem 5.1 and Proposition 5.4. The existence of bounded harmonic forms on pX (cf.
Lemma 3.5) is essential here.

5.1. The 4-Dimensional Case. Following the book [KM07, Section 4], we prove an
energy equation associated to the perturbed Seiberg-Witten equations (3.7):

Theorem 5.1 (cf. [KM07] P.593). For any morphism X : Y1 Ñ Y2 in the strict cobordism
category Cobs, choose a planar metric gX on X and consider a relative spinc cobordism

p pX,psXq : ppY1,ps1q Ñ ppY2,ps2q. Then for any configuration γ “ pA,Φq P Cp pX,psXq, the
L2-norm of the Seiberg-Witten map FXpA,Φq can be expressed as

ż

pX
|FXpA,Φq|

2 “ EanpA,Φq ´ EtoppA,Φq,
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where

EanpA,Φq :“

ż

pX

1

4
|FAt |

2 ` |∇AΦ|2 ` |pΦΦ˚q0 ` ρ4pω
`
Xq|

2 `
s

4
|Φ|2 ´ xFAt , ωXy(5.1)

´

ż

pX
xFAt , ωλ ´ ωX,hy ´

ż

pX
FAt0 ^ ˚4ωX,h,

EtoppA,Φq :“ 2Lω1pB1,Ψ1q ´ 2Lω2pB2,Ψ2q `
1

4

ż

pX
FAt0 ^ FAt0 ´

ż

pX
FAt0 ^ ωX ,(5.2)

and pBi,Ψiq “ pA,Φq|
pYi

are restrictions of γ at pYi for i “ 1, 2. Here, ωX “ ωX `ωλ is the

closed 2-form constructed in (Q6) with ωλ “ χ1psqds^ λ. The bounded harmonic 2-form

ωX,h is subject to the Neumann boundary condition and ωλ ´ ωX,h P L
2p pXq. Its existence

is guaranteed by Lemma 3.5.

Remark 5.2. Let us explain why (5.1) is a useful expression. Errors terms in the second
line of p5.1q are bounded below by

´
1

16
}FAt}

2
L2p pXq

´ CpA0, ωX , gXq

for some constant CpA0, ωX , gXq ą 0.
The first line of (5.1) is consistent with the local energy functional EanpA,Φ; Ωq in

Definition 2.3. Indeed, over the cylindrical end I ˆ r0,8qs ˆ Σ, (5.1) becomes (with
I “ r´1, 1stq:

ż

Iˆr0,8qs

ż

Σ

1

4
|FAt |

2 ` |∇AΦ|2 ` |pΦΦ˚q0 ` ρ4pω
`q|2 ´ xFΣ

At , µy(5.3)

where ω “ µ` ds^ λ. The last term in (5.3)

´

ż

Σ
xFΣ

At , µy

is always zero. Indeed, if we write a “ A´A0 P L
2p pX, iT ˚ pXq, then FΣ

At “ 2dΣa is an exact
form on the surface Σ. Since µ is harmonic on Σ, their inner product is always zero. Hence,

(5.3) has a definite sign. The integral in (5.1) over the compact region X “ ts ď 0u Ă pX
can be treated in the usual way. We summarize this remark into a lemma. ♦

Lemma 5.3. Under the assumption of Theorem 5.1, there exists a constant C2pA0, ωX , gXq
independent of pA,Φq such that

EanpA,Φq ` C2 ą

ż

pX

1

8
|FAt |

2 ` |∇AΦ|2 ` |pΦΦ˚q0 ` ρ4pω
`
Xq|

2 `
s

4
|Φ|2.

Proof. Note that

|

ż

pX
xFAt , ωXy| “ |

ż

X
xFAt , ωXy| ď

1

16
}FAt}

2
L2p pXq

` C3pA0, ωX , gXq. �

Proof of Proposition 5.1. Let γ0 “ pA0,Φ0q be the reference configuration in Cp pX,psXq.
For convenience, take its restrictions at the boundary

pBi0,Φi0q “ γ0|
pYi
P CppYiq
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as reference configurations in the definition of Lωi for i “ 1, 2. It suffices to prove the
theorem when the section

pa, φq “ pA,Φq ´ pA0,Φ0q P C8c p pX, iT ˚ pX ‘ Sq,

is compactly support, and the rest will follow by continuity. Let XS “ ts ď Su Ă pX be

the truncated manifold and Yi,S “ pYi XXS . The boundary of XS consist of three parts:

´Y1,S , Y2,S and tSu ˆW “ r´1, 1st ˆ tSu ˆ Σ.

Since pa, φq is compactly supported, we may discard any boundary integrals over tSuˆ
W Ă BXS when S " 1. By the Lichnerowicz-Weizenböck formula [KM07, (4.15)], we have

ż

XS

|D`AΦ|2 “

ż

XS

|∇AΦ|2 `
1

2
xρ4pF

`

AtqΦ,Φy `
s

4
|Φ|2(5.4)

´

ż

Y1,S

xDB1Φ1,Φ1y `

ż

Y2,S

xDB2Φ2,Φ2y.

Now consider the first equation of (3.7):
ż

XS

|
1

2
ρ4pF

`

At ´ 2ω`Xq ´ pΦΦ˚q0|
2 “

ż

XS

1

4
|FAt |

2 ´
1

2
xρ4pF

`

AtqΦ,Φy ` |pΦΦ˚q0 ` ρ4pω
`
Xq|

2

´
1

4

ż

XS

FAt ^ FAt ´ 2

ż

XS

xFAt , ω
`
Xy.(5.5)

Only the second line requires some further work. Note that

´
1

4

ż

XS

FAt ^ FAt “ ´
1

4

ż

XS

FAt0 ^ FAt0 ´
1

2

ż

BXS

a^ pFAt ` FAt0q.

Finally, using the relation ωX “ ωX ` ωλ, we compute

2

ż

XS

xFAt , ω
`
Xy “

ż

XS

xFAt , ωX ` ˚4ωXy

“

ż

XS

xFAt , ωXy ` xFAt , ωλy ` xFAt0 , ˚4ωXy ` x2da, ˚4ωXy

“ J1 ` J2 ` J3 ` J4.

J1 and J3 already show up in (5.1) and (5.2). As for J2 and J4, note that

J4 “ ´2

ż

BXS

a^ ωX “

ż

Y1,S

pBt
1 ´B

t
10q ^ ω1 `

ż

Y2,S

pBt
2 ´B

t
20q ^ ω2,

J2 “

ż

XS

xFAt , ωλy “ ´

ż

XS

FAt ^ ˚4ωX,h `

ż

XS

xFAt , ωλ ´ ωX,hy.

Since ωX,h is harmonic, the first term in J2 is a pairing in cohomology:

r
i

2π
FAts Y r

i

2π
˚4 ωX,hs P H

4pX, BXq
Y
ÐÝ H2pX,Zq bH2pX,Y1 Y Y2q,

so one may replace A by A0. Now the energy identity follows by adding (5.4) and (5.5)
together. �
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5.2. The 3-Manifold Case. Let I “ rt1, t2st. In the special case when X “ IˆY : YÑ Y
is the product morphism, Theorem 5.1 takes a simpler form.

The 4-manifold pX “ I ˆ pY is furnished with the product metric. Let ωX “ π˚ω be the

pull-back of ω where π : pX Ñ pY is the projection map. Any spinc connection A on pX can
be written as

(5.6) A “
d

dt
`Bptq ` cptqdtb IdS .

where Bptq is a path of spinc connections on ppY ,psq and cptq P L2
kp
pY , iRq. Any configuration

γ P pA,Φq P Ckp pX,psXq gives rise to a path γ̌ptq “ pBptq,Ψptqq in Ck´1{2p
pY ,psq by setting

Ψptq “ Φ|
ttuˆpY

.

Moreover, γ solves the Seiberg-Witten equations (3.7) on pX if and only if the path
pγ̌ptq, cptqq forms a downward gradient flowline of Lω:

d

dt
γptq “ ´ gradLωpγptqq ´ dγptq cptq.

Let A0 “
d
dt `B0 be the reference connection on p pX,psXq “ IˆppY ,psq. The curvature form

FAt0 does not involve any dt-component, so FAt0 ^ FAt0 ” 0.

Proposition 5.4. For any configuration γ “ pA,Φq on p pX,psXq “ IˆppY ,psq, the L2-norm
of the Seiberg-Witten map FXpA,Φq can be expressed as

ż

pX
|FXpA,Φq|

2 “ EanpA,Φq ´ EtoppA,Φq

where EtoppA,Φq :“ 2Lωpγ̌pt1qq ´ 2Lωpγ̌pt2qq and

EanpA,Φq :“

ż

I
}
d

dt
γ̌ptq ` dγ̌ptqcptq}

2
L2ppY q

` } gradLωpγ̌ptqq}2L2ppY q
(5.7)

“

ż

IˆpY

1

4
|FAt |

2 ` |∇AΦ|2 ` |pΦΦ˚q0 ` ρ4pω
`q|2 `

s

4
|Φ|2 ´ xFAt , ωy.

The last term can be written as
ż

IˆpY
xFAt , ωy “

ż

IˆpY
xFAt , ωy `

ż

IˆpY
xFAt , ωλ ´ ωhy ´ |I|

ż

pY
FBt0 ^ ˚3ωh,

where ω “ ω`ωλ and ωλ “ χ1psqds^λ. The bounded harmonic 2-form ωh is constructed

by Lemma 3.2 such that ωλ ´ ωh P L
2ppY q. In particular, for any pB,Ψq P C1ppY ,psq,

} gradLωpB,Ψq}2L2ppY q
“

ż

pY

1

4
|FBt |

2 ` |∇BΨ|2 ` |pΨΨ˚q0 ` ρ3pωq|
2 `

s

4
|Ψ|2 ´ xFBt , ωy.
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6. Compactness

6.1. Statements. With all machinery developed so far, we are ready to state and prove

the compactness theorem for the (unperturbed) Seiberg-Witten equations on Rtˆ pY . The
result easily generalizes to a complete Riemannian manifold X induced from a morphism
X : Y1 Ñ Y2 in Cobs. Nevertheless, we will focus on the first case for the sake of simplicity.
The analogous results for perturbed equations will be addressed in Section 9, after we set
up tame perturbations in the next part. Now let

γ0 :“ pA0,Φ0q with A “
d

dt
`B0, Φptq “ Ψ0,

be the reference configuration on Rt ˆ pY , then it agrees with the standard configuration
pA˚,Φ˚q over the planar end Rt ˆ r0,8qs ˆ Σ. For any k ě 2, define

Ck,locpRt ˆ ppY ,psqq “ tpA,Φq : pA,Φq
ˇ

ˇ

IˆpY
P CkpI ˆ ppY ,psqq,@ finite interval I Ă Rtu

and Gk`1,locpRtˆppY ,psqq in a similar manner. We will set up the Fredholm theory of moduli
spaces in a different way in Section 13. For now, let us stick to these loosely defined spaces.

For any γ P Ck,loc and I Ă Rt, define the analytic energy Eanpγ; Iq over the interval I to

be the integral of (5.7) over I ˆ pY and

Eanpγq :“ Eanpγ,Rtq.

One standard assumption below is the finiteness of the total energy Ean. Since Eanpγ; Iq
is alway non-negative, it implies that

Eanpγ; Iq ă Eanpγ;Rtq ă 8 for any I Ă Rt.

The primary result of this section is the compactness theorem.

Theorem 6.1. Suppose tγn “ pAn,Φnqu Ă Ck,loc is a sequence of solutions to the Seiberg-

Witten equations (3.7) on Rt ˆ pY and their analytic energy

Eanpγnq :“ Eanpγn,Rtq ă C

is uniformly bounded by a positive constant C ą 0. Then we can find a sequence of gauge

transformations un P Gk`1,locpRt ˆ pY q with the following properties. For a subsequence

tγ1nu of tunpγnqu and any finite interval I Ă Rt, the restriction of each γ1n on I ˆ pY

γ1n|IˆpY

lies in ClpI ˆ ppY ,psqq. In addition, they converge in L2
l pI ˆ

pY q-topology for any l ě 2.

The main difficulty is to deal with the cylindrical end of pY and the proof relies on the
exponential decay of L2

l -norms. To state the result, recall that Ωn,S pn P Z, S P Rsq
defined in (2.4) is a bounded sub-domain of C with smooth boundary, which is centered
at pn, Sq P Rt ˆ Rs.
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Theorem 6.2. For any C ą 0 and l P Zě1, there exists constants ζppY ,psq,MlpC, pY ,psq ą 0

with the following significance. For any solution γ “ pA,Φq P Ck,locpRtˆ pY q to the Seiberg-

Witten equations p3.7q on Rt ˆ ppY ,psq with analytic energy EanpA,Φq ă C, we can find a

gauge transformation u P Gk`1,locpRt ˆ pY q such that

(6.1) }upγq ´ γ0}L2
l,A0

pΩn,SˆΣq ďMle
´ζS ,

for any l ě 1, n P Z and S ě 0. Here γ0 is the reference configuration in Ck,locpRt ˆ pY q.

Theorem 6.1 is an easy corollary of Theorem 6.2.

Proof of Theorem 6.1. It suffices to prove the case when I “ r´2, 2s. The rest will follow
by a patching argument (cf. [KM07, Section 13.6]). By Theorem 6.2, for any γn in that
sequence, we may assume the exponential decay (6.1) holds for γn ´ γ0 . Take S " 1 and
let YS “ ts ď Su be the truncated 3-manifold.

With the energy equation in Proposition 5.4, the classical compactness theorem [KM07,
Theorem 5.2.1] implies that a subsequence of tγnu converges smoothly (up to gauge) in
the interior of the compact manifold I ˆ YS . Suppose tun : I ˆ YS Ñ S1u is the sequence
of gauge transformations, then the restriction

un : I ˆ rS ´ 1, Sss ˆ Σ Ñ S1

must lie in the same homotopy class when n " 1 (by (6.1)). We may correct tunu so their
restrictions lie in the trivial homotopy class. By a patching argument, we extend un over

the whole space I ˆ pY by setting un ” 1 when s ě S ` 1. By Theorem 6.2, a subsequence

of tunpγnqu converges in fact in L2
l -topology on r´2` ε, 2´ εs ˆ pY for some small ε ą 0.

This completes the proof of the theorem (some details are left to the readers). �

The proof of Theorem 6.2 will dominate the rest of the section.

6.2. Decay of Local Energy Functional. Recall from Definition 2.3 that the local
energy functional of γ “ pA,Φq over Ωn,S Ă H2

` is defined as

EanpA,Φ; Ωq :“

ż

Ω

ż

Σ

1

4
|FAt |

2 ` |∇AΦ|2 ` |pΦΦ˚q0 ` ρ4pω
`q|2.

with ω “ µ ` ds ^ λ. We wish to first get an estimate on EanpA,Φ; Ωn,Sq for a solution

pA,Φq to (3.7) on Rt ˆ pY when S " 1. The main results are as follows.

Theorem 6.3. For any C, ε ą 0, there exists a constant R0pε, C, pY ,psq ą 0 with the

following significance. For any solution pA,Φq P CkpRtˆpY q to the Seiberg-Witten equations

p3.7q on Rt ˆ ppY ,psq with analytic energy EanpA,Φq ă C and any S ą R0, we have

EanpA,Φ; Ωn,Sq ă ε.

The uniform decay in Theorem 6.3 can be improved into exponential decay using The-
orem 2.5:
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Theorem 6.4. For any C ą 0, there exists constants ζppY ,psq,M0pC, pY ,psq ą 0 with the

following significance. For any solution pA,Φq P CkpRtˆpY q to the Seiberg-Witten equations

p3.7q on Rt ˆ ppY ,psq with analytic energy EanpA,Φq ă C, any n P Z and S ą 0,

EanpA,Φ; Ωn,Sq ăM0e
´ζS .

The proof of Theorem 6.3 will dominate the rest of Subsection 6.2 and it relies on
Theorem 2.4 and 2.6 in an essential way. Let us first state a lemma in which we set
ΩS :“ Ω0,S .

Lemma 6.5. Let J “ r´3, 3s Ą I “ r´2, 2s. For any ε ą 0, there exists constants

R0ppY , εq, ηppY , εq ą 0 with the following significance. For any solution pA,Φq to the Seiberg-

Witten equations p3.7q on J ˆppY ,psq with EanpA,Φ; Jq ă η and any S ą R0, we must have

EanpA,Φ; ΩSq ă ε.

Proof. Suppose on the contrary that there exists a sequence tpAn,Φnquně1 of solutions

to the Seiberg-Witten equations (3.7) on J ˆ ppY ,psq, a sequence of numbers ηn Ñ 0 and
Rn Ñ8 such that

EanpA,Φ; Jq ă ηn and EanpAn,Φn; ΩRnq ě ε.

By Proposition 5.4 and Lemma 5.3,

EanpAn,Φn; J ˆ r0,8qsq ď C 12

for some uniform constant C 12 ą 0. Let βn “ pA
1
n,Φ

1
nqpt, sq “ pAn,Φnqpt, s ´ Rnq be the

translated configuration defined on J ˆr´Rn, RnsˆΣ. Since we have a uniform bound on

Eanpβn; J ˆ r´Rn, Rnsq,

the classical compactness theorem [KM07, Theorem 5.2.1] ensures that there is a subse-
quence of tβnu that converges in C8loc topology to a solution β8 “ pA8,Φ8q on JˆRsˆΣ.
On the other hand, if we write β8 as

pγ̌ptq, cptqq “ pBptq,Ψptq, cptqq,

then Proposition 5.4 implies

Btγ̌ptq ` dγ̌ptq cptq “ ´ gradLωpγ̌ptqq “ 0,

since ηn Ñ 0 as n Ñ 8. By making β8 into temporal gauge (i.e cptq ” 0), we conclude
that γ̌ptq is independent of t P I and solves the 3-dimensional Seiberg-Witten equations
(3.6) or (2.5).

This is the place where the property (P7) is used. By Theorem 2.6, up to gauge, γptq
has to be Rs-translation invariant, so

Eanpβ8; I ˆ r´3, 3sq “ 0.

This contradicts the assumption that EanpAn,Φn; ΩRnq ě ε for each n. �
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Proof of Theorem 6.3. Suppose on the contrary that there exists a sequence

tβm “ pAm,Φmqumě1 Ă Ck,locpRt ˆ pY q

of solutions to the Seiberg-Witten equations (3.7) on Rt ˆ ppY ,psq, a sequence of integers
nm ě 0 and numbers Rm Ñ8 such that

Eanpβmq ă C and EanpAm,Φm,Ωnm,Rmq ě ε.

Let Jn “ rn´ 3, n` 3s for each n P Z. For each m, define the significant set of βm as

Km “ tn P Z : Eanpβm, Jnq ą ηu,

where η “ ηpε, pY ,psq is the constant obtained in Lemma 6.5. Then nm P Km. Since there
is a uniform upper bound on Eanpβm,Rtq, we know that

|Km| ă C1 :“ 6C{η.

By passing to a subsequence, we assume |Km| are the same for all m. Place elements of
Km in the increasing order:

am1 ă am2 ă ¨ ¨ ¨ ă amk , k “ |Km|.

By passing to a further subsequence, we require that limmÑ8 |a
m
i`1 ´ ami | exists (either

finite or infinite) for each 1 ď i ď k and it is infinite precisely when i is one of

i0 :“ ´1 ă i1 ă i2 ă ¨ ¨ ¨ ă il ă il`1 :“ k.

Let N “ max0ďjďl,mě0 |a
m
ij`1

´ amij`1|. Now consider the translated configuration

β1m “ pA
1
m,Φ

1
mq with pA1m,Φ

1
mqpt, sq “ pAm,Φmqpt´ nm, s´Rmq

defined on Rt ˆ r´Rm, Rms ˆ Σ. What we have shown so far implies that

‚ Eanpβ1m, r´N,N st ˆ r´Rm, Rmssq is bounded above by a constant C2 independent
of β1m. This follows from energy equations and the assumption that Eanpβmq ď C.

‚ For any j P Z with |j| ě N and any S P Rs, Eanpβ1m,Ωj,Sq ă ε when m " 1.
Indeed, by the choice of N , when m " 1, nm ` j R Km and Rm " R0 ´ S. Now
apply lemma 6.5

By the classical compactness theorem [KM07, Theorem 5.2.1], up to gauge, a subse-
quence of tβ1mu will converge in C8loc-topology to a solution β8 “ pA8,Φ8q defined on
Rt ˆ Rs ˆ Σ. Moreover, we have the following estimates on its analytic energy:

‚ For some large constant M ą 0, Eanpβ8,Ωj,Sq ă ε whenever |j| ą N or |S| ąM ;
‚ Eanpβ8, r´N,N st ˆ r´M,M ssq ă 8;
‚ Eanpβ8,Ω0,0q ě ε.

Now we draw a contradiction from Theorem 2.4 which rules out such solutions. �
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6.3. Decay of L2
k-norm. Having addressed the exponential decay of the local energy

functional
EanpA,Φ; Ωn,Sq

in Theorem 6.4, let us estimate the L2
k-norm of pA,Φq over the sub-domain Ωn,S in terms

of EanpA,Φ; Ωn,Sq. Aside from Remark 5.2, this is the second reason why the local energy
functional is useful. For the sake of simplicity, let us state the results for the compact
domain

Ω0 Ă r´2, 2st ˆ Rs Ă C
defined in (2.3). Let M “ Ω0 ˆ Σ. Recall that γ˚ “ pA˚,Φ˚q defined by (3.8) is the
standard configuration on Cˆ Σ. For any smooth γ “ pA,Φq P CpMq, set pa, φq “ γ ´ γ˚
and consider the gauge fixing condition

(6.2)

"

d˚γ˚pa, φq :“ ´d˚a` iRexφ, iΦ˚y “ 0
xa, ~ny “ 0 at BM.

The proof of Theorem 6.2 requires three additional lemmas, summarized as follows:

‚ Lemma 6.6: put γ into the Coulomb-Neumann gauge slice of γ˚;
‚ Lemma 6.7: once γ is in the slice, estimate the L2

1,A˚
-norm of pa, φq “ γ ´ γ˚ in

terms of Eanpγ; Ω0q;
‚ Lemma 6.8: once γ is in the slice, estimate the L2

l,A˚
-norm of pa, φq “ γ ´ γ˚ in

terms of Eanpγ; Ω0q for any l ě 1.

Lemma 6.6. There exist constants ε0, C0 ą 0 with the following significance. For any
configuration γ P CpΩ0 ˆ Σq with

(6.3) }γ ´ γ˚}L2
2,A˚

pMq ă ε0

then we can find a smooth function f : M Ñ iR such that ef ¨ γ satisfies the Coulomb-
Neumann gauge fixing condition (6.2). Moreover,

}ef ¨ γ ´ γ˚}L2
2,A˚

pMq ď C0}γ ´ γ˚}L2
2,A˚

pMq.

Proof. Let K2 be the subspace of T2,γ˚ :“ L2
2pM, iT ˚M ‘ S`q subject to the gauge fixing

condition (6.2). Consider the non-linear map:

U : L2
3pM, iRq ˆK2 Ñ T2,γ˚

pf, pa, φqq “ pa´ df, pef ´ 1q ¨ Φ˚ ` e
f ¨ φq.

The linearized operator D0U of U at p0, p0, 0qq is invertible. Now our lemma follows from
the implicit function theorem. �

Suppose now that γ already lies in the Coulomb-Neumann gauge slice of γ˚. The next
step is to estimate }pa, φq}L2

1,A˚
in terms of the local energy functional EanpA,Φ; Ω0q.

Lemma 6.7. There exist constants ε1, C1 ą 0 with the following significance. For any γ
subject to the gauge fixing condition (6.2), if }pa, φq}L2

1,A˚
ă ε1, then

}pa, φq}2L2
1,A˚

ď C1 ¨ Eanpγ,Ω0q.
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Proof. Consider the non-linear operator:

Fpa, φq “ F1 ` F2 where

F1pa, φq “ pda,∇A˚φ` ab Φ˚, pΦ˚φ
˚ ` φΦ˚˚q0,d

˚
γ˚pa, φqq,

F2pa, φq “ p0, ab φ, pφφ
˚q0, 0q,

so F1 is the linear part of F and }Fpa, φq}2L2pMq “ Eanpγ,Ω0q by Definition 2.3. Using the

identity

|pΦ˚φ
˚ ` φΦ˚˚q0|

2 ` | Imxφ,Φ˚y|
2 “ |Φ˚|

2|φ|2,

we calculate that

}F1pa, φq}
2
L2pMq “ }da}

2
2 ` }d

˚a}22 ` }∇A˚φ}
2
2 ` }ab Φ˚}

2
2 ` }|φ||Φ˚|}

2
2 `K3 where

K3 “ 2 Re

ż

M
x∇A˚φ, ab Φ˚y ´ xφ, pd

˚aqΦ˚y

“ 2 Re

ż

M
d˚pxφ,Φ˚y ¨ aq ` xab φ,∇A˚Φ˚y “ 0.

In the last step, we used the facts that Φ˚ is ∇A˚-parallel and xa, ~ny “ 0 at BM . Hence,

}F1pa, φq}L2pMq ě c1}pa, φq}L2
1,A˚

,

for some c1 ą 0. Finally,

}F}2 ě }F1}2 ´ }F2}2 ě c1}pa, φq}L2
1,A˚

´m3}pa, φq}
2
L2
1,A˚

ě
c1

2
}pa, φq}L2

1,A˚

if }pa, φq}L2
1,A˚

ď c1{2m3, where m3 is the constant that appears in the Sobolev embedding

L2
1 ˆ L

2
1 Ñ L4. �

Now we come to estimate the L2
k-norm of pa, φq. Consider a closed subset Ω10 Ă Ω0 with

a smooth boundary such that

r´1, 1st ˆ r1, 3s Ă pΩ
1
0q
˝ Ă Ω10 Ă pΩ0q

˝.

Lemma 6.8. There exist constants εk, Ck ą 0 for each k ě 1 with the following signif-
icance. For any smooth solution γ P CpMq to the Seiberg-Witten equations (3.7), if γ is
subject to the gauge fixing condition (6.2) and }pa, φq}L2

1,A˚
pMq ă εk, then

}pa, φq}2L2
k,A˚

pΩ10ˆΣq ď Ck ¨ Eanpγ,Ω0q.

Proof. The case when k “ 1 is settled in Lemma 6.7. For k ą 1, this follows from the
standard bootstrapping argument [KM07, P.107]. To illustrate, consider the case when
1 ă k ă 2. Take a cut-off function χ4 such that

χ4 ” 1 on Ω10; suppχ4 Ă pΩ0q
˝.

The section v :“ pa, φq P C8pM, iT ˚M ‘ Sq is subject to a non-linear elliptic equation:

Dv ` v#v “ 0
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where # stands for a certain bilinear form that involves only point-wise multiplication.
By G̊arding’s inequality, for any 0 ă η ă 1,

}χ4v}L2
1`ηpMq

ď }Dpχ4vq}L2
ηpMq

` }v}2 ď m4}v}L2
1
` }pχ4vq#v}L2

η

ď m4}v}L2
1
`m5}χ4v}L2

1`η
}v}L2

1

If }v}L2
1
ă 1{p2m5q, then we use the rearrangement argument to show that

}v}L2
1`ηpΩ

1
0ˆΣq ď }χ4v}L2

1`ηpMq
ď 2m4}v}L2

1
ď 2m4

a

C1 ¨
a

Eanpγ,Ω0q,

so we set ε1`η “ mintε1, 1{p2m5qu. In the last step, we used Lemma 6.7 to estimate
}v}L2

1,A˚
in terms of Eanpγ,Ω0q. When k ě 2, we need more cut-off functions to separate

Ω10 from Ω0 and use inductions. In fact, we can take

εk “ mintε1, 1{p2m5qu

for any k ą 1. �

Proof of Theorem 6.2. We divide the proof into three steps. Lemma 6.6 and 6.8 will be
used only in the last step. In Step 1 and Step 2, we arrange so that the assumptions of
these lemmas can be satisfied.

Step 1. By the classical compactness theorem [KM07, Theorem 5.2.1], for any ε ą 0,
we can find a constant ηpεq ą 0 with the following property. Under the assumption of
Theorem 6.2, if Eanpγ,Ω0q ă ηpεq, then there exists a gauge transformation u1 : Ω0 Ñ S1

such that
}u1pγq ´ γ˚}L2

2pΩ
1
0ˆΣq ă ε.

At this point, we have no controls of the function η : R` Ñ R`.

Step 2. We wish to find a gauge transformation u1 P Gk`1,locpRt ˆ pY q such that

(6.4) }u1pγq ´ γ0}L2
2,A˚

pΩn,SˆΣq ă mintε0,
εl
C0
u.

for any n P Z and S " 1, where ε0 and εl are positive constants constructed in Lemma
6.6 and 6.8. (6.4) is provided by the uniform L8 decay of the local energy functional. Let
S “ m P Zě0 be an integer and apply Step 1 to the domain

Ωn,m,@n P Z,m ą R0pηpεq, Cq,

where R0 is the constant obtained in Theorem 6.3. We find gauge transformations un,m P
GepΩn,m ˆ Σq such that

}un,mpγq ´ γ0}L2
2pΩ

1
n,mˆΣq ă ε.

Here Ω1n,m is the translated domain of Ω10 Ă Ω0:

Ω1n,m “ tpt, sq : pt´ n, s´mq P Ω10u Ă Ωn,m.

The collection of domains tpΩ1n,mq
˝u still forms an open cover of RtˆrR0`1qsˆΣ. By a

patching argument (cf. [KM07, Section 13.6]), we can find a global gauge transformation
u1 such that

}u1pγq ´ γ0}L2
1pΩn,mˆΣq ă N1ε.
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for a constant N1 ą 0. Then one may achieve (6.4) by starting with ε small enough.

Step 3. Now apply Lemma 6.6 to u1pγq on each Ωn,m with m ą R0. We find some
smooth functions fn,m : Ωn,m ˆ Σ Ñ iR such that

}efn,m ¨ u1pγq ´ γ0}L2
1,A˚

pΩn,mˆΣq ď }e
fn,m ¨ u1pγq ´ γ0}L2

2,A˚
pΩn,mˆΣq

ď C0}u1pγq ´ γ0}L2
2,A˚

pΩn,mˆΣq ď εl.

and efn,m ¨u1pγq lies in the Coulomb gauge slice (6.2) of γ˚. Using Lemma 6.8 and Theorem
6.4, we estimate the L2

l,A˚
-norm of the resulting configuration:

}efn,m ¨ u1pγq ´ γ0}
2
L2
l,A˚

pΩ1n,mˆΣq ď Cl ¨ Eanpγ,Ωn,mq ď ClM0e
´ζm.

Finally, using the patching argument once again, we find a global gauge transformation

u P Gk`1,locpRt ˆ pY q such that

}upγq ´ γ0}
2
L2
l,A˚

pΩn,mˆΣq ď N2ClM0e
´ζm.

for a constant N2 ą 0. This completes the proof of Theorem 6.2. �
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Part 3. Perturbations

In order to make the moduli spaces on Rt ˆ pY smooth and define the Floer homology
of the 3-manifold pY, BY “ Σq, a suitable perturbation Ĺω “ Lω` f of the Chern-Simons-
Dirac functional Lω is needed. We follow the construction of tame perturbations in [KM07,
Section 10-11]. However, there is one distinct feature of our situation, which requires some
technical tricks to deal with:

(‹) We want the perturbation supported within a compact region of pY so that the

Seiberg-Witten equations (3.7) defined on Rt ˆ pY remains unperturbed on the
planar end H2

` ˆ Σ, and Theorem 2.5 is applicable.

Hence, the error term f must factorize through the restriction map to the truncated

manifold Yn :“ ts ď nu Ă pY for some n ě 0:

Ck´1{2p
pY ,psq Ñ Ck´1{2pYn,psq.

As a result, the perturbation space is not large enough to separate all tangent vectors

and points of Ck´1{2p
pY ,psq as in [KM07, Proposition 11.2.1]. Nevertheless, we can still

achieve the transversality of moduli spaces on Rtˆ pY , even with this smaller perturbation
space. In fact, one may even require that n “ 0, so Yn “ Y “ ts ď 0u.

Part 3 is organized as follows. In Section 7, we introduce the so-called tame perturba-
tions (Definition 7.3) and state the formal mapping properties that they enjoy.

In Section 8, we take up the task to construct tame perturbations. The separation prop-
erties are examined carefully in Subsection 8.2. The Banach space P of tame perturbations
is constructed in Subsection 8.5.

Section 9 is devoted to the compactness theorems for perturbed Seiberg-Witten equa-
tions. Since tame perturbations are made compactly supported, the proofs in Section 6
apply verbatim to this case.

7. Abstract Perturbations

The perturbation that we deal with is a continuous section pk ą 1q

q : Ck´ 1
2
ppY ,psq Ñ T0

where T0 is the L2-completion of the tangent bundle TCk´1{2p
pY ,psq introduced in Section

4. The perturbation q is required to be the formal gradient of a Gk`1{2p
pY q-invariant

continuous function f : Ck´1{2p
pY ,psq Ñ R, and we write q “ grad f . This means that

fpγ̌p1qq ´ fpγ̌p0qq “

ż 1

0
x 9̌γ, qpγ̌ptqqyL2dt

for any smooth path γ̌ : r0, 1s Ñ Ck´1{2p
pY ,psq. Take

Ĺω “ Lω ` f
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to be the perturbed Chern-Simons-Dirac functional. Let I “ rt1, t2s and pZ be the product

spinc manifold I ˆ ppY ,psq. The down-ward gradient flowline equation of Ĺω becomes

d

dt
γ̌ptq “ ´ grad Ĺωpγ̌ptqq ´ dγ̌ptq cptq(7.1)

“ ´ gradLωpγ̌ptqq ´ dγ̌ptq cptq ´ qpγ̌ptqq,

where γ̌ptq “ pBptq,Ψptqq is a underlying path in Ck´1{2p
pY ,psq and

(7.2) A “
d

dt
`Bptq ` cptqdtb IdS , Φ|ttuˆY “ Ψptq

is the corresponding 4-dimensional configuration γ “ pA,Φq in Cp pZq. In this way, the

continuous section q extends to a section of the trivial bundle V0 over Cp pZq:

(7.3) pq : Cp pZq Ñ V0 “ L2p pZ, isupS`q ‘ S´q ˆ Cp pZq
by sending γ “ pA,Φq to qpγ̌ptqq at each time slice t P I. Here we use the 3-dimensional

Clifford multiplication ρ3 to identify the bundle iT ˚ pY with isupS`q over pZ. We wish that

this section pq extends to a smooth section of Vk Ñ Ckp pZq for any k ě 2, so (7.1) is cast
into the perturbed Seiberg-Witten equation F

pZ,q
“ 0 where

F
pZ,q

:“ F
pZ
` pq : Ckp pZq Ñ Vk´1,

and F
pZ

is defined as in (3.7).

We do not have a canonical L2
j norm on the space Γp pZ, isupS`q ‘ S´q. For each

γ “ pA,Φq P Ckp pZq, we define a norm at the fiber Vj |γ using A as the covariant derivative,
i.e.

}v}2L2
j,A

:“

j
ÿ

n“0

}∇n
Av}

2

for any v P Vj |γ . This family of norms on Vj is equivariant under the gauge action of

Gk`1p pZq. Similarly, we define the L2
j,A norm on Tj Ñ Ckp pZq. Then the l-th derivative of

pq at γ is a bounded multi-linear map:

Dl
γpq P Multl

`

ą

l
L2
k,Ap

pZ, iT ˚ pZ b S`q, L2
k,ApisupS

`q ‘ S´q
˘

“ Multlp
ą

l
Tk,Vkq.

The bundle map Dl
γq might not be a local operator: it does not necessarily send com-

pactly supported sections on pY to another section with the same or smaller support. How-
ever, this is a property enjoyed by derivatives Dl

γF pZ
of the unperturbed Seiberg-Witten

map F
pZ
, which motivates the next definition:

Definition 7.1. For any closed subset Ω Ă pY , a perturbation q is said to be supported

on Ω if supp qpγ̌q Ă Ω for any γ̌ P Ck´1{2p
pY ,psq and

qpγ̌1q “ qpγ̌2q

for any configurations γ̌1, γ̌2 P Ck´1{2p
pY ,psq such that γ̌1 “ γ̌2 on Ω. ♦
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We are primarily interested in the case when Ω “ Yn “ ts ď nu for some n ě 0. It
turns out that the choice of the integer n is inconsequential for the Floer homology, so we
may safely set n “ 0 and focus on the case when Ω “ Y .

Remark 7.2. One may even take Ω “ r0, 1ss ˆ Σ Ă pY and the construction in Section 8
would be simplified if one uses the gauge fixing condition along each fiber tsu ˆ Σ. ♦

For technical reasons, we also need completions of bundles and the configuration space
with respect to other Sobolev norms Lpk with p ‰ 2. Let

Cppqk , T ppqk , Vppqk
be the resulting space and bundles when k ě 1 and 1 ď p ď 8. Note that Cp2qk p pZq “ Ckp pZq
and so on.

Let us state the constraints on the perturbation q “ grad f .

Definition 7.3. Let Y 1 be a smooth co-dimension 0 submanifold of pY with possibly non-

empty boundary. We usually take Y 1 to be either Y “ ts ď 0u or pY . For each integer
k ě 2, a perturbation q given as a section

q : CppY ,psq Ñ T0.

is called k-tame in Y 1 if it is the formal gradient of a continuous GppY q-invariant function

f on CppY q such that

(A1) the corresponding 4-dimensional perturbation pq defines an element:

pq P C8pCjp pZq,Vjq
for any integer j P r2, ks;

(A2) When p ą 3, pq also defines an element in

C8pCppqj p pZq,Vppqj q

for any integer j P r1, ks;
(A3) pq extends to a continuous map:

C1p pZq Ñ Vpmq0

for any 2 ď m ă 4.
(A4) for each integer j P r´k, ks, the first derivative

Dpq P C8pCkp pZq,HompTCkp pZq,Vkqq
extends to a smooth map

Dpq P C8pCkp pZq,HompTj ,Vjqq;

(A5) for any pB,Ψq P CkppY q, the L2
k-section qpB,Ψq is supported on Y 1:

supp qpB,Ψq Ă Y 1.

Moreover, there exists a constant m2 ą 0 such that

}qpB,Ψq}L2pY 1q ď m2p}Ψ}L2pY 1q ` 1q,
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for any pB,Ψq P CkppY q.
(A6) For any 0 ď ε ă 1

2 , pq extends to a continuous map

C1´εp pZq Ñ V0.

(A7) the 3-dimensional perturbation q defines a C1-section

q : C1ppY q Ñ T0.

We simply say that q is tame in Y 1 if q is k-tame in Y 1 for any k ě 2. We may not mention

the support Y 1 when Y 1 “ pY . ♦

Remark 7.4. When Y 1 “ pY , Definition 7.3 agrees with [KM07, Definition 10.5.1], with
some minor changes in properties (A2)(A3)(A5)(A6). Our construction of tame perturba-
tions in Section 8 ends up with weaker mapping properties, in exchange for having them
compactly supported. ♦

Remark 7.5. Let us briefly explain where these properties will be used:

‚ (A1)(A2)(A3)(A6) will be used in the compactness theorem for the perturbed
Seiberg-Witten equations, i.e. Theorem 9.5. They give intermediate steps in the
bootstrapping arguments;

‚ (A5) is used in the energy equation for the perturbed Seiberg-Witten equations,
i.e. Proposition 9.1;

‚ (A4) is relevant with the linear theory in Part 4;
‚ (A7) will be used in the proof of the exponential decay result in time direction,

which we will not actually work out in this paper, cf. [KM07, Section 13.4], in
particular [KM07, Lemma 13.4.3]. ♦

8. Constructing Tame Perturbations

8.1. Cylinder Functions. The construction of cylinder functions in the book [KM07,
Section 11] involves a global gauge slice, which prevents perturbations being local. Instead,
we adopt a variation that is reminiscent of the holonomy perturbations in instanton Floer
homology to achieve our goal.

First, we fix a smooth embedding of S1 ˆD2 into pY , where D2 “ Bp0, 1q Ă R2 is the
unit disk:

ι : S1 ˆD2 Ñ pY .

To find such an ι, one may first embed the core S1ˆt0u into pY and extend this map to a

tubular neighborhood of the image. We pull back the metric and the spin bundle S Ñ pY
via ι. The induced Riemannian metric g1 :“ ι˚gY might not agree with the product metric

gstd :“ ι˚g
pY
|S1ˆt0u ` gD2 ,

on S1 ˆ D2, where gD2 is the standard Euclidean metric of D2. They are related by a
smooth symmetric bundle map K : T ˚pS1 ˆ D2q Ñ T ˚pS1 ˆ D2q (with respect to gstd)
such that

xb1, b2y1 “ xKpb1q, b2ystd.
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for any co-vectors b1 and b2. The volume forms of g1 and gstd differ by a smooth positive
function η ą 0:

dvol1 “ η ¨ dvolstd.

It is only important to know that K and η are smooth; the Clifford multiplication ρ3 is
never needed for the purpose of perturbations.

Let pB0,Ψ0q be the reference configuration in CkpY q. For any pB,Ψq P CkppY q, take the
difference

pb, ψq :“ pB,Ψq ´ pB0,Ψ0q P L
2
kp
pY , iT ˚ pY ‘ Sq.

There are three classes of perturbations to be considered. The first two concern the
imaginary valued 1-form b. The last one deals with the spin section Ψ.

(B1) For any compactly supported 1-form c P Ω1
cpS

1 ˆD2, iRq, define

rc : CkppY q Ñ R

pb, ψq ÞÑ

ż

S1ˆD2

b^ dc̄

“

ż

S1ˆD2

xb, ˚1dcyg1dvol1 “

ż

S1ˆD2

xb, ˚stddcygstddvolstd,

where ˚1 and ˚std stand for the Hodge star operators of g1 and gstd respectively.
The formal gradient of rc is

grad rc “ ˚1dc,

while using gstd we obtain

gradstd rc :“ ˚stddc “ ηKpgrad rcq.

(B2) Fix a compactly supported 2-form ν P Ω1
cpD

2, iRq on the disk D2 with
ż

D2

ν “ i,

and define

rν : CkppY q Ñ R

pb, ψq ÞÑ

ż

S1ˆD2

b^ π˚ν,

where π : S1 ˆD2 Ñ D2 is the projection map. Unlike rc, rν is not fully gauge-

invariant. For any u P Gk`1ppY q,

rνpupb, ψqq ´ rνpb, ψq “ ´2π degpu ˝ ι : S1 ˆ t0u Ñ S1q P 2πZ.
Hence, rν descends to a circle valued function

rrνs : CkppY q Ñ R{p2παZq
where α P Zě0 is the multiplicity of ι˚prS

1ˆt0usq in H1pY,Σ;Zq, i.e ι˚prS
1ˆt0usq

is α times a primitive class in H1pY,Σ;Zq. Using the Euclidean metric of D2, one
may conveniently set

ν “ iχ2pzqdvolD2
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where χ2 is a cut-off function on D2 with χ2pzq ” 1 when |z| ď 1
2 .

(B3) Fix a gauge transformation u1 : pY Ñ S1 with the following properties:

‚ u1 is smooth on pY ;
‚ The composition u1 ˝ ι : S1 ˆ t0u Ñ S1 is harmonic and has degree α.
‚ u1 ˝ ι : S1 ˆD2 Ñ S1 is constant in D2.
Let the transformation u1 act on the bundle Rx ˆ S Ñ Rx ˆ pS1 ˆD2q by the

formula:

un1 px,Φq ÞÑ px´ 2πnα, un1 Φq.

Passing to the quotient space, we obtain a bundle S over pR{2παZqˆpS1ˆD2q.

If Υ is a compactly supported smooth section of S, let Υ̃ denote its lift as a section
of Rx ˆ S Ñ Rx ˆ pS1 ˆD2q. Then Υ̃ is an equivariant section, as

Υ̃px´ 2πnα, θ, zq “ un1 Υ̃px, θ, zq

for any pθ, zq P S1 ˆ D2 and x P Rx. Let bz “ b|S1ˆtzu be the restriction of the

1-form b over the S1-fiber at z P D2. Using the product metric gstd, we write

bz “ b1z ` b
h
z

in terms of the Hodge decomposition along each fiber S1 ˆ tzu with

b1z exact and bhz harmonic pthe coexact part b2z “ 0q.

Let d˚S1 be the adjoint of the exterior differential dS1 over S1 ˆ t0u and

G : C8pS1, iRq Ñ C8pS1, iRq

be the Green operator. Then the exact part b1z can be explicitly written as

b1z “ dS1Gd˚S1bz,

and bhz stands for the harmonic part of bz. It is tempting to form the map:

Υ: : CppY q Ñ C8pS1 ˆD2, Sq

pb, ψq ÞÑ e´Gd
˚

S1
bzΥ̃prνpbq, θ, zq on S1 ˆ tzu,

which is equivariant under the action of un1 . However, Υ: is not equivariant

under the action of the full gauge group GppY q (compare [KM07, P.173]). In fact,
Υ: is invariant under MappD2, S1q, the space of gauge transformations that are
constant along each fiber S1 ˆ tzu.

To circumvent this problem, let Ψz and Υ:z be the restriction of Ψ and Υ: along
the fiber S1 ˆ tzu for any z P D2. Fix an S1-invariant function h : Cw Ñ R. For
instance, set

hpwq “ χ3p|w|
2q,@w P C,

for some cut-off function χ3 : RÑ Rě0 such that

χ3ptq ” 1 if t ď 1; χ3ptq ” 0 if t ě 2.
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Then the composition hpσpzqq : CppY q Ñ R is fully gauge invariant, where

σpzq :“

ż

S1ˆtzu
xΨz,Υ

:
zy.

Finally, define

qΥpb, ψq “

ż

D2

hpσpzqqχ2pzqdvolD2 ,

where χ2 is the cut-off function on D2 defined in (B2).

By choosing a finite collection of 1-forms c1, ¨ ¨ ¨ , cn and smooth sections Υ1, ¨ ¨ ¨ ,Υm of
S, we obtain a map

Ξ “ prc1 , ¨ ¨ ¨ , rcn , rrνs, qΥ1 , ¨ ¨ ¨ , qΥmq : CppY q Ñ Rn ˆ pR{2παZq ˆ Rm.

Definition 8.1. A function f defined on CppY q is called a cylinder function if it arises as
the composition g ˝ Ξ where

‚ the map Ξ : CppY q Ñ RnˆpR{2παZqˆRm is defined as above, using any compactly
supported forms ci p1 ď i ď nq defined on S1 ˆ D2 and compactly supported
sections Υj p1 ď j ď mq on pR{2παZq ˆ pS1 ˆD2q, for any n,m ě 0;

‚ the function

g : Rn ˆ pR{2παZq ˆ Rm Ñ R
is any smooth function with compact support.

A cylindrical function is fully gauge invariant. ♦

Theorem 8.2. For any cylinder function f : CppY q Ñ R, its formal gradient

grad f : CppY q Ñ T0

is a perturbation tame in Y 1 “ Im ι, in the sense of Definition 7.3, where ι : S1ˆD2 ãÑ pY
is the embedding used to define f .

We will prove Theorem 8.2 in Subsection 8.4.

8.2. Cylinder Functions and Embeddings. In this subsection, we examine the sepa-
rating property of cylinder functions. The main results are Proposition 8.4 and 8.6.

Fix an embedding ι : S1 ˆD2 ãÑ pY , and define

Cylinpιq :“ tf : f is a cylinder function defined via ιu.

It is reasonable to ask: to what extend elements of Cylinpιq separate points and tangent

vectors of CppY q. Apparently, if pB1,Ψ1q is identical to pB2,Ψ2q over the image of ι up
to gauge, then they can not be separated by any element of Cylinpιq, because only local
information is employed when defining cylinder functions. In addition, they can not be
separated if B1 “ B2 and

eiθpzqΨ1 “ Ψ2

for some smooth function θ : D2 Ñ R as the function hpσpzqq defined in (B3) is fully gauge
invariant. In fact, this is the worst case that can happen:
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Proposition 8.3. Take γi “ pBi,Ψiq P CppY q pi “ 1, 2q. Suppose for any cylinder function
f P Cylinpιq, we always have

fpγ1q “ fpγ2q,

then there exists a gauge transformation v P GppY q and some function θ : Bp0, 1{3q Ñ R
such that

vpB1q “ B2, e
iθpzqv ¨Ψ1 “ Ψ2

over the smaller solid torus ιpS1 ˆ Bp0, 1{3qq. The function θ might not be continuous
because of the zero locus of Ψ1.

Proof. Take pbi, ψiq “ pBi,Ψiq ´ pB0,Ψ0q and set

δb “ b2 ´ b1.

By our assumptions, γ1 and γ2 can not be separated by any functions of classes (B1)(B2)
and (B3). First, we claim that δb is closed on S1 ˆD2, since

0 “ rcpb2q ´ rcpb1q “ rcpδbq “

ż

S1ˆD2

δb^ dc̄ “

ż

S1ˆD2

dpδbq ^ c̄

for any compactly supported 1-form c. Moreover,

rνpδbq “ rνpb2q ´ rνpb1q “ 2πnα P R

for some n P Z, since rrνspb1q “ rrνspb2q. Using the gauge transformation u1 from (B3),
we may place γ1 by

u´n1 pγ1q

to make rνpb2q ´ rνpb1q zero. From now on, let us assume rνpδbq “ 0.
This allows us to conclude that δb is exact on S1 ˆ D2, so δb “ dξ for some function

ξ : S1 ˆD2 Ñ iR. By cutting off ξ outside Bp0, 2{3q, we extend ξ to the whole manifold
pY (by zero outside of Im ι). Finally, replace γ1 by e´ξ ¨ γ1.

It remains to show that Ψ1 “ Ψ2 along the core S1ˆt0u up to an overall phase eiθ P S1

when δb “ 0 on S1 ˆBp0, 1{2q. Let

Ψ1,0,Ψ2,0

be their restriction along the core S1 ˆ t0u. If they do not generate the same complex
plane in ΓpS1 ˆ t0u, Sq, then we can always find a section Υ0 P ΓpS1 ˆ t0u, Sq such that

Ψ1,0 K Υ0 and Ψ2,0 M Υ0

or the other way around. Extending Υ0 to a section Υ of

SÑ pR{2παZq ˆ S1 ˆD2,

supported near trνpb1quˆS
1ˆt0u will result in a function qΥ of class (B3) that separates

γ1 and γ2.
When Ψ1,0 and Ψ2,0 do generate the same complex plane, but }Ψ1,0}L2pS1q ‰ }Ψ2,0}L2pS1q,

one can construct Υ in a similar way.
We obtain the function θ : Bp0, 1{3q Ñ R, by applying the same argument to the fiber

S1 ˆ tzu for any z P Bp0, 1{3q. �
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Hence, it is necessary to take into account all possible embeddings of S1 ˆD2 into pY
in order to obtain the desired separating property:

Proposition 8.4. Recall that Y “ ts ď 0u Ă pY . Let

CylinpY q :“
ď

Im ιĂY

Cylinpιq

be the union of all possible cylinder functions with Im ι Ă Y . If γ1 and γ2 P CppY q can not

be separated by any element in CylinpY q, then there is a gauge transformation v P GppY q
that identifies γ1 with γ2 over Y , i.e.

vpγ1q “ γ2 on Y.

Proof. Again, take pbi, ψiq “ pBi,Ψiq ´ pB0,Ψ0q and set

δb “ b2 ´ b1.

By the proof of Proposition 8.3, we deduce that δb is closed over Y , and there is a gauge

transformation v P GppY q such that vpB1q “ B2. The remaining step is to verify

v ¨ Φ1 “ Φ2

up to a global constant eiθ P S1. By Proposition 8.3, the equality |Φ1| “ |Φ2| holds
point-wise on Y , and

eiθpyqv ¨ Φ1 “ Φ2

for some function θ : Y ˝ Ñ R defined in the interior of Y . Suppose for some y1, y2 P Y
˝,

Φ1py1q,Φ1py2q ‰ 0. Choose an embedding S1 ˆ t0u ãÑ Y that passes y1, y2 and extend it
into an embedding of the solid torus:

ι : S1 ˆD2 Ñ Y Ă pY .

By Proposition 8.3, the function eiθ has to be constant along the core S1ˆt0u, so eiθpy1q “

eiθpy2q. This allows us to modify θ to be a constant function θ ” θ0, so

eiθ0v ¨ Φ1 “ Φ2. �

Now we state the infinitesimal version of Proposition 8.3 and 8.4 concerning the sep-
arating property of tangent vectors. They are essential for the proof of transversality in
Section 16. Proposition 8.6 is a direct consequence of Proposition 8.5, so we focus on the
proof of the latter.

Proposition 8.5. Take γ “ pB,Ψq P CppY q and V “ pδb, δψq P TγCppY q. For a fixed

embedding ι : S1 ˆD2 ãÑ pY and any f P Cylinpιq, suppose we always have

dfpV q “ 0,

then either

‚ there exists some ξ P LiepGppY qq and some function θ : Bp0, 1{3q Ñ R such that

pδb, δψq “ p´dξ, pξ ` iθpzqqΨq

over the smaller solid torus ιpS1 ˆBp0, 1{3qq; or
‚ Ψ ” 0 on S1 ˆ tzu for some z P Bp0, 1{3q.
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Proposition 8.6. Suppose for some γ “ pB,Ψq P CppY q and some tangent vector V P

TγCppY q, we always have

dfpV q “ 0

for any f P CylinpY q. Then either

‚ Ψ ” 0 on Y , or

‚ for some ξ P LiepGppY qq, V is generated by the infinitesimal action of ξ over Y , i.e.

V “ p´dξ, ξΨq on Y.

Proof of Proposition 8.5. Since V “ pδb, δψq can not be separated by any functions in
classes (B1)(B2), δb has to be an exact 1-form on S1 ˆ D2, so δb “ ´dξ for some ξ :
S1ˆD2 Ñ iR. Since this problem is linear and the vector p´dξ, ξΨq can not be separated,
it remains to deal with the case when δb “ 0 and show

δψ “ iθpzqΨ

on S1ˆBp0, 1{3q for some function θ : Bp0, 1{3q Ñ R. For a fixed section Υ of S, consider
functions σ, σ1 : D2 Ñ C:

σpzq :“

ż

S1ˆtzu
xΨz,Υ

:
zy, σ1pzq :“

ż

S1ˆtzu
xδψz,Υ

:
zy.

Then the differential of qΥ along V “ p0, δψq can be computed directly as

dqΥp0, δψq “

ż

D2

2χ2pzqχ
1
3p|σ1|

2qRepσpzqσ1pzqqdvolD2 ,

where χ3 is the cut-off function used to define the S1-invariant function h in (B3). For any
z P Bp0, 1{3q, if Ψz and δψz do not lie in the same complex direction in ΓpS1 ˆ tzu, Sq,

then for some section Υ:z P Γptrνpbqu ˆ S
1 ˆ tzu, Sq, Repσpzqσ1pzqq is non-zero (it suffices

to verify this statement for two vectors in C2). By properly extending Υ:z to a section Υ
of S, we can make dqΥp0, δψq ‰ 0.

Finally, if Ψz ı 0 and δψz “ wΨz for some w P C, then w has to be imaginary for the
same reason. This proves the existence of θpzq P R when Ψz ı 0. �

8.3. Estimates of Perturbations on Cylinders. In this subsection, we take up the
proof of Theorem 8.2. Unlike the case of closed 3-manifolds (cf. [KM07, Section 11.3]),
gradients and Hessians of f can not be estimated in a straightforward way; the use of
anisotropic Sobolev spaces is already necessary. We will only state the estimates for the

3-manifold pY , whose proof will follow from their analogue on the 4-manifold rt1, t2s ˆ pY :

Proposition 8.7 (cf. Proposition 11.3.3 in [KM07]). For any k ě 2 and any cylinder

function f defined using an embedding ι : S1 ˆD2 Ñ pY , q “ grad f determines a smooth

vector field on CkppY q, and for each l ě 0, there is a constant C with

}Dl
pB,Ψqq} ď Cp1` }b}L2

k´1pY
1qq

2kpl`1qp1` }Ψ}L2
k,BpY

1qq
l`1,

where Dl
pB,Ψqq is viewed as an element of Multlp

Ś

l Tk, Tkq and Y 1 “ Im ι.
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In addition, for any j P r´k, ks, the first derivative Dq extends to a smooth map

Dq : CkppY q Ñ HompTj , Tjq
whose pl ´ 1q-th derivative viewed as an element of Multlp

Ś

l´1 Tk ˆ Tj , Tjq satisfies the
same bound.

Remark 8.8. The author was unable to prove this proposition when k “ 1. We will come
back to this point in Subsection 8.4. ♦

Let I “ rt1, t2s Ă Rt and pZ “ I ˆ pY . As described in the beginning of Section 7, each
smooth perturbation q gives arise to a section

pq : Ckp pZq Ñ V0

of the trivial bundle

V0 “ L2p pZ, isupS`q ‘ S´q ˆ Ckp pZq Ñ Ckp pZq,
where the bundle iT ˚Y ‘ S` is identified with pisupS`q ‘ S´q using the bundle map

pρ3, ρ4pdtqq,

over the 4-manifold pZ. For any γ “ pA,Φq P Ckp pZq, write

pa, φq “ pA,Φq ´ pA0,Φ0q P L
2
kp
pZ, iT ˚ pZ ‘ S`q,

where γ0 “ pA0,Φ0q is the reference configuration of Ckp pZq.

Proposition 8.9 (cf. [KM07] Proposition 11.4.1). For any k ě 2 and any cylinder

function f defined via the embedding ι : S1 ˆD2 Ñ pY , consider its induced perturbation

on the 4-manifold pZ:

pq “ grad f : Ckp pZq Ñ V0.

(C1) The map pq extends to a smooth map

Ckp pZq Ñ Vk,
whose l-th derivative regarded as a multi-linear map

Dl
pA,Φqpq P Multlp

ą

l
Tkp pZq,Vkq,

satisfies the estimate:

}Dl
pA,Φqpq} ď Cp1` }a}L2

kpΩq
q2kpl`1qp1` }Φ}L2

k,ApΩq
ql`1,

where Ω “ I ˆ Im ι Ă pZ.
(C2) For any j P r´k, ks, the first derivative Dpq extends to a smooth map

Dpq : Ckp pZq Ñ HompTjp pZq,Vjq
whose pl ´ 1q-the derivative regarded as a multi-linear map

Dl
pA,Φqpq P Multlp

ą

l´1
Tkp pZq ˆ Tjp pZq,Vjq,

satisfies the same bound as in (C1).
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(C3) When p ą 3 and k ě 1, the map pq extends to a smooth map

Cppqk p pZq Ñ Vppqk ,

whose l-th derivative regarded as a multi-linear map

Dl
pA,Φqpq P Multlp

ą

l
T ppqk p pZq,Vppqk q,

satisfies the estimate:

}Dl
pA,Φqpq} ď Cp1` }a}LpkpΩq

q2kpl`1qp1` }Φ}Lpk,ApΩq
ql`1.

(C4) For any 2 ď p ă 4, the map pq satisfies the estimate

}pq}Lnppq ď Cp1` }pa, φq}Lp1,ApΩq
q with nppq “ 4p{p4´ pq.

(C5) When 2 ď p ă 4, the map pq extends to a continuous map from

Cppq1 p pZq Ñ Vpmq0 for any m ă nppq.

(C6) For any 0 ď ε ă 1
2 , the map pq extends to a continuous map from

C1´εp pZq Ñ V0.

Remark 8.10. Properties (C1)(C3)(C5)(C6) are essential in the proof of compactness of
perturbed Seiberg-Witten equations in Section 9. Starting with p “ 2, we have nppq “
4 ą 3. ♦

Before we proceed to the proof, let us add a few remarks to simplify the situation. For
a fixed cylinder function f , one can either compute its gradient using the pull-back metric
g1 on S1 ˆD2, or using the standard product metric gstd:

gradstd f or q :“ grad f.

If we write grad f “ pgrad0 f, grad1 fq as entries of L2
kp
pY , iT ˚ pY ‘ Sq, then

gradstd f “ pηKpgrad0 fq, η grad1 fq,

where the function η and the bundle map K were introduced in Section 8.1. Since they

are related by a smooth bundle map of iT ˚ pY ‘ S|Im ι, it suffices to prove estimates for
gradstd f . The change of metrics of S1 ˆD2 will also affect the L2

j,A-norms on Tj and Vj ,
which is again inconsequential for our estimates.

From now on, we assume g1 “ gstd, and the length of the core S1 ˆ t0u is 2π.
The second remark concerns the anisotropic Sobolev spaces, which involves different

orders of differentiability in different directions. In what follows, let

Y 1 “ S1 ˆD2 “ pR{2πZq ˆD2 Ă pY ,

Ω “ I ˆ S1 ˆD2 “ rt1, t2s ˆ Y
1 Ă pZ,

M “ I ˆD2.
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Within the product manifold Ω only the direction along S1-fibers is special. Let θ be
the coordinate function of the circle R{2πZ, and define the L2

m,l norm pl ď mq of functions
on Ω to be

}ξ}p
L2
m,lpΩq

“
ÿ

i`jďm,
iďl

ż

Ω
|p
B

Bθ
qj∇i

Mξ|
p

and let Lpm,lpΩq be the completion of smooth functions (or sections) with respect to this

norm. We are mostly interested in the case when p “ 2. There are two useful lemmas:

Lemma 8.11. Consider the Banach space Lpk`1,k with k ě 2 if p “ 2 and k ě 1 if p ą 3.

Then Lpk`1,k is an algebra under the point-wise multiplication and Lpk`1,k Ă C0; Moreover,

for any |r| ď k ` 1 and |q| ď k, Lpr,qpΩq is a module of Lpk`1,k.

Proof. Note that L2
k`1,kpΩq ãÑ L2

1pS
1, L2

kpMqq ãÑ C0pS1, C0pMqq when k ě 2, and

Lpk`1,kpΩq ãÑ Lp1pS
1, LpkpMqq ãÑ C0pS1, C0pMqq

when k ě 1 and p ą 3. �

Lemma 8.12. For any pm, lq and p P r1,8q, the slicewise operator dS1G and Gd˚S1 are

bounded linear operators from Lpm,lpΩq Ñ Lpm`1,lpΩq, where

G : C8pS1q Ñ C8pS1q

is the Green operator associated to the Hodge Laplacian operator.

Proof. It follows from the fact that G extends to a bounded linear operator

G : LpmpS
1,Rq Ñ Lpm`2pS

1,Rq
for any p P r1,8q and m ě 0. �

Proof of Proposition 8.9. Suppose the cylinder function f arises as the composition g ˝Ξ:

CkppY q
Ξ
ÝÑ Rn ˆ pR{2παZq ˆ Rm g

ÝÑ R
where Ξ “ prc1 , ¨ ¨ ¨ , rcn , rrνs, qΥ1 , ¨ ¨ ¨ , qΥmq is induced from a collection of 1-forms c1, c2, ¨ ¨ ¨ cn
and sections Υ1, ¨ ¨ ¨ ,Υm. Let xi p1 ď i ď nq, x and yj be the coordinate functions on Rn,
R{2παZ and Rm respectively. Then set

Xi :“ gradpxi ˝ Ξq “ p˚3dci, 0q,

Xν :“ gradpx ˝ Ξq “ p˚3π
˚ν, 0q and

Yj :“ gradpyj ˝ Ξq.

The expression of Yj requires some further work. First, we compute the differential:

dpyj ˝ Ξqpδb, δψq “ 2 Re

ż

D2

χ2pzq
Bh

Bw
pσpzqqdvolD2 ¨ dpσpzqqpδb, δψq

and

dpσpzqqpδb, δψq “

ż

S1ˆtzu
xδψ,Υ:j,zy ` xΨz, pBxΥjq

:
zyxδb,XνyY 1 ` xΨz, p´Gd

˚
S1δbzqΥ

:

j,zy.
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where Y 1 “ S1 ˆD2 Ă pY . This allows us to write Yj “ pY
0
j , Y

1
j q “ 2pImW 0

j ,W
1
j q with

(8.1) Wj “ χ2pzq
Bh

Bw
pσpzqqpp´dS1GqxΨ,Υ:jy ` xΨ, pBxΥjq

:yY 1Xν ,Υ
:

jq.

As sections of SÑ pR{2παZq ˆ pS1 ˆD2q, BxΥj denotes the derivative of Υj along the
first factor. Finally, we obtain that

(8.2) q “ grad f “
n
ÿ

i“1

p
Bg

Bxi
˝ ΞqXi ` p

Bg

Bx
˝ ΞqXν `

m
ÿ

j“1

p
Bg

Byj
˝ ΞqYj .

To study the mapping properties of q, we first examine the map:

Υ: : CkppY q Ñ L2pS1 ˆD2, Sq

and its extension in dimension 4:

Υ; : Ckp pZq Ñ L2pΩ, S´q where Ω “ I ˆ S1 ˆD2,

pA,Φq ÞÑ Υ:pǍptq, Φ̌ptqq, @t P I “ rt1, t2s.

for any compactly supported section Υ of SÑ pR{2παZq ˆ S1 ˆD2.

Lemma 8.13 (cf. Lemma 11.4.4 in [KM07]). For any k ě 2 and any j P r´k, ks, Υ;

extends to a smooth map

Ckp pZq Ñ L2
j`1,j,Ap

pZ, S´q

with the following properties.

(D1) For each l ě 0, there is a constant C ą 0 such that the differential

Dl
pA,ΦqΥ

; P Multlp
ą

l
Tkp pZq, L2

j`1,j,Ap
pZ, S´qq

satisfies the bound

}Dl
pA,ΦqΥ

;} ď Cp1` }a}L2
j
qjp1` }a}L2

k
qk, @pA,Φq P Ckp pZq.

(D2) The l-th derivative extends to an element of

Multlp
ą

l´1
Tkp pZq ˆ Tjp pZq, L2

j`1,j,Ap
pZ, S´qq

whose norm satisfies the bound

}Dl
pA,ΦqΥ

;} ď Cp1` }a}L2
k
q2k, @pA,Φq P Ckp pZq.

(D3) For any k ě 1 and p ą 3, Υ; extends to a smooth map

Cppq1 p pZq Ñ L
ppq
j`1,j,Ap

pZ, S´q.

whose l-th derivative extends to an element of

Multlp
ą

l´1
T ppqk p pZq ˆ T ppqj p pZq, Lpj`1,j,Ap

pZ, S´qq

with norm bounded by

}Dl
pA,ΦqΥ

;} ď Cp1` }a}Lpk
q2k, @pA,Φq P Cppqk p pZq.
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(D4) For i “ 0, 1 and any p P r2,8s, we have the bound

}Υ;}LpA,i
ď Cp1` }a}Lpi q

i, @pA,Φq P Ckp pZq.

(D5) For any 1 ď m ă p, Υ; extends to a continuous map from

Cppq1 p pZq Ñ Lm1 p
pZ, S´q.

(D6) For any 1 ď p1, p ă 8, Υ; extends to a continuous map from

Cppqp pZq Ñ Lp
1

p pZ, S´q.

Proof. The proof of (D1)(D2)(D3) carries though with little changes as in [KM07, Lemma
11.4.4], using Lemma 8.3 in place of [KM07, Lemma 11.4.3]. In what follows, we will focus
on (D4)(D5)(D6).

As this point, it is convenient to have a lemma that is slightly stronger than [KM07,
Lemma 11.4.5]:

Lemma 8.14. Let H1,H2 be any separable Banach spaces and dimH1 ă 8. Suppose
χ : H1 Ñ H2 be a smooth map with bounded C1-norm. Then the composition map χ˚ :
ξ ÞÑ χ ˝ ξ is continuous from

L1pΩ˚,H1q Ñ LppΩ˚,H2q

for any finite measure space Ω˚ and any 1 ď p ă 8. Moreover, }χ ˝ ξ}8 ď }χ}8.

Proof of Lemma. It is clear that χ ˝ ξ lies in L8pΩ˚,Cq with }χ ˝ ξ}8 ď }χ}8. Since
Ω˚ has a finite measure, χ ˝ ξ P Lp. We prove that χ˚ is Hölder continuous. For any
ξ1, ξ2 P L

1pΩ˚,H1q,

}χ ˝ ξ1 ´ χ ˝ ξ2}
p
p “

ż

Ω˚

}χ ˝ ξ1 ´ χ ˝ ξ2}
p
H2
ď }2χ}p´1

8

ż

Ω˚

|χ ˝ ξ1 ´ χ ˝ ξ2|H2

“ }2χ}p´1
8 }∇χ}8

ż

Ω˚

|ξ1 ´ ξ2|H1 “ }2χ}
p´1
8 }∇χ}8}ξ1 ´ ξ2}L1pΩ˚,H1q

.�

Back to the proof of Lemma 8.13. Let pa, φq “ pA,Φq ´ pA0,Φ0q P L
p
1p
pZ, iT ˚ pZ ‘ S`q,

then Υ;pA,Φq is defined as

(8.3) e´Gd
˚

S1
aΥ̃prνpaqq

as a section supported on

Ω “ I ˆ S1 ˆD2

with rνpaq “ rνpa|ttuˆpY
q P LppI,Rq.

Step 1. Proof of (D6). It follows from Lemma 8.14 directly: the exponential map

ξ ÞÑ eξ

is continuous from LppΩ, iRq Ñ L2p1pΩ,Cq for any 1 ď p, p1 ă 8, so the map

ϕ : a ÞÑ expp´Gd˚S1aq
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is continuous from Lp Ñ L2p1 . On the other hand, we view the map a ÞÑ Υ̃prνpaqq as the
composition

Lpp pZq Ñ LppI,Rq Ñ L2p1pI, L2p1ppY qq “ L2p1p pZq,

a ÞÑ rνpaq ÞÑ Υ̃prνpaqq,

so Lemma 8.14 applies. Finally, L2p1 ˆ L2p1 Ñ Lp
1

is continuous.

Step 2. Proof of (D5). Now we deal with the first derivative of Υ;. Write ∇AΥ; “
K1 `K2 `K3 `K4 with

K1 “ p´dS1Gd˚S1aqΥ
;, K3 “ pe

´Gd˚
S1
a
q∇A0Υ̃prνpaqq,(8.4)

K2 “ p´Gd
˚
S1dMaqΥ

;, K4 “ abΥ;,

where M “ I ˆD2. To prove (D5), we verify that each Ki is continuous from Lp1 Ñ Lm

for any m ă p. It is clear that each of the following terms:

´dS1Gd˚S1a, ´Gd
˚
S1dMa, a

is continuous from Lp1 to Lp. To analyze K3, we expand ∇A0Υ̃prνpaqq as

p∇B0Υ̃qprνpaqq ` pĄBxΥqprνpaqqx
d

dt
a,XνyY 1 ,

which is continuous from Lp1 Ñ Lp
1

for any 1 ď p1 ă p. Now we use Step 1 to complete
the proof of (D5).

Step 3. Proof of (D4). It follows directly from the expression of Υ; and ∇AΥ;, (8.3)
and (8.4), using the fact that }ϕpaq}8 “ 1. �

Back to the proof of Proposition 8.9. The proof of (C1)„(C3) follows from (D1)„(D3)
in the same line as [KM07, Proposition 11.4.1], using Lemma 8.12.

In what follows, we will explain how (C4)(C5)(C6) follow from (D4) and (D6). In fact,
(D6) provides better bounds than (D5). To estimate pq, we investigate the section

Wj “ χ2pzq
Bh

Bw
pσpzqqpp´dS1GqxΦ,Υ;jy ` xΦ, pBxΥjq

;yY 1Xν ,Υ
;

jq,

in place of Yj , so

pq “
n
ÿ

i“1

p
Bg

Bxi
˝ ΞqXi ` p

Bg

Bx
˝ ΞqXν ` 2

m
ÿ

j“1

p
Bg

Byj
˝ ΞqpImW 0

j ,W
1
j q.

We break W into four simpler pieces: W “ $pV1 ` V2 ` V3q where

$ “ χ2pzq
Bh

Bw
pσpzqq, V1 “ p´dS1GqxΦ,Υ;y,

V2 “ xΦ, pBxΥq;yY 1Xν , V3 “ Υ;.
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Step 1. Proof of (C5). The map V1 : Cppq1 p pZq Ñ Lmp pZ, iT ˚ pZq is continuous for any
m ă nppq when 2 ď p ă 4. Indeed, V1 can be viewed as the composition

pΦ,Υ;q P Lp1 ˆ L
p1 Ñ Lnppq ˆ Lp

1 ˆ
ÝÑ Lm

´dS1G
ÝÝÝÝÑ Lm,

when p1 is sufficiently large.

For any p1 " 1, the map V2 : Cppq1 Ñ Lp
1

p pZ, iT ˚ pZq is also continuous since the map
pΦ, pBxΥq;q Ñ xΦ, pBxΥq;yY 1 can be viewed as the composition:

Lp1 ˆ L
p1 Ñ Lp1pI, L

pppY qq ˆ Lp
1

Ñ C0pI, LpppY qq ˆ Lp
1

pI, Lp
1

ppY qq

ˆ
ÝÑ Lp

1

pI, L1ppY qq

ş

ÝÑ Lp
1

pIq.

By Lemma 8.13 (D6), V3 is a continuous map into Lnppq. It remains to deal with $,
which is viewed as the composition of Bh

Bw with the map

σ : Cppq1 Ñ L1pM,Cq, M “ I ˆD2,

pA,Φq ÞÑ

ˆ

pt, zq ÞÑ

ż

ttuˆS1ˆtzu
xΦ,Υ;y

˙

.

The map σ is continuous, since it is the composition:

pΦ,Υ;q P Lp1 ˆ L
4 ˆ
ÝÑ L1 “ L1pM,L1pS1qq

ş

S1
ÝÝÑ L1pM,Cq.

Since Bh
Bw : Cw Ñ C is a smooth function with compact support, it follows from Lemma

8.14 that $ : C
ppq
1 Ñ Lp

1

is continuous for any 1 ď p1 ă 8.
The same argument shows that

Bg

Bxi
˝ Ξ,

Bg

Bx
˝ Ξ,

Bg

Byj
˝ Ξ

are continuous functions into Lp
1

pI,Rq for any 1 ď p1 ă 8. This completes the proof of
(C5).

Step 2. Proof of (C4). It follows by replacing Lp
1

by L8 through out Step 1, using (D4)
from Lemma 8.13.

Step 3. Proof of (C6). It follows by replacing Lp1 by L2
1´ε through out Step 1 with

0 ď ε ă 1
2 .

The proof of Proposition 8.9 is now completed. �

8.4. Proof of Theorem 8.2. In this subsection, we verify that a cylinder function f
satisfies conditions in Definition 7.3 and prove Theorem 8.2.

‚ (A1) and (A2) follows from (C1) and (C3).
‚ (A3) is satisfied on account of (C5), as np2q “ 4.
‚ (A4) is a consequence of (C2), while (A6) follows from (C6).
‚ As for (A5), the statement on the support of q “ grad f is clear from the con-

struction. The estimate on }q}2 is a consequence of the explicit formulae (8.1) and
(8.2).
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Only (A7) requires some further explanation, as Proposition 8.7 does not extend to the
case when k “ 1. The proof of [KM07, Proposition 11.4.1] fails here, as L2

2,1pS
1 ˆ D2q

fails to be an algebra:

L2
2,1pS

1 ˆD2q ãÑ L2
1pS

1, L2
1pD

2qq ­ãÑ C0,

Nevertheless, it is at the borderline. As we are merely interested in T0, losing a tiny
amount of regularity is affordable. In fact, one can still prove that

q : C1ppY q Ñ T0

is smooth. This completes the proof of Theorem 8.2.

8.5. Banach Spaces of Tame Perturbations. In this subsection, we construct a Ba-
nach space of tame perturbations as described in Section 7. Since only minor changes are
needed, we will only state the theorem and refer to [KM07, Section 11.6] for the actual
proof.

First, we introduce a broader class of functions defined on Ck´1{2p
pY ,psq, called general-

ized cylinder functions. In the definition of cylinder functions (cf. Definition 8.1), one may

allow entries of Ξ to come from different embeddings of S1 ˆD2 into pY . This motivates
the next definition.

Definition 8.15. A function f 1 defined on Ck´1{2p
pY ,psq is called a generalized cylinder

function if it arises as the composition g1 ˝ Ξ1 where

‚ the map Ξ1 is defined using a collection of cylinder functions f1, ¨ ¨ ¨ , fl:

Ξ1 “ pf1, ¨ ¨ ¨ , flq : Ck´ 1
2
ppY ,psq Ñ Rl.

Their underlying embeddings ιj : S1 ˆD2 Ñ pY , 1 ď j ď l might be different.
‚ the function

g1 : Rl Ñ R
is any smooth function with compact support. ♦

Theorem 8.16. Let Y 1 is a smooth co-dimension 0 submanifold of pY . Suppose a gen-
eralized cylinder function f 1 is defined using a collection of embeddings tιku1ďkďl with
Im ιk Ă Y 1 for all ιk, then grad f 1 is a perturbation tame in Y 1 in the sense of Definition
7.3.

The proof of Theorem 8.16 is not essentially different from that of Theorem 8.2.

Theorem 8.17. Fix an open submanifold Y 1 Ă pY . Let qi pi P Nq be any countable
collection of tame perturbations arising as gradients of generalized cylinder functions on

Ck´1{2p
pY ,psq with support in Y 1. Then there exists a separable Banach space P and a linear

map:

O : P Ñ C0pCk´1{2p
pY ,psq, T0q

λ ÞÑ qλ

with the following properties:
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(F1) For each λ P P, the element qλ is a tame perturbation in Y 1 in the sense of
Definition 7.3.

(F2) The image of O contains all the perturbations qi from the given countable collec-
tions.

(F3) If pZ “ rt1, t2s ˆ pY is a cylinder, then for all k ě 2, the map

P ˆ Ckp pZq Ñ Vk
pλ, γq ÞÑ pqλpγq

is a smooth map of Banach manifolds.
(F4) For all k ě 1 and p “ 7{2, the map

P ˆ Cppqk p pZq Ñ Vppqk
pλ, γq ÞÑ pqλpγq

is a smooth map of Banach manifolds.
(F5) For ε “ 1{4, the map

P ˆ C1´εpY q Ñ T0pY q

pλ, βq ÞÑ qλpβq.

is continuous and satisfies the bound:

}qλpB,Ψq}2 ď }λ}P ¨m2p}Ψ}L2pY 1q ` 1q.

Proof. See [KM07, Theorem 11.6.1]. �

We do not distinguish λ P P with its image qλ in C0pCk´1{2p
pY ,psq, T0q.

Remark 8.18. In property (F4), any index 3 ă p ă 4 will make the Compactness
Theorem 9.5 work. In property (F5), one may take any 0 ă ε ă 1{2. ♦

Corollary 8.19. Suppose tqnu Ă P and }qn}P Ñ 0 as n Ñ 8. Then for any bounded

region O Ă CkppY ,psq, the C l-norm of qn converges to zero, i.e.

}qn}ClpO,CkÑTkq Ñ 0 as nÑ8.

Our primary interest is in the case when Y 1 “ Y “ ts ď 0u, and let us specify the
countable collection of tame perturbations associated to Y 1 in Theorem 8.17. We make
the following choices in order:

‚ a positive integer l;
‚ a compact subset K 1 of Rl;
‚ a smooth function g1 on Rl with support in K 1

and for each j P t1, ¨ ¨ ¨ , lu,

‚ an embedding ι : S1 ˆD2 ãÑ pY 1q˝ into the interior of Y 1;
‚ a pair of positive integers n and m;
‚ compactly supported 1-forms c1, ¨ ¨ ¨ , cn and compactly supported sections Υ1, ¨ ¨ ¨ ,Υm

of S;
‚ a compact subset K of Rn ˆ pR{2παZq ˆ Rm;
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‚ a smooth function g on Rn ˆ pR{2παZq ˆ Rm with support in K.

We require the resulting collection tqiuiPN to be dense in the space of all possible choices,
in C8-topology; see [KM07, P. 192] for a complete description. For the rest of the paper,
we presume that such a collection tqiuiPN is chosen, once and for all, for Y 1 “ Y . Let P
be the resulting Banach spaces constructed by Theorem 8.17.

Each configuration and gauge transformation on pY can be restricted to Y , giving rise
to maps:

Rc : Ck´ 1
2
ppY ,psq Ñ Ck´ 1

2
pY,psq

Rg : Gk` 1
2
ppY ,psq Ñ Gk` 1

2
pY,psq.

Let C˚pY,psq be the irreducible part of CpY,psq and form the quotient configuration space:

B˚pY,psq “ C˚pY,psq{ ImpRg : GppY ,psq Ñ GpY,psqq.

Let us now state the separating property enjoyed by P: it is a direct consequence of
Proposition 8.4 and 8.6 and the proof is omitted here.

Theorem 8.20. Given a compact subset K of a finite dimensional C1-submanifold M Ă

B˚ppY ,psq, suppose the restriction map to the truncated manifold Y

rRcs : BppY ,psq Ñ BpY,psq

gives an embedding of K into B˚pY,psq. Then we can find a open neighborhood U of K in
M , a collections of embeddings

ιj : S1 ˆD2 ãÑ Y, 1 ď j ď l

and cylinder functions fk defined using ιk such that the product map

Ξ1 “ pf1, ¨ ¨ ¨ , flq : B˚ppY ,psq Ñ Rl

gives an embedding of U into Rl. If in addition, a tangent vector V P TβB˚ppY ,psq at some
β P K is given pV is not necessarily tangential to Mq and rrcs˚pV q ‰ 0, then we can
arrange so that

Ξ1˚pV q ‰ 0 P TRl.

9. Compactness for Perturbed Seiberg-Witten Equations

With the Banach space P of tame perturbations defined as in Subsection 8.5, we start
to analyze the moduli space of perturbed Seiberg-Witten equations. The primary goal of

this section is to prove the compactness theorem for solutions on Rt ˆ pY . Before that, we
have to generalize results from Section 5 and 6 for the perturbed equations.
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9.1. Energy Equations. Choose a tame perturbation q “ grad f P P with

(9.1) }q}P ă 1.

For all estimates and theorems below, (9.1) will be a standard assumption. Following

the notations in Section 7, let I “ rt1, t2st and pZ “ I ˆ ppY ,psq. Consider a solution

γ P Ckp pZq to the perturbed Seiberg-Witten equations

(9.2) 0 “ F
pZ,q
pγq :“ F

pZ
pγq ` pqpγq.

Write γ as pcptq, Bptq,Ψptqq where γ̌ptq “ pBptq,Ψptqq is the underlying path in Ck´1{2p
pY q.

Then the equation (9.2) can be cast into the form

d

dt
γ̌ptq “ ´ gradLωpγ̌ptqq ´ dγ̌ptq cptq ´ qpγ̌ptqq.(9.3)

Proposition 9.1. For any perturbation q “ grad f P P with }q}P ă 1 and any configu-

ration γ “ pA,Φq on pZ “ I ˆ ppY ,psq, the L2-norm of the perturbed Seiberg-Witten map
F
pZ,q
pA,Φq can be expressed as

ż

Z
|F

pZ,q
pA,Φq|2 “ Eq

anpA,Φq ´ Eq
toppA,Φq

where

Eq
toppA,Φq :“ 2Ĺωpγ̌pt1qq ´ 2Ĺωpγ̌pt2qq,

Eq
anpA,Φq :“

ż

I
}
d

dt
γ̌ptq ` dγ̌ptqcptq}

2
L2ppY q

` } grad Ĺωpγ̌ptqq}2L2ppY q
,

and Ĺω “ Lω`f is the perturbed Chern-Simons functional. Moreover, there exist constants
C1, C2 ą 0 such that

EanpA,Φq ă C1 ¨ Eq
anpA,Φq ` C2,

where Ean is the analytic energy defined in Proposition 5.4.

Proof. Only the last clause requires some work. By the Cauchy-Schwartz inequality, we
have

(9.4) 2Eq
anpγq ě Eanpγq ´ 2

ż

I
}qpγ̌ptqq}2

L2ppY q
.

since grad Ĺω “ gradLω ` q. By the property (F5) from Theorem 8.17,
ż

I
}qpγ̌ptqq}2

L2ppY q
ď 2m2

2p1` }Φ}
2
L2pIˆY qq.(9.5)

Hence, it remains to estimate }Φ}2L2pIˆY q in terms of Eq
anpγq. Recall from Lemma 5.3 that

EanpA,Φq ` C 12 ě
ż

IˆpY

1

8
|FAt |

2 ` |∇AΦ|2 ` |pΦΦ˚q0 ` ρ4pω
`q|2 `

s

4
|Φ|2,(9.6)

ě

ż

IˆY
|pΦΦ˚q0 ` ρ4pω

`q|2 `
s

4
|Φ|2.
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for some C 12 ą 0. Combining (9.4)(9.5)(9.6) together, we obtain that

2Eq
anpγq ` C

2
2 ě

ż

IˆY

1

4
|Φ|4 ´ C3|Φ|

2 ě

ż

IˆY
|Φ|2 ´ C4.(9.7)

for some C22 , C3, C4 ą 0. This completes the proof. �

Now the proof of Lemma 6.5 and Theorem 6.3 can proceed with no difficulty. Let us
record the results for perturbed equations:

Theorem 9.2. For any C, ε ą 0, there exists a constant R0pε, C, pY ,psq ą 0 with the
following significance. For any tame perturbation q P P with }q}P ă 1, let γ “ pA,Φq

be a solution to the perturbed Seiberg-Witten equations (9.3) on Rt ˆ ppY ,psq with analytic
energy Eq

anpA,Φq ă C. Then for any n P Z and S ą R0, we have

EanpA,Φ; Ωn,Sq ă ε.

Here Ωn,S Ă Cz is the translated region of Ω0 defined in (2.4).

Theorem 9.3. For any C ą 0, there exist constants M0pC, pY ,psq, ζpC, pY ,psq ą 0 with
the following significance. For any perturbation q P P with }q}P ă 1, suppose pA,Φq is a

solution to the perturbed Seiberg-Witten equations p9.3q on RtˆppY ,psq with analytic energy
Eq
anpA,Φq ă C, then for any n P Z and S ą 0

EanpA,Φ,Ωn,Sq ăM0e
´ζS .

Remark 9.4. The analogous result for the exponential decay in the time direction follows
from the standard argument as in [KM07, Section 13], assuming the non-degeneracy of
critical points (cf. Definition 12.2). Indeed, once we obtain the exponential decay of Ĺω,
one starts to estimate the L2

1-norm and L2
k-norm of pA,Φq as in Subsection 6.3. The proof

is omitted here. ♦

9.2. Compactness. The next theorem is the analogue of Theorem 6.1 when q ‰ 0.

Theorem 9.5. For any perturbation q P P with }q}P ă 1, suppose tγn “ pAn,Φnqu Ă

Ck,locpRtˆppY ,psqq is a sequence of solutions to the perturbed Seiberg-Witten equations (9.3)

on Rt ˆ pY and their analytic energy

Eq
anpγnq :“ Eq

anpγn,Rtq ă C

is uniformly bounded. Then we can find a sequence of gauge transformations un P Gk`1,locpRtˆ
pY q with the following properties. For a subsequence tγ1nu of tunpγnqu and any finite interval

I Ă Rt, the restriction of each γ1n on I ˆ pY

γ1n|IˆpY

lies in ClpI ˆ ppY ,psqq. Additionally, they converge in L2
l pI ˆ

pY q-topology for any l ą 1.

Proof. It suffices to deal with the compact region IˆY1 where Y1 “ ts ď 1u is the truncated
3-manifold. Fix a reducible configuration γ10 on I ˆ Y1 as reference. The bootstrapping
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argument works as follows: by passing to a subsequence and applying appropriate gauge
transformations, we obtain that

γn ´ γ
1
0 bounded in L2

1 ñ γn Ñ γ8 weakly in L2
1 for some γ8

ñγn Ñ γ8 in L2
3{4 ñ pqpγnq Ñ pqpγ8q in L2 by (A6) with ε “ 1{4

ñγn Ñ γ8 in L2
1 on interior domains ñ pqpγnq Ñ pqpγ8q in L7{2 by (A3)

ñγn Ñ γ8 in L
7{2
1 on interior domains ñ pqpγ8q Ñ pqpγnq in L

7{2
1 by (A2)

ñγn Ñ γ8 in L
7{2
2 on interior domains ñ pqpγnq Ñ pqpγ8q in L

7{2
2 ãÑ L2

2 by (A1)

ñγn Ñ γ8 in L2
3 on interior domains ¨ ¨ ¨

Once we arrive at L2
3, one may proceed as in [KM07, Theorem 10.7.1]. To conclude

convergence of γn on interior domains from the convergence of pqpγnq, we use the properness
of the Seiberg-Witten map, cf. Theorem [KM07, Theorem 5.2.1]. �

Remark 9.6. It is not clear to the author whether the L2
1-norm of pqpγq can be estimated

in terms of the L2
1-norm of γ ´ γ0, so we adopt a different approach to arrive at the

L2-convergence of pqpγnq, cf. [KM07, Theorem 10.7.1]. ♦

Proposition 9.7. Suppose tqiu Ă P is a convergent sequence in P with }qi}P ă 1 and let

βi P CkppY ,psq be solutions of the equation

pgradLω ` qiqpβiq “ 0.

Then there is a sequence of gauge transformations ui P Gk`1ppY q such that the transformed

solutions uipβiq have a convergent subsequence in CkppY ,psq.

Proof. The proof follows the same line of argument of Theorem 9.5. To conclude the
convergence of

qipβiq Ñ q8pβ8q,

use (F3)(F4)(F5) from Theorem 8.17. �
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Part 4. Linear Analysis

Over the non-compact manifold pY , the inclusion map

L2
k`1p

pY q ãÑ L2
kp
pY q

is no longer compact. As a result, the spectrum of the extended Hessian of the Chern-
Simons-Dirac functional Ĺω, as a unbounded self-adjoint operator, is not discrete.

The goal of this part to understand the essential spectrum of extended Hessians and
show that it is disjoint from the origin, in which case one can still speak of the spectrum
flow. Moreover, we will show the linearization of the Seiberg-Witten equations together
with the linearized gauge fixing equation form a Fredholm operator on the complement

Riemannian 4-manifolds Rt ˆ pY and X ; so we have a well-posed moduli problem.
Part 4 is organized as follows. In Section 10, we review an abstract formalism of spectral

flow following the work of Robbin-Salamon [RS95]. In Section 11 we collect some criterion
from functional analysis that computes the essential spectrum following the textbook

[HS96] by Hislop and Sigal. These results will be applied to the extended Hessian zHess of

Ĺω in Section 12. The key observation here is that zHess can be cast into the form (up to
a compact perturbation):

σpBs `DΣq : ΓpRs ˆ Σ, Eq Ñ ΓpRs ˆ Σ, Eq

such that σ2 “ ´ IdE and DΣ : ΓpΣ, Eq Ñ ΓpΣ, Eq is a first order self-adjoint operator
that anti-commutes with σ, i.e.

σDΣ `DΣσ “ 0.

This observation was due to Yoshida [Yos91]. A short discussion in the context of the
gauged Witten equations can be found in [Wan20, Subsection 4.2].

Section 13 and 14 are devoted to the linearization of the Seiberg-Witten map on Rtˆ pY
and X respectively. We will study the Fredholm property and the Atiyah-Patodi-Singer
boundary value problem following the book [KM07, Section 17].

10. Spectral Flow and Fredholm Index

In the section, we summarize the axioms that characterize the spectral flow. Let us first
introduce a few notations before we state the main result: Theorem 10.1.

Let H0 be a real separable Hilbert space and A0 : H0 Ñ H0 be a self-adjoint operator
with domain W0 :“ DpA0q dense in H0. We assume that 0 does not lie in the essential
spectrum of A0:

(10.1) 0 R σesspA0q.

W0 becomes a Hilbert space with respect to the graph norm

}x}2W0
:“ }A0x}

2
H0
` }x}2H0

, @x PW0.

The inclusion map W0 ãÑ H0 is not assumed to be compact, so σesspA0q might be non-
empty. A pair pW,Hq of Hilbert spaces is called admissible if one can find a finite dimen-
sional space V “ Rn such that

W “W0 ‘ V, H “ H0 ‘ V.
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A symmetric operator A : W Ñ H is called admissible if one can find a symmetric
compact operator K : W Ñ H such that

A “
ˆ

A0 0
0 0

˙

`K.

By the Kato-Rellich theorem, A is self-adjoint with domain DpAq “W . Let LsympW,Hq
be the affine space of all admissible operators between pW,Hq. It is topologized using the
operator norm on the compact perturbation K. Let BpR,W,Hq be the space of continuous
maps A : RÑ Lsym such that the limits

A˘ “ lim
tÑ˘8

Aptq : W Ñ H

exist. The Ck-distance between two paths A1 and A2 is defined as

dkpA1,A2q :“ sup
tPR

ÿ

0ďjďk

}
dj

dtj
pA1ptq ´ A2ptqq}WÑH .

Denote by BkpR,W,Hq Ă BpR,W,Hq be the subspace consisting of paths having finite
Ck-distance with a constant path, endowed with Ck-topology. Note that B0pR,W,Hq “
BpR,W,Hq. Finally, define an open subset

A “ A pR,W,Hq :“ tA P BpR,W,Hq : A˘ invertibleu

and set A k “ A XBk. Given paths A,Al,Ar P A pR,W,Hq such that Alptq “ Ap0q “
Arp´tq, t ě 0, A is said to be the catenation of Al and Ar and write

A “ Al#Ar
if

Aptq “
"

Alptq if t ď 0
Arptq if t ě 0

Given any two reference operators pA01,W01, H01q and pA02,W02, H02q satisfying the con-
dition (10.1) and any two paths Ai P A pR,Wi, Hiq, i “ 1, 2, one can form the direct
sum

A1 ‘ A2 P A pR,W1 ‘W2, H1 ‘H2q.

Let us now state the axioms that characterize the spectrum flow along a path A P

A pR,W,Hq.

Theorem 10.1 (cf. [RS95] Theorem 4.23). For any reference operator pA0,W0, H0q sat-
isfying the condition (10.1) and any finite dimensional auxiliary space V , there exists a
unique map

µ : A pR,W,Hq Ñ Z
satisfying the following axioms

‚ pHomotopyq µ is constant on the connected components of A pR,W,Hq;
‚ pConstantq If A is a constant path, then µpAq “ 0;
‚ pDirect Sumq µpA1 ‘ A2q “ µpA1q ` µpA2q;
‚ pCatenationq If A “ Ar#Ar, then µpAq “ µpAlq ` µpArq;
‚ pNormalizationq For W “ H “ R and Aptq “ arctanptq, µpAq “ 1.
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The integer µpAq is called the spectral flow of A P A pR,W,Hq.

Proof. The proof follows the same line of argument as [RS95, Theorem 4.23]. The idea
for existence works as follows. Define

Lk “ tA P LsympW,Hq : dim kerA “ ku,

then Lk is a smooth Banach submanifold of Lsym of real co-dimension kpk`1q{2. For any
path A P A , find a C1-path A1 P A 1 that is homotopic to A and intersects each Lk, k ě 1
transversely. Then µpAq is defined as the algebraic intersection of A1 with L1. For details,
see [RS95]. �

There is another way to think of the spectral flow. For any path A P A k, define the
differential operator:

DA : Wk :“ L2
kpR,W q X L2

k`1pR, Hq Ñ L2
kpR, Hq

ξptq ÞÑ
d

dt
ξptq ` Aptqξptq,

where the Wk-norm is defined as

}ξ}2Wk
“

ż

R

ˆ

ÿ

0ďjďk`1

}
dj

dtj
ξ}2H `

ÿ

0ďjďk

}
dj

dtj
ξ}2W

˙

dt for all ξ P C80 pR,W q.

Theorem 10.2 (cf. [RS95] Theorem 3.12). For any k ě 0 and any A P A k such that

Aptq Ñ A˘ in Ckloc-topology as tÑ ˘8,

then DA : Wk Ñ L2
kpR, Hq is a Fredholm operator of the index µpAq.

Proof. As our situation is slightly simpler than [RS95, Theorem 3.12], we present a direct
proof using parametrix patching argument. The theorem holds when Aptq ” A` is a
constant path and A` is invertible. Indeed,

}p
d

dt
` A`qξ}2L2

kpR,Hq
“

ÿ

0ďjďk

ż

R
}
dj

dtj
p
d

dt
` A`qξ}2H “

ÿ

0ďjďk

ż

R
}
dj`1

dtj`1
ξ}2H ` }A`p

dj

dtj
ξq}2H

“
ÿ

0ďjďk

ż

R
}
dj`1

dtj`1
ξ}2H ` }

dj

dtj
ξ}2W Á }ξ}2Wk

.

In general, let A˘ “ limtÑ˘8Aptq be the limiting operators of A and Q˘ : L2
kpR, Hq Ñ

Wk be the inverse of DA˘ . Choose cut-off functions β˘ on Rt such that

‚ β´ ` β` “ 1;
‚ β`ptq ” 1 when t ą 1; β`ptq ” 0 when t ă ´1.

Take QL “ Q´β´ `Q
`β` and K˘ “ DA ´DA˘ “ A´ A˘. We compute:

QLDA “ Q´DAβ´ `Q
´rβ´, DAs `Q

`DAβ` `Q
`rβ`, DAs

“ IdWk
`Q´pK´β´q `Q

`pK`β`q ` pQ
` ´Q´qBtβ´

“ IdWk
`Q´pK´β´q `Q

`pK`β`q ´Q
`ppA` ´ A´qBtβ´qQ´.

(For the right parametrix, take QR “ β´Q
´ ` β`Q

`).
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To show that each error term gives arise to a compact operator, apply the next lemma
to operators:

K´β´,K
`β` and pA` ´ A´qBtβ´.

Lemma 10.3 ([RS95] Lemma 3.18). For any k ě 0, suppose Kptq : W Ñ H is a Ck-family
of compact operators that converges to zero in Ckloc-topology as tÑ ˘8, i.e.

lim
tÑ˘8

}Kpt` ¨q}Ckpr´1,1sq “ 0.

Then the multiplication operator K˚ : ξptq ÞÑ Kptqξptq is compact from Wk to L2
kpR, Hq.

Proof of the Lemma. We follow the argument of [RS95, Lemma 3.18]. It suffices to show

the operator ξptq ÞÑ dj

dtj
pKptqξptqq is compact from Wk to L2pR, Hq for any 0 ď j ď k.

This reduces the problem to the case when k “ 0.
Let ComppW,Hq be the space of compact operators from W to H. The function

K : R Ñ ComppW,Hq can be approximated in C0-topology by linear combinations of
characteristic functions. Each approximation Kn is a finite sum

n
ÿ

j“0

χIjK
pjq
n

where χIj is the characteristic function of a finite interval Ij Ă R and K
pjq
n P ComppW,Hq

is a compact operator. As pKnq˚ Ñ K˚ in the norm topology, it suffices to prove each

pKnq˚ is compact. We reduce to the case when K “ χI1K
p1q consists of a single term.

The final step is to approximate Kp1q by a sequence of finite rank operators. When
Kp1q is a finite rank operator, K˚ is the composition of three operators:

W0
K˚
ÝÝÑ L2

1pI1, Uq Ñ L2pI1, Uq Ñ L2pR, Hq,

where U “ ImKp1q is a finite dimensional real vector subspace of H, so the middle map
is compact. This completes the proof of the lemma. �

Back to the proof of Theorem 10.2. To prove IndpDAq “ µpAq, it remains to verify
the assignment A ÞÑ IndpDAq satisfies all axioms of spectral flow in Theorem 10.1 when
k “ 0. Only the catenation axiom is not obvious. However, by [RS95, Proposition 4.26],
the catenation axiom follows from the homotopy, direct sum and constant axioms. This
completes the proof of Theorem 10.2 �

11. Essential Spectrum

To apply the general theory from the previous section, it is important to verify the
condition (10.1) for operators of interest. In this section, we discuss a class of model
operators following the setup of [Yos91]. The main result is Proposition 11.2. This general

formalism will be applied to the extended Hessians zHess of Ĺω in the next section.

Recall that pY “ Y Yr´1,8qsˆΣ is a 3-manifold with cylindrical ends. Suppose E Ñ pY

is a real vector bundle over pY such that

E|r´1,8qsˆΣ “ π˚E0
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and E0 Ñ Σ is a vector bundle over Σ. Here π : r´1,8qs ˆΣ Ñ Σ is the projection map.
Bundles E and E0 are endowed with Riemannian metrics. We investigate a special class
of first order differential operators

DY : C80 p
pY ,Eq Ñ C80 p

pY ,Eq;

satisfying the following constraints on DY :

‚ DY is elliptic and symmetric with respect to the L2-inner product;
‚ DY “ σp dds `DΣq on the cylindrical end r´1,8qs ˆ Σ, where
‚ σ : E0 Ñ E0 is skew-symmetric bundle map of E0 Ñ Σ, i.e. σ`σ˚ “ 0; moreover,
σ2 “ ´ IdE0 ;

‚ DΣ : C8pΣ, E0q Ñ C8pΣ, E0q is a first order self adjoint elliptic differential oper-
ator; moreover, DΣ anti-commutes with σ, i.e. σDΣ `DΣσ “ 0.

Example 11.1. The simplest example of DY is the Dirac operator. Let E “ S be the
spin bundle and DY “

ř

1ďiď3 ρ3peiq∇B
ei for some spinc connection B. On the cylindrical

end r´1,8qs ˆ Σ, we require B to take the form

B “
d

ds
` B̌

for some spinc connection B̌ on Σ. Set σ “ ρ3pdsq on r´1,8qs ˆ Σ. ♦

Proposition 11.2. Under above assumptions, DY is a unbounded self-adjoint operator

on L2ppY ,Eq with domain L2
1p
pY ,Eq. Moreover, the essential spectrum σess of DY is

p´8,´λ1s Y rλ1,8q

where λ1 is the first non-negative eigenvalue of DΣ. In particular, if DΣ is invertible, then
0 R σesspDY q.

Remark 11.3. Since DΣ anti-commutes with σ, ´λ1 is also the first non-positive eigen-
value of DΣ. The spectrum of DΣ is symmetric with respect to the origin. ♦

The proof of Proposition 11.2 will dominate the rest of this section. To compute the
essential spectrum of DY , we need two additional results from functional analysis: Weyl’s
criterion and Zhislin’s criterion.

Definition 11.4. Suppose A : H Ñ H is a self-adjoint operator with domain W :“
DpAq Ă H. For any λ P C, a sequence tunu is called a Weyl sequence for pA, λq if

tunu ĂW , }un}H “ 1, un
w
ÝÑ 0 weakly in H and pA´ λqun

s
ÝÑ 0 strongly in H. ♦

Theorem 11.5 (Weyl’s Criterion, [HS96] Theorem 7.2). Under the assumption of Defi-
nition 11.4, λ P σesspAq if and only if there exists a Weyl sequence for pA, λq.

When H “ L2ppY ,Eq, Weyl’s criterion can be refined into Zhislin’s criterion for locally
compact operators.

Definition 11.6. Suppose H “ L2ppY ,Eq and χB is the characteristic function for a

subset B Ă pY . A self-adjoint operator A on H is called locally compact if the operator

χBpA´ iq´1 : H Ñ H is compact for any compact subset B Ă pY . ♦
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Definition 11.7. Let Yn “ ts ď nu, n P Zě0 be the truncated 3-manifold. For any λ P C,
a sequence tunu ĂW is called a Zhislin sequence for pA, λq if }un}H “ 1, supppunq Ă Y c

n

and pA´ λqun
s
ÝÑ 0 in H. ♦

As un is supported on the complement of Yn, un
w
ÝÑ 0. As a result, a Zhislin sequence

is always a Weyl sequence.

Theorem 11.8 (Zhislin’s Criterion, [HS96] Theorem 10.6). Suppose H “ L2ppY ,Eq and
A : H Ñ H is self-adjoint and locally compact. If A satisfies the commutator estimate:

(11.1) }rA, ϕnspA´ iq´1}HÑH Ñ 0 as nÑ8,

where ϕn “ ϕpsp¨q{nq and ϕ : R Ñ R is some cut-off function such that ϕprq ” 1 when
r ď 1 and ϕprq ” 0 when r ě 2, then λ P σesspAq if and only if there exists a Zhislin
sequence for pA, λq.

Idea of the Proof. The ”if” part follows from Weyl’s Criterion. Suppose λ P σesspAq and
tumu is a Weyl sequence for pA, λq. We wish to construct a Zhislin sequence for pA, λq out
of tumu. For any n P Zě0, choose a large number mpnq and define

vn “ p1´ ϕnqumpnq.

First of all, pA ´ iqum “ pA ´ λqum ` pλ ´ iqum
w
ÝÑ 0 as m Ñ 8. Because ϕnpA ´ iq´1

is compact, ϕnum “ φnpA ´ iq´1 ˝ pA ´ iqum
s
ÝÑ 0 as m Ñ 8 for any fixed n. By taking

mpnq " n, we ensure that }vn}H ě
1
2 .

The second step is to use the commutator (11.1) estimate to prove pA ´ λqvn
s
ÝÑ 0

as n Ñ 8. Finally, tvn{}vn}Hu is the desired Zhislin sequence. For details, see [HS96,
Theorem 10.6] �

Remark 11.9. Zhislin’s Criterion shows that the essential spectrum of A is determined
completely by its behavior along the cylindrical end r0,8qs ˆ Σ. ♦

Proof of Proposition 11.2. DY is a locally compact operator as χBpDY ´ iq
´1 : L2ppY q Ñ

L2ppY q factorizes through L2
1pBq when B “ Yn. The commutator estimate is also satisfied

as

rDY , ϕns “
1

n
¨
dϕ

dr
p
s

n
qρpdsq

and its L8-norm decays to zero. Applying Zhislin’s criterion, we reduce to the case when
pY “ Rs ˆ Σ is a cylinder and

DY “ σp
d

ds
`DΣq.

To study the spectrum of DY in this case, apply Fourier transformation in Rs-direction.
Our goal is to find eigenvalues of

yDY pξq “ σpiξ `DΣq : ΓpΣ, E0q Ñ ΓpΣ, E0q

for any fixed ξ P Rξ. Let φλ be an eigenvector of DΣ with eigenvalue λ ą 0. As DΣ

anti-commutes with σ, ´λ is also an eigenvalue; indeed,

DΣpσpφλqq “ ´λσpφλq.
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As a result, spanCtφλ, σpφλqu is an invariant subspace of yDY pξq:

yDY pξq “

ˆ

0 ´1
1 0

˙ˆ

λ` iξ 0
0 ´λ` iξ

˙

“

ˆ

0 λ´ iξ
λ` iξ 0

˙

whose eigenvalues are ˘
a

ξ2 ` λ2. Let φ˘λ pξq be their associated eigenvectors respectively
and set

φnpsq :“ pϕps´ 2nq ´ ϕps´ nqqφ˘λ pξq exppiξsq.

where ϕ : R Ñ R is the cut-off function defined in Theorem 11.8. Then tφn{}φn}2u is a

Zhislin sequence for pDY ,˘
a

ξ2 ` λ2q, and ˘
a

ξ2 ` λ2 P σesspDY q by Theorem 11.8.

When λ1 P p´λ1, λ1q, pyDY pξq ´ λ1q is invertible for each ξ P Rξ; their inverses are
uniformly bounded. As a result, the operator

DY ´ λ
1

is invertible, so λ1 R σesspDY q. This completes the proof of Proposition 11.2. �

12. Extended Hessians

In this section, we apply the abstract formalisms in Section 11 to the extended Hessians
of Ĺω and compute its essential spectrum. The main result is Proposition 12.1. The proof
relies on the key observation from the first paper [Wan20, Proposition 7.4]: the Seiberg-
Witten equations on CˆΣ is secretly the gauged Witten equations on C. The structural
results from [Wan20, Subsection 4.2] then becomes essential here. The formalism from
Section 11 in fact applies to any gauged Witten equations.

Recall from Section 4 that the quotient configuration space

BkppY ,psq “ CkppY ,psq{Gk`1ppY q

is a Hilbert manifold when k ą 1
2 . For any γ P CkppY ,psq, denote by rγs its gauge equivalent

class in BkppY ,psq. By Lemma 4.4 the tangent space of CkppY ,psq at γ admits a decomposition:

Tk,γ :“ TγCkppY ,psq “ Jk,γ ‘Kk,γ

where

Jk,γ “ Impdγ : L2
k`1p

pY , iRq Ñ Tk,γq and

Kk,γ “ kerpd˚γ : Tk,γ Ñ L2
k´1p

pY , iRqq

form L2-complementary sub-bundles of Tk Ñ CkppY ,psq. Moreover,

TrγsBkppY ,psq “ Kk,γ .

Take a tame perturbation q “ grad f P P. As the perturbed Chern-Simons-Dirac

functional Ĺω “ Lω`f is invariant under the identity component of Gk`1ppY q, its gradient

grad Ĺω “ gradLω ` q

defines a smooth section of Kk´1 Ñ CkppY ,psq and its Hessian is a symmetric bundle map:

D grad Ĺω : Tk Ñ Tk´1
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which is equivariant under the action of Gk`1ppY q. As CkppY ,psq is an affine space, the tangent

bundle Tk Ñ CkppY ,psq is endowed with the trivial flat connection, but the decomposition
Tk “ Jk ‘Kk is not parallel. Consider the composition of maps:

Hessq :“ ΠKk´1
˝D grad Ĺω : Kk Ñ Kk´1,

and write D grad Ĺω into a block form:

(12.1) D grad Ĺω “
ˆ

y x
x˚ Hessq

˙

: Jk ‘Kk Ñ Jk´1 ‘Kk´1,

where x “ ΠJk´1
˝D grad Ĺω|Kk and y “ ΠJk´1

˝D grad Ĺω|Jk . Note that

x “ 0, y “ 0

when γ P CritpĹωq is a critical point. Here is the another way to think of Hessq. Ĺω
descends to a circle valued functional Ĺω on the quotient configuration space BkppY ,psq.
The Hessian of Ĺω at rγs P BkppY ,psq regarded as a map

Kk,γ “ TrγsBkppY ,psq Ñ Kk´1,γ

is precisely given by Hessq. However, Hessq is not the convenient notion to work with from

the gauge theoretic point of view. One looks instead at the extended Hessian zHessq of

Ĺω whose expression at γ P CkppY ,psq is defined by

zHessq,γ :“

ˆ

0 d˚γ
dγ Dγ grad Ĺω

˙

: L2
kp
pY , iRq ‘ Tk,γ Ñ L2

k´1p
pY , iRq ‘ Tk´1,γ .

Proposition 12.1 (cf. [KM07] Proposition 12.3.1). The operator Hessq,γ : Kk Ñ Kk´1 is
symmetric. If γ is a critical point of Ĺω, then it is invertible if and only if the extended

Hessian zHessq,γ at γ is invertible. Moreover, the spectrum of zHessq,γ is real and

σesspzHessq,γq “ p´8,´λ1s Y rλ1,8q

where λ1 ą 0 is a positive number depending only on the boundary data pgΣ, λ, µq of

Y P Cobs. In particular, zHessq,γ is a Fredholm operator of index 0 for any k ě 1.

Definition 12.2. A critical point γ P CkppY ,psq of the perturbed Chern-Simons-Dirac

functional Ĺω “ Lω ` f is called non-degenerate if the extended Hessian zHessq,γ at γ is
invertible. ♦

The proof of Proposition 12.1 will dominate the rest of this section.

Proof of Proposition 12.1. We focus on the essential spectrum of zHessq,γ ; the rest of state-
ments follows from the same line of argument of [KM07, Proposition 12.3.1].

Let γ0 “ pB0,Ψ0q be the reference configuration of CkppY ,psq. Then γ ´ γ0 “ pb, ψq P

L2
kp
pY , iT ˚ pY ‘ Sq and

zHessq,γ “zHess0,γ0 ` hpb, ψq `

ˆ

0 0
0 Dγq

˙

.
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where hpb, ψq is an operator that involves only point-wise multiplication of pb, ψq. When

g P L2
kp
pY q is fixed, the Sobolev multiplication

L2
kp
pY q ˆ L2

kp
pY q Ñ L2

k´1

pf, gq ÞÑ fg

is a compact operator in the first argument when k ě 1 (see [KM07, Theorem 13.2.2]), so
the error hpb, ψq is compact. As q is tame, by property (A4), Dγq : L2

k Ñ L2
k is bounded

linear. In addition, since its image is supported on Y Ă pY , the operator Dγq : L2
k Ñ L2

k´1
is also compact.

By the Kato-Rellich theorem, the essential spectrum is invariant under compact per-

turbations. It suffices to compute the essential spectrum of zHess0,γ0 . The general theory

from Section 11 applies here, so we may concentrate on the special case when pY “ RsˆΣ
is a cylinder and γ0 “ pB˚,Ψ˚q is the Rs-translation invariant solution defined by (2.6).

At this point, we have to recall some results [Wan20, Subsection 4.2]. The extended

Hessian zHessγ0 can be cast into the form σpBs ` D̂κq as an operator

L2
1p
pY , iR‘ piRb dsq ‘ iT ˚Σ‘ Sq Ñ L2ppY , iR‘ piRb dsq ‘ iT ˚Σ‘ Sq

with

σ “

¨

˚

˚

˝

0 1 0 0
´1 0 0 0
0 0 ˚Σ 0
0 0 0 ρ3pdsq

˛

‹

‹

‚

and D̂κ defined as in [Wan20, P.36]. It is shown in [Wan20, Proposition 7.9] that D̂κ is
an invertible operator. Now we use Proposition 11.2 to conclude. �

13. Linearized Operators on Cylinders

In this section, we study the Seiberg-Witten moduli space on the cylinder Rt ˆ pY and
prove the Fredholm property of the linearized operator using the formalism of Section 10.
In Subsection 13.2, we will prove a separating property of the cokernel of the linearized
operator, which will be crucial in the proof of transversality in Theorem 16.1.

We have to justify that the proof of gluing theorem in [KM07, Section 18, 19] continue to
work in our case, in the presence of essential spectra. This is done in Subsection 13.3 and
13.4, where the relevant Atiyah-Patodi-Singer boundary value theory is also developed.

13.1. Linearized Operators. Here is the second reason why the extended Hessian is a
natural object: it is more consistent with the 4-manifold theory. Suppose

a, b P CritpĹωq Ă CppY ,psq

are non-degenerate critical points of the perturbed Chern-Simons functional Ĺω in the
sense of Definition of 12.2. To describe the moduli space of flowlines from a to b, we fix a
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smooth configuration γ on pZ :“ Rt ˆ pY such that γ is in the temporal gauge and

γ̌ptq “ a if t ă ´1,

γ̌ptq “ b if t ą 1.

Consider the configuration space

Ckpa, bq “ tpA,Φq “ γ0 ` pa, φq : pa, φq P L2
kp
pZ, iT ˚ pZ ‘ S`qu.

and the gauge group

Gk`1p pZq “ tu : pZ Ñ S1 : u´ 1 P L2
k`1p

pZ,Cqu.

We are interested in solutions of the perturbed Seiberg-Witten equations on pZ:

(13.1) 0 “ F
pZ,q
pγq :“ F

pZ
pγq ` pqpγq,

where F
pZ

is defined by (3.7) and pq is defined as in (7.3). We form the moduli space

Mkpa, bq :“ tγ P Ckpa, bq : F
pZ,q
pγq “ 0u{Gk`1p pZq.

We focus on the linearized theory of the moduli space in this section. Take a configu-
ration γ “ pA,Φq P Ckpa, bq, then a tangent vector V at γ is a section

pδcptq, δbptq, δψptqq P L2
kpRt ˆ pY , iR‘ iT ˚ pY ‘ Sq.

It lies in the kernel of the linearized operator DγF
pZ,q

(i.e. the tangent map) of F
pZ,q

if and

only if it solves the equation

(13.2)
d

dt

ˆ

δbptq
δψptq

˙

`Dγ̌ptq grad Ĺω
ˆ

δbptq
δψptq

˙

` dγ̌ptq δcptq “ 0, @t P R.

(13.2) is obtained by formally linearizing the equation (7.1). The convention of (7.2) is

also adopted here: γ̌ptq stands for the underlying path in CppY ,psq.
On the other hand, the linearized action of Gp pZq at γ is given by:

dγ : LiepGk`1p pZqq “ L2
k`1p

pZ, iRq Ñ TγCpa, bq

fptq ÞÑ p´
d

dt
fptq,dγ̌ptq fptqq,

whose L2-formal adjoint is

d˚γ : TγCpa, bq Ñ L2
k´1p

pZ, iRq

V ptq “ pδcptq, δbptq, δψptqq ÞÑ
d

dt
δcptq ` d˚γ̌ptq

ˆ

δbptq
δψptq

˙

.

It follows that DγF
pZ,q

together with the linearized gauge fixing operator d˚γ can be cast

into the form:

(13.3) V ptq ÞÑ
d

dt
V ptq `zHessq,γ̌ptqV ptq,

for V ptq “ pδcptq, δbptq, δψptqq. By Theorem 10.2, we have
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Proposition 13.1. For any γ P Ckpa, bq, the operator

pd˚γ ,DγF
pZ,q
q : L2

kp
pZ, iR‘ iT ˚ pY ‘ Sq Ñ L2

k´1p
pZ, iR‘ iT ˚ pY ‘ Sq

is Fredholm. Its index is independent of γ and equals the spectrum flow from zHessq,a to
zHessq,b.

Proof. The operator pd˚γ ,DγF
pZ,q
q differs from the pd˚γ0 ,Dγ0F pZ,q

q by a compact term. When

γ “ γ0 is the reference configuration, apply Theorem 10.2. �

Definition 13.2. The moduli space Mkpa, bq is called regular if the linearized operator
pd˚γ ,DγF

pZ,q
q at γ is surjective for any rγs PMkpa, bq. ♦

Definition 13.3. A tame perturbation q “ grad f P P is called admissible if

(E1) all critical points of the perturbed Chern-Simons-Dirac functional Ĺω “ Lω ` f
are non-degenerate in the sense of Definition 12.2;

(E2) for any pair of critical points a, b P CritpĹωq, the moduli space Mkpa, bq is regular
in the sense of Definition 13.2. ♦

One may think of Mkpa, bq as the moduli space of down-ward gradient flowlines in the

quotient space Bk´1{2p
pY ,psq. The reference configuration γ0 determines a homotopy class

of paths connecting ras and rbs, so it is more appropriate to write

(13.4) Mrγspras, rbsq :“Mkpa, bq, rγs P π1pBk´1{2p
pY ,psq, ras, rbsq.

By Theorem 9.5, this space is independent of the Sobolev completion that we choose, so
the subscript k is dropped in our notation.

Remark 13.4. To identify a finite energy solution γ in Theorem 9.5 with an element
of Mkpa, bq, we have to know the exponential decay of γ in the time direction using the
non-degeneracy of critical points, which is omitted in this paper; cf. Remark 9.4. ♦

Since the Seiberg-Witten equations on pZ “ Rt ˆ pY has an apparent Rt-translation
symmetry, Mrγspras, rbsq is acted on freely by Rt if the topological energy Etop along the
path

rγs P π1pBk´1{2p
pY ,psq, ras, rbsq

is positive. We form the unparameterized moduli space by taking the quotient space

(13.5) |Mrγspras, rbsq :“Mrγspras, rbsq{Rt.

When q is admissible, |Mrγspras, rbsq is a smooth manifold of dimension Indpd˚γ ,DγF
pZ,q
q´1.

13.2. Sections in the Cokernel. Our ultimate goal is to show that admissible pertur-
bations, in the sense of Definition 13.3, are generic, cf. Theorem 16.1. To do this, we have
to understand sections in the cokernel of pd˚γ ,DγF

pZ,q
q, when it is not surjective.

Suppose U P L2p pZ, iR‘ iT ˚ pY ‘ Sq is L2-orthogonal to the image of pd˚γ ,DγF
pZ,q
q at a

solution rγs PMkpa, bq, then U solves the equation

(13.6) ´
d

dt
Uptq `zHessq,γ̌ptqUptq “ 0 by (13.3).



70 DONGHAO WANG

By elliptic regularity, U is smooth and U P L2
1. We write U as

Uptq “ pδc1ptq, δb1ptq, δψ1ptqq.

The proof of Theorem 16.1 in Section 16 relies on a separating property of the section U :

Lemma 13.5. Under above assumptions, δc1ptq ” 0. Moreover, if U ‰ 0 and γ̌ptq is
never reducible on ttu ˆ Y , then there exists a time slice t0 P R such that the tangent
vector pδb1pt0q, δψ

1pt0qq at γ̌pt0q can be separated by a cylinder function f tame in Y .

Here, Y “ ts ď 0u Ă pY is the truncated 3-manifold.

Remark 13.6. By the unique continuation property, cf. Theorem 15.3 below, if γ̌ptq is
reducible at some slice ttuˆY , then a solution γ P Ckpa, bq has to reducible globally, which
is absurd. So the condition of Lemma 13.5 is fulfilled. ♦

Proof of Lemma 13.5. Consider a smooth function ξ P L2
k`1p

pZ, iRq and the section

Vξ “ p0,dγ ξq P L
2
kp
pZ, iR‘ iT ˚ pY ‘ Sq.

Since erξ ¨ γ also solves the equation F
pZ,q
“ 0 for any r P R, taking the derivatives yields

DγF
pZ,q
pdγ ξq “ 0,

so the vector

pd˚γ ,DγF
pZ,q
qVξ “ pd

˚
γ dγ ξ, 0, 0q P L

2p pZ, iR‘ iT ˚ pY ‘ Sq

is L2-orthogonal to U . Since the composition d˚γ dγ : L2
2p
pZ, iRq Ñ L2p pZ, iRq is an in-

vertible operator and L2
k`1 is dense in L2

2, δc1ptq “ 0. Now (13.6) is reduced to a pair of
equations:

0 “ d˚γ̌ptqpδb
1ptq, δψ1ptqq,(13.7)

d

dt
pδb1ptq, δψ1ptqq “ Dγ̌ptq grad Ĺωpδb1ptq, δψ1ptqq.(13.8)

For the second clause of Lemma 13.5, suppose on the contrary that Uptq can not be

separated for any t P Rt. By Proposition 8.6, we can find a function ξptq P L2
1p
pY , iRq such

that

pδb1ptq, δψ1ptqq “ dγ̌ptq ξptq “ p´dpY ξptq, ξptqΨptqq on ttu ˆ Y

for each t P Rt. If we write grad Ĺω as

pgrad Ĺ0
ω, grad1 Ĺωq P L2ppY , iT ˚ pY ‘ Sq,

then

grad Ĺωpu ¨ γ̌q “ pgrad0 Ĺωpγ̌q, u ¨ grad1 Ĺωpγ̌qq.
In particular,

Dγ̌ptq grad Ĺωpdγ̌ptq ξptqq “ p0, ξptq ¨ grad1 Ĺωpγ̌ptqq.
Even though dγ̌ptq ξptq and pδb1ptq, δψ1ptqq only agree over ttu ˆ Y , we still have

Dγ̌ptq grad Ĺωpδb1ptq, δψ1ptqq “ p0, ξptq ¨ grad1 Ĺωpγ̌ptqq on ttu ˆ Y,
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since the perturbation q is supported on Y in the sense of Definition 7.1. The equation
(13.8) then implies

d

dt
δb1 ” 0 on Rt ˆ Y.

As U P L2, ´d
pY
ξptq “ δb1ptq ” 0. Now the equation (13.7) yields

0 “ ∆
pY
ξptq ` |Ψptq|2ξptq “ |Ψptq|2ξptq on ttu ˆ Y,

As a result, U ” 0 on Rt ˆ Y . An elliptic operator of the form (13.6) satisfies the unique

continuation property, so U ” 0 on Rt ˆ pY . �

13.3. Spectral Projections. Having discussed the linearized operator on an infinite

cylinder Rt ˆ pY , we start to look at a finite interval I “ rt1, t2s Ă Rt and consider
the Atiyah-Patodi-Singer boundary-value problems. As noted in the beginning of Section
13, we have to justify that the proof of gluing theorem in [KM07, Section 18,19] remains
valid in our case, in the presence of essential spectra. This subsection is devoted to an
abstract formalism, while the application in gauge theory will be explained in Subsection
13.4. However, the results in these subsections will not be used elsewhere in this paper.

As we will work in a slightly abstract setting, define

E0 :“ iR‘ iT ˚ pY ‘ S Ñ pY

Take a reference operator A0 that acts on sections of E0, extending to bounded linear
operators

A0 : L2
j p
pY ,E0q Ñ L2

j´1p
pY ,E0q.

for any j ě 1. Moreover, assume that A0 is a unbounded self-adjoint operators on L2 and
its spectrum is disjoint from the interval p´λ1{2, λ1{2q:

σpA0q Ă p´8,´λ1{2s X rλ1{2,8q with(13.9)

σesspA0q “ p´8,´λ1s X rλ1,8q,

for some λ1 ą 0 as in Proposition 12.1. One may think of A0 as a first-order self-adjoint
elliptic differential operator plus a compact perturbation. For convenience, suppose the

L2
j -norm on C8c p

pY ,E0q is defined using A0:

}s}L2
j pE0q

“ }p1` |A0|q
js}L2pE0q

,@s P C8ppY ,E0q.

Let K : C8c p
pY ,E0q Ñ C8ppY ,E0q be an operator acting on sections of E0 extending to

a compact operator:

K : L2
j p
pY ,E0q Ñ L2

j p
pY ,E0q

for any j ě 0. Assume that K is self-adjoint on L2ppY ,E0q. When the sum A :“ A0 `K

is invertible, L2ppY ,E0q is the direct sum of the positive and negative spectral spaces of A:

L2ppY ,E0q “ H`A ‘H
´
A ,

and for any j ě 0,

(13.10) L2
j p
pY ,E0q “ pH

`
A X L

2
j q ‘ pH

´
A X L

2
j q.
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Let E Ñ pZ :“ p´8, 0s ˆ pY be the pull-back bundle of E0 over the half cylinder and
consider the operator:

DA “
d

dt
` A : C8p pZ,Eq Ñ C8p pZ,Eq.

The next result is a direct consequence of Functional Calculus, cf. [KM07, Theorem
17.1.4].

Proposition 13.7. Let pZ “ p´8, 0s ˆ pY be the half cylinder. Suppose the operator

A “ A0 `K : L2
1p
pY ,E0q Ñ L2ppY ,E0q

is invertible, then the operator

DA ‘Π´A ˝ r : L2
kp
pZ,Eq Ñ L2

k´1p
pZ,Eq ‘ pH´A X L

2
k´1{2p

pY ,E0qq

is also invertible for any k ě 1, where r : L2
kp
pZ,Eq Ñ L2

k´1{2p
pY ,Eq is the restriction map

at the boundary t0u ˆ pY and

Π´A : L2
k´1{2 Ñ H´A X L

2
k´1{2p

pY ,E0q

is the spectral projection. The subspace H´A XL
2
k´1{2 is precisely the image of kerDA under

r.

As A differs from A0 only by a compact operator, it is expected that Π´A forms a
“compact” family as A varies. We make this precise in the next proposition.

Proposition 13.8. Given an invertible operator A “ A0 ` K, the difference of their
spectral projections

Π´A ´Π´A0
: L2

k´1{2p
pY ,E0q Ñ L2

k´1{2p
pY ,E0q

is compact for any k ě 1, i.e. ΠA0 and ΠA are k-commensurate in the sense of [KM07,
Definition 17.2.1].

Proof. We follow the trick from [KM07, Proposition 17.2.4]. It suffices to show for any
bounded sequence twiu Ă L2

k´1{2, it image under Π´A ´ Π´A0
contains a converging subse-

quence. In terms of the decomposition (13.10), we can deal with entries of twiu separately.
By the symmetry of H˘A , we focus on the case when twiu Ă H´A XL

2
k´1{2. By Proposition

13.7, there exists sections tviu Ă L2
kp
pZ,Eq such that

DAvi “ 0 and rpviq “ wi.

Apply Proposition 13.7 again for A0 to find solutions tuiu Ă L2
kp
pZ,Eq with

DA0ui “ ´Kpviq and Π´A0
˝ rpuiq “ 0.

Since DA0pui ´ viq “ 0, rpui ´ viq P H
´
A0

. So

pΠ´A ´Π´A0
qpwiq “ p1´Π´A0

qpwiq “ Π`A0
˝ rpviq “ Π`A0

˝ rpuiq.
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One may write the last term explicitly in terms of vi using formulae on [KM07, P.299]:

(13.11) vi ÞÑ Π`A0
˝ rpuiq “ yi :“

ż 0

´8

etA0p´Kpviptqqq
`dt.

where p¨q` denotes the positive part in H`A0
. As this point, approximate K by finite rank

operators. The operator v ÞÑ y defined by the expression (13.11) is also approximated by
finite rank operators in the norm topology, so (13.11) is also compact.

Here is the main difference of this proof from that of [KM07, Proposition 17.2.4]: the
operator

v ÞÑ

ż 0

´8

etA0pvptqq`dt, L2
kp
pZ,Eq Ñ L2

k´1{2p
pY ,E0q,

is not compact as A0 has essential spectrum, so the compactness of Π´A ´Π´A0
really arises

from K. �

With Proposition 13.8 in mind, we are ready to study the boundary value problem on
a finite interval.

Proposition 13.9. Let I “ rt1, t2st be a finite interval and pZ “ I ˆ pY . Given invertible
operators Ai “ A0 `Ki, i “ 1, 2 as compact perturbations of A0, consider the operator

D “
d

dt
` A0 `Kptq : L2

kp
pZ,Eq Ñ L2

k´1p
pZ,Eq

on pZ and spectral projections

Π`A1
˝ r1 : L2

kp
pZ,Eq Ñ H`A1

X L2
k´1{2ptt1u ˆ

pY ,E0q,

Π´A2
˝ r2 : L2

kp
pZ,Eq Ñ H´A2

X L2
k´1{2ptt2u ˆ

pY ,E0q.

where K : I Ñ HompL2
j , L

2
j q, j ě 0 is a smooth family of self-adjoint compact operators.

Then the operator

P :“ D ‘ pΠ`A1
,Π´A2

q ˝ pr1, r2q

is Fredholm, whose index is equal to the spectrum flow from A1 to A2. In particular, the
restriction map on the kernel of D:

pΠ`A1
,Π´A2

q ˝ pr1, r2q : kerD Ñ H`A1
X L2

k´1{2p
pY ,E0q ‘H

´
A2
X L2

k´1{2p
pY ,E0q

is Fredholm of the same index.

In the sequel, we will abbreviate H`A X L2
k´1{2p

pY ,E0q into H`A when the regularity of

sections is clear from the context.

Proof. We start with the model case when K1 “ K2 “ Kptq ” 0. The operator

P0 “ DA0 ‘ pΠ
`
A0
˝ r1 ‘Π´A0

˝ r2q
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is then invertible by direct computation using Functional Calculus. For the general case,
note that D ´DA0 is a compact operator. As for the boundary projections, Proposition
13.8 implies that

Π`A0
: H`A1

Ñ H`A0
,

Π`A1
: H`A0

Ñ H`A1
,

are mutual inverses modulo compact operators, which also holds for the negative projec-
tions tΠ´A0

,Π´A1
u. To compute the index, we use the concatenation trick and compare P

with the operator on the infinite cylinder:

d

dt
` A0 `K

1ptq : L2
kpRt ˆ pY ,Eq Ñ L2

k´1pRt ˆ pY ,Eq.

where K 1 is a smooth path of compact operators connecting K1 and K2:

Kptq ” K1 if t ď t1; Kptq ” K2 if t ě t2.

Now apply Proposition 13.1 or Theorem 10.2. If we write L2
kp
pZ,Eq as a direct sum

C ‘ kerD

where C is the L2
k-orthogonal complement of kerD, then P is cast into a lower triangular

metric

(13.12)

ˆ

D 0
˚ pΠ`A1

,Π´A2
q ˝ pr1, r2q

˙

.

As D|C is a bijection by [KM07, Proposition 17.1.5] and the unique continuation property,
the other diagonal entry has to be Fredholm of the same index as that of P . �

Remark 13.10. Here is a major difference of our case from [KM07, Proposition 17.2.5]:
the projection map onto the complementary spectral subspaces:

pΠ´A1
,Π`A2

q ˝ pr1, r2q : kerD Ñ H´A1
‘H`A2

is not compact. To see this, consider the model case when A1 “ A2 “ A0 and Kptq ” 0, so
kerD is parametrized by the image of pΠ`A0

,Π´A0
q ˝ pr1, r2q. Sticking to the positive part,

the composition map

H`A0
X L2

k´1{2ptt1u ˆ
pY ,E0q Ñ H`A0

X L2
k´1{2ptt2u ˆ

pY ,E0q

w ÞÑ v :“ P´1p0, w, 0q P kerD

ÞÑ Π`A0
˝ r2pvq.

is simply e´A0pt2´t1q acting on H`A1
which has essential spectrum r0, e´λ1pt2´t1qs. As a

result, it is never compact. ♦

To circumvent this problem, we have to refine the estimates when the 3-manifold pY is
not compact. Recall that a Fredholm operator P is invertible modulo compact operators.
A right (left) parametrix Q is a right (left) inverse of P modulo compact operators, i.e.

PQ “ Id` a compact term.

Such a Q is unique up to a compact term and is also a (two-sided) parametrix.
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The difference up to a compact term is always insignificant. This motivates the next
definition and lemma:

Lemma 13.11. Let Hi, i “ 1, 2 be Hilbert spaces. For any operator Q : H2 Ñ H1, define
its essential norm as

}Q}ess :“ inf
K compact

}Q`K}H2ÑH1 .

For any Fredholm operator P : H1 Ñ H2 with a parametrix Q, the perturbed operator
P ` F is Fredholm if }FQ}ess ă 1.

Proof. As pP ` F qQ and Q are Fredholm, P ` F is Fredholm as well. �

Now let us recast Proposition 13.9 into a more convenient form for applications. Recall
that the essential spectrum of A0 is away from the origin:

σesspA0q “ p´8, λ1s Y rλ1,8q,

for some λ1 ą 0.

Proposition 13.12. Under the assumption of Proposition 13.9, the operator P is Fred-

holm. The essential norm of its parametrix rQ is bounded by a constant C1 that depends
only on λ1. The same conclusion applies to the projection map

pΠ`A1
,Π´A2

q ˝ pr1, r2q : kerD Ñ H`A1
X L2

k´1{2ptt1u ˆ
pY ,E0q ‘H

´
A2
X L2

k´1{2ptt2u ˆ
pY E0q.

and its parametrix Q. Moreover, the essential norm of the complementary projection pre-
composed with Q:

pΠ´A0
,Π`A0

q ˝ pr1, r2q ˝Q : H`A1
‘H´A2

Q
ÝÑ kerD Ñ H´A0

‘H`A0

is bounded above by e´λ1|I|, where |I| “ |t2 ´ t1| is the length of I.

Proof. We divide the proof into four steps:

Step 1. Estimate rQ. When K1 “ K2 “ Kptq ” 0, we obtain the model operator

P0 “ DA0 ‘ pΠ
`
A0
˝ r1 ‘Π´A0

˝ r2q : L2
kp
pZ,Eq Ñ L2

k´1p
pZ,Eq ‘ pH`A0

‘H´A0
q.

Let rQ0 “ pR,Q0q be the inverse of P0 with

Q0 : H`A0
‘H´A0

Ñ L2
kp
pZ,Eq,

R : L2
k´1p

pZ,Eq Ñ L2
kp
pZ,Eq.

The norm } rQ0} is bounded by a constant C1 independent of the length |I|. In the general

case, set rQ :“ pR,Q0 ˝ pΠ
`
A0
,Π´A0

qq with

pΠ`A0
,Π´A0

q : H`A1
‘H´A2

Ñ H`A0
‘H´A0

.

Then } rQ} ď } rQ0}, since we have used A0 to define the L2
j -norm on C8c p

pY ,E0q. By
Proposition 13.8, projection maps:

Π˘Ai : H˘A0
Ñ H˘Ai , Π˘A0

: H˘Ai Ñ H˘A0
, i “ 1, 2

are mutual inverses modulo compact operators; so rQ is a parametrix of P .
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Step 2. Estimate Q. Using the block form (13.12), we write rQ as a 2 by 2 matrix:
ˆ

Q11 Q12

Q21 Q22

˙

.

Take Q :“ Q22 to be the bottom right entry, then

Q : H´A1
‘H`A2

Ñ kerD

is a left parametrix of pΠ`A1
,Π´A2

q ˝ pr1, r2q and

}Q} ď } rQ},

since C is L2
k-orthogonal to kerD in (13.12).

Step 3. Estimate the complementary projection. It suffices to estimate the norm of

M :“ pΠ´A0
,Π`A0

q ˝ pr1, r2q ˝Q.

First of all, the estimate holds for the model case when A1 “ A2 “ A0 and Kptq ” 0, by
Remark 13.10. Define

M0 :“ pΠ´A0
,Π`A0

q ˝ pr1, r2q ˝Q0.

Now we allow Kptq ‰ 0, but A1 “ A2 “ A0. Write Q1 for the parametrix constructed in
Step 2. We have to compare

M 1 :“ pΠ´A0
,Π`A0

q ˝ pr1, r2q ˝Q
1.

with the model operator M0, and show the difference M ´M0 is compact.
For any pw1, w2q P H

`
A0
‘H´A0

, sections u :“ Q1pwq and v :“ Q0pwq obey the following
equations respectively:

$

&

%

DA0puq “ ´Kptqu
Π`A0

˝ r2puq “ w1 ´ k1pwq,

Π´A0
˝ r2puq “ w2 ´ k2pwq,

$

&

%

DA0pvq “ 0,
Π`A0

˝ r2pvq “ w1,

Π´A0
˝ r2pvq “ w2,

where pk1, k2q is a compact operator acting on H`A0
‘H´A0

. It follows that

w ÞÑ pQ1 ´Q0qpwq “ u´ v “ P´1
0 p´KptqQ1pwq,´k1pwq,´k2pwqq

is a compact operator.

Step 4. In the most general case, we allow Kptq ‰ 0 and A1,A2 ‰ A0. Recall that
Q “ Q1 ˝ pΠ`A0

,Π´A0
q, so M “M 1 ˝ pΠ`A0

,Π´A0
q and

}M}ess ď }M
1}ess “ }M0}ess ď e´λ1|I|. �

Spectral projections are not the most relevant boundary conditions for the main appli-
cations in gauge theory, although they serve important intermediate steps.

Proposition 13.13. Under the assumption of Proposition 13.7 with pZ “ p´8, 0s ˆ pY ,

suppose Π1 is any linear projection on L2
k´1{2p

pY ,E0q whose kernel is a complement of H´A :

(13.13) kerpΠ1q ‘ pH
´
A X L

2
k´1{2p

pY ,E0qq “ L2
k´1{2p

pY ,E0q.
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and let H´1 be the image of Π1. Then the operator

DA ‘Π1 ˝ r : L2
kp
pZ,Eq Ñ L2

k´1p
pZ,Eq ‘H´1

is an isomorphism.

Proof. See [KM07, Proposition 17.2.6] or [KM07, P.340-341]. �

Proposition 13.14 (cf. [KM07] Proposition 17.2.6). Under the assumption of Proposition

13.12 with pZ “ I ˆ pY and I “ rt1, t2s, suppose Π`1 and Π´2 are any linear projections on

L2
k´1p

pY ,E0q whose kernels are complements of H`A1
and H´A2

respectively, i.e. (13.13) holds

for pΠ`1 , H
`
A1
q and pΠ´2 , H

´
A2
q. Let H´1 and H`2 be images of Π`1 and Π´2 respectively. Then

there exists a constant T0pΠ
`
1 ,Π

´
2 q ą 0 such that the operator

D ‘ pΠ`1 ,Π
´
2 q ˝ pr1, r2q : L2

kp
pZ,Eq Ñ L2

k´1p
pZ,Eq ‘H`1 ‘H

´
2 ,

is Fredholm when |I| ą T0.

Proof. There are two ways to proceed. In the first approach, one may use Proposition
13.13 to construct a parametrix of D ‘ pΠ`1 ,Π

´
2 q; see Proposition 14.1 below. In the

second approach, we use the estimate on essential operator norms from Proposition 13.12.
It suffices to show the restriction map

pΠ`1 ,Π
´
2 q ˝ pr1, r2q : kerD Ñ H`1 ‘H

´
2

is Fredholm. We focus on H`2 and pretend the other boundary does not exist. Write

Π´2 “ Π´2 ˝Π´A2
`Π´2 ˝ pΠ

`
A2
´Π`A0

q `Π´2 ˝Π`A0
.

The middle term is compact. Since Π´2 : H´A2
Ñ H´2 is an isomorphism of Hilbert spaces,

by Proposition 13.12,

Π´2 ˝Π´A2
˝ r2 : kerD Ñ H´A2

Π´2
ÝÝÑ H´2

is Fredholm with parametrix Q˝ pΠ´2 q
´1. To apply Lemma 13.11, we have to estimate the

essential norm of

pΠ´2 ˝Π`A0
q ˝ pQ ˝ pΠ´2 q

´1q “ Π´2 ˝ pΠ
`
A0
˝Qq ˝ pΠ´2 q

´1

which is bounded above by CpΠ´2 q ¨ e
´λ1|I| ă 1 if |I| " 1. The constant CpΠ´2 q depends

only on the operator norms of

Π´2 : H´A2
Ñ H´2 and pΠ´2 q

´1 : H´2 Ñ H´A2
. �

13.4. Applications in Gauge Theory. Having developed the abstract theory in Sub-
section 13.3, let us explain now how various operators are defined in gauge theory. For

each tame perturbation q P P and a configuration a P Ck´1{2p
pY ,psq, consider the extended

Hessian
rA :“zHessq,a,

The reference operator A0 is taken to be a compact perturbation of Ã such that the
conditon (13.9) holds.
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Recall that the space L2
k´1{2p

pY ,E0q admits a decomposition for each a P Ck´1{2p
pY ,psq:

L2
k´1{2p

pY ,E0q “ L2
k´1{2p

pY , iRq ‘ Tk´1{2,a,

“ L2
k´1{2p

pY , iRq ‘ Jk´1{2,a ‘Kk´1{2,a,

on which zHessq,a takes a block form:
¨

˝

0 d˚a 0
da 0 0
0 0 Hessq,a

˛

‚`

¨

˝

0 0 0
0 y x
0 x˚ 0

˛

‚

The operators x, y are defined as in (12.1) and they are compact. Denote the first matrix
by A and consider its spectral decomposition:

Π˘A : L2
k´1{2p

pY ,E0q Ñ H˘A .

As Hessq,a acts on Kk´1{2,a, we also have the spectral decomposition of Hessq,a:

Kk´1{2,a “ K`a ‘K´a .

Define subspaces:

H˘a :“ L2
k´1{2p

pY , iRq ‘ t0u ‘K˘a Ă L2
k´1{2p

pY ,E0q,

and the projection maps

Π˘a : L2
k´1{2p

pY ,E0q Ñ H˘a ,

whose kernels are

t0u ‘ Jk´1{2,a ‘K¯a .

The pairs pΠ˘a ,Π
˘
A q that satisfy the condition (13.13), cf. [KM07, P.316]. By Proposition

13.14, the first statement of [KM07, Theorem 17.3.2] continues to hold in our case, and
the proof the gluing theorem from [KM07, Section 17-19] remains valid. Proposition 13.12
is the replacement of [KM07, Proposition 17.2.5] in the presence of essential spectra.

Remark 13.15. In practice, we will take q to be an admissible perturbation and a to be

a non-degenerate critical point of Ĺω, in which case rA “ A. Moreover, Ĺω has only finitely
many critical points by the compactness theorem. Since only finitely many configurations
are involved in the gluing theorem, we have a uniform upper bound on the constant T0 in
Proposition 13.14, so it does not cause a problem. ♦

Finally, let us compute the spectrum flow from Hessq,a to Hessq,u¨a as an application of
Proposition 13.9.

Lemma 13.16 (cf. [KM07] Lemma 14.4.6). Consider the cylinder pZ “ Rt ˆ ppY ,psq and

the operator pd˚γ ,DγF
pZ,q
q defined in Proposition 13.1 with b “ u ¨ a and u P Gk`1ppY q, then

Indpd˚γ ,DγF
pZ,q
q “ prus Y c1ppsqqrY, BY s P 2Z, @γ P Ckpa, u ¨ aq.
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Proof. We may use Proposition 13.9 and [KM07, Proposition 14.2.2] to identify this index

to the index of an operator on S1 ˆ pY . The spin bundle S` Ñ S1 ˆ pY is constructed as

r0, 1s ˆ S{p0, vq „ p1, u ¨ vq.

Using the Atiyah-Patodi-Singer index theorem [APS75, Theorem 3.10] instead, the proof
of [KM07, Lemma 14.4.6] can now proceed with no difficulty. Indeed, over the cylindrical

end of S1 ˆ pY , the operator is cast into the form (up to a compact term)

Bt ` σpBs `DΣq “ σpBs ´ σ ¨ Bt `DΣq on S1 ˆ r0,`8qs ˆ Σ.

Following the proof of Proposition 11.2, the spectrum of p´σ ¨ Bt ` DΣq on S1 ˆ Σ is
discrete and symmetric with respect to the origin, so its η-invariant is zero. Moreover,
p´σ ¨ Bt `DΣq is invertible, so its kernel is trivial. �

14. Linearized Operators on Cobordisms

Having addressed the linearized operators on the product manifold Rt ˆ pY , in this
section, we explore the case for a morphism X : pY1,ps1q Ñ pY2,ps2q in the strict cobordism
category SCobs. In this case, we have a relative spinc cobordism

p pX,psXq : ppY1,ps1q Ñ ppY1,ps2q.

By attaching cylindrical ends, we obtain a complete Riemannian manifold

X :“

ˆ

p´8,´1st ˆ pY1

˙

Y pX Y

ˆ

r1,8qt ˆ pY2

˙

together with a closed 2-form ωX on X defined as in (3.11). There are two main tasks for
this section:

‚ define the perturbation space of the Seiberg-Witten equaions on X . This is crucial
for the transversality result in Section 16, cf. Theorem 16.5;

‚ prove that the linearized operator on X is Fredholm.

They are addressed in Subsection 14.1 and 14.2 respectively.

14.1. Perturbations. Given a morphism X : pY1,ps1q Ñ pY2,ps2q in the strict spinc cobordism
category SCobs, the perturbation qi P PpYiq encoded in the definition of pYi,psiq is admis-
sible by (P8). Take a critial point

ai P CritpĹ
ωi,pYi

q Ă CkppYi,psiq,

for each i “ 1, 2. Pick a smooth configuration γ on X such that

(14.1)

$

’

’

&

’

’

%

γ̌ptq ” a1 if t ă ´1{2;
γ̌ptq ” a2 if t ą 1{2
γptq is in the temporal gauge when |t| ą 1{2,

γ
ˇ

ˇ

pX
P Ckp pX,psq.

Now consider the configuration space on X :

Ckpa1,X , a2q :“ tpA,Φq “ γ0 ` pa, φq : pa, φq P L2
kpX , iT ˚X ‘ S`qu.



80 DONGHAO WANG

and the gauge group

Gk`1pX q “ tu : X Ñ S1 : u´ 1 P L2
k`1pX ,Cqu.

The linearized action of Gk`1pX q at γ “ pA,Φq P Ckpa1,X , a2q is given by:

dγ : L2
k`1pX , iRq Ñ TγCpa1,X , a2q

fptq ÞÑ p´df, fΦq

whose L2-formal adjoint is

d˚γ : TγCpa1,X , a2q Ñ L2
k´1pX , iRq

pδa, δφq ÞÑ ´d˚a` iRexδφ, iΦy.

Let us now specify the class of perturbations involved in the Seiberg-Witten equations.
Choose a cut-off function β : Rt Ñ R with βptq ” 1 if |t| ą 3 and βptq ” 0 if |t| ă 2.
Pick another cut-off function β0 : Rt Ñ R supported on r1, 2st Ă Rt, equal to 1 when
t P r5{4, 7{4s. Now consider the perturbed Seiberg-Witten equation:

FX ,ppγq “ 0, γ P Ckpa1,X , a2q,(14.2)

FX ,ppγq :“ FX pγq ` βptqrpq1pγq ` pq2pγqs ` β0ptqppq3pγqq ` pρ4pω
`
3 q, 0q,

where FX is the unperturbed Seiberg-Witten map defined by the formula (3.7). Here p
denotes the quadruple

p :“ pq1, q2, q3, ω3q P PpY1q ˆ PpY2q ˆ PpY2q ˆ Ω2
cpr1, 2s ˆ Y2, iRq.

where q3 P PpY2q is a tame perturbation supported on Y2 and ω3 is an imaginary-valued
exact 2-form compactly supported on r1, 2s ˆ Y2. The effect of ω3 is to deform ωX into
ωX ´ ω3, so the first equation of (3.7) is changed into

1

2
ρ4pF

`

At ´ 2ω`Xq ´ pΦΦ˚q0 “ ´ρ4pω
`
3 q,

modulo perturbations from qi’s. In practice, it suffices to consider ω3 in the special form:

(14.3) ω3 “ dX pβ0ptqf3dtq “ ´β0ptqdt^ dY2f3.

for a compactly supported smooth function f3 : r1, 2st ˆ Y2 Ñ iR.
Within the space of all compactly supported smooth functions on r1, 2stˆY2, we choose

a countable subset that is dense in C8-topology and form a Banach space as in Theorem
8.17:

PForm.

The space PForm is dense in C8c pr1, 2st ˆ Y2, iRq, and we define ω3 by the formula (14.3)
with f3 P PForm. In all, the quadruple p takes value in a Banach space

p “ pq1, q2, q3, ω3q P PpY1q ˆ PpY2q ˆ PpY2q ˆ PForm.

Here q1 and q2 are encoded in the cylindrical ends of X ; only the last two terms

pq3, ω3q
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give rise to the actual perturbation in (14.2), allowing us to achieve transversality in
Section 16. Note that

β0ptqpq3pγq and pρ4pω
`
3 q, 0q

are both supported in the compact region r1, 2st ˆ Y2. Finally, we form the moduli space
Mkpa1,X , a2q by taking the quotient space:

(14.4) Mkpa1,X , a2q :“ tFX ,ppγq “ 0 : γ P Ckpa1,X , a2qu{Gk`1pX q,

which is in fact independent of the subscript k, due to the exponential decay of the local
energy functional, cf. Theorem 9.3.

14.2. Linearized Operators. Similar to the case for pZ “ Rt ˆ pY , the linearization of
FX ,p together with d˚γ forms a Fredholm operator. In particular, the cokernel is finite
dimensional.

Proposition 14.1. For any i “ 1, 2, let ai be a smooth non-generate critical point of Ĺωi
in CkppYi,psiq. Then for any γ P Ckpa1,X , a2q, the operator

pd˚γ ,DγFX ,pq : L2
kpX , iT ˚X ‘ S`q Ñ L2

k´1pX , iR‘ iΛ`X ‘ S´q

is Fredholm.

Definition 14.2. The moduli space Mkpa1,X , a2q is called regular, if the operator pd˚γ ,DγFX ,pq
is surjective at any solution rγs PMkpa1,X , a2q, ♦

Proof of Proposition 14.1. It suffices to deal with the case for the reference configuration
γ “ γ0 and when pq3, ω3q “ 0. As ai is non-degenerate, the operator on the infinite
cylinder

Di :“
d

dt
`zHessqi,ai : L2

kpRt ˆ pYi, iR‘ iT ˚ pYi ‘ Sq Ñ L2
k´1pRt ˆ pYi, iR‘ iT ˚ pYi ‘ Sq

is invertible for i “ 1, 2. Denote the inverse by Qi. Unlike Theorem 10.2, the cut-off
functions involved in the parametrix patching argument are more sophisticated, as we
explain now. There are three of them:

β1, β2 and βX with β1 ` β2 ` βX ” 1 and βX compactly supported

Over the region ts ď 2u Ă X , choose a partition of unity tβ11, β
1
2, βXu subordinate to the

open cover U1 Y U2 Y UX :
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Xp´8,´1s ˆ pY1 r1,8q ˆ pY2

t “ ´2 ´1 0 1 2

s “ 2

0

´2
UX

U1 U2

Figure 1. An open cover of ts ď 2u

Over the region ts ě 2u, βX ” 0 and βips, tq “ βTi ptq, i “ 1, 2 where tβT1 , β
T
2 u is a

partition of unity on the real line Rt subordinate to the cover

Rt “ p´8, T s Y r´T,8q,
such that |dβTi | ď 4{T . The value of βi in the transition area t1 ď s ď 2u is filled in
by interpolation. To be more precise, pick a partition of unity tαL, αUu on Rs such that
αU psq ” 1 when s ě 2 and αU psq ” 0 when s ď 1. Set

βi “ αLpsqβ1i ` α
U psqβTi ptq, i “ 1, 2.

Finally, we take
Q “ β̃1Q1β1 ` β̃2Q2β2 ` β̃XQXβX ,

with β̃i constructed in a similar manner. Here we require that β̃i ” 1 on supp βi so that
β̃iβi “ βi. The same holds for pβ̃X , βXq; and also supp β̃X is compact.

The parametrix QX is given by a local patching argument as usual. By taking T " 0,
one verifies that Q is indeed a parametrix for the operator pd˚γ ,DγFX ,pq. �
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Part 5. Transversality

The primary goal of this part is to prove the key transversality result: Theorem 16.1,

which states that admissible perturbations on ppY ,psq, in the sense of Definition 13.3, ex-
ist and are in fact generic. Because the perturbation space PpY q that we consider are
supported on the truncated 3-manifold Y “ ts ď 0u, only a weak separating property
is satisfied, cf. Theorem 8.20. As a result, a stronger unique continuation property is
required in order to achieve transversality.

Section 15 is devoted to the proof of unique continuation properties, which uses the
Carleman estimates from [Kim95]. In Section 16, we prove Theorem 16.1 as well as its
analogue for a general morphism X : pY1,ps1q Ñ pY2,ps2q in the SCobs, cf. Theorem 16.5.

15. Unique Continuation

15.1. Statements. In this section, we prove the unique continuation properties of the
perturbed Seiberg-Witten equations (13.1), which are crucial for the proof of Theorem
16.1. The main results are listed as follows:

‚ the non-linear version: Theorem 15.1;
‚ the linearized version: Theorem 15.2; and
‚ the irreducibility of spinors: Theorem 15.3.

These theorems are summarized in the first subsection, while the rest of section is
devoted to their proofs. Let us start with the non-linear version of unique continuation:

Theorem 15.1. Let I “ pt1, t2qt be an open finite interval. Consider a tame perturbation

q P P supported on the truncated 3-manifold Y “ ts ď 0u Ă pY and the perturbed Seiberg-

Witten equations on pZ :“ I ˆ pY :

(15.1) 0 “ F
pZ,q
pγq :“ F

pZ
pγq ` pqpγq.

If two solutions γ1, γ2 are gauge equivalent on the slice tt0u ˆ Y at some t0 P I, i.e there

exists a gauge transformation u P GppY q such that

upγ1|tt0uˆpY
q “ γ2|tt0uˆpY

on Y,

then γ1 and γ2 are gauge equivalent over the whole manifold pZ.

The analogous result for closed 3-manifolds is [KM07, Proposition 7.2.1]. The main
difference here is that γ1 and γ2 are not assumed to be gauge equivalent on the whole

time slice tt0u ˆ pY ; thus, the proof of [KM07, Proposition 7.2.1] does not apply directly
here.

Theorem 15.1 will follow from the strong unique continuation of the Seiberg-Witten
equations if q “ 0. The problem arises from the tame perturbation q, which gives rise to
non-local operators. We will provide a toy model in the next subsection to clarify this
point, cf. Remark 15.5. It is essential here that the region tt0u ˆ Y over which γ1 and γ2

agree contains the support of q.
Before we proceed any further, let us state the linearized version of Theorem 15.1 and

the version that concerns the irreducibility of spinors.
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Theorem 15.2 (The Linearized Version). Let I “ pt1, t2qt Ă Rt be an open interval.
Consider a tame perturbation q P P supported on the truncated 3-manifold Y “ ts ď

0u Ă pY and a smooth solution γ to the perturbed Seiberg-Witten equation (15.1) on the

4-manifold pZ “ I ˆ ppY ,psq. Suppose a smooth tangent vector at γ

V ptq “ pδcptq, δbptq, δψptqq P L2
kp
pZ, iT ˚ pZ ‘ Sq

lies in the kernel of the linearized Seiberg-Witten map:

(15.2) 0 “ DγF
pZ,q
pV q,

or equivalently, it solves the equation (13.2). If V is generated by the linearized gauge

action on tt0u ˆ Y at some t0 P I, i.e. there exists a smooth function ξ P L2
k`1{2p

pY , iRq
such that

pδbp0q, δψp0qq “ dγ̌ptq ξ on tt0u ˆ Y.

then V is generated by the linearized gauge action on the whole manifold pZ, i.e. there

exists a smooth function ξ1 P L2
k`1p

pZ, iRq such that

V “ dγ ξ
1 on pZ.

Theorem 15.3 (Irreducibiliy of Spinors). Let I “ pt1, t2qt Ă Rt be an open interval. For
any tame perturbation q P P and a solution γ “ pA,Φq to the perturbed Seiberg-Witten

equations (15.1) on the 4-manifold pZ “ I ˆ pY , if the spinor

Φ ” 0 on tt0u ˆ Y,

for some t0 P I, then Φ ” 0 on pZ.

The proofs of Theorem 15.1-15.3 will not be used elsewhere in this paper. They will
dominate the rest of the section.

15.2. A Motivating Problem. To better explain the ideas and point out the difference
from the standard theory [KM07, Section 7], let us first discuss a motivating problem that
concerns the B̄-operator on the complex plane. Let

f : Cz Ñ C

be a holomorphic function and z “ t` is be the complex coordinate of the domain. It is
well-known that if f vanishes along the interval t0u ˆ r0, 1ss, then f ” 0 over Cz.

We investigate a class of perturbations of the B̄´operator. The equation B̄f “ 0 can be
formally cast into an evolution equation:

Btf “ ´Dpfq

where Dpfq “ iBsf is a self-adjoint operator on L2pRs,Cq (although we do not assume
fptq P L2pRs,Cq for any time slice ttuˆRs). Consider a smooth function K1 : RsˆRs Ñ C
with

supp K1 Ă r0, 1ss ˆ r0, 1ss
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and form the convolution operator

K : C8pRs,Cq Ñ C8pRs,Cq

f ÞÑ Kpfqpsq “

ż

R
K1ps, s

1qfps1qds1.

Then DK :“ D`K is a compact perturbation of D, not necessarily self-adjoint anymore.
More generally, let V : Cz Ñ C be any smooth function and consider the equation

(15.3) Btf “ ´DKpfq ´ V ¨ f on C “ Rt ˆ Rs.
The potential V can be viewed as a time-dependent perturbation of DK .

Proposition 15.4. Suppose f P C8pCz,Cq is a solution to the perturbed B̄-equation (15.3)
and fpzq “ 0 for any z P t0u ˆ r0, 1ss, then f ” 0 on Cz.

Remark 15.5. If we only assume f ” 0 on t0u ˆ rε, 1ss for some small ε ą 0, then for
some kernel K1 and potential V , the conclusion fails. Indeed, set fpt, sq ” gpsq and V ” 0.
Let g be a cut-off function such that

gpsq ” 0,@s ě ε and gpsq ” 1,@s ă ε{2.

Then one can find K1 with K1 ˚ g “ ´Dpgq “ ´iBsg, so g P kerDK . ♦

The problem here is that the convolution operator K is not local: even if a function
g : r0, 1ss Ñ C is supported on a small interval r0, εs Ă r0, 1ss, Kpgq “ K1 ˚ g might be
non-vanishing on a much larger region. This is the analogue of the tame perturbation q
in the Seiberg-Witten equations.

The proofs of Theorem 15.1-15.3 are modeled on that of Proposition 15.4, which involves
Carleman estimates, as we discuss in the next subsection.

15.3. Carleman Estimates. There are two classical ways to prove a strong unique con-
tinuation property like Proposition 15.4. The first follows Agmon and Nirenberg [AN67]
and relies on a differential inequality. This is the approach adopted in the book [KM07,
Section 7]. In this paper, we follow the second strategy and base our works on Carleman
estimates [Car39]. The primary result that we consult is [Kim95, Theorem 1].

Let us first state a result in an abstract Hilbert space.

Proposition 15.6. Let H be a Hilbert space and Li : H Ñ H, i “ 1, 2 be (unbounded)
self-adjoint operators on H satisfying the relation

(15.4) pL1 ` rL2 ` αq
2 ´ rL2 ě 0

for any r ą 0 and α ą α0pH,L1, L2q; or equivalently,

(15.5) }pL1 ` rL2 ` αqv}
2
H ´ Rexv, prL2qvy ě 0 @v P DpL1q XDpL2q.

Here, α0 ą 0 is a fixed large number depending only on H, L1 and L2.

Suppose w : r0, r0sr Ñ DpL1q XDpL2q is a smooth function such that

‚ for a constant C0 ą 0, the following estimate holds for any r P p0, r0s:

(15.6) }pBr `
1

r
¨ L1 ` L2qwprq}H ď C0}wprq}H ;
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‚ wprq vanishes at the origin to the infinite order, i.e pBnrwqp0q “ 0 for any n ě 0.
In practice, we will only need the property that

(15.7) }wprq}H , }Brwprq}H “ Oprnq as r Ñ 0,

for any n ě 1.

Then w ” 0.

With loss of generality, we assume r0 “ 1 and let x :“ ln r P p´8, 0s. Then the
inequality (15.6) becomes

gpxq :“ pBx ` L1 ` e
xL2qwpxq,(15.8)

}gpxq}H ď C0e
x}wpxq}H , @x P p´8, 0s.

The key ingredient is the Carleman estimate. We follow the idea from [AB80]. For any
ε P p0, 1q, consider the weight function ϕ : p´8, 0s Ñ R` implicitly determined by the
relation ´ϕpxq ` expp´εϕpxqq “ x, so ϕpxq „ ´x and

Bxϕpxq “ ´
1

1` εe´εϕpxq
P p´1,´

1

2
q,(15.9)

B2
xϕpxq “

ε2e´εϕpxq

p1` εe´εϕpxqq3
ě C1ε

2 ¨ e2εx,(15.10)

for a constant C1 ą 0. In what follows, we will always treat ε P p0, 1q as a fixed constant.

Proposition 15.7 (Carleman Estimates, [Kim95] Theorem 1). Under the assumptions of
Proposition 15.6, for any ε P p0, 1q, there is a constant Cpεq ą 0 such that for any τ ą 2α0

and u P C8c pp´8, 0q, DpL1q XDpL2qq, we have

τ

ż

p´8,0q
}eτϕpxq`εxupxq}2Hdx ď Cpεq

ż

p´8,0q
}eτϕpxqpBx ` L1 ` e

xL2qupxq}
2
Hdx.

This estimate is uniform in τ .

Proof of Proposition 15.6. Fix some x0 ă 0. To apply Carleman estimates, choose a cut-
off function χ : p´8, 0sx Ñ r0, 1s such that χpxq ” 1 when x ă x0 and χp0q “ 0. Set
upxq “ χpxqwpxq. The function upxq is not compactly supported on p´8, 0q, but its decay
is faster than any exponential function as x Ñ ´8, by (15.7). In this case, Proposition
15.7 still applies, cf. Remark 15.8; so

τ

2Cpεq

ż

p´8,x0s
}eτϕpxq`εxwpxq}2Hdx ď

τ

2Cpεq

ż

p´8,0s
}eτϕpxq`εxupxq}2Hdx,

ď
1

2

ż

p´8,0s
}eτϕpxqpBx ` L1 ` e

xL2qupxq}
2
Hdx,

ď

ż

p´8,0s
}eτϕpxqgpxq}2Hdx`

ż

rx0,0s
}eτϕpxqrBx, χpxqswpxq}

2
Hdx,

pby (15.8)q ď C0

ż

p´8,0s
}eτϕpxq`xwpxq}2Hdx` C2e

τϕpx0q

ż

rx0,0s
}w}2Hdx,
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where C2 “ }Bxχ}
2
8. The upshot is that this inequality holds for any τ " 1, so when

τ ą 4C0Cpεq, we use the rearrangement argument to derive that

τ

2

ż

p´8,x0s
}eτϕpxq`εxwpxq}2Hdx ď 2CpεqC2e

τϕpx0q

ż

rx0,0s
}w}2Hdx.

Let τ Ñ8. We conclude that wpxq ” 0 when x ă x0. Since x0 ă 0 is arbitrary, w ” 0
on p´8, 0s. �

To complete the proof of Proposition 15.6, it remains to prove Carleman estimates.

Proof of Proposition 15.7. It is essentially the same argument as [Kim95, Theorem 1]. We
record the proof here because a slight modification will be made in our actual applications.
Set vpxq :“ eτϕpxqupxq, then

eτϕpxqpBx ` L1 ` e
xL2qe

´τϕpxqvpxq “ pBx ` L1 ` e
xL2 ` τp´Bxϕpxqqqvpxq.

Define Lpxq :“ L1 ` e
xL2 ` τp´Bxϕpxqq and compute

ż

p´8,0s
}pBx ` Lpxqqvpxq}

2
Hdx “

ż

p´8,0s
}Bxvpxq}

2
H ` }Lpxqvpxq}

2
H

`

ż

p´8,0s
2 RexBxvpxq, LpxqvpxqyHdx.

Using the fact that Lpxq : H Ñ H is a self-adjoint operator, we integrate by parts:
ż

p´8,0s
2 RexBxvpxq, LpxqvpxqyH “ ´

ż

p´8,0s
Rexvpxq, pBxLpxqqvpxqy(15.11)

“

ż

p´8,0s
Rexvpxq, exp´L2qvpxqy ` τ

ż

p´8,0s
xvpxq, pB2

xϕpxqqvpxqy

pby (15.10)q ě

ż

p´8,0s
Rexvpxq, exp´L2qvpxqy ` C1ε

2τ

ż

p´8,0s
}eεxvpxq}2H .

Set α “ τp´Bxϕq. If τ ą 2α0, then by (15.9), α “ τp´Bxϕq ą τ{2 ą α0. Now we use
the relation (15.4) to conclude that

ż

p´8,0s
}pBx ` Lpxqqvpxq}

2
Hdx ě C1ε

2τ

ż

p´8,0s
}eεxvpxq}2H

for any τ ą 2α0 and ε P p0, 1q. �

Remark 15.8. When upxq : p´8, 0q Ñ DpL1q XDpL2q is not compactly supported and
yet up0q “ 0, we have to verify that the boundary term in (15.11) vanishes:

lim
xÑ´8

Rexvpxq, Lpxqvpxqy.

Then one may assume that }upxq}H , }Bxupxq}H and }pL1`e
xL2qupxq}H decay faster than

any exponential functions as x Ñ ´8. In Proposition 15.6, this is guaranteed by (15.8)
and (15.7). ♦
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15.4. Applications. In this subsection, we give a few examples of pH,L1, L2q for which
the assumption (15.5) is fulfilled and derive Proposition 15.4 from the abstract Proposition
15.6. We will work out the Seiberg-Witten equations in the next subsection.

Lemma 15.9. If self-adjoint operators L1, L2 : H Ñ H anti-commute, i.e.

tL1, L2u :“ L1L2 ` L2L1 “ 0,

then the condition (15.5) holds.

Proof. We rewrite the left hand side of (15.5) as

}pL1` p1´
1

2α
qrL2`αqv}

2
H ` p1´ p1´

1

2α
q2q}prL2qv}

2
H `

RexL1v, prL2qvy

α
ě 0 if α ą

1

4
.

The last term vanishes because tL1, L2u “ 0. �

Example 15.10. The first example is the Dirac operator on Cz ˆ Σ where Σ “ BY is a
union of 2-tori endowed with a flat metric. We choose a spinc connection A on Cz such
that

A “
d

dt
`

d

ds
` B̌

for a fixed spinc connection B̌ on the surface Σ.
Using the polar coordinate pr, θq on the complex plane, the Dirac operator D`A can be

written as

D`A “ ρ4pdrqpBr ` ρ3prdθq ¨ p
1

r
Bθ `D

Σ
B̌
qq

where DΣ
B̌

is the Dirac operator associated to B̌ on the surface. Unlike ρ4prdθq,

ρ3prdθq “ ρ4pdrq
´1 ¨ ρ4prdθq “ ´ρ4pdr ^ rdθq

is a constant bundle map. Proposition 15.6 applies to the operator ρ´1
4 pdrq ¨D`A with

LD
1 “ ρ3prdθq ¨ Bθ, L

D
2 “ ρ3prdθqD

Σ
B̌
.

and H “ L2pS1 ˆ Σ, S`q. Indeed, by Lemma 15.9, tLD
1 , L

D
2 u “ 0. ♦

Example 15.11. The second example concerns the self-dual operator

Ω1pX, iRq Ñ Ω`pX, iRq,
b ÞÑ d`b,

on the 4-manifold X “ CzˆΣ. Using the polar coordinate at the origin 0 P Cz, we regard
b as an 1-form on

X 1 “ r0, r0qr ˆ S
1 ˆ Σ.

Suppose b does not contain the dr-component and write

bprq “ b1prqprdθq ` b2prq

with b1prq P H1 :“ L2pS1 ˆ Σ,Rq and b2prq P H2 :“ L2pS1 ˆ Σ, T ˚Σq. As the metric on
X 1 is given by

dr2 ` prdθq2 ` gΣ,
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the equation d`b “ 0 is equivalent to that

Br

ˆ

b1prq
b2prq

˙

`

„

1

r

ˆ

1 0
0 ˚ΣBθ

˙

`

ˆ

0 ˚ΣdΣ

´ ˚Σ dΣ 0

˙ˆ

b1prq
b2prq

˙

“ 0.

To apply Proposition 15.6, set H “ H1 ‘H2 and

LS
1 “

ˆ

1 0
0 L3

˙

, LS
2 “

ˆ

0 L4

L˚4 0

˙

,

with L3 :“ ˚ΣBθ : H2 Ñ H2 and L4 :“ ˚ΣdΣ : H2 Ñ H1. To verify the condition (15.5),
we calculate for each v “ pb1, b2q P H that

}pLS
1 ` rL

S
2 ` αqv}

2
H ´ xv, rL

S
2vy “ }αb1 ` rL4b2}

2
H1
` }rL˚4b1 ` pL3 ` αqb2}

2
H2

` p2α` 1q}b1}
2
H1
ě 0 if α ą ´

1

2
.

In this case, Lemma 15.9 is not applicable because the anti-commutator tLS
1, L

S
2u ‰ 0. ♦

In the proof of Proposition 15.4 below, we will work with operator L1, L2 that are not
self-adjoint on H. Nevertheless, the abstract Proposition 15.6 still applies, since we can
verify the first step of (15.11) directly: this is the only place the self-adjointness was used.

Proof of Proposition 15.4. Let I “ r0, 1ss. For any r ě 0, consider the contour Γr “

Γ
p1q
r ` Γ

p2q
r ` Γ

p3q
r ` Γ

p4q
r with

Γp1qr “ tru ˆ I, Γp2qr “ti` reiθ : 0 ď θ ď πu,

Γp3qr “ t´ru ˆ I, Γp4qr “treiθ : π ď θ ď 2πu,

and define

v1prq “ f |
Γ
p1q
r

š

Γ
p3q
r
P H1 :“ L2pI

ž

p´Iq,Cq,

v2prq “ f |
Γ
p2q
r

š

Γ
p4q
r
P H2 :“ L2pr0, πsθ

ž

rπ, 2πsθ,Cq.

where p´Iq stands for the orientation reversal of I. Finally, set

wprq “ pw1prq, w2prqq :“ pv1prq,
?
rv2prqq P H :“ H1 ‘H2.

Our assumptions imply that the function w : r0, 1q Ñ H vanishes to the infinite order
at the origin. To apply Proposition 15.6, we look for the differential equation that governs
wprq. As the function f solves the perturbed B̄-equation, we have

(15.12) Brwprq `
`1

r
L1 ` L2

˘

wprq “ hprq

with

L1 “ p0, iBθ ´
1

2
q and L2 “ piBs, 0q on H “ H1 ‘H2.

The error term hprq in (15.12) is determined by the convolution operator K and the
smooth potential V , so the assumption (15.6) is satisfied in our case.

Neither L1 nor L2 is a self-adjoint operator on H, but we still have

(15.13) Rexp
1

r
L1 ` L2qwprq, Brwprqy “ Rexwprq, p

1

r
L1 ` L2qBrwprqy
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which justifies the equality (15.11) in the proof of Proposition 15.7. Indeed,

xp
1

r
L1 ` L2qwprq, Brwprqy ´ xwprq, p

1

r
L1 ` L2qBrwprqy “

i

2r

ż

r0,πs
š

rπ,2πs
Bθ|v2pr, θq|

2dθ

is purely imaginary. As the relation

2 RexL1v, L2vy “ 0,@v P DpL1q XDpL2q

still holds in our case, the proof of Lemma 15.9 remains valid. Now we use Lemma 15.9
and Proposition 15.6 to complete the proof. �

15.5. The Seiberg-Witten Equations. Having discussed some toy problems, we are
now ready to prove the strong unique continuation property for the perturbed Seiberg-
Witten equations, by combining Example 15.10 and 15.11.

Proof of Theorem 15.1. With loss of generality, assume I “ r´1, 1s and t0 “ 0. It suffices
to show that γ1 and γ2 are gauge equivalent in an open neighborhood of t0u ˆ Y , then

one may use induction to extend this neighborhood to the whole space pZ “ I ˆ pY .

To imitate the proof of Proposition 15.4, consider the closed 3-manifold Yr “ Yp1qr Y

Yp2qr Y Yp3qr where

Yp1qr :“ tru ˆ Y, Yp2qr “ treiθ : 0 ď θ ď πu ˆ Σ,

Yp3qr :“ p´t´ru ˆ Y q, @r P r0, 1s.

Here Yp3qr is the orientation reversal of t´ruˆY . LetB0 be the reference spinc connection

on pY , so B0 agrees with the Rs-invariant connection

d

ds
` B̌

on the cylindrical end r´1,8qs ˆ Σ. Set γ0 “ pB0, 0q.

Extend the gauge transformation u constantly in the time direction and replace γ1 by

upγ1q. Construct gauge transformations ui, i “ 1, 2 such that ui ” Id on t0u ˆ pY and
γ1i :“ uipγiq is in the temporal gauge (the dt-component vanishes). Consider the difference

δiptq :“ γ1i|ttuˆpY
´ γ0 P C

8ppY , iT ˚ pY ‘ Sq

Formally, δi is subject to an evolution equation:

Btδiptq ` L
Y
2 δiptq ` δiptq#δiptq ` qpδiptq ` γ0q “ c.

where # is a symmetric bilinear form that involves only point-wise multiplications. Here
c is a constant error term determined by γ0 and

LY2 “

ˆ

˚3d
pY

0
0 DB0

˙

.

Now take the difference δptq :“ δ2ptq ´ δ1ptq. Over the space r´1, 1st ˆ Y , we have

(15.14) Btδptq ` L
Y
2 pδptqq “ h1ptq P C

8pY, iT ˚Y ‘ Sq
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and }h1ptq}L2pY q ď C}δptq}L2pY q for a uniform constant C ą 0. Moreover,

Bnt δp0q ” 0 on Y for any n ě 0.

When n “ 0, this follows from the assumption that γ1 “ γ2 on t0uˆY . When n ě 1, this
is a consequence of the equation (15.14) and its higher time derivatives. As a result, all
derivatives of δ vanish on t0u ˆ Y .

Set H1 “ L2pY, iT ˚Y ‘ Sq and define

v1prq “ pδprq|Y , δp´rq|Y q P H1 ‘H1.

Then Bnr v1p0q “ 0 for any n ě 0.

To deal with the middle part Yp2qr , consider the polar coordinate at 0 P Cz and restrict
δ to a section of

iT ˚X 1 ‘ S Ñ X 1 :“ r0, 1sr ˆ r0, πsθ ˆ Σ Ă Rt ˆ ts ě 0u ˆ Σ.

The section δ is not necessarily in the radial temporal gauge: the dr-component of δ only
vanishes when θ “ 0, π. One has to construct gauge transformations u1i : X 1 Ñ S1 on X 1

such that u1i|t0uˆr0,πsθˆΣ ” Id and u1ipγ
1
iq is the radial temporal gauge. Then we define

v2prq “ u12pγ
1
2qprq ´ u

1
1pγ

1
1qprq P H2 :“ L2pr0, πsθ ˆ Σ, iR‘ iT ˚Σ‘ Sq.

Then the path v2prq is subject to the equation

Brv2prq `

ˆ

1

r

ˆ

LS
1 0

0 LD
1

˙

`

ˆ

LS
2 0

0 LD
2

˙˙

v2prq “ h2prq P H2.

and }h2prq}H2 ď C}v2prq}H2 for a constant C ą 0. The Seiberg-Witten equations are not
perturbed on X 1, so the error term h2prq involves only point-wise multiplications with
v2prq. Operators LS

i and LD
i , i “ 1, 2 are defined as in Example 15.10 and 15.11.

As all derivatives of δ vanish on p0, 0q ˆ Σ, Bnr v2p0q “ 0 for any n ě 0.
Finally, let H “ pH1 ‘H1q ‘H2 and define

wprq “ pw1prq, w2prqq :“ pv1prq,
?
rv2prqq P H.

Now the path w : r0, 1qr Ñ H is subject to the equation

(15.15) Brwprq ` p
1

r
L1 ` L2qwprq “ ph1prq,´h1p´rq,

?
rh2prqq.

with

L1 “ p0, 0,

ˆ

LS
1 0

0 LD
1

˙

´
1

2
q, L2 “ pL

Y
2 ,´L

Y
2 ,

ˆ

LS
2 0

0 LD
2

˙

q.

To apply Proposition 15.6, we have to verify:

‚ the positivity condition (15.5);
‚ the symmetry condition (15.13); note that neither L1 nor L2 is self-adjoint.

At this point, we have reduced the problem to some formal properties of L1, L2 and
wprq. We will treat the form component and the spinor component of (15.15) separately.
The verification of (15.5) and (15.13) will dominate the rest of the proof.

Step 1. The Form Component and the Self-Dual operators. In this case, the positivity
condition (15.5) follows from the same argument as in Example 15.11 and Proposition
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15.4. It can be checked separately on each of Ypiqr , 1 ď i ď 3. As for (15.13), we focus on

the common boundary of Yp1qr and Yp2qr . Suppose the form components of v1prq and v2prq
are given respectively by

v1|truˆp´1,0ssˆΣ ù a1ds` a2, a1prq P C
8pp´1, 0ss ˆ Σ, iRq,

a2prq P C
8pp´1, 0ss ˆ Σ, iT ˚Σq,

v2 ù b1prdθq ` b2, b1prq P C
8pr0, πsθ ˆ Σ, iRq,

b2prq P C
8pr0, πsθ ˆ Σ, iT ˚Σq.

Near the boundary of Yp1qr , we have

p˚3dY q

ˆ

a1prq
a2prq

˙

“

ˆ

0 ˚ΣdΣ

´ ˚Σ dΣ ˚ΣBs

˙ˆ

a1prq
a2prq

˙

.

Then we calculate (the operator LS
2 is ignored here as it is always self-adjoint):

xp˚3dY qv1, pBrv1qytruˆY ´ xv1, p˚3dY qpBrv1qytruˆY “ x˚Σa2pr, 0q, pBra2qpr, 0qypr,0qˆΣ.

x
1

r
LS

1w2, pBrw2qyH2 ´ xw2,
1

r
LS

1pBrw2qyH2 “ ´x˚Σb2pr, 0q, pBrb2qpr, 0qypr,0qˆΣ

`
1

r

ż

r0,πsθ

Bθx˚Σb2, b2yΣ
looooooooooomooooooooooon

“0

` ¨ ¨ ¨ .

It remains to verify that a2pr, 0q “ b2pr, 0q on Yp1qr X Yp2qr . Suppose the restriction of
the form component of δ on X 1 “ r0, 1sr ˆ r0, πsθ ˆ Σ is fdr ` c1prdθq ` c2 with

fprq, c1prq P C
8pr0, πsθ ˆ Σ, iRq, c2prq P C

8pr0, πsθ ˆ Σ, iT ˚Σq.

It is clear that a2 and c2 agree along the common boundary of Yp1qr and Yp2qr . Moreover,

fpr, θq ” 0 if θ “ 0 or π.

To put δ into radial temporal gauge, we applied further gauge transformations, so pb1, b2q
is related to δ by the formulae:

b1prq “ c1prq ´
1

r

ż r

0
pBθfqpr

1qdr1, b2prq “ c2prq ´

ż r

0
pdΣfqpr

1qdr1.

As a result, a2pr, sq|s“0 “ b2pr, θq|θ“0. This equality does not a priori hold for a1 and
b1, but it is not needed in the proof.

Step 2. The Spinor Component and the Dirac operators. The proof of (15.13) proceeds
in the same way as in Step 1. We focus on the positivity condition (15.5). Suppose the
spinor components of viprq, 1 ď i ď 3 are given respectively by

v1|truˆY ù Φ1prq P C
8pY, Sq, v2 ù Φ2prq P C

8pr0, πsθ ˆ Σ, Sq,

v3|truˆY ù Φ3prq P C
8pY, Sq.

We focus on sections

pΦ1prq,Φ3prq,
?
rΦ2prqq P L

2pY, Sq ‘ L2pY, Sq ‘ L2pr0, πsθ ˆ Σ, Sq
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and operators:

1

r

¨

˝

0 0 0
0 0 0
0 0 LD

1 ´
1
2

˛

‚`

¨

˝

DB0 0 0
0 ´DB0 0
0 0 LD

2

˛

‚.

Unlike Example 15.10, LD
1 is not self-adjoint in this case. In general,

2 RexLD
1 v, L

D
2 vyL2pr0,πsθˆΣq “

ż

tθuˆΣ
xv,DΣ

B̌
vy

ˇ

ˇ

ˇ

ˇ

θ“π

θ“0

‰ 0, v P L2pr0, πsθ, Sq.

Let v “
?
rΦ2prq and follow the proof of Lemma 15.9:

}pLD
1 ` rL

D
2 ` pα´

1

2
qq
?
rΦ2}

2
L2pr0,πsθˆΣq ´ Rex

?
rΦ2, prL

D
2 q
?
rΦ2y

ě
2r2

2α´ 1
RexLD

1 Φ2, L
D
2 Φ2yL2pr0,πsθˆΣq

“
r2

2α´ 1

ˆ
ż

tπuˆΣ
xΦ2, D

Σ
B̌

Φ2y ´

ż

t0uˆΣ
xΦ2, D

Σ
B̌

Φ2y

˙

.

Just as in Step 1, sections Φ1 and Φ2 have the same boundary value along Yp1qr X Yp2qr :

Φ1pr, sq
ˇ

ˇ

s“0
“ Φ2pr, θq

ˇ

ˇ

θ“0
.

Therefore, it remains to verify the inequality:

}prDB0 ` αqΦ1}
2
L2pY q ´ RexΦ1, prDB0qΦ1y ě

r2

2α´ 1

ż

t0uˆΣ
xΦ1, D

Σ
B̌

Φ1y.

The left hand side can be rewritten as

p1´
1

2α´ 1
q}prDB0`

p2α´ 1q2

4α´ 4
qΦ1}

2
L2pY q`

r2

2α´ 1
}DB0Φ1}

2
L2pY q`

4α2 ´ 6α` 1

8α´ 8
}Φ1}

2
L2pY q.

Using the Weitzenböck formula [KM07, (4,15)], the last two terms are bounded below by

r2

2α´ 1

ˆ

}∇B0Φ1}
2
L2pY q `

ż

t0uˆΣ
xΦ1, D

Σ
B̌

Φ1y `

ż

Y

s

4
|Φ1|

2 ` xΦ1,
1

2
ρ3pFBt0qΦ1y

˙

`
α´ 1

2
}Φ1}

2
L2pY q ě

r2

2α´ 1

ż

t0uˆΣ
xΦ1, D

Σ
B̌

Φ1y `
α´ α0

2
}Φ1}

2
L2pY q.

Then we take α ą α0 :“ e100 maxt}s}8, }FBt0}8, 1u.

The common boundary Yp2qr XYp3qr is dealt with similarly. Hence, the positivity condition
(15.5) holds when α ą α0. Now we use Proposition 15.6 and 15.7 to complete the proof. �

15.6. Irreducibility of Spinors. We accomplish the proof of Theorem 15.3 in this sub-
section, following the idea above. The spinor part of the equation (15.1) is cast into the
form

d

dt
Ψptq `DBptqΨptq ` q1pBptq,Ψptqq “ 0.
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where q1 is the spinor part of the perturbation q “ pq0, q1q. As q1pBptq, 0q ” 0, we have

}q1pBptq,Ψptqq}2 “ }q
1pBptq,Ψptqq ´ q1pBptq, 0q}2

“

ż 1

0
}DpBptq,rΨptqqq1pΨptqq}2dr ď C}Ψptq}L2pY q,

for a constant C ą 0 and any t P rt0 ´ ε, t0 ` εs. Now the proof of Theorem 15.1 can
proceed with no difficulty.

15.7. The Linearized Version. In this subsection, we accomplish the proof of Theorem
15.2. To some extent, it suffices to “linearize” each step of the proof of Theorem 15.1.
Again, assume I “ r´1, 1st and t0 “ 0.

ξp1qptq “ ξ ´

ż t

0
δcpt1qdt1 P C8p pZ, iRq,

and set V1 “ V ´ dγ ξ
p1q. This new section V1 is smooth, and

V1ptq “ p0, δb1ptq, δψ1ptqq P L
2
kpZ, iT

˚Z ‘ Sq,

V1p0q “ 0 on t0u ˆ Y.

As γ solves the non-linear equation (15.1), dγf
p1q is a solution to the linear equation

(15.2), and so is V1. The equation (13.2) is formally an evolutionary equation on I ˆ Y :

(15.16)
d

dt

ˆ

δb1ptq
δψ1ptq

˙

`

ˆ

˚3dY 0
0 DB0

˙ˆ

δbptq
δψptq

˙

“ ηptq

ˆ

δbptq
δψptq

˙

, t P R.

where ηptq : L2pY q Ñ L2pY q is a family of bounded linear operators determined by γ̌ptq.

To borrow the proof of Theorem 15.2, we focus on Yp2qr . Using polar coordinates, we
write

V1prq “ pδc
1
1prq, δb

1
1prq, δψ

1
1prqq P C

8pX 1, iR‘ iT ˚pr0, πsθ ˆ Σq ‘ Sq,

on X 1 “ r0, 1sr ˆ r0, πsθ ˆΣ Ă H2
`ˆΣ. To put V1prq into radial temporal gauge, consider

the function

f p2qprq “ ´

ż r

0
δc11pr

1qdr1 on X 1.

Then f p2qpr, θq ” 0 when θ “ 0, π, and the section V1 ´ dγf
p2q solves the linear equation

(15.2) on X. The proof of Theorem 15.1 is now applicable. We conclude that

V1ptq ” 0 on I ˆ Y(15.17)

V1 ´ dγf
p2q ” 0 on X 1.

We extend f p2q by zero over the product I ˆ Y . One might worry that f p2q does not
form a smooth function on the union

pI ˆ Y q
ď

X 1,
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as we pointed out in Step 1 in the proof of Theorem 15.2. However, once the unique
continuation property is established, the smoothness of f p2q follows from (15.17) and the
smoothness of V1. As a result,

V1 “ dγf
p2q on pI ˆ Y q

ď

X 1.

By induction, we can extend the region where this equality holds. This completes the
proof of Theorem 15.2.

16. Transversality

With all machinery developed so far, we are ready to prove the transversality result on

the cylinder Rt ˆ pY in this section. Here is the main result:

Theorem 16.1. For any relative spinc manifold ppY ,psq satisfying constraints in the strict

cobordism category Cobs, one can find an admissible perturbation q P PppY ,psq, in the sense

of Definition 13.3. Here PppY ,psq is the Banach space of tame perturbations constructed
Subsection 8.5.

Pick an admissible perturbation qppsq for each relative spinc structure ps on Y . By
putting them altogether, we obtain an object Y “ pY, ψ, gY , ω, qq in the category Cobs:
the property (P8) is fulfilled. In this case, the moduli spaces Mrγspa, bq defined in Section
13 will become a smooth manifold, and the Floer homology of pY,psq will be defined in
Part 6.

Theorem 16.1 is a formal consequence of the unique continuation properties, Theorem
15.1-15.3 and the separating properties of cylinder functions, Theorem 8.20. The transver-
sality result for a general morphism X : pY,ps1q Ñ pY2,ps2q in the category SCobs is proved
in Subsection 16.3, cf. Theorem 16.5.

16.1. Transversality for the 3-Dimensional Equations. Consider the Banach space
of perturbations P and a tame perturbation q “ grad f P P. We start with the first
condition (E1) in Definition 13.3 which concerns the 3-dimensional equation

grad Ĺωpaq “ 0,

Recall from Definition 12.2 that a critical point a P CkppY ,psq of Ĺω “ Lω ` f is called
non-degenerate if the extended Hessian at a

zHessq,a

is invertible. In fact, this is a generic condition for a perturbation q P P.

Theorem 16.2 (cf. [KM07] Theorem 12.1.12). There is a residue (and in particular non-
empty) subset of P such that for every q in this subset, any critical point a P CritpĹωq is
non-degenerate. For such a perturbation, CritpĹωq comprises a finite collection of gauge
orbits.
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Proof. The proof follows the same argument as in [KM07, Section 12.5] with one slight
modification, as we explain now. Suppose for some q P P and a P Crit Ĺω, the tangent

vector v “ p0, δb, δψq ‰ 0 lies in the kernel of zHessq,a:

(16.1) p0, δb, δψq P ker zHessq,a.

We have to show that v is separated by a cylinder function. To apply Proposition 8.6.
we verify that v is not generated by the infinitesimal gauge action on Y . Suppose on the
contrary that

(16.2) pδb, δψq “ da ξ on Y

for some ξ P L2
k`1p

pY , iRq, then by the unique continuation property of tangent vectors,

Theorem 15.2, for a possibly different function ξ1 P L2
k`1p

pY ,Rq, the equation (16.2) holds

on pY :

pδb, δψq “ da ξ
1.

By (16.1), d˚a pδb, δψq “ 0 , so pδb, δψq is L2-orthogonal to the subspace Jk,a Ă Tk,a. This
implies that v “ 0, which a contradiction. Alternatively, we may apply the linearized
version of [KM07, Theorem 7.2.1] on the 4-manifold

S1 ˆ pY ,

which possesses a cylindrical end S1 ˆ r0,8qs ˆ Σ. Now we use Proposition 8.6 to find a

cylinder function f P CylinpY q supported on Y Ă pY such that

dfpvq ‰ 0.

The rest of the proof then follows [KM07, Section 12.5]. �

16.2. Transversality on Cylinders. Suppose a tame perturbation q1 “ grad f1 in the
residue subset of Theorem 16.2 has been chosen. Then the critical set of Ĺ1

ω :“ Ĺω ` f1

consists of a finite collection of gauge orbits; let their representatives be

ai, 1 ď i ď r.

We wish to find a closed Banach subspace P 1 of P such that for any generic q2 P P 1
with }P} ! 1, the sum

q “ q1 ` q2

is an admissible perturbation. The Banach subspace P 1 that we consider is

(16.3) P 1 :“ tq2 P P : q2paiq “ 0,D1
aiq2 “ 0,@i “ 1, ¨ ¨ ¨ , ru,

so the perturbation q2 vanishes to the first order at each representative ai. The subspace
P 1 is clearly closed inside P. Let us first verify the property (E1) for q “ q1 ` q2.

Lemma 16.3 ([KM07] Lemma 15.1.2). There exists some η ą 0 such that for any q2 “

grad2 f2 P P 1 with }q2}P ă η, the critical set of Ĺω :“ Lω ` pf1 ` f2q agrees with that of
Ĺ1
ω “ Lω ` f1. As a result, the first condition (E1) of Definition 13.3 continues to hold

for the sum q “ q1 ` q2.
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In particular, for any q2 P P 1, the critical points of Ĺω in the quotient configuration

space Bk´1{2p
pY ,psq are still given by rais, 1 ď i ď r and

Dai gradpLω ` f1q “ Dai gradpLω ` f1 ` f2q, 1 ď i ď r.

So each ai is still non-degenerate in the sense of Definition 12.2. Here rais is the image of

ai in Bk´1{2p
pY ,psq.

Proof of Lemma. Suppose on the contrary that there is a sequence of tame perturbations

q
pjq
2 P P 1 and a sequence of configurations βi P Ck´1{2p

pY ,psq such that

}qj}P Ñ 0, pgrad Ĺ1
ω ` q

pjq
2 qpβjq “ 0

and each βj is not gauge equivalent to any of ai, 1 ď i ď r. By Proposition 9.7, a
subsequence of tβju converges to some ai up to gauge. Fix 0 ă ε ! 1 and let Oipεq be

the ε-neighborhood of ai in Ck`1{2p
pY ,psq. When j " 1, each βj P Oipεq, and one may use

gauge transformations to put βj into the Coulomb gauge slice at ai, i.e.

d˚aipβ ´ aiq “ 0.

Then

(16.4) grad Ĺ1
ωpβjq ´ grad Ĺ1

ωpaiq “ ´pq
pjq
2 pβjq ´ q

pjq
2 pajqq.

As ai is non-degenerate as a critical point of Ĺ1
ω, the L2

k´1{2-norm of the left hand side is

bounded below by

c}βj ´ ai}L2
k`1{2,ai

for some c ą 0. On the other hand, as q
pjq
2 Ñ 0 in P, the C2-norm of q over the bounded

neighborhood Oipεq converges to zero, by Corollary 8.19:

sup
γPOipεq

}D2
γq
pjq
2 } Ñ 0 as j Ñ8.

As a result, the L2
k´1{2-norm of the right hand side of (16.4) is bounded above by

}βj ´ ai}
2
L2
k´1{2,ai

ď }βj ´ ai}
2
L2
k`1{2,ai

ď ε}βj ´ ai}L2
k`1{2,ai

,

when j " 1, which yields a contradiction if ε ă c. �

Theorem 16.1 now follows from the strong unique continuation property Theorem 15.1-
15.3 together with Lemma 13.5. The proof is modeled on [KM07, Section 15]. In what
follows, we will only point out the necessary changes to be made.

Proof of Theorem 16.1. Let a, b P CritpĹωq be critical points of Ĺω and pZ “ Rt ˆ pY be
the infinite cylinder. Following the scheme of [KM07, Section 15] and notations from
Subsection 13.1, it suffice to show for any q2 P P 1 and any solution γ P Ckpa, bq to the
perturbed equation

0 “ F
pZ,q

:“ F
pZ
` pq,
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the operator

P 1 ˆ L2
kp
pZ, iR‘ iT ˚ pY ‘ Sq Ñ L2

k´1p
pZ, iR‘ iT ˚ pY ‘ Sq(16.5)

pδq, V q ÞÑ δpqpγq ` pd˚γ ,DγF
pZ,q
qpV q

is surjective. The section δpqpγq lies in L2
k´1 as the underlying path γ̌ : R Ñ Ck´1{2p

pY ,psq
decay exponentially to either a or b as t Ñ ˘8 and δq vanishes at a and b to the first
order.

Suppose first that δpq “ 0 in (16.5), then (16.5) becomes a Fredholm operator by Propo-
sition 13.1, and its cokernel is finite dimensional. It remains to show that for any section

U “ pδc1ptq, δb1ptq, δψ1ptqq P L2p pZ, iR‘ iT ˚ pY ‘ Sq

that is L2-orthogonal to the image of pd˚γ ,DγF
pZ,q
q, there exist some δpq P P 1 such that

(16.6) xδpqpγptqq, Uy
L2pRˆpY q

‰ 0.

We first explain how to achieve (16.6) for a generalized cylinder function f : Ck´1{2p
pY ,psq Ñ

R:

(16.7)

ż

tPRt
xgrad fpγ̌q, Uptqy

L2ppY q
‰ 0.

By the unique continuation properties, Theorem 15.1, 15.2 and 15.3, the underlying

path γ̌ : RÑ Ck´1{2p
pY ,psq satisfies the following properties

‚ for any t1 ‰ t2 P Rt, γ̌pt1q and γ̌pt2q are not gauge equivalent over Y ;
‚ for any t P Rt, γ̌ptq is not gauge equivalent to ai on Y for any 1 ď i ď r; moreover,
γ̌ptq is irreducible on Y ;

‚ for any t P Rt, its derivative Btγ̌ptq is not generated by the infinitesimal gauge
action over Y .

As for the section U in the cokernel, by Lemma 13.5, we have

‚ δc1ptq ” 0;
‚ for some t0 P Rt, Upt0q “ p0, δb1pt0q, δψ1pt0qq are not generated by the infinitesimal

gauge action over Y .

Take a large constant T ą 0 such that t0 P r´T, T s. To apply Theorem 8.20, let the
compact subset K be the image of

tai : 1 ď i ď ru
ď

tγ̌ptq : t P r´T, T su

in the quotient configuration space B˚k´1{2p
pY ,psq. Then we can find a finite collection of

cylinder functions tfj , 1 ď j ď lu defined using embeddings ιj : S1 ˆD2 ãÑ Y such that
the map

Ξ1˚ “ pf1, ¨ ¨ ¨ , flq : Bk´1{2p
pY ,psq Ñ Rl

gives an embedding of K and Ξ1pUpt0qq ‰ 0. Choose a smooth function

g1 : Rl Ñ R

supported in a small neighborhood Ω of Ξ1prγ̌pt0qsq with the following additional properties



MONOPOLES AND LANDAU-GINZBURG MODELS II: FLOER HOMOLOGY 99

‚ Ξ1praisq R Ω, @1 ď i ď r;
‚ pΞ1 ˝ γ̌q´1pΩq is a small connected interval rt0 ´ ε1, t0 ` ε2s around t0; to achieve

this, we take T " 1;
‚ lastly, the integral

(16.8)

ż

Rt
dg1pΞ1˚pUptqqqdt ‰ 0.

The last property would be impossible if for some constant α P R, Ξ1˚pUptqq “ αΞ1˚pBtγ̌tq
for any t P rt0´ ε, t0` εs. However, this cannot hold for the whole real line; otherwise one
may draw a contradiction from equations (13.2) and (13.8). Then we can achieve (16.8)
by taking a different time slice t0 P Rt and possibly a different Ξ1.

As a result, the inequality (16.7) is achieved for the composition:

f :“ g1 ˝ Ξ1 : Bk´1{2p
pY ,psq Ñ R,

Note that f ” 0 in some L2
k´1{2-neighborhood of trais : 1 ď i ď ru, so grad f satisfies the

constraints in (16.3). By the density of the Banach space P, we can approximate grad f
by an element δpq in P 1 and the inequality (16.6) holds for this approximation.

The rest of the proof follows the same line of argument as in [KM07, Proposition
15.1.3]. �

16.3. Transversality on 4-Manifolds in General. Recall the set up from Section 14.
For a morphism X : pY1,ps1q Ñ pY2,ps2q, the Seiberg-Witten equations FX ,p “ 0 on the
complete Riemannian 4-manifold X is perturbed by a quadruple

p “ pq1, q2, q3, ω3q.

While pq1, q2q are encoded in the objects Y1 and Y2, the pair

pq3, ω3q P PpY3q ˆ PForm

is the actual perturbation that allows us to achieve transversality.

Definition 16.4. The quadruple p is said to be admissible if

‚ each qi P PpYiq, i “ 1, 2 is admissible in the sense of Definition 13.3;

‚ for any spinc cobordism p pX,psXq : ppY1,ps1q Ñ ppY2,ps2q (with a prescribed planar
metric gX), the moduli space Mkpa1,X , a2q is regular in the sense of Definition
14.2. Here ai P CritpĹ

ωi,pYi
q is a critical point of the perturbed Chern-Simons-Dirac

functional Ĺ
ωi,pYi

on pYi, i “ 1, 2. ♦

Theorem 16.5. Under above assumptions, for any fixed admissible perturbations pq1, q2q

on pY1 and pY2 respectively, there is a residue subset of PpY2q ˆ PForm such that for every
pair pq3, ω3q in this subset, the quadruple p is admissible.

Proof. Following the proof of Theorem 16.1, it suffices to verify that the operator

PpY2q ˆ PForm ˆ L
2
kpX , iT ˚X ‘ S`q Ñ L2

k´1pX , iR‘ isupS`q ‘ S´q(16.9)

pδq3, δω3, V q ÞÑ pd˚γ ,DγFX ,pqV ` β0ptqδpq3pγq ` ρ4pδω
`
3 q,
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is surjective, for any solution γ P Ckpa1,X , a2q to the perturbed equation FX ,p “ 0. We
begin with pδq3, δω3q “ 0, then (16.9) becomes a Fredholm operator by Proposition 14.1.
Suppose U P L2pX , iR ‘ iΛ`X ‘ S´q is L2-orthogonal to the image of pd˚γ ,DγFX ,pq. it
remains to find pδpq3, δω3q such that

(16.10) xU, β0ptqδpq3pγq ` ρ4pδω
`
3 qyL2 ‰ 0.

Let I “ r1, 2st and write

U “ pδξ, δω, δφq with δξ P L2pX , iRq.
The same argument as in the proof of Lemma 13.5 implies that δξ ” 0. The inner product
(16.10) is supported on the compact submanifold

pZ :“ I ˆ pY2,

over which the formal adjoint of pd˚γ ,DγFX ,pq is cast into the form (13.6). If instead we
write

Uptq “ p0, δbptq, δψptqq P L2
1p
pZ, iR‘ iT ˚ pY2 ‘ Sq on I ˆ pY2,

then we are back to the cylindrical case. Here we have used the bundle map

pρ3, ρ4pdtqq

to identify iT ˚ pY2 ‘ S with isupS`q ‘ S´ over pZ.
However, Lemma 13.5 does not apply directly here, so we argue as follows. If there

exists some t0 P suppβ0 Ă r1, 2s such that Upt0q is separated by some cylinder function f ,
then we set δω3 “ 0 and proceed as in the proof of Theorem 15.1.

If not, then by the proof of Lemma 13.5, for any t P r5{4, 7{4s, there exists some function

ξptq P L2
1p
pY , iRq such that

pδbptq, δψptqq “ dγ̌ptq ξptq on ttu ˆ Y2.

Moreover,

(16.11)
d

dt
dY2ξptq ” 0 and ∆Y2ξptq ` ξptq|Ψptq|

2 “ 0 on r5{4, 7{4s ˆ Y2.

Recall that δω3 “ ´β0ptqdt^ dY2f3 for a compactly supported function f3 : I ˆ Y2 Ñ iR,
so

ρ4pδω
`
3 q “ ρ3pdY2pβ0ptqf3qq.

If U is orthogonal to ρ4pδω
`
3 q for any δω3 P PForm, then ∆Y2ξptq ” 0. By (16.11),

Uptq ” 0 on r5{4, 7{4s ˆ Y2. By unique continuation, U ” 0 on the whole manifold X . �
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Part 6. Floer Homology

Let pY,psq P SCobs be an object in the strict spinc cobordism category, as defined in
Section 3. The underlying 3-manifold Y of Y is compact connected and oriented, whose
boundary is identified with a disjoint union of 2-tori Σ by the diffeomorphism ψ : BY Ñ Σ.
The quintuple Y “ pY, ψ, gY , ω, tquq also dictates a cylindrical metric gY and a closed 2-
form ω P Ω2pY, iRq. ps P Spinc

RpY q is a relative spinc structure of the 3-manifold Y .
The primary goal of this part is to define the functor

HM ˚ : SCobs Ñ R-Mod

which assigns the monopole Floer homology HM ˚pY,psq for each object pY,psq P SCobs,
generalizing the construction of Kronheimer-Mrowka for closed 3-manifolds.

So far we have addressed two fundamental problems in order to define the functor HM ˚:

‚ the compactness issue; see Theorem 6.1 for the unperturbed equations and Theo-
rem 9.5 for the perturbed ones;

‚ the transversality issue; see Theorem 16.1 for the case of cylinders and Theorem
16.5 for morphisms in SCobs.

Although the proof of the gluing theorem is omitted in this paper, it follows from the
standard procedure in [KM07, Section 17-19], as noted in Subsection 13.4.

Now the construction of monopole Floer homology becomes straightforward by following
the standard argument. Part 6 is organized as follows. In Section 17, we explain the basic
construction using F2-coefficient. Section 18 is devoted to the canonical grading as well
as the canonical mod 2 grading of HM ˚pY,psq.

In Section 19, we address the orientation issue, which allows us to define the monopole
Floer homology HM ˚pY,psq using Z-coefficient. The key ingredient is the notion of relative
orientations, which compare the orientations of two Fredholm operators using the excision
principle, cf. Theorem 19.2 and Definition B.2. The proof is postponed to Appendix B.

17. The Basic Construction: F2-coefficient

In this section, we define the monopole Floer homology HM ˚pY,psq for each object
pY,psq P SCobs using F2-coefficient. For the most general case, we have to use a Novikov
ring R2. To work with the field F2 of two elements, we will pass to a subcategory of SCobs
in which case a monotonicity condition is required.

17.1. Novikov Rings. Let us first explain the construction of HM ˚pY,psq using a Novikov
ring

R2 “ t
ÿ

ni

aiq
ni : ai P F2, ni P R, lim

i
ni “ ´8u,

which is a complete topological group. Each element of R2 is a Laurent series in a formal
variable q with possibly infinitely many terms in negative degrees. For any object pY,psq P
SCobs, the perturbation q “ grad f encoded in the quintuple Y is admissible in the sense
of Definition 13.3. Let CpY,psq be the set of critical points of Ĺω “ Lω ` f in the quotient
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configuration space BkppY ,psq, then CpY,psq is a finite set by Theorem 16.2. Then the chain
group C˚pY,psq is freely generated by CpY,psq over R2:

C˚pY,psq “
à

rasPCppY ,psq

R2 ¨ ras.

with differential B defined as

(17.1) Bras “
ÿ

zPπ1pBkppY ,psq;ras,rbsq
dim |Mzpras,rbsq“0

rbs ¨# |Mzpras, rbsq ¨ q
´Eq

toppras,rbs;zq.

The unparameterized moduli space |Mzpras, rbsq :“Mzpras, rbsq{Rt is defined as in (13.5).

The topological energy Eq
toppras, rbs; zq for a homotopy class of paths z P π1pBkppY ,psq; ras, rbsq

equals twice the drop of Ĺω along γ

2pĹωpaq ´ Ĺωpbqq

if γ : r0, 1s Ñ CkppY ,psq is a lift of z with γp0q “ a and γp1q “ b. This expression is
suggested by Proposition 9.1. To ensure the sum in (17.1) is convergent in R2, we need a
finiteness result:

Lemma 17.1. For any C ą 0, there are only finitely many homotopy classes of paths

z P π1pBkppY ,psq; ras, rbsq such that Eq
toppras, rbs, zq ă C and |Mzpras, rbsq is non-empty.

Moreover, each |Mzpras, rbsq is compact if its dimension equals zero.

To show B2 “ 0, we follow the standard argument and look at the compactification of

moduli spaces |Mzpras, rbsq when dim “ 1. Readers are referred to [KM07, Section 22] for
the details. The monopole Floer homology of pY,psq is then defined as the homology of the

chain complex pC˚ppY ,psq, Bq:

HM ˚pY,psq :“ H˚ppC˚ppY ,psq, Bqq.

To make HM ˚ into a functor:

HM ˚ : SCobs Ñ R2-Mod,

we assign for each morphism X : Y1 Ñ Y2 a chain map:

mpX; gX , pq : pC˚pY1,ps1q, B1q Ñ pC˚pY2,ps2q, B2q

which relies on a planar metric gX of the strict cobordism X : Y1 Ñ Y2 and a quadruple

p “ pq1, q2, q3, ω3q P PpY1q ˆ PpY2q ˆ PpY2q ˆ PForm.

Here p is required to be admissible in the sense of Definition 16.4. While pq1, q2q are
encoded in the objects pY1,Y2q, pq3, ω3q are the actual perturbations to the Seiberg-Witten
equations on the complete Riemannian 4-manifold X . Now define

(17.2) mpX; gX , qqra1s “
ÿ

psXPSpincpX;ps1,ps2q
dimMpa1,psX ,a2q“0

ra2s ¨#Mpa1,psX , a2q ¨ q
´Ep

toppa1,psX ,a2q,
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where ai is a lift of rais P CpYiq in CkppY ,psq for i “ 1, 2. The moduli space Mpa1,psX , a2q

is defined as in (14.4) with the admissible quadruple q as perturbations. The topological
energy is given by the formula

(17.3) Ep
toppa1,psX , a2q :“ 2Ĺω1pa1q ´ 2Ĺω2pa2q ` CpA0, ωXq

where A0 is a background spinc connection on pX such that the restriction A0|
pYi

is the

reference connection on pYi that defines the Chern-Simons-Dirac functional Ĺωi for i “ 1, 2.
The constant CpA0, ωXq is given concretely by

(17.4) CpA0, ωXq “
1

4

ż

pX
FAt0 ^ FAt0 ´

ż

pX
FAt0 ^ ωX ,

as suggested by (5.2). To make sense of the expression (17.2), we need another finiteness
result:

Lemma 17.2. For any C ą 0, any pair of critical points pra1s, ra2sq P CpY1q ˆ CpY2q

and any admissible quadruple p, there are only finitely many relative spinc cobordisms
psX P Spinc

RpX;ps1,ps2q such that Ep
toppa1,psX , a2q ă C and Mpa1,psX , a2q is non-empty.

Moreover, each moduli space Mpa1,psX , a2q is compact if its dimension equals zero.

Lemma 17.1 and Lemma 17.2 follow from the Compactness Theorem 9.5 and its ana-
logue for a general cobordism. Readers are referred to [KM07, Corollary 31.2.5] for more
details; their proofs are omitted here. By analyzing the moduli space Mpa1,psX , a2q with
dim “ 1, we conclude that mpX; gX , qq is a chain map by the standard argument. The
chain maps induced from different auxiliary data pgX , qq are all chain homotopic to each
other, so the resulting maps on the homology are independent of pgX , qq

HM ˚pXq :“ rmpX; gX , pqs : HM ˚pY1,ps1q Ñ HM ˚pY2,ps2q.

To show that HM ˚ defined this way is a functor and satisfies the composition law, we
follow [KM07, Section 26].

17.2. Monotonicity. To define the monopole Floer homology using F2-coefficient, it is
necessary to pass to a subcategory of SCobs, as we explain in this subsection.

Definition 17.3. An object pY,psq “ pY, ψ, gY , ω, q,psq P SCobs is called monotone if the
period class rωs P H2pY ; iRq is proportional to the image of c1ppsq in ImpH2pY, BY ;Zq Ñ
H2pY ;Rq:

r
ω

πi
s “ α ¨ c1psq P H

2pY ;Rq for some α P R.

In addition, ppY ,psq is called

‚ positively monotone if α ă 1;
‚ balanced if α “ 1;
‚ negatively monotone if α ą 1. ♦

In light of Lemma 3.8, under the monotonicity assumption, we have

Ĺωpu ¨ γq ´ Ĺωpγq “ 2p1´ αqπ2rus Y c1psq,
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for any γ P CkppY ,psq and u P Gk`1ppY q. In particular, Ĺω becomes a real valued functional
if pY,psq is balanced. One necessary condition of monotonicity is that µ “ 0. The con-
struction described below will work in general for any monotone objects, but let us focus
on the special case when the period class rωs “ 0 P H2pY ; iRq and the form ω defined in
(P6) vanishes, for the sake of simplicity; so

ω “ ωλ “ χ1psqds^ λ.

In this case, ppY ,psq is always positively monotone, since α “ 0.
Under this assumption, the chain group C˚pY,ps;F2q is a finite dimensional F2-vector

space:

C˚pY,ps;F2q :“
à

rasPCppY ,psq

F2 ¨ ras.

with differential defined by

(17.5) Bras “
ÿ

zPπ1pBkppY ,psq;ras,rbsq
dim |Mzpras,rbsq“0

rbs ¨# |Mzpras, rbsq

In light of Lemma 17.1, to make sense of this expression, we need an upper bound on
the topological energy Eq

toppras, rbs; zq:

Lemma 17.4. For any ras, rbs P CpY,psq, there exists a constant C ą 0 such that

Eq
toppras, rbs; zq ă C,

for any homotopy classes of paths z P π1pBkppY ,psq, ras, rbsq with dim |Mzpras, rbsq “ 0.

As for a morphism X : pY1,ps1q Ñ pY2,ps2q with ω1 “ ω2 “ ωλ, ωX is a compactly
supported 2-form (see (Q6)) on X. We require that the class defined in (Q7) vanishes:
rωX scpt “ 0 P H2pX, BX;Zq. This time the chain map mpX; gX , qq is defined as

mpX; gX , qq : C˚pY1,ps1;F2q Ñ C˚pY2,ps2;F2q

ra1s ÞÑ
ÿ

psXPSpincpX;ps1,ps2q
dimMpa1,psX ,a2q“0

ra2s ¨#Mpa1,psX , a2q.

Again, we need a upper bound on Etoppa1,psX , a2q to ensure the sum in the expression
above is finite:

Lemma 17.5. Under above assumptions, for any pair of critical points pra1s, ra2sq P

CpY1,ps1q ˆ CpY2,ps2q, any planar metric gX and any admissible quadruple p, there is a
constant C ą 0 such that

Ep
toppa1,psX , a2q ă C

which holds for any psX P Spinc
RpX;ps1,ps2q with dimMpa1,psX , a2q “ 0.

Lemma 17.4 and 17.5 follow directly from a general statement relating the dimension
with the topological energy Etop. In Proposition 17.6 below, we will think of a homotopy
class of paths as a relative spinc cobordism, following the ideas in Subsection 3.5.
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Proposition 17.6. Under above assumptions, for any relative spinc cobordism psX ,ps
1
X P

Spinc
RpX;ps1,ps2q, we have

Etoppa1,ps
1
X , a2q ´ Etoppa1,psX , a2q “ ´4π2

`

dimMpa1,ps
1
X , a2q ´ dimMpa1,psX , a2q

˘

In particular, the topological energy Eq
toppa1,psX , a2q is independent of the choice of

psX P Spinc
RpX;ps1,ps2q if dimMpa1,psX , a2q “ 0.

Proof. Suppose ps1X “ psX b L for a relative complex line bundle in the class rLs P
H2pX, BX;Zq. In terms of (17.3) and (17.4), we compute the difference of the topological
energy

Etoppa1,ps
1
X , a2q ´ Etoppa1,psX , a2q “ CpA0pps

1
Xq, ωXq ´ CpA0ppsXq, ωXq

“ ´2π2rLs Y pc1ppsXq ` c1pps
1
XqqrX, BXs

“ ´4π2rLs Y pc1ppsXq ` rLsqrX, BXs.

where c1ppsXq and c1pps
1
Xq are understood as elements in H2pX, r´1, 1s ˆ Σ;Zq. On the

other hand, pick an arbitrary non-vanishing section Φ0 of

S`|BX Ñ BX.

Any relative spinc structure psX P Spinc
RpX;ps1,ps2q dictates an identification of psX |BX with a

standard spinc structure on the boundary BX, so it makes sense to define the relative Euler
number eppsX ; Φ0qrX, BXs for any non-vanishing section Φ0 of the spin bundle S` Ñ BX.
In particular,

`

epps1X ; Φ0q ´ eppsX ; Φ0q
˘

rX, BXs “ rLs Y pc1ppsXq ` rLsqrX, BXs.

In Proposition 18.6 below, we will associate a homotopy class of non-vanishing sections
rΦ0pa1, a2qs to any pair pa1, a2q such that

(17.6) eppsX ; Φ0pa1, a2qqrX, BXs “ dimMpa1,psX , a2q

for any psX P Spinc
RpX;ps1,ps2q. In fact, (17.6) follows from the Index Axiom (A-I) of the

canonical grading of HM ˚pY,psq. Another approach is to show
`

epps1X ; Φ0q ´ eppsX ; Φ0q
˘

rX, BXs “ dimMpa1,ps
1
X , a2q ´ dimMpa1,psX , a2q

for any non-vanishing section Φ0 directly using the excision principle. This completes the
proof of Proposition 17.6 �

Finally, one has to verify that mpX; gX , qq is a chain map and a generic homotopy of
auxiliary data pgX , qq gives rise to a chain homotopy of mpX; gX , qq. The argument is not
different from that of [KM07, Section 25].

18. Canonical Gradings

In this section, we introduce the canonical grading of the monopole Floer homology
HM ˚pY,psq. It is more natural to think of the grading set of HM ˚pY,psq

ΞπpY,psq
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as the space of unit-length relative spinors on pY modulo gauge transformations, identified
also as a subset of homotopy classes of oriented relative 2-plane fields on Y . In particular,

ΞπpY,ps1q “ ΞπpY,ps2q

if ps1 and ps2 come down to the same spinc structure on Y .
The main result of this section is Proposition 18.6, which characterizes the canonical

grading in terms of the Index Axiom (A-I) and the Normalization Axiom (A-II). They
are inspired by the following index computation for a closed Riemannian 4-manifold X:

dimMpX, sXq “ epsXqrXs

where MpX, sXq is the Seiberg-Witten moduli space and epsXq is the Euler class of the
spin bundle S`X Ñ X. The canonical mod 2 grading will be discussed in Subsection ??.

18.1. Homotopy Classes of Oriented Relative 2-Plane Fields. For a closed 3-
manifold Y , recall that the three flavors of monopoles Floer homology:

}HM ‚pY q, yHM ‚pY q,HM ‚pY q

defined in the book [KM07] are graded by the homotopy classes of oriented 2-plane fields
over Y . The analogous statement continues to hold in our case, using relative oriented
2-plane fields instead, as we explain now. The following lemma from [KM07] explains the
relationship between 2-plane fields and spinc structures:

Lemma 18.1 ([KM07] Lemma 28.1.1). On an oriented Riemannian 3-manifold Y , there
is a bijection between

(i) oriented 2-plane fields ξ;
(ii) 1-forms θ of length 1; and

(iii) isomorphism classes of pairs ps,Ψq comprising a spinc structure and a unit-length
spinor Ψ.

Over the infinite cylinder RsˆΣ, we defined in (2.6) a preferred Rs-translation invariant
solution

γ˚ “ pB˚,Ψ˚q

to the perturbed Seiberg-Witten equations (3.6). The perturbation is provided by a co-
variantly constant 2-form

ω˚ :“ µ` ds^ λ

The correspondence in Lemma 18.1 then identifies

(18.1) the unit length 1-form θ˚ :“ i ˚3
ω˚
|ω˚|

Ø the unit length spinor
Ψ˚
|Ψ˚|

,

Indeed, as γ˚ solves the equations (3.6), pΨ˚Ψ
˚
˚q0 “ ρ3p˚3ω˚q, so

CΨ˚ and CpΨ˚qK

are i and ´i eigenspaces of ρ3pθ˚q respectively. In particular, (18.1) determines a preferred

oriented 2-plane fields ξ˚ on Rs ˆ Σ by Lemma 18.1. Now we return to a 3-manifold pY
with cylindrical ends and state a relative version of Lemma 18.1.
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Definition 18.2. An oriented 2-plane field ξ on pY is called relative if ξ agrees with ξ˚
over the cylindrical end r0,8qs ˆ Σ. Similarly, we define

‚ relative 1-forms and
‚ relative spinors

using θ˚ and Ψ˚{|Ψ˚| as the models along the end r0,8qs ˆ Σ. ♦

Lemma 18.3. For any object Y P Cobs, let pY be the extended 3-manifold with cylindrical
ends. Then there is a bijection between:

(i) oriented relative 2-plane fields ξ;
(ii) 1-forms relative θ of length 1; and

(iii) isomorphism classes of pairs ps,Ψq consisting of a spinc structure s with c1psq|Σ “
0 P H2pΣ,Zq and a unit-length spinor Ψ that is gauge equivalent to a relative
spinor.

Remark 18.4. In the last description, the identification of ps|Σ is not specified and a
gauge transformation does not necessarily lie in the identity component when restricted
to Σ. ♦

For each relative spinc structure ps P Spinc
RpY q, let ΞppY ,psq be the space of unit-length

relative spinors on pY . The index set for the monopole Floer homology HM ˚pY,psq will be

(18.2) ΞπpY,psq :“ π0pΞppY ,psqq{H
1pY, BY ;Zq

where H1pY, BY ;Zq “ π0pGppY ,psqq acts on π0pΞppY ,psqq by gauge transformations. The last
description in Lemma 18.3 suggests that

ΞπpY,ps1q – ΞπpY,ps2q

if ps1 and ps2 come down to the same spinc structure on Y . In this way, ΞπpY,psq is identified
with a subset of homotopy classes of oriented relative 2-plane fields.

Now let us introduce the axioms that characterize the canonical grading of HM ˚pY,psq.

Definition 18.5. For any configuration a P CkppY ,psq and any tame perturbation q P

PpY q, the pair c “ pa, qq is called non-degenerate if the extended Hessian zHessa,q is
invertible. ♦

For any non-degenerate pair c “ pa, qq, we will assign an element

grpcq P π0pΞppY ,psqq.

which descends to a map

(18.3) grπ : pCkppY ,psq ˆ Pq{Gk`1ppY q 99K ΞπppY ,psq, rcs ÞÑ rgrpcqs,

on the “non-degenerate locus” of the quotient space. To state the axioms that characterize
the grading function gr, consider a relative spinc cobordism

p pX,psXq : ppY1,ps1q Ñ ppY1,ps2q.

We defined the moduli space Mkpa1,X , a2q in Section 14, when ai is a critical point of
Ĺωi,Yi for i “ 1, 2. However, if we are interested only in the linear theory, one may take



108 DONGHAO WANG

a1 and a2 to be any configurations. Pick a reference configuration γ on X satisfying
conditions (14.1). Then the linearized operator:

Qpc1,psX , c2q :“ pd˚γ ,DγFX ,pq : L2
1pX , iT ˚X ‘ S`q Ñ L2pX , iR‘ iΛ`X ‘ S´q(18.4)

with p “ pq1, q2, 0, 0q

is Fredholm, by Proposition 14.1, provided that ci “ pai, qiq is non-degenerate for i “ 1, 2.
Any such choices of γ will provide the same operator Qpc1,psX , c2q up to compact terms,
so the underlying path γ is omitted from our notations.

Now we are ready to state the axioms that characterize the grading function gr.

(A-I) (Index Axiom) The Fredholm index of Qpc1,psX , c2q equals the relative Euler num-
ber:

epS`; Ψ1,Ψ˚{|Ψ˚|,Ψ2qrX, BXs P Z.
where Ψi is a unit-length relative spinor on pYi representing grpciq. Since Ψ1,Ψ˚{|Ψ˚|
and Ψ2 form a unit-length spinor of S` on the boundary

BX “ p´Y1q Y r´1, 1st ˆ ΣY Y2,

the relative Euler class epS`; Ψ1,Ψ˚{|Ψ˚|,Ψ2q P H
4pX, BX;Zq of this spinor is

well-defined.

(A-II) (Normalization Axiom) Suppose a “ pB,Ψq P CkppY ,psq is a configuration such that
(V1) Ψ is nowhere vanishing;
(V2) Ψ ” Ψ˚ on r0,`8qs ˆ Σ, where Ψ˚ is the standard spinor on Rs ˆ Σ;
(V3) for any τ ě 1, define the rescaled configuration apτq :“ pB, τΨq; then the

extended Hessian zHessapτq at apτq is always invertible for any τ ě 1.
We define that

grpcq “ rΨ{|Ψ|s P π0pΞppY ,psqq if c “ pa, 0q.

Note that apτq lies in a different configuration space obtained by rescaling the
boundary date pλ, µq.

(A-III) (Equivariance Axiom) The grading function

gr : CkppY ,psq ˆ P 99K π0pΞppY ,psqq

is equivariant under the action of Gk`1ppY q meaning that

grpu ¨ a, qq “ rus ¨ grpa, qq

for any non-generate pair pa, qq and u P Gk`1ppY q.

The Index Axiom (A-I) can not determine the grading function gr completely. On the
other hand, the Equivariance Axiom (A-III) is redundant, since it follows from (A-I)(A-
II). It is added to justify the quotient map grπ in (18.3). Here is the main result of this
section:

Proposition 18.6. There exists a unique grading function

gr : CkppY ,psq ˆ P 99K ΞppY ,psq

satisfying axioms (A-I)(A-II)(A-III).
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The proof of Proposition 18.6 will dominate the rest of this subsection. It relies on two
additional lemmas. On the one hand, we have to show the desired configurations in the
Normalization Axiom (A-II) exist at least for some special metrics on Y .

Lemma 18.7. For any 3-manifold Y with BY – Σ, there exists some cylindrical metric

gY and a configuration a P CkppY ,psq that satisfies all constraints in Axiom (A-II).

On the other hand, we have to show that Axioms (A-I) and (A-II) are consistent.

Lemma 18.8. For any relative spinc cobordism p pX,psXq : ppY1,ps1q Ñ ppY1,ps2q, suppose
non-generate pairs ci “ pai, 0q, i “ 1, 2 are given as in (A-II), then

IndQpc1,psX , c2q “ epS`;
Ψ1

|Ψ1|
,

Ψ˚
|Ψ˚|

,
Ψ2

|Ψ2|
qrX, BXs,

where Ψi P ΓppYi, Sq is the spinor component of ai P CkppYi,psiq.

Proof of Lemma 18.8. This lemma is in the spirit of [KM97, Theorem 3.3] and we follow
the argument therein. When X1 is a closed Riemannian 4-manifold, the index formula:

dimMpX1,psX1q “ epS`qrX1s

is a consequence of the Atiyah-Singer Index Theorem and [KM07, Lemma 28.2.3]. Using
the excision principle, this allows us to reduce Lemma 18.8 to the special case when

epS`; Ψ1,Ψ˚,Ψ2qrX, BXs “ 0.

At this point, choose a reference configuration γ “ pA,Φq on X such that the spinor Φ is
non-vanishing everywhere, and

γ|H2
`ˆΣ “ pA˚,Φ˚q

is the standard configuration on the planar end. By rescaling the spinor Φ, we define

γpτq :“ pA, τΦq.

which lies a different configuration space on X . As the pair cipτq :“ paipτq, qi “ 0q, i “ 1, 2
are non-degenerate for any τ ě 1 by assumption (V3), the linearized operator at γpτq
gives rise to a continuous family of Fredholm operators:

Qpτq :“ Qpc1pτq,psX , c2pτqq.
The proof of [KM97, Lemma 3.11 & Corollary 3.12] is valid here, as qi “ 0, i “ 1, 2. As a
result, Qpτq is invertible when τ " 1; so

IndQp1q “ lim
τÑ8

IndQpτq “ 0. �

Proof of Lemma 18.7. Following the proof of Lemma 18.8, one can easily show the ex-

tended Hessian zHessapτq is invertible when τ " 1 for any fixed configuration a “ pB,Ψq

satisfying properties (V1) and (V2), but we have to pick a good metric on pY so that this
range is r1,`8q.

If Y1 is a closed 3-manifold, one may instead rescale the metric:

Y1pτq “ pY1, τ
2gY1q.
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and regard a as a configuration on the pull-back spinc structure on Y pτq. The Seiberg-
Witten theory does not tell the difference between:

pY pτq, aq and pY, apτqq,

so for τ0 " 1, pY pτ0q, aq satisfies constraints (V1)(V3) in Axiom (A-II).
In our case, instead of rescaling the whole manifold

pY “ Y Y r0,8qs ˆ Σ,

we rescale the compact region Y and insert a long cylinder:

pY pτq :“ Y pτq Y r0, Rpτqss ˆ ΣY r0,8qs ˆ Σ.

The metric of r0, Rpτqss ˆΣ interpolates the metrics τ2gΣ and gΣ at boundary. We make
this interpolation mild enough by taking Rpτq " 1. The extension of a over the cylinder
r0, Rpτqss ˆ Σ:

pB1,Ψ1q

must interpolate pB˚,Ψ˚q at boundary in a mild way. One may use the oriented relative
2-plane field ξ˚ and construct the spinor Ψ1 using Lemma 18.1. Now [KM97, Lemma 3.11]
applies, and all constraints in (A-II) are satisfied by

ppY pτ0q, ãq

when τ0 " 1, where ã is the extension of a on pY pτ0q. �

Proof of Proposition 18.6. The proof is modeled on that of [KM07, Subsection 28.2] which
can now proceed with no difficulties. We first deal with the existence of gr and divide the
proof in six steps.

Step 1. Construction. Fix a reference relative spinc 3-manifold ppY0,ps0q. Let c0 “ pa0, 0q
be a non-generate pair constructed by Lemma 18.7, then the value grpcq is determined by

(A-II). Take Ψ0 as a unit-length relative spinor on pY0 that represents grpcq.

By [KM07, Proposition 28.1.2], any two relative spinc manifolds ppY0,ps0q and ppY1,ps1q

admit a relative spinc cobordism p pX,psXq

(18.5) p pX,psXq : ppY0,ps0q Ñ ppY1,ps1q

The Index Axiom (A-I) then determines a unique homotopy class rΨ1s of unit-length

relative spinors on pY1 such that

IndQpc0,psX , c1q “ epS`; Ψ0,Ψ˚{|Ψ˚|,Ψ1qrX, BXs.

As noted in Remark 3.13, an isomorphism

ϕ1 : p pX,psXq|
pYi
– ppY1,ps1q

is always encoded in a relative spinc cobordism. Define grpc1q :“ pϕ1q˚rΨ1s P π0pΞppY1,ps1qq.

Step 2. gr is well-defined. Suppose there is another relative spinc cobordism

(18.6) p pX1,psX1q : ppY0,ps0q Ñ ppY1,ps1q,
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then we reverse the orientation of p pX1,psX1q and form the composition:

p pX,psXq#ppY1,ps1q
pp´ pX1q,ps´X1q : ppY0,ps0q Ñ ppY0,ps0q.

By Lemma 18.8 and the additivity of Fredholm indices and relative Euler classes, the
values of grpc1q defined using either (18.5) or (18.6) are equal.

Step 3. Axiom (A-I) holds for gr. The proof is similar to Step 2. Instead of (18.6),

given any spinc cobordism p pX2,psX2q : ppY1,ps1q Ñ ppY1,ps2q, we take the pre-composition
with (18.5):

p pX,psXq#ppY1,ps1q
p pX2,psX2q : ppY0,ps0q Ñ ppY2,ps2q.

The rest of the argument is unchanged.
Step 4. Axiom (A-II) holds for gr. This is by Lemma 18.8.
Step 5. Uniqueness. This is clear from Step 1.
Step 6. Axiom (A-III). There are two ways to proceed. In Step 1, one may change the

isomorphism φ1 by an automorphism of ppY1,ps1q, i.e a gauge transformation u P Gk`1ppY q.
As a result, the grading function gr is gauge equivariant.

In the second approach, we verify the following fact: for the product manifold X “

r´1, 1st ˆ Y and X “ Rt ˆ pY ,

(18.7) IndQpc,ps, u ¨ cq “ epS`; Ψ,Ψ˚, u ¨ΨqrX, BXs.

for any non-generate pair c and any gauge transformation u P Gk`1ppY q such that u ” 1

on r0,8qs ˆ Σ. Here Ψ is a relative spinor on pY representing grpcq. The identity (18.7)
now follows from Lemma 13.16. �

18.2. Canonical Mod 2 Gradings. Now we focus a single relative spinc 3-manifold

ppY ,psq. In order to define the Euler characteristic of the monopole Floer homology

χpHM ˚ppY ,psqq

we need a mod 2 reduction of the canonical grading grπ. For each non-generate pair
c “ pa, qq, in the sense of Definition 18.5, we will assign a number

(18.8) grp2qpcq P Z{2Z,

characterized by the following axioms:

(B-I) (Reduction Axiom) Let p pX,psXq “ r´1, 1stˆppY ,psq be the product spinc manifold.
For any c1, c2 non-generate, we have

grp2qpc1q ´ grp2qpc2q “ IndQpc1,psX , c2q mod 2,

(B-II) (Invariance Axiom) The mod 2 grading function

grp2q : CkppY ,psq ˆ P 99K Z{2Z

is invariant under the action of Gk`1ppY q.
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Again, the Invariance Axiom (B-II) is redundant, as it follows from (B-I). One may fix

the value grp2qpc1q for one particular pair c1 and decide the other value grp2qpc2q using the

Reduction Axiom (B-I), so such a mod 2 grading function grp2q clearly exists. It is not

unique, as the value of grp2qpc1q is arbitrary.

This ambiguity is fixed simultaneously for all relative spinc structures ps P Spinc
RpY q,

once a homological orientation of pY, BY q is chosen, as explained in [MT96], which is
also reminiscent of the case of 4-manifolds as treated in [KM07, Subsection 24.8]. Since
this story has been standard nowadays, we only give a brief sketch here.

One may alternatively think of grp2qpcq as an orientation of the extended Hessian

zHessc.

As c is non-generate, an orientation of this invertible operator zHessc is equivalent to a
choice of signs in t˘1u. However, this standpoint allows us to extend the domain of grp2q

to the whose space CkppY ,psq ˆ P. Indeed, tzHesscu forms a continuous family of Fredholm
operators, and as such gives rise to a determinant line bundle over the base:

R – det zHessc L

CkppY ,psq ˆ P.

The real line bundle L is trivial as CkppY ,psq ˆ P is contractible. To orient L, it suffices to
orient one particular fiber Lc; we choose the one at c “ pa, 0q such that a agrees with the
standard configuration:

pB˚,Ψ˚q

on the cylindrical end r0,8qs ˆ Σ. As explained in the proof of Proposition 12.1, the

extended Hessian zHessa in this case is cast into the form

σpBs ` pDκ˚q

on the cylindrical end r0,8qs ˆ Σ, where

(18.9) pDκ˚ : L2
1pΣ, iR‘ iR‘ T ˚Σ‘ Sq Ñ L2pΣ, iR‘ iR‘ T ˚Σ‘ Sq

is an invertible self-adjoint elliptic operator. For the precise expression, see [Wan20, Sub-

section 7.4]. Let H˘ be the p˘q-spectral subspaces of pDκ˚ . Instead of zHessa, we consider
the operator with a spectral boundary projection:

(18.10) zHessa‘Π´˝r : L2
kpY, iR‘ iT ˚Y ‘Sq Ñ L2

k´1pY, iR‘ iT ˚Y ‘Sq‘pH´XL2
k´1{2q.

on the truncated 3-manifold Y “ ts ď 0u. At this point, we can further deform a so that
Ψ ” 0, in which case

zHessa “

¨

˝

0 ´d 0
´d˚ ˚d 0

0 0 DB0

˛

‚ on Y
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for a reference spinc connection B0, and

zHessa “ σpBs ` D̂0q with D0 “

ˆ

DForm 0
0 DΣ

B̌˚

˙

in the collar p´1, 0ss ˆ Σ. Here

DForm “

¨

˝

0 0 ´ ˚Σ dΣ

0 0 ´d˚Σ
˚ΣdΣ ´dΣ 0

˛

‚: L2
1pΣ, iR‘ iR‘ iT ˚Σq Ñ L2pΣ, iR‘ iR‘ iT ˚Σq

is a self-adjoint operator with kernel H0pΣ, iRq ‘H0pΣ, iRq ‘H1pΣ, iRq and

DΣ
B̌˚

: L2
1pΣ, Sq Ñ L2pΣ, Sq

is the Dirac operator on the surface, which is complex linear. Consider the projection map

ΠForm “ Π1 ‘Π´Form : L2pΣq Ñ H1pΣ, iRq ‘H´Form.

where ΠForm is the projection map onto the negative spectral subspace of DForm and Π1

is the projection onto H1pΣ, iRq Ă kerDForm.

Lemma 18.9. The kernel and the cokernel of the operator:

(18.11)

ˆ

0 ´d
´d˚ ˚d

˙

‘pΠForm ˝rq : L2
1pR‘ iT ˚Y q Ñ L2pR‘ iT ˚Y q‘H1pΣ, iRq‘H´Form.

are isomorphic to H0pY ; iRq‘H1pY, BY ;Rq and H0pY, BY ;Rq‘H1pY ; iRq respectively. In
particular, an orientation of (18.11) is equivalent to a homological orientation of pY, BY q.

Finally, to relate the operator (18.10) with (18.11), we have to deform the boundary

projection Π´ in (18.10). Notice that the operator pDκ˚ in (18.9) relies on the standard
spinor Ψ˚. The deformation is then made by taking

Ψ˚ ÞÑ τΨ˚, τ Ñ 0.

In the limit, pDκ˚ will recover D̂0, which is no longer invertible. At this point, one has
to examine the deformation of spectral projections very carefully, which is independent of
relative spinc structures. In this way, an orientation of (18.11) gives rise to an orientation
of L.

19. Floer Homology with Z-coefficient

Let R be the Novikov ring of Laurent series with integral coefficients

R “ t
ÿ

ni

aiq
ni : ai P Z, ni P R, lim

i
ni “ ´8u.

To define the monopole Floer homology over R, we have to orient moduli spaces in a

consistent way. Since the space CkppY ,psq does not contain any reducible configurations,
the strategy used in [KM07, Section 20] does not work directly here. Moreover, our
cobordism maps are induced from oriented 4-manifold with corners. It is not crystal clear
what is meant to be a homology orientation in this case.
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We will address this problem using an analytic approach. The main result of this section
is Theorem 19.2, which leads to the replacement of homology orientations in Definition
19.4. The proof of Theorem 19.2 relies on the notion of relative orientations that compares
the determinant line bundles of two Fredholm operators in the excision principle. We will
develop the relevant theory in Appendix B and accomplish the proof of Theorem 19.2 in
Subsection B.10. The construction of the functor

HM ˚ : SCobs,b Ñ R-Mod

is explained in Subsection 19.3.

19.1. Determinant Line Bundles and Direct Sums. To start, let us recall the basic
theory of determinant line bundles of Fredholm operators from [KM07, Section 20.2].
Given two real Hilbert spaces E and F , consider a continuous family of Fredholm operators

Az : E Ñ F, z P Z,
parametrized by a topological space Z. The determinant line bundle of this family is
a real line bundle over Z

detAÑ Z
such that the fiber detAz at each z P Z is identified with

Λmax kerAz b pΛmax cokerAzq˚.
When the determinant line bundle detA Ñ Z is orientable, denote the 2-element set of
orientations by

ΛpAq or ΛpdetAq.

Example 19.1. Let A˚ : E Ñ F be a reference Fredholm operator and Z be the space
of all compact operators:

Z “ tz : E Ñ F : z compactu.

Then the family tAz “ A˚ ` z : z P Zu is parametrized by a contractible space Z. An
orientation of A˚ is meant to be an orientation of this contractible family. Denote the
2-element set of orientations by

ΛpA˚q or ΛpdetA˚q. ♦

Given two families of operators A1 Ñ Z and A2 Ñ Z parametrized by the same space,
we form a new family by taking the point-wise direct sum of Fredholm operators

Az “ A1z ‘ A2z : E1 ‘ E2 Ñ F 1 ‘ F 2.

Then there is a natural isomorphism of real line bundles constructed in [KM07, P.379]:

(19.1) q : detA1 b detA2 Ñ detA.
Suppose α1z and α2z are elements in Λmax kerA1z and Λmax kerA2z respectively, while β1z and
β2z are corresponding elements in Λmax cokerA1z and Λmax cokerA2z. Then the bundle map
q is locally defined (up to a positive scalar) by the formula:

`

α1z b pβ
1
zq
˚
˘

b
`

α2z b pβ
2
z q
˚
˘

ÞÑ p´1qrpα1z ^ α
2
zq b pβ

1
z ^ β

2
z q
˚ where

r “ dim cokerA1z ˆ IndpA2zq.



MONOPOLES AND LANDAU-GINZBURG MODELS II: FLOER HOMOLOGY 115

The sign p´1qr is added here to ensure that the bundle map q is continuous as the base
point z varies in Z. Moreover, the bundle map q becomes associative when we consider
the direct sum of three families of operators parametrized by the same space Z.

For any 2-element set Λ, let Z{2Z act on Λ by involutions. For any Λ1 and Λ2 with
Z{2Z action, we form their product set

Λ1Λ2 :“ Λ1 ˆZ{2Z Λ2.

As a result, by passing to the 2-element sets of orientations, the bundle map q descends
to an associative multiplication, denoted also by q:

q : ΛpA1q ˆ ΛpA2q Ñ ΛpA1 ‘ A2q,

or an isomorphism preserving the Z{2Z-action:

q : ΛpA1qΛpA2q –ÝÑ ΛpA1 ‘ A2q.

19.2. Homology Orientations. Having discussed the abstract properties of determinant
line bundles, let us explain now the primary application in gauge theory. Given a morphism
X : pY1,ps1q Ñ pY2,ps2q in the strict cobordism category SCobs, consider non-degenerate
pairs (in the sense of Definition 18.5)

ci “ pai, qiq P CkppYi,psiq ˆ PpYiq, i “ 1, 2.

By looking at the linearized Seiberg-Witten map and the linearized gauge fixing equation
on the complete Riemannian 4-manifold X , we obtained in (18.4) a Fredholm operator

Qpc1,psX , c2q for any relative spinc cobordism p pX,psXq : ppY1,ps1q Ñ ppY2,ps2q. Define

Λpc1,psX , c2q :“ ΛpQpc1,psX , c2qq

for any non-degenerate pairs c1, c2 and any psX P Spinc
RpX;ps1,ps2q. The 2-element set

Λpc1,psX , c2q is understood in the sense of Example 19.1. Since the different choices of the
reference configuration γ will give rise to the same operator Qpc1,psX , c2q up to compact
terms, Λpc1,psX , c2q is independent of the choice of γ.

Our goal is to identify these 2-element sets Λpc1,psX , c2q in a canonical way for all relative
spinc cobordisms psX P Spinc

RpX;ps1,ps2q. As a result, if the orientation is fixed for one
particular psX , then it automatically fixes the choice for any other relative spinc cobordisms.

Recall that Spinc
RpX;ps1,ps2q is a torsor over H2pX, BX;Zq.

Theorem 19.2. For any isomorphism classe of relative line bundles rLs P H2pX, BX;Zq,
there exists a natural bijection

eL : Λpc1,psX , c2q Ñ Λpc1,psX b L, c2q,

for any psX P Spinc
RpX;ps1,ps2q satisfying the following two properties:

(U1) eL1 ˝ eL2 “ eL1bL2;
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(U2) the collection teLu is compatible with the concatenation map q meaning that the
diagram

(19.2)

Λpc1,ps12, c2qΛpc2,ps23, c3q Λpc1,ps13, c3q

Λpc1,ps12 b L12, c2qΛpc2,ps23 b L23, c3q Λpc1,ps13 b L13, c3q

q

eL12
beL23

eL13

q

is commutative for any relative spinc cobordisms:

p pX12,ps12q : pY1,ps1q Ñ pY2,ps2q,

p pX23,ps23q : pY2,ps3q Ñ pY3,ps3q.

Here p pX13,ps13q “ p pX12# pX23,ps12#ps23q is the concatenation of relative cobordisms
and L13 “ L12#L23 is the concatenation of relative line bundles.

Remark 19.3. The proof of Theorem 19.2 is constructive: we will construct each eL
explicitly and verify properties (U1)(U2) by hands. The key ingredient is the notion of
relative orientations, which allows us to reduce the problem from a non-compact manifold
X to a closed 4-manifold. In the latter case, we know how to construct eL, since the Dirac
operator and the self-dual operator are now decoupled. The relevant theory is developed
in Appendix B. The proof of Theorem 19.2 will be accomplished in Subsection B.10. ♦

The horizontal maps q in the diagram (19.2) require some further explanations. Take

non-degenerate pairs ci on pYi for 1 ď i ď 3. Instead of Q, we look at operators on pXij

with spectral projections:

(19.3) Q1pci,psij , cjq :“ Dij ‘ pΠ
`
Ai ,Π

´
Aj q ˝ pri, rjq, 1 ď i ă j ď 3,

understood in the sense of Proposition 13.9 and Subsection 13.4 adapted to the case of
general cobordisms. In particular, Π˘Ai are spectral projections of the extended Hessians
at ci:

zHessci : L2
kp
pYi, iR‘ iT ˚Yi ‘ Sq Ñ L2

kp
pYi, iR‘ iT ˚Yi ‘ Sq, 1 ď i ď 3.

The 2-element set Λpc1,ps12, c2q can be defined using Q1pci,psij , cjq instead. As explained in
[KM07, P. 384], there is a canonical bundle isomorphism defined using the map (19.1),

(19.4) q : detQ1pc1,ps12, c2q b detQ1pc2,ps23, c3q Ñ detQ1pc1,ps13, c3q.

which descends to an associative multiplication:

q : Λpc1,ps12, c2qΛpc2,ps23, c3q Ñ Λpc1,ps13, c3q.

Our construction of homology orientations is based upon Theorem 19.2.

Definition 19.4. Following the notations in Theorem 19.2, for any triple pc1,X, c2q, define
the 2-element set of homology orientations as the quotient space

Λpc1,X, c2q :“
ž

psXPSpinc
RpX;ps1,ps2q

Λpc1,psX , c2q
L

teLurLsPH2pX,BX;Zq,
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where X : Y1 Ñ Y2 is any morphism in Cobs and for i “ 1, 2, ci P CkppYi,psiq ˆ PpYiq is
a non-degenerate pair. By the property (U2) in Theorem 19.2, the concatenation map q
descends to an associative multiplication:

q : Λpc1,X12, c2qΛpc2,X23, c3q Ñ Λpc1,X13, c3q. ♦

Remark 19.5. If we replace X by a closed Riemannian 4-manifold X1, the construction
above will recover the original definition of homology orientations of X1, i.e. orientations
of the real line

ΛmaxH2
`pX1,Rq b pΛmaxH1pX1,Rqq˚.

Here H2
`pX1,Rq is any maximal positive subspace of H2pX1,Rq with respect to the inter-

section form. ♦

Now let us specialize to the case when X “ r´1, 1s ˆ Y is a product cobordism and

ps1 “ ps2 “ ps. This is relevant for orienting moduli spaces on the cylinder Rt ˆ pY . The
non-degenerate pairs c1, c2 now lie in the same space:

CkppY ,psq ˆ PpY q.

Definition 19.6. Let I “ r´1, 1s. Define the 2-element set Λprc1s, rc2sq to be the homology
orientations of pc1, I ˆY, c2q in the sense of Definition 19.4, where rcis denotes the class in

the quotient configuration space BkppY ,psqˆPpY q. More concretely, Λprc1s, rc2sq is realized
as the quotient space

ž

rLsPH2pIˆY,BpIˆY q;Zq

Λpc1,psb L, c2q
L

teLu. ♦

When c1 “ c2 P CkppY ,psq ˆ P, there is a canonical element vpc1q in Λprc1s, rc1sq induced
from

1 P ΛpQpc1,Rt ˆ ppY ,psq, c1qq.
In this case, we choose an Rt-invariant configuration γ on Rt ˆ pY to define the operator

Qpc1, I ˆ ppY ,psq, c1q. Because c1 is non-degenerate, Q is invertible. The canonical element
1 denotes the positive orientation of this invertible operator.

Remark 19.7. Here we have identified the homotopy classes of paths π1pBkppY ,psq; rc1s, rc2sq
with the space of relative spinc cobordisms Spinc

RpIˆY ;ps,psq, following the ideas in Subsec-
tion 3.5. When c “ pa, qq is a critical point of the perturbed Chern-Simons-Dirac functional

Ĺω, the canonical element vpcq orients automatically the moduli space |Mzpc, cq in (13.5)

for any z P π1pBkppY ,psq; rasq. Moreover, this orientation is compatible with concatenation
of paths by the associativity of the concatenation map q. ♦

19.3. Floer Homology with Z-coefficient. Having defined homology orientations on
cylinders and general cobordisms, let us now explain the construction of HM ˚pY,psq using
the integral coefficient. In the most general case, we have to use a Novikov ring defined
over Z:

R “ t
ÿ

ni

aiq
ni : ai P Z, ni P R, lim

i
ni “ ´8u.
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To work with Z directly, we have to assume the monotonicity condition in Definition 17.3
for the object pY,psq and pass to a sub-category of SCobs.

To better illustrate our construction below, we focus on the first case. Only formal
adaptations are actually needed for the second case. At this point, we have to enlarge the
strict cobordism category SCobs slightly to incorporate a base point for each object.

Definition 19.8. An object of the based strict cobordism category SCobs,b is a triple

pY,ps, c˚q where pY,psq is an object of SCobs and c˚ “ pa˚, qq P CppY ,psq ˆ PpY q is a non-
degenerate pair. We require that the tame perturbation q “ grad f is the one encoded in
the object Y P Cobs for the relative spinc structure ps. A morphism of SCobs,b is a pair

(19.5) pX, oq : pY1,ps1, c˚,1q Ñ pY1,ps1, c˚,2q

where X : Y1 Ñ Y2 is a morphism in Cobs and o P Λpc˚,1,X, c˚,2q is a choice of homology
orientations in the sense of Definition 19.4. ♦

The based strict cobordism category SCobs,b is only a formal enlargement of SCobs.
The base point c˚ is included here to remove the ambiguity of orientations on the cylinder

Rt ˆ pY . More precisely, for any object pY,ps, c˚q P SCobs,b and for any critical point
a P CritpĹωq of Ĺω “ Lω ` f , define

Λprasq :“ Λprc˚s, rpa, qqsq,

and form the chain group

C˚pY,ps, c˚q “
à

rasPCpY,psq
ZΛprasq bZ R

where Z{2Z acts non-trivially on Z and ZΛprasq :“ ZˆZ{2Z Λprasq.

Remark 19.9. For closed 3-manifolds, the role of c˚ is played by a reducible configuration
c1˚ in the blown-up configuration space; see [KM07, Section 20.3]. In that case, the choice
of c1˚ does not matter, since there is a canonical element in

Λprc1˚s, rc
2
˚sq

when c1˚ and c2˚ are both reducible. However, this property does not hold in our case. ♦

In the formula of the differential B below, we take the sum over all possible triples

pras, rbs, zq P CpY,psq ˆ CpY,psq ˆ π1pBkpY,psq; ras, rbsq

such that dim |Mzpras, rbsq “ 0:

B “
ÿ

ras

ÿ

rbs

ÿ

z

ÿ

rγsP|Mzpras,rbsq

Γrγs : C˚pY,ps, c˚q Ñ C˚pY,ps, c˚q.(19.6)

Since each unparameterized solution rγs P |Mzpras, rbsq is a point, the positive orientation
of γ defines an element vprγsq in Λprpa, qqs, rpb, qqsq. Combining with the concatenation
map q, this provides a homomorphism of abelian groups:

εrγs “ IdZbqp¨, vrγsq : ZΛprasq Ñ ZΛprbsq.
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The R-module homomorphism Γrγs in (19.6) is then defined by taking into account the
topological energy Etop:

Γrγs :“ εrγs b q´E
q
toppras,rbs;zq : ZΛprasq bRÑ ZΛprbsq bR.

The differential B on C˚pY,ps, c˚q is formed by taking the sum of all Γrγs.

Now we come to define HM ˚ for the morphism sets of SCobs,b. For any morphism
pX, oq : pY1,ps1, c˚,1q Ñ pY2,ps2, c˚,2q of the based cobordism category SCobs,b, pick a
planar metric gX and an admissible quadruple p as the perturbation. The chain map is
now defined as

mpX, o; gX , qq “
ÿ

ra1s

ÿ

ra2s

ÿ

psX

ÿ

rγsPMpa1,psX ,a2q

Γro, γs : C˚pY1,ps1, c˚,1q Ñ C˚pY2,ps2, c˚,2q,

(19.7)

where the sum is over all possible triples

pra1s, ra2s,psXq P CpY,ps1q ˆ CpY,ps2q ˆ Spinc
RpX,ps1,ps2q,

such that dimMpa1,psX , a2q “ 0. Each solution rγs in Mpa1,psX , a2q is a 0-dimensional
manifold, whose positive orientation determines a class vprγsq in

Λppa1, q1q,X, pa2, q2qq.

We obtain a morphism
εro, γs : ZΛpra1sq Ñ ZΛpra2sq

by chasing around the diagram:

Λpc˚,1, pa1, q1qq Λpc˚,1,X, pa2, q2qq

Λpc˚,2, pa2, q2qq Λpc˚,1,X, pa2, q2qq

εro,γs

qp¨, vprγsqq

qpo,¨q

Here o P Λpc˚,1,X, c˚,2q is the reference homology orientation that we picked up in the
morphism pX, oq. The R-module homomorphism Γro, γs in (19.7) is defined by the formula

Γro, γs :“ εro, γs b q´E
p
toppra1s,ra2s; psXq : ZΛpra1sq bRÑ ZΛpra2sq bR.

One can verify that each pC˚pY,ps, c˚q, Bq is indeed a chain complex and mpX, o; gX , qq
gives rise to a chain map by following the standard argument in [KM07, Section 22]. Then
the functor

HM ˚ : SCobs,b Ñ R-Mod

is obtained by taking their homology groups.
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Appendix A. Harmonic Forms

In this appendix, we summarize some results on the existence of bounded harmonic
forms on manifolds with cylindrical ends, which are crucial to the energy equations in
Theorem 5.1 and 5.4. Let us point out where these results are used exactly in Section 3:

Corollary A.6 Ñ Lemma 3.2,

Corollary A.15 Ñ Lemma 3.5.

Our intention is to sketch a quick proof to the results that we need. No originality is
claimed for this appendix, since most of which are already standard nowadays. Unless
otherwise specified, all cohomology groups in this appendix are taken over the field R of
real numbers.

A.1. A Review of Classical Theories. Let pXn, Y n´1q be a compact oriented Rie-
mannian manifold with boundary. Suppose that the metric gX of X is cylindrical near
BX “ Y , i.e. gX is a product metric

d2s` gY

within a collar neighborhood p´1, 0ss ˆ Y Ă X of Y . By attaching a cylindrical end, we

obtain a complete Riemannian manifold pX:

pX “ X Y r0,8qs ˆ Y.

Let H˚p pXq be the space of L2-harmonic forms on pX and H˚b p pXq be the space of bounded

harmonic forms. Each element ω P H˚p pXq decays exponentially as s Ñ 8, and each
λ P Hk

b pXq converges exponentially to λt`ds^λn for some λt P HkpY q and λn P Hk´1pY q

along the cylindrical end of pX. Here H˚pY q denotes the space of harmonic forms on the
boundary pY, gY q. Using either the Dirichlet or Neumann boundary condition at infinity,

we obtain two subspaces of H˚b p pXq:

H˚Dp pXq :“ tλ P H˚b p pXq : λt “ 0u,

H˚N p pXq :“ tλ P H˚b p pXq : λn “ 0u,

By [APS75, Propositon 3.15], each bounded harmonic form λ P H˚b p pXq is both closed and
co-closed.

Proposition A.1. [APS75, Proposition 4.9] The map that associate each L2-harmonic
form to its cohomology class

α : H˚p pXq Ñ H˚p pXq “ H˚pXq

ω ÞÑ rωs

is a bijection from H˚p pXq to the image

ImpH˚pX,Y q
j˚
ÝÑ H˚pXqq,

with j˚ induced from the inclusion map j : pX,Hq Ñ pX,Y q.
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To recover the singular cohomology of X, we have to look at bounded harmonic forms

with boundary conditions at infinity: H˚Dp pXq and H˚N p pXq.

Proposition A.2. H˚N p pXq – H˚pXq and H˚Dp pXq – H˚pX,Y q. Moreover, H˚b p pXq “
H˚Dp pXq `H˚N p pXq.

The proof of Proposition A.2 relies on an index computation.

Proposition A.3. dimH˚b p pXq{H˚p pXq “ dimH˚pY q.

Proof of Proposition A.3. This follows from the Atiyah-Patodi-Singer Index theorem [APS75,
Theorem 3.10]; see the discussion on [APS75, P.65]. An easier approach is to exploit the
symmetry of the Dirac operator d` d˚ on the product manifold p´1, 0ss ˆ Y and deduce
this index computation from some formal properties, using the setup of [Yos91, Section
4]. Proofs are omitted here. �

Proof of Proposition A.2. We follow the argument in [APS75, P.65]. For each bounded

harmonic form λ P H˚N p pXq, we assign its de Rham cohomology class:

αpλq “ rλs P H˚p pXq “ H˚pXq.

The goal is to show the map α : H˚N p pXq Ñ H˚pXq is a bijection. For injectivity, we follow
the proof of [APS75, Proposition 4.9].

To prove the surjectivity, note that the restriction of α on the subspace H˚p pXq Ă H˚N p pXq
is already surjective onto its image by Proposition A.1. It remains to show that the
quotient map

α̃ : H˚N p pXq{H˚p pXq Ñ Coker j˚ – ImpH˚pXq
i˚
ÝÑ H˚pY qq.

is surjective, where i˚ is induced by the inclusion map i : Y ãÑ X. We prove this by a

dimension counting argument. The domain of α extends to the larger space H˚b p pXq, and
the composition

i˚ ˝ α : H˚b p pXq
α
ÝÑ H˚pXq

i˚
ÝÑ H˚pY q

maps each bounded harmonic form λ P H˚b p pXq to the tangential part of the limit λt.

Hence, kerpi˚ ˝ αq “ H˚Dp pXq. As a result, we obtain that

(A.1) dimH˚N p pXq{H˚p pXq ď dimH˚b p pXq{H˚Dp pXq ď dim ImpH˚pXq
i˚
ÝÑ H˚pY qq.

The Hodge star operator

˚ : Ω˚p pXq Ñ Ωn´˚p pXq

interchanges H˚Dp pXq with Hn´˚
N p pXq and H˚p pXq with Hn´˚p pXq. The inequality (A.1)

together with Poincaré duality then imply that

dimH˚Dp pXq{H˚p pXq “ dimHn´˚
N p pXq{Hn´˚p pXq ď dim ImpHn´˚pXq

i˚
ÝÑ Hn´˚pY qq(A.2)

“ dim ImpH˚´1pY q
δ
ÝÑ H˚pX,Y qq,
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where δ is the co-boundary map. Now, pA.1q and pA.2q imply

n
ÿ

j“0

dimHj
bp

pXq{Hjp pXq ď
n´1
ÿ

j“0

dimHjpY q.

By Proposition A.3, they are actually equal. All equalities in pA.1q and pA.2q are

achieved. In particular, α̃ is surjective and H˚b p pXq is spanned by H˚N p pXq and H˚Dp pXq. The

statement on H˚Dp pXq is obtained by applying the Hodge star operator on H˚N p pXq. �

Remark A.4. The isomorphism H˚Dp pXq – H˚pX,Y q is only implicitly constructed using
Poincaré duality in our proof. For a direct construction and a proof using Hodge theory
on b-manifolds, see [Mel93, Section 6.4] and in particular [Mel93, Proposition 6.18]. ♦

There are two immediate corollaries of Proposition A.2.

Corollary A.5. For a harmonic form µ P HjpY q, the following three conditions are
equivalent:

(1) rµs P ImpHjpXq
i˚
ÝÑ HjpY qq;

(2) There exists a closed form ω P Ωjp pXq on pX such that ω “ µ on the cylindrical end
r0,8qs ˆ Y ;

(3) There exists a bounded harmonic form ωh P Hj
N p

pXq on pX such that ωh Ñ µ
exponentially as sÑ8 on the cylindrical end r0,8qs ˆ Y .

Proof. The equivalence p1q ô p3q follows from Proposition A.2. The implication p2q ñ p1q
is obvious. It remains to verify p1q ñ p2q.

Let ω P ΩjpXq be a closed form on X such that i˚rωs “ rµs. Write ω as

µ1psq ` ds^ λpsq in the collar neighborhood p´1, 0ss ˆ Y,

then µ1p0q ´ µ “ dθ for some θ P Ωj´1pY q. Using a cut-off function χ : p´1, 0s Ñ r0, 1s
with suppχ “ r´2{3, 0s and χ ” 1 on r´1{3, 0s, one may replace ω by ω ´ dXpχpsqθq.

This allows us to assume µ1p0q “ µ to start with and define

θ1psq “

ż 0

s
λps1qds1 P Ωj´1pp´1, 0s ˆ Y q.

Replace ω by ω ` dpχpsqθ1q. As the ds-component of ω vanishes on p´1{3, 0s ˆ Y and
dXω “ 0, ω ” µ in this collar neighborhood. This completes the proof. �

Corollary A.6. For a harmonic form λ P HjpY q, the following two conditions are equiv-
alent:

(1) r˚Y λs P ImpHn´1´jpXq
i˚
ÝÑ Hn´1´jpY qq;

(2) There exists a bounded harmonic 2-form ωh P Hj
Dp

pXq on pX such that ωh Ñ ds^λ
exponential as sÑ8 on the cylindrical end r0,8qs ˆ Y .
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A.2. Manifolds with Corners. Our next step is to generalize Proposition A.2 in the
case when X is a manifold with corners and Y has a compact boundary.

Definition A.7. A compact oriented manifold pX,Ye, Yb, Zq with corners is a compact
space stratified by manifolds:

X “ Xn Ą Xn´1 Ą Xn´2 Ą Xn´3 “ H,

with the following additional properties:

(1) Xn´2 “ Zn´2 is a closed oriented manifold of dimension pn´ 2q;
(2) Xn´1 “ Ye Y Yb; both Ye and Yb are compact manifolds of dimension pn ´ 1q;

Z “ Ye X Yb is the common boundary of Ye and Yb;
(3) for any y P YezZ, a neighborhood of y in X is diffeomorphic to p´1, 0ss ˆ Rn´1;
(4) for any y P YbzZ, a neighborhood of y in X is diffeomorphic to p´1, 0st ˆ Rn´1;
(5) for any z P Z, a neighborhood of z in Z is diffeomorphic to p´1, 0stˆp´1, 0ssˆRn´2

and spzq “ tpzq “ 0;
(6) The orientation of X is determined locally by dt^ ds^ dvolZ . ♦

X

Yb

Ye

Z

pY

pX

ω Ñ ωt ` ds^ ωn as sÑ8

t “ 0

ω|
pY “ ωR ` dt^ ωA

Figure 2. A manifold with corners and its completion.

For any such manifold with corners pX,Ye, Yb, Zq, we can find a “collar neighborhood”
U of BX “ Ye Y Yb such that U is diffeomorphic to

p´1, 0st ˆ Yb Y p´1, 0ss ˆ Ye

and p´1, 0st ˆ Yb X p´1, 0ss ˆ Ye “ p´1, 0st ˆ p´1, 0ss ˆ Z. In particular, when t “ 0,
p´1, 0ss ˆ Z is a collar neighborhood of Z Ă Yb. The same holds for pYe, Zq when s “ 0.

Definition A.8. A metric gX is called planar if gX restricts to a product metric on a
collar neighborhood of Ye Y Yb. In particular, within p´1, 0st ˆ p´1, 0ss ˆ Z,

gX “ d2t` d2s` gZ ,

for a Riemannian metric gZ on Z. ♦

By attaching a cylindrical end r0,8qs ˆ Ye to X, we obtain a manifold with a non-
compact boundary:

pX “ X Y r0,8qs ˆ Ye,

B pX “ pY :“ Yb Y r0,8qs ˆ Z.
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The subscript “e” stands for ends, while “b” stands for boundaries. Definition A.8

ensures that the metric g
pX

of the completion pX is a product metric in a collar neighborhood

p´1, 0st ˆ pY of pY . For each smooth form ω P Ω˚p pXq, let ωR ` dt ^ ωA be the restriction

of ω on pY , with ωR P Ω˚ppY q and ωA P Ω˚´1ppY q.

Definition A.9. A smooth form ω P Ωkp pXq satisfies the absolute (relative) boundary
condition if ωA “ 0 pωR “ 0q. For either α “ A or R, consider the space of L2 (and

bounded) harmonic forms on pX with the α-boundary condition:

Hk
αp

pXq “ tω P Ωkp pXq : dω “ d˚ω “ 0, ωα “ 0, ω P L2pXqu,

and Hk
α,bp

pXq “ tω P Ωkp pXq : dω “ d˚ω “ 0, ωα “ 0, ω P L8pXqu. ♦

Remark A.10. On manifolds with boundaries, a smooth form ω is called a harmonic
field if it is both closed and co-closed. A harmonic form (i.e. ∆ω “ 0) is not necessarily
a harmonic field in general. But there is no need to distinguish them in the case we are
interested in. ♦

Analogous to Proposition A.1, we have:

Proposition A.11. By sending each harmonic field ω to its cohomology class, we have

H˚Ap pXq – ImpH˚pX,Yeq Ñ H˚pXqq,

H˚Rp pXq – ImpH˚pX,Ye Y Ybq Ñ H˚pX,Ybqq.

The boundary of pX at infinity is pYe, Zq. For either α “ A or R, let

H˚αpYeq :“ tω P Ω˚pYeq : dω “ d˚ω “ 0, ωα “ 0u.

be the space of harmonic fields on Ye with the α-boundary condition. The classical Hodge
theory on compact manifolds with boundary then identifies these spaces with the singular
cohomology of Ye and pYe, Zq respectively:

Proposition A.12. [Tay11, Section 5.9] H˚ApYeq – H˚pYeq and H˚RpYeq – H˚pYe, Zq.

It is also true that each bounded harmonic field ω P Hk
α,bp

pXq converges exponentially to

a harmonic field ωt`ds^ωn as sÑ8 with ωt P Hk
αpYeq and ωn P Hk´1

α pYeq. Consider the

subspaces of Hk
α,bp

pXq satisfying the Dirichlet or Neumann boundary condition at infinity:

H˚α,Dp pXq :“ tω P H˚α,bp pXq : ωt “ 0u,

H˚α,N p pXq :“ tω P H˚α,bp pXq : ωn “ 0u.

Proposition A.13. In analogy with Proposition A.2, we have isomorphisms:

H˚A,Dp pXq – H˚pX,Yeq, H˚A,N p pXq – H˚pXq,

H˚R,Dp pXq – H˚pX,Ye Y Ybq, H˚R,N p pXq – H˚pX,Ybq.

Moreover, for either α “ A or R, we have H˚α,bp pXq “ H˚α,Dp pXq `H˚α,N p pXq.
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As the metric of pX is cylindrical along pY , Proposition A.11 and A.13 are deduced from
Proposition A.1 and A.2 using a doubling trick, as we explain in the next subsection.
Their proofs do not require new inputs from analysis.

There are two immediate corollaries of Proposition A.13 that are crucial for the en-
ergy equations of the perturbed Seiberg-Witten equations. They are generalizations of
Corollary A.5 and A.6 respectively.

Corollary A.14. For a harmonic form µ P Hj
ApYeq satisfying the absolute boundary

condition on Ye, the following two conditions are equivalent:

(1) rµs P ImpHjpXq
i˚
ÝÑ HjpYeqq;

(2) There exists a bounded harmonic 2-form ωh P Hj
A,N p

pXq on pX such that ωh Ñ µ

exponentially as sÑ8 on the cylinder r0,8qs ˆ pYe, Zq.

Corollary A.15. For a harmonic form λ P Hj´1
A pYeq satisfying the absolute boundary

condition on Ye, the following two conditions are equivalent:

(1) r˚Yeλs P ImpHn´jpX,Ybq
i˚
ÝÑ Hn´jpYe, Zqq;

(2) There exists a bounded harmonic 2-form ωh P Hj
A,Dp

pXq on pX such that ωh Ñ ds^λ

exponentially as sÑ8 on the cylinder r0,8qs ˆ pYe, Zq.

A.3. The Doubling Trick. Take a CW pair pX,Y q. Let X1 and X2 be two copies of X
with inclusions ji : Y ãÑ Xi, i “ 1, 2. We form the double of X over Y by gluing X1 and
X2 along the sub-complex Y :

qX “ X1

ž

Y

X2 :“ X1

ž

X2{j1pyq „ j2pyq @y P Y.

The double space qX is again a CW complex and carries an involution τ : qX Ñ qX

interchanging X1 and X2. The fixed point set of τ is precisely Y . Let π : qX Ñ X1 be the

quotient map. The cohomology group H˚p pX,Rq is acted on by τ˚ with pτ˚q2 “ 1. Let
H˚˘ be the ˘1 eigenspaces of τ˚ respectively.

Lemma A.16. H˚` “ π˚H˚pX1q and H˚´ – H˚pX1, Y q. In particular,

H˚p qXq – H˚pXq ‘H˚pX,Y q.

Proof. Consider the Mayer-Vietoris sequence associated to the decomposition qX “ X1 Y

X2:

(A.3)

H˚p qXq H˚pX1q ‘H
˚pX2q H˚pY q ¨ ¨ ¨

H˚p qXq H˚pX1q ‘H
˚pX2q H˚pY q ¨ ¨ ¨

τ˚

ι˚1‘ι
˚
2 j˚1 ´j

˚
2

τ˚ τ˚“Id

ι˚1‘ι
˚
2 j˚1 ´j

˚
2

where ιi : Xi Ñ qX is the inclusion map. The involution τ acts on the whole sequence.
The middle vertical map is given by

pa, bq ÞÑ pτ˚pbq, τ˚paqq.
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The first square is commutative, while the second one is commutative with a negative
sign. The sequence (A.3) decomposes into eigenspaces of τ . For the invariant part of

H˚p qXq, we have

¨ ¨ ¨ Ñ H`
–
ÝÑ ∆ :“ tpa, τ˚paqq : a P H˚pX1qu Ñ t0u Ñ ¨ ¨ ¨ .

Note that ∆ being the image of π˚H˚pX1q Ă H` under pι˚1 ‘ ι˚2q. This proves the first
statement. As for H´, one combines (A.3) with the long exact sequence of the pair
pX1, Y q:

¨ ¨ ¨ H˚pX1, Y q H˚pX1q H˚pY q ¨ ¨ ¨

H˚p pX,X2q

¨ ¨ ¨ H´ tpa,´τ˚paqq : a P H˚pX1qu H˚pY q ¨ ¨ ¨

1
2
pId ,´τ˚q

1
2
pk˚´τ˚k˚q

excision

with k˚ induced by the inclusion k : p qX,Hq Ñ p qX,X2q. This diagram is commutative.
The middle and right vertical maps are isomorphisms. By the five-lemma, the left vertical
map is also an isomorphism. �

Remark A.17. For the proof of Proposition A.16, it is conceptually easier to think

of diagram (A.3) at the co-chain level, where H˚p qXq is computed by the sub-complex

C˚pX1 `X2q of C˚p qXq, see [Hat02, P.203]. ♦

Lemma A.16 has a relative version. Consider a triple pX,Y,W q with sub-complexes
Y,W Ă X. We form the double spaces for pairs pX,Y q and pW,W X Y q:

W X Y W xW “W1
š

WXY W2

Y X pX “ X1
š

Y X2.

Lemma A.18. The involution τ acts on the pair p pX,xW q. The ˘1 eigenspaces of τ˚ on

H˚p pX,xW q are isomorphic respectively to H˚pX,W q and H˚pX,W Y Y q:

H˚`p
pX,xW q – H˚pX,W q, H˚´p

pX,xW q – H˚pX,W Y Y q.

Using the relative Mayer-Vietoris sequence in [Hat02, P.204] instead, the proof of
Lemma A.18 is identical to that of Lemma A.16.

Proof of Proposition A.13. Consider the isometric double of pX over pY :

X “ pX1

ž

pY

pX2.



MONOPOLES AND LANDAU-GINZBURG MODELS II: FLOER HOMOLOGY 127

As oriented manifolds, pX1 “ pX and pX2 “ ´ pX is the orientation reversal of pX. The

isometric double X inherits a complete Riemannian metric from pX. Alternatively, we
start with the double of X over Yb:

qX “ X1

ž

Yb

X2,

with X1 “ X and X2 “ ´X. Then qX is a manifold with a compact boundary B qX “
qYe “ Ye,1

š

Z Ye,2 furnished with a cylindrical metric. X is obtained from qX by attaching
a cylindrical end.

By applying Proposition A.2 to the pair p qX, qYeq, we obtain that

(A.4) H˚DpX q – H˚p qXq, H˚N pX q – H˚p qX, qYeq.

Consider the involution τ˚ acting on pA.4q. By Lemmas A.16 and A.18,

H˚`p
qXq – H˚pXq, H˚`p

qX, qYeq – H˚pX,Yeq,

H˚´p
qXq – H˚pX,Ybq, H˚´p

qX, qYeq – H˚pX,Ye Y Ybq.

It suffices to identify the action of τ˚ on H˚DpX q and H˚N pX q. We claim that

pH˚b q`pX q – H˚A,bp pXq, pH˚b q´pX q – H˚R,bp pXq,
and therefore

pH˚βq`pX q – H˚A,βp pXq, pH˚βq´pX q – H˚R,βp pXq,
for any β P tN,Du. We focus on the absolute boundary condition. By restricting the

harmonic field ω P pH˚b q`pX q on pX, we obtain the forward map

φ : pH˚b q`pX q Ñ H˚A,bp pXq.
Its inverse ψ is constructed by the formula:

ψ : H˚A,bp pXq Ñ pH˚b q`pX q,

λ ÞÑ ω “

"

λ on pX1

τ˚λ on pX2.

A priori, ψpλq is only a bounded harmonic field in L2
1,loc. By elliptic regularity, ψpλq is

a smooth harmonic field; so ψ a two-sided inverse of φ. �

The proof of Proposition A.11 is similar and omitted here.
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Appendix B. Relative Orientations

The primary goal of this appendix is to present the proof of Theorem 19.2, which leads
to the notion of homology orientations in Definition 19.4. It allows us to orient the moduli
spaces in consistently when the complete Riemannian 4-manifold X possesses a planar end
H2
` ˆ Σ.
To do this, we have to develop the theory of relative orientations in a systematic

way. One possible approach is to use the argument in [KM97, Appendix] in which case a
Riemannian 4-manifold with a conic end is considered. The construction that we present
here is slightly different. It is self-contained and combinatorial in nature, having the
advantage of being very explicit and concrete. It relies on a simple proof of the excision
principle of elliptic differential operators, which was due to Mrowka.

The main results are Proposition B.3 and B.12. As an application of this abstract
theory, we will prove Theorem 19.2 in Subsection B.10.

B.1. Statements. The situation that we have here is similar to the excision principle of
elliptic differential operators; we follow its setup. Given a oriented compact manifold Y ,
consider vectors bundles E,F Ñ r´1, 1sˆY and a reference first-order elliptic differential
operator:

D : Γpr´1, 1s ˆ Y,Eq Ñ Γpr´1, 1s ˆ Y, F q.

We are interested in two classes of elliptic differential operators

L and R.

Each element of L consists of a pair pXi, Liq satisfying the following properties:

(J1) Xi is an oriented smooth manifold with boundary Y ; moreover, there exists a
collar neighborhood Wi Ă Xi of Y and a diffeomorphism

φi : pWi, Y q Ñ pr´1, 1s ˆ Y, t1u ˆ Y q

identifying Wi with the standard cylinder; Xi is not necessarily compact;
(J2) Li : ΓpXi, Eiq Ñ ΓpXi, Fiq is a first-order elliptic differential operator where

Ei, Fi Ñ Xi are vector bundles over Xi. The operator Li is cast into a standard
form on the collar neighborhood Wi in the following sense. There exist bundle
isomorphisms

φEi : Ei|Wi Ñ E, φFi : Fi|Wi Ñ F,

covering the diffeomorphism φi : Wi Ñ r´1, 1s ˆ Y in (J1) such that

Li “ pφ
F
i q
´1 ˝D ˝ φEi on Wi.

Similar properties are required for an element pXj , Rjq of R with one distinction: the
oriented boundary of Xj is p´Y q, so under the diffeomorphism φj , it is mapped to t´1uˆ
p´Y q:

φj : pWj , p´Y qq Ñ pr´1, 1s ˆ Y, t´1u ˆ p´Y qq

For any operators pXi, Liq P L and pXj , Rjq P R, we first glue up their underlying
manifolds and obtain a manifold without boundary:

Xi#Xj : Xi

ž

Xj{ „ij where φipxiq „ij φjpxjq if xi PWi, xj PWj .
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Similarly we glue vector bundles and obtain Ei#Ej , Fi#Fj Ñ Xi#Xj using pφEi , φ
E
j q

and pφFi , φ
F
j q instead. Finally, we glue operators and obtain

Li#Rj : ΓpEi#Ejq Ñ ΓpFi#Fjq.

Assumption B.1. The first-order elliptic differential operator

Li#Rj : L2
1pEi#Ejq Ñ L2pFi#Fjq

is assumed to be Fredholm for any elements pXi, Liq P L and pXj , Rjq P R.

In terms of Example 19.1, define

ΛpLi#Rjq

to be the 2-element set of orientations of this Fredholm operator Li#Rj .
From now on, we will omit the underlying manifolds when it is clear from the context.

For any operators L1, L2 P R, we wish to define a 2-element set ΛpL1, L2q such that any
element x P ΛpL1, L2q defines a preferred Z{2Z-equivariant map

ΛpL1#R3q Ñ ΛpL2#R3q

for any R3 P R. We will proceed in the opposite order and first define

ΛpL1, L2;R3q :“ HomZ{2ZpΛpL1#R3q,ΛpL2#R3qq.

Then the goal is to construct natural bijections:

(B.1) ppR3, R4q : ΛpL1, L2;R3q Ñ ΛpL1, L2;R4q

for any operators L1, L2 P L and L3, L4 P R such that the following axioms are satisfied:

(C-I) p is associative meaning that for any three operators Rj P R, 3 ď j ď 5, we have

ppR4, R5q ˝ ppR3, R4q “ ppR3, R5q : ΛpL1, L2;R3q Ñ ΛpL1, L2;R5q;

(C-II) p is reflexive meaning that ppR3, R3q “ Id;
(C-III) When L1 “ L2, p preserves the identity element:

p : 1 P ΛpL1, L1;R3q ÞÑ 1 P ΛpL1, L1;R4q;

(C-IV) p commutes with compositions of Hom-sets, i.e. for any three operators Li P
L , 0 ď i ď 2, the following diagram is commutative:

ΛpL0, L1;R3q ˆ ΛpL1, L2;R3q ΛpL0, L2;R3q

ΛpL0, L1;R4q ˆ ΛpL1, L2;R4q ΛpL0, L2;R4q,

m

pp,pq p

m

where horizontal arrows m are given by compositions of maps.

Definition B.2. For any classes L and R, a collection of bijections tpu satisfying axioms
(C-I)-(C-IV) defines an equivalence relation on the disjoint union:

ž

RjPR

ΛpL1, L2;Rjq.



130 DONGHAO WANG

Let ΛpL1, L2q be the quotient space, then the composition map m descends to an associa-
tive multiplication:

m̄ : ΛpL0, L1q ˆ ΛpL1, L2q Ñ ΛpL0, L2q,

which admits a unit in each ΛpLi, Liq. An element of ΛpL1, L2q is called a relative
orientation of L1 and L2. ♦

Here is the main result of this appendix.

Proposition B.3. There exists a collection of bijections tppR3, R4qu satisfying (C-I) ´
(C-IV) for any classes of operators L and R such that Assumption B.1 holds.

One can prove that the collection tppR3, R4qu is unique in a suitable sense:

Proposition B.4. Under the assumptions of Proposition B.3, suppose that there are two
collections of bijections tpu and tp1u satisfying axioms (C-I) ´ (C-IV), then one can find
a function:

ι : L ˆR Ñ Z{2Z
such that

ppL1, L2;R3, R4q “ p´1qηp1pL1, L2;R3, R4q : ΛpL1, L2;R3q Ñ ΛpL1, L2;R4q

with η “ ιpL1, R3q ` ιpL1, R4q ` ιpL2, R3q ` ιpL2, R4q. In other words, p1 is obtained from
p by applying the automorphism

ιpLi, Rjq : ΛpLi#Rjq Ñ ΛpLi#Rjq

for each pair pLi, Rjq P L ˆR.

Remark B.5. The proof of Proposition B.3 is constructive; see Proposition B.12 below
for a refined statement. In particular, we will pick up a preferred collection tpu for our
primary applications in gauge theory. Axioms (C-II) and (C-III) are redundant, since they
follow from the other two axioms. ♦

B.2. Compatibility with Direct Sums. Proposition B.3 will guarantee the first prop-
erty (U1) in Theorem 19.2, but (U2) will require an additional property of the collection
tppR3, R4qu, as we explain now.

The class R can be extended slightly to incorporate more operators. Denote this new

class by pR. Each element of pR is a triple pRj :“ pPj , Rj , Qjq where

‚ Rj P R;

‚ Pj : Ha
j Ñ Hb

j and Qj : Hc
j Ñ Hd

j are arbitrary Fredholm operators; here Ha
j „ Hd

j

are arbitrary Hilbert spaces.

Now instead of Li#Rj , we look at

Li# pRj :“ Pj ‘ pLi#Rjq ‘Qj : Ha
j ‘ L

2
1pEi#Ejq ‘H

c
j Ñ Hb

j ‘ L
2pFi#Fjq ‘H

d
j .

To extend Proposition B.3 for this new class of operators pR, we impose a convenient
condition on the first class L .

Definition B.6. The class of operators L is called even if for any L1, L2 P L ,

♦(B.2) IndL1#R3 ´ IndL2#R3 ” 0 mod 2, @R3 P R.
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Also, we look for a normalization property on the map

ppR3, pR3q : ΛpL1, L2;R3q Ñ ΛpL1, L2; pR3q.

Proposition B.7. Suppose L is an even family of operators and Assumption B.1 holds

for pL ,Rq, then there exists a collection of bijections tpp pR3, pR4qu satisfying axioms (C-I)-

(C-IV) for the class L and pR. This collection satisfies the following additional property:

for any pR3 “ pP3, R3, Q3q P
pR, the following diagram fis commutative:

(B.3)

ΛpP3qΛpL1#R3qΛpQ3q ΛpP3qΛpL2#R3qΛpQ3q

ΛpL1# pR3q ΛpL2# pR3q

IdbxbId

q q

ppR3, pR3qpxq

for any x P ΛpL1, L2;L3q. The vertical maps are induced from (19.1).

Proposition B.7 will be proved in Subsection B.9.

B.3. Construction of Bijections. Our construction of bijections tpu is motivated by a
simple proof of the excision principle which states that

(B.4) IndpL1#R3q ` IndpL2#R4q “ IndpL1#R4q ` IndpL2#R3q

for any L1, L2 P L and R3, R4 P R. The author learned this elegant proof of excision
principle in a graduate course at MIT, taught by Prof. Mrowka, who has kindly agreed
to present his proof here.

Consider a cut-off function θ : r´1, 1s Ñ R such that

θptq ” 0 if t P r´1,´
1

2
s; θptq ”

π

2
if t P r

1

2
, 1s.

Over each manifold Xi#Xj , θ extends to a global function by setting θ ” 0 on XizWi and
θ ” 1 on XjzWj . Consider functions φL :“ cos θ and φR :“ sin θ, then the matrix

U “

ˆ

φL ´φR
φR φL

˙

with inverse U´1 “

ˆ

φL φR
´φR φL

˙

defines an invertible operator between Hilbert spaces:

L2
kpE1#E3q ‘ L

2
kpE2#E4q Ñ L2

kpE1#E4q ‘ L
2
kpE2#E3q

for any k P t0, 1u. The same statement holds if we use bundles Fi instead. In what follows,
we write Eij for Ei#Ej , Fij for Fi#Fj and Dij for Li#Rj .

Lemma B.8. The following diagram is commutative up to a compact operator:

(B.5)

L2
1pE13q ‘ L

2
1pE24q L2

1pE14q ‘ L
2
1pE13q

L2pF13q ‘ L
2pF24q L2pF14q ‘ L

2pF13q

U

D13‘D24 D14‘D23

U

Proof. Note that the inclusion L2
1pr´1, 1s ˆ Y q Ñ L2pr´1, 1s ˆ Y q is compact, since Y is

compact. �
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Apparently, the excision principle (B.4) is an immediate corollary of Lemma B.8. On
the other hand, the digram (B.5) also gives rise to an identification of orientations:

(B.6) U˚ : ΛpD13 ‘D24q Ñ ΛpD14 ‘D23q

understood in the sense of Example 19.1. Let us make a more precise statement:

Lemma B.9. Suppose tAz : H1 Ñ H2uzPZ is a family of Fredholme operators parametrized
by a topological space Z. In addition, let tUz : H0 Ñ H1uzPZ and tVz : H2 Ñ H3uzPZ
be families of invertible operators parametrized by the same space. Form the new family
tUz ˝ Az ˝ Vz : H0 Ñ H3uzPZ , then there is continuous bundle map:

(B.7) pU, V q˚ : detAÑ detpU ˝ A ˝ V q,

whose restriction at each fiber is given by

αz b β
˚
z ÞÑ U´1

z pαzq b pVzpβzqq
˚

if αz and βz are elements in Λmax kerAz and Λmax cokerAz respectively.

Proof. One has to go back to the definition of determinant line bundles in [KM07, Section
20.2] to verify that pU, V q˚ is continuous, using the fact that U and V are families of
invertible operators. �

Remark B.10. It is clear that this construction is functorial with respect to compositions
of families of invertible operators. ♦

Lemma B.11. The bundle map (B.7) is functorial with respect to direct sums of operators
in the following sense. Suppose tA1z : H 11 Ñ H 12uzPZ and tA2z : H21 Ñ H22uzPZ are two
families of Fredholm operators, and similarly we have families of invertible operators:

tU 1zu, tU
2
z u, tV

1
zu, tV

2
z u.

as in Lemma B.9 parametrized by the same topological space Z.Then we have a commu-
tative diagram:

(B.8)

detA1 b detA2 detpU 1 ˝ A1 ˝ V 1q b detpU2 ˝ A2 ˝ V 2q

detpA1 ‘ A2q detpU 1 ‘ U2q ˝ pA1 ‘ A2q ˝ pV 1 ‘ V 2q,

pU 1,V 1q˚bpU2,V 2q˚

q q

pU 1‘U2,V 1‘V 2q˚

where vertical maps are induced from (19.1).

In our primary applications, Z is always a contractible space; see Example 19.1. In
light of Lemma B.9, the identification in (B.6) is in fact pU´1, Uq˚, but we will keep using
the notation U˚ for convenience. Now consider the following diagram:

(B.9)

ΛpD13qΛpD24q ΛpD14qΛpD23q

ΛpD13 ‘D24q ΛpD14 ‘D23q

p̄pR3,R4q

q13;24 q14;23

p´1qrU˚
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where vertical maps are induced from (19.1). The top horizontal arrow p̄pR3, R4q is equiv-
alent to a map:

ppR3, R4q : HomZ{2ZpΛpD13q,ΛpD23qq Ñ HomZ{2ZpΛpD14q,ΛpD24qq

for which we are aiming in (B.1). One may define p̄pD3, D4q by making the diagram (B.9)
commutative, but there is a choice of freedom for the sign p´1qr. In fact, there is no
reason to believe that the identification map U˚ in (B.6) is just the natural one, as there
are different ways to set up the excision picture.

Proposition B.12. Suppose Assumption B.1 holds for the families of operators pL ,Rq.
We construct the bijection in (B.1) by declaring the diagram (B.9) to be commutative with

(B.10) rpL1, L2;R3, R4q “ IndD23 ¨ IndD24 ` IndD24.

Then the collection of bijections tppR3, R4qu satisfies Axioms (C-I)-(C-IV).

The proof of Proposition B.12 will dominate Subsections B.4-B.8.

B.4. A Toy Model. To convince ourselves that the formula (B.10) indeed provides the
correct convention, let us verify a degenerate case when Y “ H. In this case, we assume
that every Li and Rj are Fredholm operators themselves, so

Dij “ Li ‘Rj ,

and (B.9) fits into a larger diagram:

(B.11)

ΛpL1qΛpR3qΛpL2qΛpR4q ΛpL1qΛpR4qΛpL2qΛpR2q

ΛpD13qΛpD24q ΛpD14qΛpD23q

ΛpD13 ‘D24q ΛpD14 ‘D23q

p̃pR3,R4q“Id

q1;3bq2;4 q1;4bq2;3

p̄pR3,R4q

q13;24 q14;23

p´1qrU˚

.

If we declare the top horizontal map p̃pR3, R4q to be the identity map, then the resulting
collection tppR3, R4qu will satisfy all axioms we want. Hence, we can determine the sign
p´1qr on the bottom if the digram (B.11) is commutative. In this case, the matrix U is a
4ˆ 4 matrix:

U “

¨

˚

˚

˝

1 0 0 0
0 0 0 ´1
0 0 1 0
0 1 0 0

˛

‹

‹

‚

: L2
kpE1 ‘ E3 ‘ E2 ‘ E4q Ñ L2

kpE1 ‘ E4 ‘ E2 ‘ E3q

for k P t0, 1u (which is also true for Fi). To compute the sign induced from U , let us
record two lemmas:
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Lemma B.13. Given tA1z : H 11 Ñ H 12uzPZ and tA2z : H21 Ñ H22uzPZ two families of
Fredholm operators parametrized by the same topological space Z, consider the permutation
operator:

τ “

ˆ

0 1
1 0

˙

: H 11 ‘H
1
2 Ñ H 12 ‘H

1
1 and H21 ‘H

2
2 Ñ H22 ‘H

2
1 .

Then the following digram is commutative with r1 “ IndA1 ¨ IndA2:

ΛpA1qΛpA2q ΛpA2qΛpA1q

ΛpA1 ‘ A2q ΛpA2 ‘ A1q.

Id

qpA1,A2q qpA2,A1q
p´1qr1 pτ´1,τq˚

where vertical maps are induced from (19.1).

Lemma B.14. Given a family of Fredholm operators tAz : H1 Ñ H2uzPZ , consider the
operator

σ “ ´ Id : H1 Ñ H1 and H2 Ñ H2.

Then the map pσ´1, σq˚ defined by Lemma B.9 equals

p´1qIndA : ΛpAq Ñ ΛpAq.

By Remark B.10, we decompose U into a composition of permutations and σ, so

r “ IndL2pIndL3 ` IndL4q ` IndL3 IndL4 ` IndL4

“ IndD23 ¨ IndD24 ` IndD24,

by Lemma B.13 and B.14.

B.5. Verification of Axiom (C-III). The toy model above can partially justify the
choice of r in (B.10). Let us give another reason by verifying Axiom (C-III), in which case
L1 “ L2. Consider the family of operators parametrized by τ P r0, 1s:

(B.12) Uτ “

ˆ

cos θτ ´ sin θτ
sin θτ cos θτ

˙

: L2
kpE23q ‘ L

2
kpE24q Ñ L2

kpE24q ‘ L
2
kpE23q, k P t0, 1u

with θτ “ θ ` τpπ{2´ θq : Xij Ñ R, so U0 “ U and

U1 “

ˆ

0 ´1
1 0

˙

.

We have to verify the top horizontal map p̄pR3, R4q in (B.9) is the identity map. The
diagram (B.9) remains commutative if we carry out the homotopy tUτuτPr0,1s:

(B.13)

ΛpD23qΛpD24q ΛpD24qΛpD23q

ΛpD23 ‘D24q ΛpD24 ‘D23q

p̄pR3,R4q

q23;24 q24;23

p´1qrpUτ q˚

.

When τ “ 1, by Lemma B.13 and B.14, p̄pR3, R4q “ Id if we define r by (B.10).



MONOPOLES AND LANDAU-GINZBURG MODELS II: FLOER HOMOLOGY 135

Remark B.15. By Proposition B.4, there exist other choices of signs p´1qr in Proposition
B.12 that also fulfill Axioms (C-I)-(C-IV), but (B.10) seems to be the preferred one by
what we have discussed so far. In fact, the toy model in Subsection B.4 may provide a
normalization axiom that removes the ambiguity in Proposition B.4. ♦

B.6. Verification of Axiom (C-II). In this case, R3 “ R4. Analogous to (C-III), we
consider the family of operators parametrized by τ P r0, 1s:

Uτ “

ˆ

cos θ1τ ´ sin θ1τ
sin θ1τ cos θ1τ

˙

,

with θ1τ “ p1´ τqθ. Then U0 “ U and U1 “ Id. In this case, r ” 0 mod 2.

B.7. Verification of Axiom (C-I). For operators Rj P R, j P t3, 4, 5u, we have to verify
that

p̄pR3, R4q b p̄pR4, R5q “ Idbp̄pR3, R5q

as maps:

ΛpD13qΛpD24qΛpD14qΛpD25q Ñ ΛpD14qΛpD23qΛpD15qΛpD24q.

To do this, we introduce a huge diagram and explain the construction of each piece in
5 steps:

(B.14)

ΛpD13qΛpD24qΛpD14qΛpD25q ΛpD14qΛpD23qΛpD15qΛpD24q

ΛpD13 ‘D24qΛpD14 ‘D25q ΛpD14 ‘D23qΛpD15 ‘D24q

ΛpD13 ‘D24 ‘D14 ‘D25q ΛpD14 ‘D23 ‘D13 ‘D24q

ΛpD14 ‘D24 ‘D13 ‘D25q ΛpD14 ‘D24 ‘D15 ‘D23q

ΛpD14 ‘D24qΛpD13 ‘D25q ΛpD14 ‘D24qΛpD15 ‘D23q

ΛpD14qΛpD24qΛpD13qΛpD25q ΛpD14qΛpD24qΛpD15qΛpD23q

p̄pR3,R4qbp̄pR4,R5q

q13,24bq14;25 W1 q14,23bq15;24

U˚bU˚

q1342;1425 W2
q1423;1524

pV1q˚

W3

pV2q˚

pV3q˚

W4

pV4q˚

U˚bU˚

q1424;1325

W5

q1424;1523

Idbp̄pR3,R5q

q14,24bq13;25 q14,24bq15;23

.

Step 1. The first square pW1q is the tensor of two diagrams of the form (B.9), for
operators pL1, L2;R3, R4q and pL1, L2;R4, R5q. pW1q is commutative if we correct it by
p´1qa1 where

a1 :“ r12;34 ` r12;45 with rij;kl :“ rpLi, Lj ;Rk, Rlq defined by (B.10).
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Step 2. Similarly, the last square pW5q is the tensor of two diagrams of the form (B.9),
for operators pL1, L2;R4, R4q and pL1, L2;R3, R5q. pW5q is commutative if we correct it
by p´1qa5 with

a5 :“ r12;35.

Step 3. In the second square pW2q, the bottom horizontal arrow is induced by the
diagonal matrix

V1 “

ˆ

U 0
0 U

˙

.

The square pW2q is constructed by Lemma B.11, and as such is commutative.
Step 4. In the fourth square pW4q, the top horizontal arrow is induced by the same

matrix

V2 “ V1 “

ˆ

U 0
0 U

˙

.

Similarly, the square pW2q is commutative by Lemma B.11.
Step 5. In the third square pW3q, the two vertical maps are induced respectively by

(B.15) V3 “

¨

˚

˚

˝

0 0 ´1 0
0 1 0 0
1 0 0 0
0 0 0 1

˛

‹

‹

‚

, V4 “

¨

˚

˚

˝

1 0 0 0
0 0 0 ´1
0 0 1 0
0 1 0 0

˛

‹

‹

‚

The commutativity of pW3q follows from the next lemma:

Lemma B.16. The matrix V2 is homotopic to the composition V ´1
4 ˝ V1 ˝ V3 by a path of

invertible operators:

(B.16) V ´1
4 ˝ V1 ˝ V3 “

¨

˚

˚

˝

0 ´φR ´φL 0
φR 0 0 φL
φL 0 0 ´φR
0 ´φL φR 0

˛

‹

‹

‚

: L2
kpE14 ‘ E24 ‘ E14 ‘ E25q Ñ

L2
kpE14 ‘ E24 ‘ E15 ‘ E23q,

for any k P t0, 1u. The same statement holds for bundles Fij.

Proof of Lemma B.16. We construct the homotopy in 2 steps. If we compare V2 with
(B.16), only positions of φL are different. It suffices to move them around by homotopy.

Step 1. Take τ P r0, 1s and define:

V2pτq “

¨

˚

˚

˝

φL cos πτ2 ´φR ´φL sin πτ
2 0

φR φL 0 0
φL sin πτ

2 0 φL cos πτ2 ´φR
0 0 φR φL

˛

‹

‹

‚

, detV2pτq “ φ4
L ` φ

4
R ` 2φ2

Lφ
2
R cos

πτ

2
.

Step 2. Take τ P r1, 2s and define:

V2pτq “

¨

˚

˚

˝

0 ´φR ´φL 0
φR φL sin πτ

2 0 φL cos πτ2
φL 0 φL ´φR
0 ´φL cos πτ2 φR φL sin πτ

2

˛

‹

‹

‚

, detV2pτq “ φ4
L ` φ

4
R ´ 2φ2

Lφ
2
R cos

πτ

2
.
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Then V2p0q “ V0 and V2p2q “ V ´1
4 ˝ V1 ˝ V3. �

Back to the proof of (C-I). To figure out the overall sign involved in the diagram (B.14),
we have to compute the compositions of all left vertical maps and all right vertical maps
using Lemma B.13 and B.14. They are induced by V3 and V4 respectively, so the outcomes
are

al “ IndD13 IndD14 ` pIndD13 ` IndD14q IndD24 ` IndD13,

ar “ IndD23 IndD24 ` pIndD23 ` IndD24q IndD15 ` IndD23.

We have to verify that

(B.17) a1 ` a5 ` al ` ar ” 0 mod 2,

which is the sum of 14 terms. In the computation below, we use the excision principle
(B.6) and set

b “ IndD1j ´ IndD2j , 3 ď j ď 5,

so

a1 ` a5 ` al ` ar “ 2 IndD23 IndD24 ` 2 IndD25 ` pIndD13 ` IndD23q

` pIndD23 ` IndD24qpIndD15 ` IndD25q

` IndD24p1` IndD14q ` IndD13pIndD14 ` IndD24q

” b` pIndD23 ` IndD24q ¨ b

` IndD24p1` IndD24q ` IndD24 ¨ b` IndD13 ¨ b

” b` b2 ” 0 mod 2.

This completes the proof of (C-I).

Remark B.17. The computation above is not enlightening at all. However, once we know
the sum (B.17) admits an expression that involves indices of Dij only, one may refer to
the case when Y “ H in Subsection B.4, as the computation does not see the difference.
In that case, there is much easier to see why tqpR3, R4qu are associative. ♦

B.8. Verification of Axiom (C-IV). We have formulated the problem in a way that
is asymmetric in L and R. But Axiom (C-IV) is identical to Axiom (C-III) if one
interchanges the roles of L and R. The proof (C-IV) follows the same line of arguments
as above. For any operators Li P L , 0 ď i ď 2, we have to verify that

p̄pL0, L1;R3, R4q b p̄pL1, L2;R3, R4q “ Idbp̄pL0, L2;R3, R4q

as maps:

ΛpD03qΛpD14qΛpD13qΛpD24q Ñ ΛpD04qΛpD13qΛpD14qΛpD23q,
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and the corresponding diagram is:

(B.18)

ΛpD03qΛpD14qΛpD13qΛpD24q ΛpD04qΛpD13qΛpD14qΛpD23q

ΛpD03 ‘D14qΛpD13 ‘D24q ΛpD04 ‘D13qΛpD14 ‘D23q

ΛpD03 ‘D14 ‘D13 ‘D24q ΛpD04 ‘D13 ‘D14 ‘D23q

ΛpD13 ‘D14 ‘D03 ‘D24q ΛpD14 ‘D13 ‘D04 ‘D23q

ΛpD13 ‘D14qΛpD03 ‘D24q ΛpD13 ‘D14qΛpD04 ‘D23q

ΛpD14qΛpD13qΛpD03qΛpD24q ΛpD14qΛpD13qΛpD04qΛpD23q

p̄pL0,L1qbp̄pL1,L2q

q03,14bq13;24 q04,13bq14;23

U˚bU˚

q0314;1324 q0413;1423

pV1q˚

pV2q˚

pV3q˚ pV3q˚

U˚bU˚

q1413;0324 q1314;0423

Idbp̄pR3,R5q

q13,14bq03;24 q14,13bq04;23

.

with V3 defined as in (B.15). Again we have to verify the sum

a11 ` a
1
5 ` a

1
l ` a

1
r ” 0 mod 2

where

a11 “ r01;34 ` r12;34 “ r11;34 ` r02;34 “ a15,

a1l “ IndD13 IndD14 ` pIndD13 ` IndD14q IndD03 ` IndD03,

a1r “ IndD13 IndD14 ` pIndD13 ` IndD14q IndD04 ` IndD04.

If we set c “ IndDi3 ´ IndDi4, i P t0, 1, 2u, then

a11 ` a
1
5 ` a

1
l ` a

1
r ” c2 ` c ” 0 mod 2.

The last step is to show that the matrix V2 is homotopic to

V ´1
3 ˝ V1 ˝ V3 “

¨

˚

˚

˝

φL 0 0 ´φR
0 φL ´φR 0
0 φR φL 0
φR 0 0 φL

˛

‹

‹

‚

: L2
kpE13 ‘ E14 ‘ E03 ‘ E24q Ñ

L2
kpE14 ‘ E13 ‘ E04 ‘ E23q.

The homotopy is again constructed by “rotating” the four entries colored red and the
other four entries colored blue. The proofs of Proposition B.3 and B.12 are now completed.
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B.9. Proof of Proposition B.7. We claim that the construction in Proposition B.12 still
works in this general setup, if L is an even class of operators in the sense of Definition

B.6. If we stick to operators pR “ pP,R,Qq P pR with P “ H, then the proof of Proposition
B.12 remains valid, since it does not see the difference.

In the general case, let pRj “ pPj , Rj , Qjq P pR, j “ 3, 4. We wish to compare pp pR3, pR4q

with ppR3, R4q. To illustrate, we focus on the special case when P3 “ Q3 “ H and verify
the following digram is commutative:

(B.19)

ΛpD13qΛpP4qΛpD24qΛpQ4q ΛpP4qΛpD13qΛpQ4qΛpD23q

ΛpD13qΛpP3 ‘D24 ‘Q4q ΛpP4 ‘D14 ‘Q4qΛpD23q

ΛpD13 ‘ P4 ‘D24 ‘Q4q ΛpP4 ‘D14 ‘Q4 ‘D23q.

Idbp̄pR3,R4q

Idbq qbId

p̄pR3, pR4q

q13;24 q14;23

p´1qrU˚

The second square comes from the digram (B.9) with R4 replaced by pR4; so

U “

¨

˚

˚

˝

0 ´1 0 0
φL 0 ´φR 0
0 0 0 ´1
φR 0 φL 0

˛

‹

‹

‚

and

r “ p1` IndD23q IndpL2# pR4q “ p1` IndD23qpIndP4 ` IndD23 ` IndQ3q.

One may verify that the first square of (B.19) also is commutative, using diagrams like
(B.14) and (B.18). The computation boils down to

IndP4 ¨ pIndD13 ` IndD23q ” 0 mod 2,

so the assumption that L is even is crucially here. In general, one has to verify that a

digram like (B.19) commutes for arbitrary pR3, pR4 P
pR. This reduces the problem from pR

to the smaller family R: it suffices to verify axiom (C-I)-(C-IV) for pL ,Rq, but this is
done in Proposition B.12. Details are left for the readers.

Finally, to verify the additional property (B.3), we set

pR3 “ pH, R3,Hq, pR4 “ pP3, R3, Q3q,

in the diagram (B.19). Then we use the fact that the top arrow p̄pR3, R3q “ Id to conclude.

B.10. Proof of Theorem 19.2. Having developed the abstract theory of relative orien-
tations, let us explain its application in gauge theory and prove Theorem 19.2. Consider
a strict cobordism X : Y1 Ñ Y2, let

Y “ BX “ p´Y1q Y pr´1, 1s ˆ Σq Y Y2.

We regard Y as a compact oriented 3-manifold by smoothing the corners.
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For any relative spinc cobordism psX P Spinc
RpX;ps1,ps2q, let the operator

L
psX

be the restriction of the Fredholm operator Qpc1,psX , c2q on X and R˚ be the restriction
on the complement X zX, then

Qpc1,psX , c2q “ L
psX#R˚.

Let L “ tL
psX : psX P Spinc

RpX;ps1,ps2qu be the space of all such operators. The underlying
manifold of L

psX is always the compact 4-manifold X. As for the other class R, let X3

be any smooth 4-manifold with boundary p´Y q such that X#X3 is a closed oriented
manifold and psX |BX extends to a spinc structure ps3 on X#X3. Define R3 to be the
linearized Seiberg-Witten map together with the linearized gauge fixing equation on X#X3

restricted on X3. As a result

L
psX#R3

is the linearized operator at some configuration for the closed spinc manifold pX#X3,psX#ps3q.
Set R “ tR˚u Y tall possible pX3, R3qu. Our goal is to construct the natural bijection

eE : ΛpL
psX#R˚q Ñ ΛpL

psXbE#R˚q,

for each relative line bundle rEs P H2pX, BX;Zq. (Here we changed the notation for a line
bundle to avoid confusion). Using the set of bijections tppR3, R4qu in Proposition B.3 or
B.12, we can define eE using any compact piece pX3, R3q instead:

eE : ΛpL
psX#R3q Ñ ΛpL

psXbE#R3q.

It is constructed as follows. The linearized operator at a reducible configuration on X3#R3

is

pd˚ ‘ d`q ‘D`A

The second operator is complex linear, while the first one is independent of the line bundle
rEs P H2pX, BX;Zq, so eE is defined by the commutative digram

Λpd˚ ‘ d`qΛpD`Aq Λpd˚ ‘ d`qΛpD`A1q

ΛpL
psX#R3q ΛpL

psXbL#R3q,

Idbh

q q

eE

where h : ΛpD`Aq Ñ ΛpD`A1q preserves the complex orientations. Notice that teEu is
independent of the compact piece pX3, R3q by our construction of tppR3, R4qu.

Now the first property (U1) of Theorem 19.2 follows from Axiom (C-IV).
As for (U2), it suffices to address the special case when either rE12s “ 0 or rE23s “ 0.

Technically, we have to work with the operators Q1 defined in (19.3), which involve mani-
folds with boundary and spectral projections. We can enlarge the family R to incorporate
such operators, so it is not a problem.

At this point, we conclude using the additional property (B.3) in Proposition B.7 by
setting either P3 “ H or Q3 “ H. The assumption is verified by the next lemma.
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Lemma B.18. The class of operators L :“ tL
psX : psX P Spinc

RpX;ps1,ps2qu is even in the
sense of Definition B.6.

Proof of Lemma. By the excision principle, it suffices to verify the condition (B.2) for a
special operator pX3, R3q P R. In particular, we take pX3, R3q to be a compact piece. �
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