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Abstract

In this paper we construct possible candidates for the minus versions of monopole
and instanton knot Floer homologies. For a null-homologous knot K < Y and a base
point p € K, we can associate the minus versions, KHM ™ (Y, K, p) and KHI (Y, K, p),
to the triple (Y, K, p). We prove that a Seifert surface of K induces a Z-grading, and
there is an U-map on the minus versions, which is of degree —1. We also prove other
basic properties of them. If K < Y is not null-homologous but represents a torsion
class, then we can also construct the corresponding minus versions for (Y, K, p). We
also proved a surgery-type formula relating the minus versions of a knot K with those
of the dual knot, when performing a Dehn surgery of large enough slope along K.
The techniques developed in this paper can also be applied to compute the sutured
monopole and instanton Floer homologies of any sutured solid tori.
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1 Introduction

1.1 Statement of results

Floer homologies have become very important tools in the study of 3-manifolds, since
the first construction by Floer in [8]. Among them, two major branches are the
monopole Floer homology, which was introduced by Kronheimer and Mrowka [14]
and the Heegaard Floer homology, which was introduced by Ozsvath and Szabé [23]
or Rasmussen [24]. For a closed oriented 3-manifold Y, there are four flavors of ho-
mologies associated to Y in each of the two theories, and they are isomorphic by work
of Kutluhan, Lee and Taubes in [17] and in subsequent papers. If there is a knot K in-
side a 3-manifold Y, then there are corresponding four flavors of homologies of the pair
(Y, K) in the Heegaard Floer theory. See Ozsvaath and Szabéd [22]. However, some
corresponding constructions in the monopole and instanton theory are missing. The
only monopole or (non-singular) instanton Floer homology for knots in 3-manifolds
is a version based on sutured manifolds, which was introduced by Kronheimer and
Mrowka in [15] and was refined by Baldwin and Sivek in [2]. The monopole version
is proved to be isomorphic to the hat version of the knot Floer homology in Hee-
gaard Floer theory, which was due to Baldwin and Sivek [5] or Lekili [18]. In this
paper, we construct Floer homologies associated to a based oriented null-homologous
knot, which are candidates for the monopole and the instanton correspondences of
the minus version of the knot Floer homology in Heegaard Floer theory.

Theorem 1.1. Suppose Y is a closed connected oriented 3-manifold and K < 'Y
is an oriented null-homologous knot. Suppose further that S is a Seifert surface of
K, and p € K is a base point. Then, we can associate the triple (Y, K,p) a module
KHM™ (Y, K, p) over the mod 2 Novikov Ring R. It is well defined up to multiplication
by a unit in R. The Seifert surface S induces a Z grading on KHM™ (Y, K, p), which
we denote by KHM™ (Y, K, P, S,i). Moreover, the following properties hold.

(1) Fori>g=g(S), KHM™ (Y, K,p,S,i) = 0.

(2) There is a map

U : KHM™ (Y, K, p) — KHM~ (Y, K, p)

that is of degree —1.
(3) There exists an No € 7 such that if i < Ny, then

U: —KHMi(YaKvpa Sal) = —KHMi(YvKapvsvi - 1)

(4) There exists an exact triangle

KHM~ (Y, K, p) KHM™ (Y, K, p)

KHM(Y, K, p)
(5) If Y = S3 and S realizes the genus of the knot, then we have

KHM (Y, K, p, S.,) # 0
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fori = g(9).
The same construction can also be carried out in instanton theory.

Theorem 1.2. Under the same settings as in Theorem 1.1, we can construct KHI™ (Y, K, p),
using instanton Floer homology, so that all the properties (1)-(5) in the that theorem
hold in the instanton settings.

It is worth mentioning here that Kutluhan [16] constructed another minus version
of knot monopole Floer homology in a different way. He used the holonomy filtration
for the construction.

1.2 Outline of the proof

In the current subsection, we only discuss in the monopole settings, and the con-
structions in the instanton settings are similar. The construction of KHM™ (Y, K, p)
is based on sutured monopole Floer homology. A sutured manifold (M,~) is a com-
pact oriented 3 manifold with a closed oriented 1-submanifold v on 0 M, which we call
the suture. The suture ~ divides 0M into two parts, according to the orientations of
and the 3-manifold, which we call R_(v) and R4 (v), respectively. Sutured manifolds
were first introduced by Gabai in [9]. Kronheimer and Mrowka then carried out the
construction of the monopole and instanton Floer homologies on balanced sutured
manifolds in [15].

A sutured manifold (M, ~) is called balanced if M and R(y) both have no closed
components and x(R_ (7)) = x(R+(7)). To define the sutured monopole Floer homol-
ogy for such a pair (M, ~), Kronheimer and Mrowka constructed a closed 3-manifold
Y, together with a distinguishing surface R, out of (M,~). The pair (Y, R) is called
a closure of (M, ). Sometimes we simply call Y a closure. The genus of the closure
refers to the genus of the surface R. To construct a closure, one needs to find a com-
pact connected oriented surface T', whose boundary is diffeomorphic to v, and then
glue [—1,1] x T to M, with [—1,1] x 0T identified with an annular neighborhood of
v < 0M. The surface T is called an auxiliary surface. The new 3-manifold after the
gluing is called a pre-closure, and it has two boundary components, R, and R_, of
the same genus. Then, we can pick a diffeomorphism A from R, to R_ to glue the
two boundary components together to obtain a closure (Y, R). We call h a gluing
diffeomorphism.

To study the naturality of sutured monopole Floer homology, Baldwin and Sivek
[1] constructed canonical maps between two different closures of a same balanced
sutured manifold (M,~y). Their construction is only well-defined up to multiplication
by a unit, so the closures and canonical maps form a projective transitive system and
result in a canonical module SHM (M, ~y), whose elements are well defined only up to
a unit.

The construction of the (canonical) module KHM™ (Y, K, p) was inspired by Et-
nyre, Vela-Vick and Zarev in [7], where they use a sequence of balanced sutured
manifolds (Y (K),T;,) and the gluing maps in sutured (Heegaard) Floer theory, which
was introduced by Honda, Kazez, and Mati¢ [12], to construct a direct system. They
proved that the direct limit is isomorphic to the classical minus version of knot Floer
homology in Heegaard Floer theory. Here, Y (K) = Y\int(/N(K)) is the knot com-
plement, and T',, consists of two curves on Y (K) =~ T2 which are of class (1, —n)
under the framing induced by some Seifert surface. In this paper, we construct the
same direct system in sutured monopole Floer theory. In particular, there is a com-
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mutative diagram

P
SHM(~Y (K), ~T,) ——"— SHM(~Y(K), ~T11) (1)
wi,nJrl wifnl+2
wﬁfnl+2

SHM(~Y (K), ~T41) — = SHM (Y (K ), ~T' 2)
Here, the balanced sutured manifolds are the same as described above, and the maps
come from gluing maps in sutured monopole monopole Floer theory, which were
constructed by the author in [19].

The commutativity of (1) is guaranteed by the functoriality of the gluing map. The
crucial difference from the work of Etnyre, Vela-Vick and Zarev in [7] is that, because
of the involvement of closures, the construction of the grading in the monopole and
the instanton settings is a delicate issue. We construct a grading in the direct limit
in two steps.

The first step is to construct a grading on each SHM(Y (K),T,,), for all n, using
the Seifert surface S. To construct such a grading, we work with a more general case,
where (M,~y) is an arbitrary balanced sutured manifold, S is a properly embedded
surface whose boundary is connected, and 05 intersects  transversely at 2n points.

For the case n = 1, the construction has already been carried out by Baldwin and
Sivek in [6]. When n = 1, we can pick a properly embedded arc o« = T', where 7' is an
auxiliary surface for (M,~). When gluing [—1,1] x T to M, we require that the end
points of « are glued to the two intersection points in dS N+, and, hence, [—1,1] x «
is glued to S along [—1,1] x da. Then, S becomes a surface S properly embedded in
the pre-closure M. Note M has two boundary components R, and R_, and the two
boundary components of S are contained in different boundary components of M.
Thus, we can pick a gluing diffeomorphism h : Ry — R_ which also identifies the two
boundary components of S. Hence, S becomes a closed surface S inside the closure
Y of (M,~). The grading can be defined by looking at the pairing of the first Chern
classes of the spin® structures on Y with the fundamental class of S. This idea was
first introduced by Kronheimer and Mrowka in [15], and, in [6], Baldwin and Sivek
proved that, when n = 1, the definition of the grading is independent of all choices
made in the construction and is well defined in SHM (M, 7).

For a general n, the basic idea to construct a grading is the same. However,
there are more choices involved, and, thus, many new issues arise. For example, for a
general n, we need to pick n arcs as, ..., a,, instead of just one, and we need to specify
which arc connects which pair of intersection points in dS n ~. Thus, this leads to a
new combinatorial problem which did not occur in Baldwin and Sivek [6]. We deal
with this combinatorial problem in Subsection 3.3. To conclude the proof, we also
need a new interpretation of Baldwin and Sivek’s canonical maps between different
closures. We use simply the Floer excision introduced by Kronheimer and Mrowka
in [15] to construct an equivalent canonical map, which was originally introduced by
Baldwin and Sivek in [2]. This is covered in Subsection 3.2.

When constructing the grading based on a surface .S, we need the extra assumption
that n is odd. Recall that [S n~| = 2n. If n is even, then we need to perturb S to
create a new pair of intersection points and, thus, increase n by 1. There are two
different ways of perturbations, which we call positive and negative stabilizations,
and denote them by St and S, respectively. Based on ST and S~, we can construct
two different gradings on SHM(Y (K),T',,). The relation between the two gradings
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will be the key to the second step of constructing a grading on the direct limit. Also,
using the grading shifting property betweem S* and S~, we can compute the sutured
monopole Floer homology of a solid torus with any valid suture.

Proposition 1.3. Suppose V' is a solid torus and v is a suture on 0V with 2n

components and slope %, then

SHM(—V, —7) =~ RE""Ieh,

Similarly, in instanton theory, we have the following.

Proposition 1.4. Suppose V is a solid torus and v is a suture on OV with 2n
components and slope %, then

SHI(~V, —y) = €,

The second step of constructing a grading on the direct limit is to prove that maps
in the commutative diagram (1) shift the grading in a desired way. To be more explicit,
Y7 41 must be of degree 0, while ¢ |, ;| must be of degree —1. The construction
of the maps ¢ , ., relies on the by-pass attachments in the monopole and instanton
settings, which are realized by contact handle attachments, as introduced by Baldwin
and Sivek in [3, 4].

It is a basic observation that the region we attach contact handles is disjoint from
the Seifert surface S, hence if we look at the grading associated to the ’correct’ sur-
faces, then ¢ ., and 4% | will both preserve the grading. However, the "correct’
surfaces involves both positive and negative stabilizations, while, to define a canonical
grading on SHM(Y (K),T,,), we only use negative stabilizations. Hence, the problem
is reduced to understanding the grading shifting between St and S~.

To understand this grading shifting property, we first need a better understanding
of the construction of the closures, the construction of canonical maps, and how spin®
structures on different closures are related by canonical maps. In particular, we prove
the following result.

Proposition 1.5. Suppose (Y (K),T',,) is the balanced sutured manifold described as
above, and Yy, is a closure of (Y(K),T'y,). Suppose 51 and so are two spin® structures
on Yy, so that they both support the sutured monopole Floer homology of (Y (K),T,).
Then, in terms of Poincare duals of first Chern classes of the spin® structures, the
difference between s1 and so lies in H1(Y (K)). More precisely, there is a 1-cycle x
in Y(K) so that

P.D.(Cl(ﬁl) — 01(52)) = [l’] € Hl(Y)

Proposition 1.5 will be the basis for understanding the grading shifting property
between the gradings associated to S* and S, which are the positive and negative
stabilizations of S. We deal with the grading shifting property in Section 4. We
present the construction of the minus version in Subsection 5.1 and prove some basic
properties of it in Subsection 5.2. Most of the basic properties have been stated in
theorem 1.1. Besides them, we also prove that the direct system in the construction
of the minus version stabilizes.

Proposition 1.6. For a fized i € Z, there exists N1 € Z, such that for n > Ny, we
have an isomorphism:

U™ ey SHM(=Y (K), —Tp,4) = SHM(=Y (K), ~Tpg1,9).

The techniques used in computing the sutured Floer homology of a solid torus
can also be applied to knot complements. As a result, we obtain the following.
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Proposition 1.7. Suppose K < Y is a knot and S < Y is a Seifert surface of K.
Suppose Yy is the manifold obtain from 'Y by doing a Dehn surgery along K with slope

—% with p,q > 0. We also have the dual knot K4 < Y. Then for any fized i, there

exists N € R, such that if the surgery slope —§ < N, then we have
KHM™ (—Yy, Ky, S,i) ~ KHM ™ (-Y, K, S, ).

Moreover, a similar result in instanton theory also holds.

Acknowledgements. This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1808794. The author would like to thank
his advisor Tom Mrowka for his invaluable helps. The author would like to thank
John Baldwin, Mariano Echeverria, Jianfeng Lin, Langte Ma, and Donghao Wang,
Yi Xie for helpful conversations.

2 Preliminaries

2.1 Balanced sutured manifolds and monopole Floer homol-
ogy

Definition 2.1. A balanced sutured manifold is a pair (M, ) of a compact oriented
3-manifold M and a closed oriented 1-submanifold v ¢ M. On M, let A(y) =
~v x [—1,1] be an annular neighborhood of 7, and let

R(v) = dM\int(A(7)).

They satisfy the following requirements.

(1) Both M and R(v) have no closed components.

(2) If we orient OR(y) = 0A(y) = v x {£1} in the same way as 7, then the
orientation on 0R(7y) must induce a unique orientation on R(y). This orientation is
called the canonical orientation on R(7y). Use R (7) to denote the part of R(v) whose
canonical orientation coincides with the boundary orientation of 0M, and R_(7) the
rest.

(3)- x(R+(7)) = x(R-(7)).

To define sutured monopole Floer homology, we need to construct a closed 3-
manifold out of a balanced sutured manifold (M,~). Let T be a connected oriented
surface so that the following holds.

(1) There is an orientation reversing diffeomorphism

f:0T — 7.

(2) T has genus at least 2.
After choosing such a T', we can use f to glue a thickened T' to M:

JF\Z=Mka[—1,1] xT.

The manifold M has two boundary components:
oM =R, UR_,

where
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Let h : Ry — R_ be an orientation preserving diffeomorphism, then we can form a
closed 3-manifold as N
Y=M v [—1,1] XR+,

iduh

where h : {1} x Ry — R_ C oM is the map just defined and id : {-1} x Ry —
Ry < dM is the identity on R;. Let R = {0} x Ry < Y, and we make the following
definition.

Definition 2.2. The manifold M is called a pre-closure of (M,~). The pair (Y, R) is
called a closure of (M,~y). The choices T, f, ¢, and h are called the auxiliary data. In
particular, the surface T is called an auxiliary surface and h is a gluing diffeomorphism.

Remark 2.3. Throughout this paper, we require that T is connected and has large
enough genus. However, in general, the choice of auxiliary surface has more freedoms.
See Kronheimer and Mrowka [15].

To construct local coefficients, we also need to choose a non-separating simple
closed curve 7  R. The base ring we use in the present paper is the mod 2 Novikov
ring R. For a detailed definition, readers are referred to [3].

Definition 2.4. Suppose Y is a closed connected oriented 3-manifold and R is a
closed oriented surface inside Y, so that each component of R has genus at least 2.
If R is connected, we define the set of top spin® structures as follows:

S(Y|R) = {spin® structure s on Y|cq(s)[R] = 2g(R) — 2.}

If R is disconnected and let Ry, ..., R, be its components, then we define
S(Y|R) = ﬂ (Y|R;).

For later references, we also define the set of supporting spin® structures as follows:
S*(Y|R) = {s € &(Y|R)|[HM.(Y,s;T,) # 0}.
Here, HM, (Y,s;T,) is the to-version of monopole Floer homology with local coeffi-
cients associated to the pair (Y,s). more details, readers are referred to [14].

Definition 2.5. The sutured monopole Floer homology of (M,~) is defined to be
SHM(M,~)=HM(Y|R;T,),

where .
M(Y|R;T) = @ HM (Y, s;1'y)
5€&(Y|R)

The following lemmas from Kronheimer and Mrowka [15] will be useful.

Lemma 2.6. Suppose Y is a surface bundle over S' whose fibres are closed connected
oriented surfaces of genus at least 2. Let R be a fibre and n < R be a non-separating
simple closed curve. Then, there is a unique spin® structure s on Y so that the
following is true.

(1) We have ¢1(s)[R] = 2g(R) — 2.

(2) We have FJ\/L(Y,s;Fn) # 0.

Moreover, for this spin® structure s, we have
HM.(Y,s;T,) ~ R,

where R is the base ring for local coefficients.
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Lemma 2.7. Suppose Y is a closed oriented 3-manifold and R 'Y is an embedded
closed connected oriented surface of genus at least 1. Suppose further that s is a spin®
structure such that

ler(s)[R]| > 29(R) — 2,

then we have .
HM,(Y,s;T,) =0

for any choice of local coefficients.

Floer excisions were introduced to the context of sutured monopole Floer homol-
ogy by Kronheimer and Mrowka in [15]. In the rest of the current subsection, we
summarize the results that we need in later sections.

For i = 1,2, suppose Y; is a closed connected oreinted 3-manifold and R; < Y;
is an embedded closed connected oriented homologically essential surface of genus at
least 2. Let 1; < R; be a non-separating simple closed curve. When cutting Y; open
along R;, we get N

Yi = Yi\int(N(R;)),

where N(R;) is a product neighborhood of R; — Y;. The manifold }2 has two bound-
ary components

af/; = Ri7+ ) Ri,_.

We orient R; + in the same way as R;. There are parallel copies of 7;, which we call
7i,+, on the surfaces R; +. Pick an orientation preserving diffeomorphism

h:Rl*’RQ

so that h(n1) = n2. We can use h to glue Ry 4 to Re_ and Ry _ to Ry 4. Then, ]
and Y, are glued together to become a connected 3-manifold which we call Y. Let
R c Y be the disjoint union of the surfaces R; + and Ry 4 in Y. Let n © R be the
disjoint union of curves n;  and 72 4.

There is a 4-dimensional cobordism W from Y7 L Y5 to Y, which is constructed as
follows: Let U be the surface as depicted in Figure 1. It has four vertical arcs as part
of the boundary, and we can assume that each of them is identified with [0, 1]. Now
we can use the identity map and the map h to glue three pieces }71, Ys and U x Ry
together, to obtain the desired cobordism W. This cobordism W then induces a map
as in [15]

HM(W): HM(Yy 0 Ya|Ry U Ro; Ty i) — HM (Y |R; T,). (2)

We can also cut and re-glue along tori. For ¢ = 1,2, let Y; be as above. Let T;  Y;
be a torus and R; < Y; be a closed connected oriented surface so that R; intersects
T; transversely along a circle ¢;. Suppose n; € R; is a simple closed curve so that 7;
intersects ¢; transversely at a point p;. Let

hZT1—>T2

be an orientation preserving diffeomorphism so that h(c1) = co and h(p1) = pa. As
above, we can cut Y; open along T; and re-glue using h to obtain a connected 3-
manifold Y. There is a distinguishing surface R, obtained by cutting R; open along
¢; and re-glue using h. The curves n; and 7y are also cut and re-glued to give rise to
a simple closed curve n € R < Y. As above, there is a cobordism map

HM(W): HM(Yy 0 Ya|Ry U Ro; Ty o) — HM (Y |R; T,). (3)

Theorem 2.8 (Kronheimer and Mrowka [15]). The maps (2) and (3) are both iso-
morphisms.
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Figure 1: Gluing three parts together to get W. The middle part is Ry x U, while the
R . directions shrink to a point in the figure.

2.2 The naturality of sutured monopole Floer homology

In [1], Baldwin and Sivek constructed a canonical map between two different closures
of the same balanced sutured manifold. To do this, they also refined the definition of
closures.

Definition 2.9. A marked closure D = (Y, R, r,m,n) of a balanced sutured manifold
(M, ~) consists of the following.

(1) A closed connected oriented 3-manifold Y.

(2) A closed connected oriented surface R of genus at least two.

(3) An orientation preserving embedding

r:Rx[-1,1] - Y.
(4) An orientation preserving embedding
m : M — Y\int(im(r)).

(5) A non-separating simple closed curve n c R.
They satisfy the following requirements.
(a) The embedding m extends to a diffeomorphism

M ? T x [-1,1] — Y\int(im(r)),

for some auxiliary data (7, f).
(b) The embedding m restricts to an orientation preserving embedding

Ry (7) = r(R x {=1}).

The genus of the marked closure D is referred to the genus of the surface R. We
define

SHM(D) = @ HM.(K,S;FT(,]X{O})).
s€S(Y|r(Rx{0}))
Theorem 2.10 (Baldwin and Sivek [2]). Suppose (M,~) is a balanced sutured man-
ifold, then for any two marked closures Dy and Doy of (M,~), there is a canonical

map Pp, p,, well defined up to a unit, from SHM (Dy) to SHM (D3). The canonical
maps satisfy following properties.
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(1) IfDl = DQ, then
Op, p, = id.

Here = means equal up multiplication by a unit.
(2) Suppose there is a third marked closure Ds for (M,~), then we have

(I)DLDS = q)Dsz © @D11D2'

Hence, for a balanced sutured manifold (M, v), marked closures D and canonical
maps P fits into a projective transitive system, which is defined in [2]. The projective
system determines a canonical module, which we denote by

SHM(M, 7).

We can then talk about elements (up to multiplication by a unit) in that canonical
module.

There is an extra ambiguity when dealing with knots in 3-manifolds. Let K < Y
be a knot. The extra ambiguity comes from the choices of tubular neighborhoods of
K c Y to remove to obtain a knot complement. Fix a point p € K. Suppose

0: S8t x DY

is an embedding, where D? is the unit sphere in the complex plane, and S' = 0D?2.
We require that

p(ST x {0}) = K, and p({1} x {0}) = p.

Let Y, = Y\int(im(¢)), and let v, = ¢({£1} x dD?), with opposite orientations
on two components. For each fixed ¢, we have a well defined canonical module
SHM(Y (¢),7,), and we want also relate different choices of .

Suppose ¢’ is another embedding S' x D? < Y, satisfying the same conditions
as . Pick a tubular neighborhood N of K Y such that im(y),im(¢’) € N. Also,
pick an ambient isotopy

fi:Y >, tel0,1]

such that the following is true.
(1) For any ¢ € [0,1], fu(p) = p.
(2) For any t € [0, 1], f: restricts to identity outside N < Y.
(3) We have f1(im(y)) = im(¢’).
(4) We have f1(p({£1} x 0D?)) = ' ({£1} x D?).
It is clear that fi : (Y,,7,) — (Yo, 7y) is a diffeomorphism between balanced
sutured manifolds. Hence, we can define

Wo,pr = SH—M(fl) : SH—M(YW ’7«/9) - SH—M(Yw’a ’Ysa’)-

Theorem 2.11. (Baldwin and Sivek [2]) The map ¥, . is well defined, i.e., is
independent of the choices of the tubular neighborhood N and the ambient isotopy fi.
Also, it has the following properties.

(1) We have ¥, , = id.

(2) If there is a third embedding ©”, then

Voo = Werpr oWy .

Thus, we know that {SHM(Y,,,~,)} and {¥, .} form a transitive system of pro-
jective transitive systems. Thus, they lead to a larger projective transitive system,
and, hence, the monopole knot Floer homology KHM(Y, K, p) is well defined (as a
projective transitive system).

10
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2.3 Contact structures and contact elements

In this subsection we summarize the results related to contact geometry which we
will use in later sections.

Definition 2.12. A contact sutured manifold (M,~,£) is a triple where (M,~) is
a balanced sutured manifold, and £ is a contact structure on (M,) so that M is
convex and v is the dividing set. The contact structure £ is said to be compatible
with the balanced sutured manifold (M, 7).

Theorem 2.13. (Baldwin and Sivek [3]) Suppose (M,~,&) is a contact sutured man-
ifold, then we can associate an element

¢€ € m(_Ma _’Y)

to it. This element is called the contact element.

Definition 2.14. Suppose (M’,~’) is a balanced sutured manifold. A sutured sub-
manifold (M,~) of (M',~') is another balanced sutured manifold so that M c
int(M").

The gluing maps in sutured monopole Floer homology were define by the author
in [19], and it is crucial in the construction of the direct system in Section 5.

Theorem 2.15. Suppose (M,~y) is a sutured submanifold of (M’',~") and suppose
Z = M'\int(M). Suppose & is a contact structure on Z so that (Z,v v v ,€) is a
contact sutured manifold. Then, there is a map

q)g : SHM(*M, 7'}/) d m(fMlv 7’}/)5

so that the following is true.
(1) If (M',~") is a sutured submanifold of (M",~") and there is a contact structure
& on M"\int(M"), making it a contact sutured manifold, then we have

(I)g/ o (I)g = (I)gugl : SHM(—M, —’7) - SHM(—M”, —’y”).
(2) Suppose (M',~',&") is a contact sutured manifold and &'|z = &, then we have

e (b)) = P

Suppose we have three balanced sutured manifold (M, 1), (M,~2), and (M, ~3)
so that the underlining 3-manifold is the same, but the sutures are different. Suppose
further that -1, 72, and 3 are the same outside a disk D < d M, and, within the disk
D, they are depicted as in Figure 2. We say that (M, ~2) is obtained from (M, ~;) by
a by-pass attachment along the arc a.. Similarly, (M,~s3) is obtained from a by-pass
attachment from (M,~s) and (M,~1) from (M,~3). Then, we have the following
theorem.

Theorem 2.16 (Baldwin and Sivek [3]). There is an exact triangle relating the
sutured monopole Floer homologies of the three balanced sutured manifolds:

Y12
SH—(in 771)

m(fMa 7’72) (4)

P31 P23
m(in 773)

11



Zhenkun Li 2 PRELIMINARIES

td ~
7’
i S
) \
/ N
/ N
,I \ \‘
I \ \
1 « ‘l \
i
] ] i
\ ! ]
\ ! 1
\ ,' 1
\ 7 ’
N / ’
\
~ 4
~, ~ ,/

ST

~a,

Figure 2: The by-pass exact triangle.

In contact geometry, a by-pass is a half disk, which carries some particular contact
structure, attached along a Legendrian arc to a convex surface. For more details, see
Honda [10]. We can describe the maps in (4) as follows: We explain the construction
of the map 12, and the other two are the same. Let Z = dM x [0,1], and we can
pick the suture 43 on dM x {0} as well as the suture y5 on 0M x {1}. Then, there
is a special contact structure {15 on Z that corresponds to the by-pass attachment
and makes (Z,v1 U 72) a contact sutured manifold. Hence, we can attach Z to M by
the identification 0M x {0} = 0M < M. The result (M U Z,~,) is diffeomorphic to
(M, ~2) and we have

P12 = Pgy,.

Here, ®¢,, is the gluing map associated to &2 as in Theorem 2.15.

In Section 5, we will use the by-passes on knot complements to construct the
direct system. Let K < Y be an oriented knot. Let A and p be the longitude and
meridian according to some framing of the knot. Let I',, be a suture on Y (K) which
consists of two curves of class +(A — nu), and T'y, consists of two meridians. In this
case, 0Y (K) is a torus, and we have the following theorem due to Honda [10].

Theorem 2.17. There are two tight and minimal-twisting contact structures on T? x
[0,1] so that, fori=1,2, T? x {i} is convex with dividing set being ', ;. These two
contact structures correspond to two different by-pass attachments on (Y (K),T,,).

Definition 2.18. We denote the two contact structures in Theorem 2.17 by &, ,, and
&_ n, respectively. The corresponding two by-passes are called positive and negative,
respectively. The two by-passes can be distinguished by Figure 3.

There are by-pass exact triangles associated to the positive and negative by-passes:

12
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Figure 3: The positive and negative by-pass attachments for (Y (K),I's)). The squares
represent the toroidal boundary of Y (K'). Note the contact structures &4 o correspond to
the by-passes from the bottom one to the top left one in each by-pass triangle.

+1
Yo

SHM(—Y(K),-Tps1) == SHM(-Y(K),—T'x) (5)

SHM(-Y(K),-TI',)

Note we have wgfnl = ®¢, . We also need the following facts.

Proposition 2.19 (Honda [10]). On T? x [0,2], the two contact structures &_ ,, U
Exmt1 and &4 U & g1 are the same.

Corollary 2.20. We have a commutative diagram

L

SHM(Y (K), T') ——L~ SHM(Y (K), T'p1)

n n+1
1/)+,n+1 ’¢+,n+2

n+1
—n+2

»
SHM(Y (K),Tp41) ————— SHM (Y (K), T 42)
Proof. The corollary follows from proposition 2.19 and theorem 2.15. O

There is a second way to interpret the maps 104 associated to by-pass attachments
by Ozbagci. In [21], he proved that a by-pass attachment can be realized by attaching
a contact 1-handle followed by a contact 2-handle. In sutured monopole Floer theory,
we have maps associated to the contact handle attachments, due to Baldwin and
Sivek [3]. So, we can compose those contact handle attaching maps to define ¥.
This is the original way that Baldwin and Sivek constructed the by-pass maps (when
they defined by-pass maps, there was no construction of gluing maps) and proved the
existence of the exact triangle. The two interpretations are the same because of the
functoriality of the gluing maps. We will use this second point of view in the proof
of Proposition 5.5.

13
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3 An Alexander grading

3.1 The construction

Definition 3.1. Suppose (M,~) is a balanced sutured manifold, and S is a properly
embedded oriented surface. A stabilization of S is an isotopy of S to a surface S, so
that the isotopy creates a new pair of intersection points:

08" Ny = (08 nv) u{ps,p-}.

We require that there are arcs o < 05’ and 3 < ~, oriented in the same way as 05"
and 7, respectively, such that the following is true.

(1) We have oo = 08 = {p+,p_}.

(2) The curves o and /8 cobound a disk D so that int(D) n (v u 05") = .

The stabilization is called negative if D can be oriented so that 0D = o U 3 as
oriented curves. it is called positive if 0D = (—a) u . See Figure 4.

[0
g |
5N T

negative

Y > + <
D

|
>

Y L s

oS positive

Y

A

Y

Figure 4: The positive and negative stabilizations of S.

We denote by S** the result of performing k& many positive or negative stabiliza-
tions of S.

The following lemma is straightforward.

Lemma 3.2. Suppose (M,~) is a balanced sutured manifold, and S is a properly
embedded oriented surface. Suppose ST and S~ are the results of doing a positive
and negative stabilization on S, respectively. Then, we have the following.

(1) If we decompose (—M,—~) along S or S—, then the resulting two balanced
sutured manifolds are diffeomorphic.

(2) If we decompose (—M, —~) along ST, then the resulting balanced sutured man-
ifold (M',~") is not taut, as Ry(v") would both become compressible.

14
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Suppose (M,~) is a balanced sutured manifold, and S is a properly embedded
oriented surface. Suppose further that S has precisely one boundary component and
0S intersects v at 2n points. Since 7 is parallel to the boundary of R4 (), it is null-
homologous, so the algebraic intersection number of 05 with v on ¢M must be zero.
We also assume that n = 2k + 1 is odd, as this can be achieved by a stabilization
of S if needed. Suppose the intersection points are py, ..., pap, and they are indexed
according to the orientation of 05.

Now pick a connected auxiliary surface T for (M,~), which is of large enough
genus. Let f : 0T — ~ be an orientation reversing diffeomorphism and let p; =
f~Y(pi). Suppose ai, ..., o, are pair-wise disjoint simple arcs on T, so that the fol-
lowing is true.

(1) The classes [a1], ..., [ ] are linearly independent in Hy (T, 0T).

(2) We have that day = {p/,ph}, and, for all 1 < i < k, we have

Oag; = {pﬁu—ppﬁum}a and dagiqr1 = {piuvpiu‘ﬂ}-
Let

M = Miduxf[fl, 1]xT, and S = Sidkif(U[fl, 1] x o).

We know that
OM =R, UR_, and 0Sn Ry = | | Cis.

Here we require that for i = 1,...,k + 1,
g1 x {1} < Ci 4.
Pick an orientation preserving diffeomorphism i : Ry — R_ sothat fori =1,...,k+1,
hCit)=Ci—.

Then, we can use h and M to obtian a closure (Y, R) of (M,~). The boundary
components of the surface S are glued with each other under h, so S becomes a
closed surface S < Y. From the construction, we know that

X(S) = x(8) — n.

We pick a non-separating simple closed curve n — R, so that 7 is disjoint from S n R
and represents a class which is linearly independent from the classes represented by
the components of S n R in Hy(R).

Definition 3.3. We say that the surface S c Y is associated to the surface S < M.
We can use S to define a grading on SHM (M, ) as follows.

SHM(M,~,8,i) = @ HM.(Y,sT,).
s€&(Y|R)
c1(s)[S]=2i

We say that this grading is associated to the surface S < M. When using the
language of marked closures, the closure (Y, R) corresponds to a marked closure
D = (Y,R,m,r,n), and we write the grading as

SHM(D, S, i).

The grading on SHM(D) also induces a grading on SHM(M, v), as stated in The-
orem 3.4. We also say it is associated to S and write

SHM(M, v, S, 7).

15
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Theorem 3.4. When 0S5 is connected, the grading on SHM(M,~) associated to S is
well-defined. That is, it is independent of all the choices made in the construction.

Proof. There are four types of choices we made in the construction of the grading:
I. The point p; on 05 N 7.
II. The choice of the arcs aq, ..., a, on T.
III. The choice of the gluing diffeomorphism h.
IV. The genus of the closure.
The proof of Theorem makes up the rest of the current section. In particular, the
results are stated in corollary 3.20, corollary 3.7, proposition 3.9, and lemma 3.5. O

In [6], Baldwin and Sivek have already dealt with the choices of type II, IIT and
IV. Among them, the idea for type IV can be adapted to the setting of the current
paper verbatim, so we do not bother to write down the proof again.

Lemma 3.5 (Baldwin and Sivek [6]). The definition of the grading on SHM(M,~)
associated to the surface S < M is independent of choices of type IV.

To deal with the choices of type II, we have the following lemma.

Lemma 3.6. Suppose T is a compact connected oriented surface-with-boundary and is
of large enough genus. Suppose further that {1, ..., an} is a set of properly embedded
simple arcs on T so that the following is true.

(1) The arcs i, ..., a, are pair-wise disjoint.

(2) The arcs represent linearly independent classes [aq], ..., [an] in Hy(T,T).

Suppose {a,...,al,} is another set of properly embedded simple arcs so that the
following is true.

(3) Fori=1,...,n, we have da; = 0ctl.

(4) The set of arcs {af,...,al,} also satisfies the above conditions (1) and (2).

Then, there is an orientation preserving diffeomorphism h : T — T so that h fizes
the boundary of T, and, fori=1,...,n, we have

hay) = of.
Proof. Suppose N is a product neighborhood of
a1 U...ua, cT.

Let 7' = T\int(N). The boundary 0T consists of the following:

oT 6TmT LJa“LuaZ

Here, «; + are parallel copies of «;, being part of the boundary of the product neigh-
borhood N. From condition (2), we know that T is connected. Also, by construction,

Similarly, we can pick N’ to be a product neighborhood of
adju..va, T,

and take
= T\int(N"), and oT" = (3T n T") U U o, va

16
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By condition (3), we can assume that N n 0T = N’ 0T, so there is an orientation
preserving diffeomorphism N N
f:0T — o1’

so that
flopng =id, and f(a;+) = O/i,i
for all i = 1,...,n. Since we have

X(T') = x(T) +n = x(T),

the diffeomorphism f extends to a diffeomorphism

g:T—T.
Thus, we can glue T and 7" along «a; 4+ and O‘;,ia and g is glued to become a diffeo-
morphism

h:T—>T
that is the desired one. |

As discussed in [6], Lemma 3.6 gives rise to the following corollary.

Corollary 3.7. The grading on SHM(M,~) associated to the surface S < M is
independent of choices of type 1.

We deal with the choices of type III in Subsection 3.2 and the choices of type I in
Subsection 3.3.

3.2 A reformulation of Canonical maps

In this subsection, we give an alternative description of the canonical maps ®p ps,
which was originally constructed by Baldwin and Sivek in [2] for two different marked
closures of the same genus. For our convenience, we only study the a special case as
described in the following paragraph.
Suppose (M,~) is a balanced sutured manifold and T is a connected auxiliary
surface. Let N
M=Mul[-1,1]xT, éM =R, U R_.

Suppose h1 and ho are two different gluing diffeomorphisms, and there are correspond-
ing marked closures Dy = (Y1, Ry, r1,m,n) and Dy = (Ya, R4, r2,m,n), respectively.
Here, we choose the same non-separating simple closed curve  on R to support
local coefficients.

Let h = hfl o ha, and Y" be the mapping torus of h, i.e., the manifold obtained
from Ry x [—1,1] by identifying Ry x {1} with Ry x {—1} via h. Then, we can obtain
Ys from Y; and Y as follows. Cut Y; open along R x {0} and cut Y along Ry x {0}.
We can re-glue them via the identity map on R, to get a connected manifold. This
resulting manifold is precisely Y5. As in Theorem 2.8, there is a cobordism W from
Y, uY" to Ys, and W induces an isomorphism:

HM(W): HM(Y: UY"| Ry U Ry) — HM(Y3|R.).
Note, from Lemma 2.6, we know that
HM(Y" Ry) =R.
Let a be a generator of HM (Y"|R,) and let ¢ be the map

t: HM(Y1|Ry) - HM(Y1|Ry) @ HM(Y"Ry) =~ HM(Y u Y"|R, U Ry)

17
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defined by
z) =2 ®a.
We have the following proposition.
Proposition 3.8. The canonical map ®p, p, can be re-interpreted as

Op, p, = HM(W) o

Before proving the proposition, we first use it to prove the fact that the definition
of the grading is independent of the choices of type II1. Suppose (M, ) is a balanced
sutured manifold and S < M is a properly embedded surface with precisely one
boundary component, so that 05 intersects v at 2n points for some odd n = 2k + 1.
Suppose further that, in the construction of the grading induced by .S, the choices of
type I, II, IV are fixed. This means that there is a connected auxiliary surface T for
(M,~) and n arcs «aq, ..., a;, so that the following holds

(1) We have

a1 U .. Uay) =0Sn7.

(2) Let
AMU[-1,1]xT) =Ry uR_, and § = S | J ([-1,1] x as),
1=1"

then we have N
S N RJ_r = Cl,J_r, ceey C/H—Li-

Suppose there are two gluing diffeomorphisms h; and ho so that, for i = 1,2
hi(C1,+ U ...V Ck+11+) = CL, U ...V Ck+17,.

Suppose further that there are marked closures D; = (Y1, Ry, m,r1,n) and Dy =
(Ya, Ry, m,ro,n) corresponding to hy and hs, respectively. Here, we choose the same
non-separating simple closed curve n € R4 to construct local coefficients. We have
the following proposition.

Proposition 3.9. For any i € Z, we have

®p, p, : SHM(Dy, S, i) = SHM(Dy, S, ).
As a result, the definition of the grading on SHM(M, ) is independent of the choices
of type III.

Proof. Let h = hl_1 o hg, and form Y as in Proposition 3.8. From Lemma 2.6, there
is a unique spin® structure sy so that

HM(Y"|Ry) = HMJ(Y", 50;T,) = R.
There are tori inside Y": The cylinders C; . x [~1,1] € Ry x [—1,1] are glued
via h to become a union of tori 7. Lemma 2.7 tells us that
61(50)[T] = 0.

Let S; Y} and Sy < Y5 be the surfaces induced by S © M as in the construction
of the grading. We know that there is a 3-dimensional cobordism from S; LT to Sy
inside the the cobordism W. The construction of this (3-dimensional) cobordism is
similar to that of the Floer excisions. If s is a spin® structure on W, which contributes
non-trivially to the cobordism map H M (W), then s must restrict to s on Y. Hence,
we know that

c1(s)([S2]) = e1(s)([S1] + [T]) = e1(s)([S1]) + er(s0)([T]) = er(s)([S1])-
Thus, HM (W) preserves the grading and so does @%LDZ, by Proposition 3.8. O
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Now we proceed to prove proposition 3.8. There are a few preparations we need.

Lemma 3.10. Under the settings of Proposition 3.8, suppose we have a third gluing
diffeomorphism hz, h' = hy* o hs, and h” = hoh' = hi'ohs. Construct W', W", /',

and (" just in the same way as we construct W and . Then, we have an identity:
HMW")o" = HM(W') ot o HM(W) o . (6)

Proof. Let Yy, and Yy~ be the mapping tori of b’ and h”, respectively. Since h” = hoh/,
there is an excision cobordism from Y} 1 Yy,» to Y},» just as we construct W, W’, and
W”. Call this cobordism —W_", and let W, be the cobordism from Yy~ to Y}, u Yj,

obtained by putting —W_" up side down and then reversing the orientation. By
Theorem 2.8 and Lemma 2.6, it is straightforward to see that

HMW OW' OUW,)ow3=HMW') o/ o HM(W)ou.
Hence, to prove (6), it is enough to show that
HMW W' UW.) = HM(W"). (7)

However, we can cut W/ U W’ U W, open along the 3-manifold S* x R, as depicted
in Figure 5 and glue back two copies of D? x R... The resulting 4-manifold is exactly
W”. Hence, from Proposition 2.5 in [15], (7) holds true and we conclude the proof of
lemma 3.10. O

Figure 5: The union W u W/ U W,. The (blue) curve in the middle represents the
3-manifold S x R, to cut along.

Corollary 3.11. If hy = hs, then we have
HM(W) o =id.
Proof. From Theorem 2.8, we know that
HM(W)ou
is an isomorphism. From Lemma 3.10, we know that
HMW)oro HM(W)ov=HM((W)o..

Hence, the corollary follows. O
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Proof of Proposition 3.8. Suppose h is decomposed into Dehn twists:
h ~ Dglo..oDg,

as in Baldwin and Sivek [2]. From Theorem 2.10 and Lemma 3.10, it is suffice to deal
with the case when n = 1, i.e., there is only one Dehn twist involved.

When e; = 1, the Dehn twist is positive. In this case, the canonical map @gph% is
constructed using the cobordism W, as in the hypothesis of Proposition 3.8, with the
boundary component Y capped off by the total space of a relative minimal Lefschetz
fibration, see Lemma 4.9 in Baldwin and Sivek [2]. Since such a Lefschetz fibration
has relative monopole invariant being a unit in R, as in Proposition Bl in [2], we
conclude that

%, p, = HM(W)ou.

When e; = —1, the Dehn twist is negative. We can instead look at the canonical

map @gpszl. It corresponds to h~! and is constructed using a positive Dehn twist.

Suppose we construct W’ and ' out of h~!, just as we construct W and ¢ out of h.
Then, from the previous case we know that

<I>9D21D1 = HMW")o/.
Then, the identity
%, p, = HM(W)ou.
follows from Theorem 2.10, Lemma 3.10 and Corollary 3.11. O

3.3 Pairing of the intersection points

In this subsection, we deal with type I choices, i.e., the choice of p; among all inter-
section points in S N 7.

Let us first pick an arbitrary intersection point in 0S N~y as p;. We need to relax
the requirement in the construction of the grading that da; are chosen to be a special
pair of points in S n 7. To record the data of the end points of a;, we make the
following definition.

Definition 3.12. Suppose we have a collection of n pair of numbers

P = {(ilajl)a 3} (’Lna.jn)}
so that
{ilajla ava.]n} = {1527 ...7277,},

and, for all [ = 1,...,n, we have
i Z Ji (mod 2).
Then, we call such a collection P a pairing of size n.

Suppose (M, ) is a balanced sutured manifold and S < M is a properly embedded
oriented surface. Suppose further that S has a connected boundary, and it intersects
v at 2n = 4k + 2 points. Those points are labeled by p1, ..., pax+2, according to the
orientation of 05, with an arbitrary chosen starting point p;. Continuing, suppose
P = {(i1,51)}]-, is a pairing of size n, T is an auxiliary surface of M, and a1, ..., ay
are pair-wise disjoint simple arcs so that the following is true.

(1) The arcs aq,..., a;, represent linearly independent classes in Hy (T, 0T).

(2) For I =1,...,n, we have

aO‘l = {pll s Pjy }
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Then, as in Definition 3.3, we can construct

M=MOT x[-1,1], Sp = S u (| Jou x [-1,1]).
=1

We have N N
oM = R+ U R_,aSp (@) RJ_r = Cl,J_r U Csiﬂ_r-

In general, the numbers of intersection circles, s and s_, are not necessarily equal
to each other, so we make the following definition.

Definition 3.13. A pairing P is called balanced if s_ = 5.

Example 3.14. Here are some examples of the pairings. Assume n = 2k + 1 is odd.
(1) The simplest possible pairing

P ={(1,2),(3,4),...,(4k + 1,4k + 2)}

has s = 1 and sy = n, or s = n and s, = 1, depending on the choice of the
starting point p1, so it is not a balanced paring for n > 1.
(2) In Definition 3.3, we have a paring arising from the construction of the grading;:

P9 = {(1,2),(3,6),(4,5), ..., (4k — 1,4k + 2), (4k, 4k + 1)}.

This is an example of a balanced pairing, with sy =s_ =k + 1.
(3) There is a very special balanced pairing with sy = s_ = 1:

PS = {(1,2k +2),(2,2k + 3), ..., (2k + 1,4k + 2)}.

If (M,~), S, and p; are chosen as above, and we are equipped with a balanced
pairing P, then we can repeat the construction in Definition 3.3 and define a grading
on SHM(M,~). By Corollary 3.7, Proposition 3.9, and Lemma 3.5, the grading
depends only on the choice of p; and P. Since S and p; are fixed throughout this
subsection, we omit them from the notation and write, in a moment, the grading as

SHM(M,~, P, i).

There is an operation we can perform on balanced pairings. Suppose P is a
balanced pairing and we pick two indices [; and ls so that the following two conditions
hold.

(i) The two arcs {1} x oy, and {1} x «, are not contained in the same boundary
component of §'p.

(ii) The two arcs {—1} x o, and {—1} x o, are not contained in the same boundary
component of 0S.

Then, we can perform the following operation on P: Suppose, in the two pairs
(i1, 41,) and (i, ji,), 4, and 45, are odd (and the two other numbers must be even),
then we can obtain a new pairing P’ out of P by removing the two pairs (i, , j;,) and
(i1, J1,) from P and add two new pairings (i, , ji,) and (i, Jji, )-

Definition 3.15. We call the above operation the cut and glue on parings. Two
pairings are called equivalent if one is obtained from the other by a cut and glue
operation.

Example 3.16. If n = 3, P = {(1,2),(3,6),(5,4)}, 11 = 1,and I =3 (I3 = 1 and
Iy = 2 do not meet the requirements of performing a cut and glue operation), then
the resulting pairing P’ is

P’ = {(1,4),(3,6),(2,5)},

21



Zhenkun Li 3 AN ALEXANDER GRADING

Figure 6: The auxiliary surface T" and the surface >

and it is balanced.
It is obvious that the equivalence is an equivalent relation. Also, the result of a
cut and glue operation on a balanced pairing is still a balanced one.

Lemma 3.17. Suppose a cut and glue operation on a balanced pairing P associated
to the two indices l1 and ly gives rise to a new balanced pairing P’, then, for all i € Z,
we have

SH_M(Ma 7. P, 2) = SH_M(Ma s rP/v 2)

Proof. At this point, we have shown that the choices of type II, III, and IV do
not make difference on the definition of the grading. So, once P is chosen, we can
freely choose other auxiliary data to construct the grading. Let 7" and oy, ..., a,, be
chosen, and the pre-closure M as well as the properly embedded surface Sp have been
constructed. We can assume that they are chosen so that there is a curve c intersecting
both oy, and «y, transversely at one point. See Figure 6. The requirements (i) and (ii)
make sure that {+1} x «;, and {£1} x o, lie in four different boundary components
of §7>. So, there is an orientation preserving diffeomorphism h : R, — R_, where
oM = Ry v R_, so that

h(0S A Ry) =08 nR_, h(cx {1}) = ¢ x {—1},

h(aq, x {1}) = ay, x {—1}, and h(ay, x {1}) = aq, x {—1}.

Let N
Y =M _duh[—l, 1] x Ry, and R={0} x R

be a closure of (M,~). The surface Sp becomes a closed surface Sp < Y. We can
also choose a simple closed curve 7 on R = {0} x R so that 7 is disjoint from Sp
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and 7 intersects ¢ x {0} transversely at one point. Hence, we obtain a marked closure
D = (Y,R,m,r,n), where m and r are both inclusions.
By definition, we have

SHM(D,P,i)= @ HM.(Y,sT,).
5e€&(Y|R)
e (s)[Sp]=2i

Let X5 be a closed connected oriented surface of genus 2. Let ¢/, § and 3 be three
simple closed curves on Y5, as depicted in Figure 6.

Let Ys be the 3-manifold S x ¥5. There is a torus ¥ = S x ¢ < Y and a torus
¥ =8'xc < 8! x By, We can choose an orientation preserving diffeomorphism
h': 3 — ¥ so that, for all t € St we have I/ ({t} x ¢) = {t} x ¢ as well as

W ({t} x ((au, ne) v (an, N ) = {t} x (B ).

We can use X, ¥, and h’ to perform a Floer excision on Y 1 Ys. The result is
a 3-manifold Y, with a distinguishing surface R’, obtained from R 1 X5 by cutting
and re-gluing along the two curves ¢ and ¢/. The surface Sp < Y also becomes a
new closed surface Spr < Y, obtained from S 1y (S' x ) by cutting and re-gluing
along four curves S' x (ay, n¢), ST x (az, nc), and S! x (B N ¢) (there are two
intersection points of 8 with ¢’). The curve 7 together with § < Yo gives rise to
a simple closed curve 7’ < R’. See Figure 6. Hence, we get a new marked closure
D' = (Y',R',m',r",n). The Floer excision results in a cobordism W from Y u Y to
Y’ and a map

HM(W) : HM(Y U Ys|R U S9;Ty0s) — HM(Y'|R';Ty).
Let a € HM (Yx|X2;T5) = R be a generator. Then, we can define
t: HM(Y|R;T,)) > HM(Y'|R';T,)
as t(x) = r ®a and we know that
Opp = HM(W)ou,

by the definition of Canonical maps in Baldwin and Sivek [2].

The surface Spr < Y’ can also be obtained from the balanced pairing P/, which is
obtained by performing a cut and glue operation on P associated to the two indices
l1 and . Just as we did in the proof of Proposition 3.9, we conclude that, for all 7,

Spp (SHM (D, P,i)) = SHM(D', P, i).
This concludes the proof of Lemma 3.17. O

Definition 3.18. Two balanced pairings P, P’ are called connected if there is a
sequence of balanced pairings

7)0 = 7)77)15 ,Pn = Pla

so that, for all i = 0,1,....,n — 1, P; and P;4+1 are equivalent.

Lemma 3.19. For any odd n, the two special balanced pairings P9 and P? in Example
3.14 are connected to each other.
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Proof. In Example 3.16, we have shown that

{(1,2),(3,6),(4,5)} and {(1,4),(2,5), (3,6)}

are equivalent. In a similar way, we can also show that

{(1,6),(2,4),(3,5)} and {(1,4),(2,5), (3,6)}

are equivalent. So,

{(1,2),(3,6),(4,5)} and {(1,6),(2,4), (3,5)}

are connected. The later one can be thought of being obtained from the former one
by sliding the arc oy, which originally joined the points p; and ps, over the two arcs
as and as.

If we ignore the pairs (2,4) and (3,5) and look at {(1,6), (7,10),(8,9)}, then the
above argument applies again and we can connect it to {(1,10), (6,9), (7,8)}, and this
can be thought of further sliding o; over ay and as. We can repeat this step for
many times.

Case 1. If n is of the form 4k + 1. In this case, we can slide « over to join p;
with pyr42. Hence, P9 is connected to a new balanced pairing

P ={(1,n+1=4k+2),(2,5),(3,4), ..., (4k — 2,4k + 1), (4k — 1,4k),
(4k + 3,4k + 6), (4k + 4,4k + 5), ..., (8k — 1,8k + 2), (8k, 8k + 1)}.

Then, we can perform cut and glue operations on pairs (4] — 2,4l + 1) and (41 — 2 +
n,4l+1+n) as well as on pairs (41—1,41) and (4l—1+n,4l+n), for all 1 <1 < k. The
result of these operations is nothing but the special balanced paring P* introduced
in Example 3.14. Hence, we are done.

Case 2. If n is of the form 4k + 3. In this case, we can slide «; to join p; with
Pak+2, so the balanced pairing P9 is connected to

P ={(1,4k + 2),(2,5),(3,4), ..., (4k — 2,4k + 1), (4k — 1, 4k),
(4k + 3,4k + 6), (4k + 4,4k + 5), ..., (8k + 3,8k + 6), (8k + 4,8k + 5)}.

Perform another cut and glue operation on pairs (1, 4k + 2) and (4k + 4, 4k + 5),
then we get a new balanced pairing

P ={(1,n+1 =4k +4),(2,5),(3,4), ..., (4k — 2,4k + 1), (4k — 1,4k),
(4k + 2,4k + 5), (4k + 3,4k + 6), ..., (8k + 3,8k + 6), (8k + 4,8k + 5)}.

There is, then, an arc joining psx4+2 and pyr+5, and we can slide it over to join psg5
and py. Similarly, there is an arc joining psx+3 with pirie, and we can slide it over
to join p4r+3 with pgr+e. Then, PY is connected to a new balanced pairing

P’ ={(1,n+1 =4k +4),(2,n+2 =4k + 5), (n = 4k + 3,2n = 8k + 6),
(3,6), (4,5)...(4k — 1,4k + 2), (4k, 4k + 1)
(4k + 6,4k +9), (4k + 7,4k + 8), ..., (8k + 2,8k + 5), (8k + 3,8k + 4)}.
Finally, we can perform cut and glue operations on pairs (4l — 1,41 + 2) and

(4l—1+n,4l+2+n)aswell ason (4,4l + 1) and (4l +n,4l+1+n), forall 1 <I <k,
then the final result is P?, and we conclude the proof of Lemma 3.19. O

Corollary 3.20. The definition of the grading on SHM(M,~) is independent of
choices of type I.
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Proof. 1t is straightforward to check that if we use the special balanced pairing P*,
then the surface Sp- is the same for all possible choices of the starting point p;. Hence
the corollary follows from Lemma 3.17 and Lemma 3.19. |

Remark 3.21. We want to use P9 in the definition of grading because it is more conve-
nient to use this construction to discuss about the positive and negative stabilizations
(see Definition 3.1), as we will see in Subsection 4.

Though we only discussed some special pairings, we would like to make the follow-
ing conjecture. Note the concept of balancedness, equivalence, connectedness defined
above can be reached in a purely combinatorial way and is independent of all the
topological input.

Conjecture 3.22. Any two balanced pairings of the same size n, where n is odd, are
connected.

4 The grading shifting property

4.1 A naive version

Suppose (M, v) is a balanced sutured manifold and suppose S is a properly embedded
surface in M with a connected boundary. In Definition 3.3, we constructed a grading
on SHM(M,~) associated to S, when [0S n | = 2n with n being odd. If n is even,
then we introduce, in Definition 3.1, positive and negative stabilizations S* that both
increase n by 1. It is a natural question to ask how the gradings associated to S+
and S~ are related to each other. The following proposition is a first answer to this
question.

Proposition 4.1. Suppose (M,~) is a balanced sutured manifold, S < M is a properly
embedded surface with a connected boundary, and that 0.5 intersects v transversely at
2n points with n = 2k > 0 odd. Suppose further that the balanced sutured manifold
obtained by decomposing (—M, —v) along S is taut. Let ST and S~ are the positive
and negative stabilizations of S, respectively. Suppose S is of genus g and let

ge=g+k.
Then, we have
SI{J(_Ma _’YaS_agC) < m(_Ma _’YaS+;gc - 1)

We need the following lemma before proving Proposition 4.1.

Lemma 4.2 (Kronheimer and Mrowka [15]). Suppose (M,~) is a balanced sutured
manifold and S is properly embedded surface inside M so that 0S is connected and
|0S N ~y| = 2n with n odd. Let

n—1
2

ge = +g(S),

then we know that

SHM(M,~, S,i) =0

for alli> g., and
SHM(M,~, S, g.) = SHM(M',~/),

where (M',~") is the balanced sutured manifold obtained from (M,~) by decomposing
along S
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Proof. This is a reformulation of Proposition 6.9 in Kronheimer and Mrowka [15],
using our definition of the gradings in Definition 3.3. The fact that SHM(M, v, S, i) =
0 for all i > g, follows directly from the adjunction inequality in Lemma 2.7. O

Proof of proposition 4.1. If we have two different negative stabilizations S and S5,
then we know from Lemma 3.2 and Lemma 4.2 that
SI{_M(_Ma -7 5;7 gc) = SI{_M(_M,a _’7,) = SH_(_Ma - ng gc)7

where (M’,~") is obtained from (—M, —~) by performing a sutured manifold decom-
position along S. Hence, we can choose a special negative stabilization to deal with.

Suppose the intersection points of 0S n 7 are labeled as p1, ..., p2, according to
the orientation of 5. When labeling the points, we need to pick a suitable p; so that
the new pair of intersection points created by the positive or negative stabilization lie
between ps and py. Let 5/ < 05 be part of 05 so that 08" = {ps, ps} and 3’ contains
no other intersection points p; for j # 3,4. Let 8 < S be a properly embedded arc
so that 08 = {ps3,ps}, 8 and B’ co-bound a disk on D, and when performing positive
and negative stabilizations, the isotopy on S can be fixed outside the disk D. Now if
we use the same starting point p; to label 0ST v, then the new pair of intersection
points are both ps and p5 in the two cases. See Figure 7.

Figure 7: A negative stabilization of S. Positive stabilizations are similar.

Suppose T' is an auxiliary surface for (M,~) of large enough genus. When con-
structing the grading associated to ST, we need to choose linearly independent arcs
o, 0, 05, 0., 0011 < 1" and the special pairing P9, which is defined in Example
3.14, to make it clear what are the end points of the arcs «;. Here, a;—r correspond to
the different surfaces ST, while T and all other arcs a;, for i # 3, can be chosen to
be the same for both S* and S~. In the pre-closure M = M v [—1,1] x T, we have
two surfaces S and S—. After picking suitable gluing diffeomorphisms h*, we get
two marked closures

Dt =(Yt Rt r" mT nt)and D" = (Y ,R™,r~,m " ,n")

so that there are closed surfaces S* and S¥ inside Y+ and Y ~, respectively, and the
gradings associated to ST and S~ are defined by looking at the pairings between the
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first Chern classes of the spin® structures on Y™ and Y~ with the fundamental classes
of ST and S, respectively. Note the genus of S* and S~ are both g.+1 = g+ k+ 1.

From Proposition 3.8, we know that the canonical map ®_p- _p+ can be inter-
preted in terms of a Floer excision cobordism W from —Y = 1 —Y", where Y" is the
mapping torus of h = (h=) Lo h*, to =Y.

We can construct a special closed surface of genus 2 as follows. Recall we have an
arc f < S, and since the isotopies for positive or negative stabilizations are supported
in the interior of the disk D, 8 also lies in ST. Let 6 = 3 U (a2 x {0}) = ST be a
closed curve. Then, the curve § cuts each of S* into two parts. One part contains
S\int(D) and the other part is a connected oriented surface T+ < S* of genus 1 and
with boundary ¢. Inside W, we can define

Yo=T ul0,1]x5u-T"cW.
It is straightforward to see that, in Ho(W),
[S7]=[S"] + [%2].

Hence, by the adjunction inequality in dimension 4, which is a 4-dimensional analogue
of Lemma 2.7, we have
O _p- _p+(SHM(-D,5",9.)) c SHM(-D,S*, g.+1)
@®SHM(-D,S%, g.)
@®SHM(-D,S",g.—1).
The adjunction inequality also implies that SHM (=D, S*,g. + 1) = 0. If we de-

compose (—M, —~) along ST, and suppose (M’,~’) is the resulting balanced sutured
manifold, then, by Lemma 3.2, R4 (') is compressible and so

SHM(-D, 8", g.) =~ SHM(—M',—') = 0.

The first isomorphism follows from Lemma 4.2 and the second equality follows again
from the adjunction inequality in Lemma 2.7.
Hence, the only possibility left is

®_p- _p+(SHM(-D,S",g.)) = SHM(-D,S", 9. — 1)

and we we conclude the proof of Proposition 4.1. O

4.2 Knot complements with two-component sutures

In this section, we focus on the case when the balanced sutured manifold (M,~) is
the complement of a null-homologous knot, i.e., M = X(K) = X\im(N(K)), where
X is a closed connected oriented 3-manifold and K < X is a null-homologous knot.
Also, we assume that v has two components. Under these conditions, we show that
the result of Proposition 4.1 holds for not only the top grading but also all gradings.

Proposition 4.3. Suppose (M = X(K),~) is the balanced sutured manifold as de-
scribed in the above paragraph. Suppose further that S is a Seifert surface of the knot
K, viewed as a properly embedded surface in M, so that |0S n~| = 2n. Then, for
any p,k,l € Z such that n + p is odd, we have

SHM(—M, —v, S?,1) = SHM(—M, —~, SPT2k 1 — k).

Note SP is defined as in Definition 3.1, and, in particular, S° = S.
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Before proving Proposition 4.3, we will first deal with the following related propo-
sition.
Proposition 4.4. Suppose (Y, R) is a closure of (—M,—=), and let 51,82 € G*(Y|R)

(see Definition 2.4) be two supporting spin® structures on'Y . Then, there is a 1-cycle
x inside M, so that

P.D.Cl(ﬁl) — P.D.Cl(ﬁg) = [$] € Hl(Y)

Note the cycle is contained in M but the identity is on the whole Y .

We now describe the closures of (=M, —v). Note if (Y, R) is a closure of (M,~),
then (=Y, —R) is a closure of (—M,—+). So, in the following discussion, we only
describe the closures of (M, ), and, to get closures of (—M, —v), one simply reverses
the orientations.

Let ¥, be a closed oriented connected surface of large enough genus g. Its first
homology is generated by the classes [a1], [b1], ..., [aq], [bg], as depicted in Figure 8.

Figure 8: The surface 3,.

Let T = X \int(N(a1)) be a surface obtained from X, by cutting X, open along
ay, then T' can be viewed as an auxiliary surface for (M, ~). Let

~

M=MU[-1,1]xT
be a pre-closure of (M,~), and let
oM =R, UR_.

If we choose a special gluing diffeomorphism h° : R, — R_ so that hrx 1y = id,
then we get a special marked closure

DY = (Y R, 7%, m°n).

Similar to the closures described in Section 5.1 in [15], the closure (Y9 R) can be
achieved as follows: Let X, be the surface as in Figure 8, and let Y5 = S x X . By
abusing the notations, use a; to also denote the curve {1} x a3 < Y5. Let N(a;1) be
a tubular neighborhood of a1 < Ys. Note a1 < {1} x X, so there is a framing on
0N (a1) induced by {1} x 3,. Let Ay, fiq be the longitude and meridian, respectively.
Then, we have
YO =M i(Yg\int(N(al))).

Here,
¢ : &N(al) — 0M

sends the two copies of A\, to the suture . Note there are canonical ways to identify
R4 with 3,. So, in the marked closure Dy, we have R = ¥,.
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Lemma 4.5. Proposition 4.4 is true for —Y©°.
Proof. From the Mayer-Vietoris sequece, we know that there is an exact sequence
Hy(T?) — Hi(M) @ Hy (Ys\int(N(a1))) — Hi1(Y") — 0,
where T? = 0M = 0(Ys\int(N(a1))). Hence, we conclude that
Hy(Y©) = Hy (M) @ Hy (Yo\int(N(a1)))/ ~,
where ~ is the relation induced by the gluing map ¢ :

[)‘a] ~ Qﬁ*([)‘a])’ [Ma] ~ (b*([ua])'

A direct calculation shows that

Hy(Ye\int(N(a1))) = {[ua], [ar], [01], ..., [ag], [bg], [s"]),

corresponds to the S L direction in Yy = Yg xS L. Hence, we can write

Hy(Y?) = Hi(M) ®<{[b1], [az], [ba], .-, [ag], [bg], [s°]). (8)

where s°

This is because a; and pu, are absorbed into Hy (M).
Suppose s € *(—Y | —3,), then we can express P.D.c;(s) in terms of the above
basis. The coefficient of [s] can be fixed by the evaluation

c1(s)[—X4] =29 — 2.

There are no [b1], [az], [b2]...[ag], [bg] terms, since we can apply the adjunction in-
equality in Lemma 2.7 to tori a; x S, by x S'...;a, x S < Y to rule out those
classes. The rest of the terms must then lie in Hy (M). So, if we look at the difference
(of the Poincaré dual of their first Chern class) of two supporting spin® structures, it
must lie in M. O

Now we deal with general closures of (—M, —v). As above, we have the pre-closure
M=M0uT x [-1,1],
where T' = X,\N(a1). Also, recall
oM =R, UR_.

Note, as in the above discussion, there are canonical ways to identify R; and R_
with ;. We can pick any orientation preserving diffeomorphism h : R, — R_ to get
a closure (Y, %) of (M, ), or a marked closure

D= (Y,3,,r,m,n).

In particular, the special marked closure D° in Lemma 4.5 corresponds to taking
h = h° =id.
Let Y" be the mapping torus of the diffeomorphism h : ¥, — 3, then we can
reinterpret Y as
Y = M Uy (YM\int(N(ar))).

From Proposition 3.8, we know that the canonical map ®p,p can be obtained from
a cobordism W from Y9 LU Y" to Y. The cobordism W arises from the Floer excision
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as in Subsection 2.2. The computation of the first homologies of Y, Y and W, are
straightforward and we can describe them as follows

H(Y) = Hi(M) ®{[pal, [ar], [b1], -, [ag], [bg], [s])/ ~ .1 (9)
Hy(Y") = {[a1], [b1]---, [ag], [bgl, [s"1)/ ~n (10)
Hy (W) = Hy(M) ©{[pa], [ar], [b1], -, [ag], [bg], [s°], ["1)/ ~o.n - (11)

Here, s is a circle inside Y which intersects ¥, once. We can isotope h so that h has
a fixed point p € %, then, inside Y, there is a circle s = {p} x S'. The class s" is
similar. The relations ~g 5, are

[a1] ~ b« ([a1]), [Ha] ~ du([pal), [ai] ~ R([ail), [bi] ~ R([b:])-

The relations ~j, are
[ai] ~ h([a:]), [b:] ~ h([bi]).
Lemma 4.6. The inclusion i : Y — W induces an injective map
The following proposition is a built-in property of monopole Floer homology.

Lemma 4.7. Suppose (W, v) is an oriented cobordism between two pairs (Y,n) and
(Y',n"). Suppose further that s is a spin® structure on 'Y and s’ is a spin® structure
onY’ so that

HM(W,v)(HM.(Y,s;T,)) n HMJ(Y',§';T,) # {0},
then, we know that
ix(P.D.ci(s)) = il (P.D.ci(s")) € Hi(W).

Here, i:Y — W and i :Y' — W' are the inclusions.

Recall we defined &*(—Y?| — ) to be the set of supporting spin® structures as
in Definition 2.4. We can also define

POS* (=Y = %,) = {P.D.ci(s)]s € &* (=Y - ,)}.
We can define PDGS*(—Y| — X,) similarly. Then, we have the following lemma.
Lemma 4.8. Suppose we have the closures
~Do = (=Y, =%,,7,m,—n), —D = (=Y,=%,,r,m,—n)

for (=M, —7), the mapping torus Y" and the cobordism W from Y°LY" toY defined
as above. Suppose sy, is the unique supporting spin® structure on —Y" satisfying the
statement of Lemma 2.6. Then, there exists a map

p:POGS*(~Y'| - %,) — Hi(Y)

so that PODS* (=Y | —X,) < im(p) and p satisfies the following property (x): Suppose
we have spin® structures s € &*(=Y°| —X,) and s’ € &* (=Y | — %), so that

HM(~W)(HMJ(=Y°,5:T_)) @ HMo(=Y" 5, T_,)) n HM (=Y, s T_,) # @,

then
P.D.ci(s") = p(P.D.cy(s)).
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Proof. Suppose s € G*(—Y°| — %) is any supporting spin® structure. We define
the image p(P.D.cq(s)) as follows. Pick any spin® structure sy on —W so that the
following is true

(1) We have HM (—W, sy, v) # 0.

(2) We have sy|_yo = s.

Then, we define p(P.D.ci(s)) = P.D.ci(sw]|—y). We now show that this map is
well defined. Suppose we have another spin© structure sf;, on —W so that condition
(1) and (2) are both satisfied, then we need to show that

P.D.61 (Swl_y) = P.D.Cl(5w|_y).

Let ¢ : Y — W be the inclusion. We know that there is an exact sequence
d i
Ho(W,Y) 5 Hy(Y) =5 Hy(W).

By Lemma 4.6 and the exactness, we know that im(d) = ker(iyx) = 0. However,
clearly we have

a(P.D.Cl(Sw) — PDCl(SQ/V)) = P.D.Cl(5W|_y) — P.D.Cl(SQ/V|_y),
and, thus, we conclude that
P.D.Cl(SWl_y) = P.D.Cl(ﬁé/v|_y).

The property (x) follows from the construction of p and Lemma 4.7. The fact
that POS*(—Y| — 3,) < im(p) follows directly from the fact that —W induces an
isomorphism as in Theorem 2.8. O

Proof of proposition 4.4. We need a more explicit description of the map p in Lemma
4.8. Using the notations in that lemma, we have a supporting spin® structure s on
—Y? and a (unique) supporting spin® structure s, on —Y". By Lemma 4.5, we can
write

P.D.ci(s) = [z] + (2 — 2g)[s"],
where [z] € Hy (M) < H;(Y") and s° is the class as in (8). Also, we can write
P.D.ci(sp) = [y"] + (2 — 29)[s"],

where [y"] is a linear combination of the classes [a1], ..., [by] in Hy(Y"), which is
described in (10).
Now we claim that

p(P.D.ci(s)) = [2] + [y"] + (2 — 29)[s] € H1(Y).

This is because the cycles x = Y° and # = Y co-bound annuli [0, 1] x x inside W,
y" < Y™ and y" < Y co-bound annuli [0, 1] x 3" inside W and s° = Y and s" = Y
and s € Y co-bound a pair of pants in side W. Thus, inside W we can find an explicit
2-chain ¢ so that

cnY?=0cnY?=PD.ci(s), cnY" =dcnY" = P.D.c;(s1),

and
cnY =dcnY = [z] + [y"] + (2 — 29)[s].

Thus, as in the proof of Lemma 4.8, the injectivity of iy in Lemma 4.6 implies that

p(P.D.cy(s)) = [x] + [y"] + (2 — 29)[s]. (12)

With this explicit formula, Proposition 4.4 follows directly. O
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Corollary 4.9. If the inclusion j : M — Y induces an injective homomorphism
Jx + Hi(M) — Hy(Y),
then the map p in lemma 4.8 is in fact a bijection:
P ‘BQG*(*YOI - X)) — POS*(~Y| Zg)-

Proof. Tt is straightforward from (11) to check that when j, is injective, the inclusion
3% : M — W also induces an injective homomorphism

G Hy (M) — Hy(W).

Then, the injectivity of p follows directly from the description of p in (12), since
[¥"] and (2 — 2g)[s] in that formula are fixed and the only variance is [z] which is
represented by a cycle in M. Once injectivity is established, the surjectivity follows
immediately from the fact that W induces an isomorphism. O

Proof of proposition 4.3. Recall that we have a balanced sutured manifold (M, ),
where M = X (K) is the complement of a null-homologous knot K < X, and v has
two components. Also, we have a Seifert surface S of K that can be viewed as a
properly embedded surface in M. Let [0S n | = 2n. For any p so that n + p is
odd, we can perform stabilizations, as introduced in Definition 3.1, and apply the
construction in Definition 3.3 to obtain a grading

SHM(—M, —, S?,1).
As in Definition 3.3, we can construct a marked closure
DP = (va 297 Tpa mpa 77)

so that S = M extends to a closed surface SP = Y,, which leads to the grading
associated to SP.
We claim that the inclusion m, : M — Y, for any p satisfies the condition in
Corollary 4.9, that is,
(myp)s « Hi(M) — Hy(Y))

is injective. So, the corollary applies.
To prove this claim, first note that M = X(K) is the knot complement of a
null-homologous knot, so we can compute directly that

Hy(M) = Hi(X) ®{[pk])

where px is a meridian circle of K inside M = X (K). From the construction of Y,,,

we know that
¥, = M (Y \ing(N (a1))),

where h,, : ©, — ¥, is an orientation preserving diffeomorphism, Y"» is the mapping
torus of h,. Also, we can compute

H,(Yp) = Hi(M) @ [pal; [ar]; s [bg]s [8p])/ ~6.m,

as in (9). Thus, the relations ~g , only possibly affect the class [px] € Hi (M) but
nothing in Hy (M). Hence, to show that (m,)s is injective, it is enough to show that
(myp)«([px]) is of infinite order. Yet this last thing is obvious, since, inside Y, px

intersects S, transversely at one point.
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Thus, we get a bijection
pp  POGH(-Y'| - ;) - POGS*(-Y,| — X,)

by Corollary 4.9. Here, (Y, 3,) or D? = (Y°,3,,7% m® n) is the special (marked)
closure of (M, ) as described in Lemma 4.5.

Similarly, we have a surface SP*2¥ < M, a marked closure Dpyor = (Yptor, Xg, Tpt2k, Mpt2k, 1),
an extension S, ;o5 of S inside Y, 2, and a bijection

ppeak t POGH (Y] — B,) — POG* (~Vppai| — Ty).
Thus we can define
PZ+21C = Pp+2k © P;l P PDGT(~Yp| — Xy) = POEG™ (—Vpion| — Zy).

Also, from Proposition 3.8, Lemma 4.8, and the functoriality of the canonical
maps, we know that p has the following significant property: If s € &*(-Y,| — X,)
and §' € G*(—Y,121| — X,) are supporting spin® structures so that

Q D, D2 (ﬁj\/i.(pr,s;F,n)) N 1'\{]\/4.(pr+2;€,5’;1“,77) # I,

then we have
P.D.cy(s") = p(P.D.cy(s)).

From the explicit description of p in (12), we know that s1,8, € &*(-Y;| — X,) and
s, 85 € 6% (=Y 19r| — X,) are supporting spin® structures so that

® 1, D, o (HMo(~Yp, 81T )) 0 HM o(~Ypi1, 75T ) # &,

and
¢7DP77DP+216 (HM'(7YP552;F*77)) N HM'(7YP+2]€55,2;F*77) 7 @7

then there exists a 1-cycle x < M so that
P.D.Cl(ﬁl) — P.D.Cl(ﬁg) = [SC] € Hl(Yp), (13)

and
P.D.Cl(ﬁll) — P.D.Cl(ﬁé) = [SC] S Hl(Yp+2k). (14)

Recall, in Definition 3.3, the grading is obtained by the evaluation of the first
Chern classes of the supporting spin® structures and by Theorem 3.4, the grading is
preserved by the canonical map. Hence, the above equalities (13) and (14) imply that
there is a fixed integer [y so that, for any [ € Z, we have

SHM(—M, —v, SP,1) = SHM(—M, —, SPT2k 1 —1,).

If we go through the construction of p, we know that p is not only independent of
l € Z, but also independent of the interior of M and S (and is only related to the
data 05, p, k and +.) Thus in order to figure out the value of k, we can only look at
the basic case where M is the complement of a trefoil inside S3. The convenience is
that, when decomposing (M, ~) along S and —S, the resulting sutured manifolds are
both taut.

Case 1. If p < 0 and p+ 2k < 0. From Lemma 3.2 and Lemma 4.2 we know that
the top non-vanishing degree of SHM(—M, —~, S?) is
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while the first non-vanishing degree of SHM(—M, —v, SP*2k) is

n—p—2k—1

I =
2

+ g(9).
However, from the above discussion we know that
I'=1-1

so lg = k.

Case 2. If p=—-landk=1orp=1and k = —1. Then [y = 1 = k from
proposition 4.1.

Case 3. If p > 0 and p+ 2k > 0. Then we can look at the surface —S < M. Note
positive stabilizations of S are negative stabilizations of —S. Hence this is reduced
to case 1 and we still have [y = k.

Case 4. If p and p + 2k are of difference sign, and is not in case 2. We can apply
case 1, 2, and 3 above and conclude that [y = k.

So, in summary, we always have [y = k& and we conclude the proof of Proposition
4.3. O

4.3 Floer homologies on a sutured solid torus

As a first application of the grading shifting property, we compute the sutured
monopole Floer homology of any sutured solid tori. The same result in sutured
Heegaard Floer theory can be found in Juhdsz [13].

Suppose V = S! x D? is a solid torus. Let A denote a longitude S* x {t} where
t € dD? and let p denote a meridian {s} x dD? where s € S*. Suppose further v is a
suture on V so that (V) is a balanced sutured manifold. Then, ~ is parametrized
by two quantities, n and s, where 2n is the number of components of v and s is the
slope of the suture. In this subsection, we write the suture v as 761,—17)' We write the
slope s as (¢, —p), and this is to keep our notations consistent with the ones in Honda
[10]. Note (g, —p) means going around longitude —p times and meridian ¢ times. We
always assume that p > 0.

2

(qﬁp)) is defined as in the above paragraph. Then,

Proposition 4.10. Suppose (V,~
we have

SHM(-V, 77(2117—1))) = RP.
Proof. If p = |g|, then p = +¢ = 1, since they are co-prime. Then, (V, 7(21,i1)) is
diffeomorphic to a product sutured manifold (A x [—1,1],0A4 x {0}), where A is an
annulus. Thus, we know

SHM(-V, =7 1)) = R.

From now on, we assume that p > ¢ > 0. If not we can achieve this assumption by
applying diffeomorphisms of the solid torus V. We want to re-interpret the by-pass
exact triangle as follows: We have a basic by-pass exact triangles

SH_M(_Va _'7(21771)) (15)

Y1 P2

SHM(-V, *7(21,0)) SHM(-V, *7(20,_1))

%—0

Here ¢ o = 9%, ¢ 1 = 1/)0_,1, and Y_ o = 1/11700, under the notations in (5).
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Recall, from Subsection 2.3, that the map _; (as well as the other two) is

interpreted as a gluing map: Suppose we have (=V, —7(21 0)) and an identification 72 =

S1x0D?, then we can glue [0, 1] xT? to V via the identification id : dV = S1x0D? —
{0} x T?. Suppose {0} x T? is equipped with the suture 7(21 0y and T? x {1} is equipped
with the suture 7(217_1), then we can identify (V 7(21,_1)) with (V U [0,1] x T2, 7(217_1)).
There exists a compatible contact structure {_ 1 on ([0, 1] x T2,7(2170) U 7(21771)) SO
that we have

Yoo =P, SHM(=V, =7 ) = SHM(=V, =7, _y).

When dealing with other sutures, we can also glue (7% x [0, 1],7¢, o) V% ) to
V', but along a diffeomorphism

g: {0} xT? - aV,

instead of the identity map. Such a map needs to be orientation preserving and, hence,
is parametrized by an element in SLo(Z). We can pick the map ¢ corresponding to

the matrix ) )
q9—9 —q

A= € SLy(7),

( p/ —p p/ ) 2( )

where p'q —pg' = 1,p' <p, ¢ < ¢, ¢" =p—yp,and p” =p—p'. (Such p',q,p",q"
are unique.)
Then, the suture 7(21 0y On T? x {0} is glued to ’y?q _py on 0V and the suture 7(21 1

on T2 x {1} now becomes the suture ’y(Qq, _py- As in Formula (15), they still fit into
an exact triangle

SHM(=V, =7¢, ) (16)
Y1 P2

SHM(=V, =2, ) SHM(=V, =Yy, —p))

Y0
We claim that ¢_ o = 0. Let D, be a meridian disk of V' which intersects V(Qq _p)

at 2p points, then, from a similar argument as in Proposition 5.5 (which we will prove
later), we have

Y- 0(SHM(=V, =, _ ), Dy P77 i) @ SHM(=V, =72 o, Dyt~ .0)

for any i € Z.

We only deal with the case when p’ is odd and p” is even. Other cases are
similar. From the construction of the grading in Definition 3.3, we know that there
is a suitable marked closure D,y = (Y, R,7,m,n) and a closed surface D,y < Y,
so that the grading is defined via the evaluations of the first Chern classes of spin©
structures on the fundamental class of Dp/. From the construction, we know that

X(Dp) = x(Dy) -p=1-7p.
Hence, the adjunction inequality in Lemma 2.7 implies that

SHM(=V, =y _pys Dyryi) = 0

35



Zhenkun Li 4 THE GRADING SHIFTING PROPERTY

if i < =2, Then, from the grading shifting property in Proposition 4.3, we know

2
that )
SHM(-V, _7(211’7717’)’ D;’p”’ i) = SHM(-V, _7(2q’77p’)’ Dy i+ (%))
Thus, we know )
SHM(=V, =1(y —pys Dy +1) = 0 (17)
if i < 171’;“””. Note, by definition, p” = p — p'.

The above argument for D, applies to D;r,, as well. Note p” is assumed to be
even, so we need to perform a positive stabilization on D,~ to construct the grading.
The adjunction inequality in Lemma 2.7 again implies that

SHM(—V, =10y _py» D) = 0 (18)

”

if i > &-. However, from Lemma 4.2, we know that

/!

Py~ sam(r, v,

SHM(-V, 77(211”,—17”)’ D;”’ 9 s

where (M’,~") is the result of doing a sutured manifold decomposition on (—V, f’yé,, _p,,))

along the surface D;j,,. From Lemma 3.2, we know that

/!

SHM(~V, =72, _, D3 %) ~ SHM(M’,~) = 0. (19)

(q¢",—p "

The grading shifting property in Proposition 4.3, then, implies

SHM(*V, 7/7(2(]”,—17")’ D;;/p,, Z) = SHM(*V, 7/7(2(]”,—17")’ D;—//, 7 —
The above equality, together with (18) and (19), implies that
2 +p -
SHM(*‘/, 77((1",—1)”)7 Dp/? y Z) =0

ifi > #. Compare this with (17), we can see that ¢ o = 0.
Once we conclude that ¢¥_ o = 0, we can compute SHM(—V, 77(2(] 7p)) by the
induction, and Proposition 4.10 follows.

Remark 4.11. As in Honda [10], the two slopes (¢/, —p') and (¢”, —p”) can be written
out explicitly in terms of the continued fraction of (¢, —p). Note we have assumed
p > q. Suppose
p 1
—— =7,
q o —

r3—...

where it is a finite continued fraction, and r; < —1 for all j. We can write

p
75 = [Tl,TQ,...,Tk]. (20)
Under this notation, we have
/ i
—= =[ri,r2,h1], — = =[r1,r2. e + 1],
q/ q//

and in the above notation, we identify [r1,...,7j_1,r;, —1] with [r,...,rj—1,7; + 1].
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Now we deal with the general sutures ’y& _p) for n > 1. There are two types
2n+2 ’

. (2.-P) 4 —P). .
by-passes according to Figure 9. They give rise to by-pass exact triangles:

by-passes relating (Vv ) and (V, 7(2;_17)). We call them positive and negative

SHM(~V, 22 (21)
wg/ Kﬁ}
2n 2n
SHM(-V, _’Y(qﬁp)) W SHM(-V, _'Y(q_fp))

(

( (
)

Positive by-passes Negative by-passes
Figure 9: The positive and negative by-passes.

Remark 4.12. Unlike the case of two sutures where there are exactly two different
possibilities of by-passes, in the case where v has more than two components, positive
and negative by-passes are not unique. Here, we just pick two specific by-passes so
that they are 'adjacent’ to each other. This is crucial to the proof of Lemma 4.13.

Lemma 4.13. For any n € Z and slope (q, —p), we have

ﬁ—f—nl © wi,nJrl = ifnl © wﬁ,nJrl =1d: SI—I—M(i‘/’ 77(2(;?—;0)) - SH_(*V, 77(2(;—;0))'
Proof. We will only prove that z/;ﬁfnl o9 .41 = id. The other is the same.

From [3] or [21] we know that a by-pass attached along an arc o can be thought
of as attaching a pair of contact 1-handle and 2-handle. The contact one handle is
attached along the two end points da while the contact two handle is attached along
a Legendrian curve

B=aud,

where « is an arc on the contact 1-handle intersecting the dividing set once.

Now wﬁfnl o9l 4y corresponds to first attaching a by-pass along a4 and then
attaching another one along a_, as in Figure 10. However, in terms of contact handle
attachments, the two pairs of handles are disjoint from each other, so we can reverse
the order of attachments: Instead, we can first attach a by-pass along a— and then
along ay. If we attach a by-pass along «_ first, we can see from Figure 10 that this is
a trivial by-pass as discussed in Honda [11]. In that paper, it is proved that a trivial

by-pass does not change the contact structure. From theorem 2.15, we conclude that
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a trivial by-pass induces the identity map. Then, the second by-pass attached along

ay is also trivial and, hence, again induces the identity map. Thus, we conclude that

n+1 n s
—m © w+,n+1 = id. O

a4

(

)

Above: first attach along o then o

a4

Below: first attach along o then a_

d

Figure 10: Reversing the order of by-pass attachments. Bottom right picture: we can
isotope a_ to this new position, where we can see directly that the by-pass is trivial.

Corollary 4.14. We know that

SHM(~V, —2"_,)) = RE" %),
Proof. From Lemma 4.13, we know that wr_jjrnl is surjective while ¢} | ., is injective.
Hence, we can conclude the statement by using the by-pass exact triangles and the
induction. O

Corollary 4.15. We have
|mo(Tight(V, A0y ) = 2771 e + 1] - - gy + 1] - [,

Proof. First assume n = 1. In [10], Honda explained how to construct any compatible
tight contact structures on a sutured solid torus: First we start with the standard tight
contact structure on (V, 7(21771)). Then, we can glue k different layers T2 x [i — 1,1i],
for 1 <i <k, toV,sothat,on T? x [i —1,i], T? x {i — 1} has the dividing set 7(21771),
while 7% x {i} has the dividing set 72, , ). We glue 7% x {0} to 0V via identity,
while glue T2 x {i} = T? x [i,i+ 1] to T? x {i} = T? x [i — 1,4] so that the dividing
sets on these two surfaces are identified.

Each layer T2 x [i — 1, ] is further decomposed into the composition of —1 —7; (or
—ry, for the last layer) many by-passes. There are two by-passes: One corresponds to
the map ¢_ ; in formula (16), and the other corresponds to some ¢4 ; in a similar
by-pass exact triangle. Use the inductive step as introduced in [10], which Honda
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used to construct tight contact structures on a sutured solid torus, we see that all
the contact structures that Honda constructed have distinct contact elements. Hence,
there are at least |r1 + 1| - ... - [rp—1 + 1] - || many different contact structures.
When n is bigger than 1, we proceed by induction. Suppose, for n = [, there
are at least m; = 2171 - |ry + 1] - ...+ [rg—1 + 1] - [rg| many different non-zero contact
elements V¢, , ..., ¢, € SHM(-V, ’y(qu,_p)). From Lemma 4.13, we know that ¢, ;

and Z/JLZH are both injective,

I+1 1 I+1 1 .
J_j,l oy 41 =0, and 1/)J_:l oy y4q = id.
The first equality is due to the exactness of the by-pass triangle, and the second is

again Lemma 4.13. Hence, we know that, inside SHM(—V, 7?5*_21))), there are at least

myp1 =2 |ry + 1] - oo - |ri—1 + 1] - |74 many different contact elements

¢li,l+1(¢§1 )a [ 7/)li,l+1(¢§ml )

Hence, we are done. O

Remark 4.16. When n = 1, the above argument gives an alternative way to provide
a tight lower bound of |m(Tight(V, fy?q’_p)))|, which is originally done by Honda [10].

When n > 1, as mentioned in Remark 4.12, there are not just two by-passes, so
this lower bound, a priori, need not to be tight. However, one could try to study the
impact of all other by-pass attachments to see if we could improve the lower bound.

Remark 4.17. We can use a meridian disk of the solid torus to define a grading
on SHM(-V, —W(Qq”_p)). The above method is also capable of computing the graded
homology.

5 The direct system and the direct limit

5.1 The construction

Suppose Y is a closed oriented 3-manifold, and K < Y is an oriented knot with
a Seifert surface S < Y. Suppose further that p € K is a fixed base point and
@ : S x D? < Y is an embedding as in Subsection 2.2, i.e., we require that

(ST x {0}) = k, and p({1} x {0}) = p.

Then, we have a 3-manifold with boundary Y, = Y\int(im(¢)). The Seifert surface
S induces a framing on 0Y,,. We call the meridian p, and the longitude A,. Let I';,
be a collection of two disjoin parallel oppositely oriented simple closed curves on 0¥,
each of class +(\, — npy,). Then, we have a balanced sutured manifold (Y, T, ).

Suppose ¢ is another embedding, then we also have ((Yy,T'n,)). Suppose fi
is the ambient isotopy defined as in Subsection 2.2, relating ¢ and ¢’. We have the
following lemma.

Lemma 5.1. The diffeomorphism f1 is a diffeomorphism from (Y, Ty o) to (Yo, T o).

Proof. It is enough to show that f; sends the framing (p,, A,) on dY,, to the framing
(u@/, A@/) on 8Y¢/.

By construction, fi sends i, to . fi must also preserve Ay, since f; is an
isotopy, and A, can be characterized by the fact that it represents a generator of the
map

it Hi(0Y,) — Hy(Y,),

where i : 0Y, — Y, is the inclusion. O
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Corollary 5.2. There is a transitive system (of projective transitive systems)
{SHM(Y,,, Iy )} and {¥ = SHM(f1)}.

So, we obtain a canonical module SHM(Y, K, p, n) associated to the quadruple (Y, K,p,n).

Once Lemma 5.1, we can fix a knot complement to study with. Suppose Y (K) =
Y\int(N(K)) be a knot complement and let A and p be the longitude and meridian,
respectively, with respect to the framing on Y (K) induced by the Seifert surface
S. For any n € Z,, use I, to denote the suture on dY (K) consisting of a pair of
simple closed curves of class + (A — nu), and use 'y, to denote the suture on 0Y (K)
consisting of a pair of meridians.

Definition 5.3 (Kronheimer and Mrowka [15], or Baldwin and Sivek [2]). Define
KHM(Y, K, p) = SHM(Y (K),T's).

Definition 5.4. Define the minus version of monopole knot Floer homology of a
based knot K < —Y, which is denoted by KHM ™ (-Y, K, p), to be the direct limit of
the direct system

A

.. — SHM(~Y (K), ) SHM(~Y (K),Tps1) — ...

Here, the maps " , . are defined in the exact triangle (5). By Corollary 2.20, the
maps {7, 11}nez, induce a map on KHM™, which we call U:

U:KHM ™ (-Y, K, p) — KHM ™~ (-Y, K, p).

Next, we construct a grading on the direct limit KHM™ (-Y, K, p). Suppose S,
is the Seifert surface of K so that .S, intersects I',, at 2n points. Then, we have the
following proposition.

Proposition 5.5. Suppose n is even, then, for any i € Z, we have
¢7£n+1(SH_M(—Y(K), _Fna S:z_ra 'L)) = SH—M(_Y(K)a _Fn+1a Sn+1a Z)
Suppose n is odd, then we have for any i € Z

wr_i,n-k—l(SH—M(_Y(K)’ _F’m 552’ Z)) = SH—M(_Y(K)a _Fn+1a Sv%—&—la 'L)

Proof. We only prove the proposition for ¢ | with n even. Other cases are similar.
In Figure 11, it is clear that the surface S, 11 < (Y(K),T'),) can also be obtained from
the surface S,, by a negative stabilization:

Sny1 =195,
Thus, for any i € Z, we have

SI{J(*Y(K);fI‘naS;aZ) = SH (7Y(K)77Fnasn+lvi)'

For S, = S,41 < (Y(K),T'),), we can choose some auxiliary data to construct a
marked closure
D, = (Y, , R, rn,mn,m),

so that S extends to a closed surface S, < Y,~ and it induces a grading on
SHM(-Y (K), —T',) that is exactly the one associated to S, . (See Definition 3.3.)
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\

\
A

\

/
L
=

Figure 11: The solid vertical arc represents the surface S3 = S, and the dashed arc
represents So.

We can obtain (Y(K),T',+1) by attaching a by-pass disjoint from S,41 = S,,.
From Baldwin and Sivek [3], we know the map ¢" , |, associated to the by-pass can
be described as follows: There is a curve S < (m, (Y (K))) < Y, so that a O-framed
Dehn surgery on 3, with respect to the dY (K) framing, will result in a 3-manifold
Y,+1. Since § is disjoint from im(r,), the data R, r, and 7 survive and we get a
marked closure

Dn+1 = (Yn+17 R; Tn+1,Mn+1, 77)

which is a marked closure of (Y(K),T',4+1). The surgery description gives rise to a
cobordism W from Y, to Y11 and the cobordism map associated to this cobordism
induces the by-pass attaching map ¢” , .

It is a key observation that the surface S;; = S, 11 is disjoint from the region we
attach the by-pass and, hence, is disjoint from the curve 5 along which we perform the
Dehn surgery. As a result, the surface S remains as a closed surface S, 11 < Y41
and induces a grading on SHM(Y (K),T',41). It is clear that the grading induced
by S,+1 is nothing but the one associated to the surface S, .1 = (Y(K),[',41) as in
Definition 3.3.

There is a product cobordism [0,1] x S, < W, from S, < Y, to Sp41 © Yo,
and, thus, we conclude that

@2 1 (SHM(Y (K), ', S, ,4)) @ SHM(Y (K), Ts1, Snv1,4).

This concludes the proof of Proposition 5.5. O
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The following Figures 12 and 13 might be helpful for figuring out how do ¢ ,
and 9" , ., change the gradings. In the figures, &' = k + g(5).

D, Dog 1 Dy, D, Doy
K Oo—0 O\\\ O
-1 0—0 O\\\\\\O—>O
-2 O—0 O\\\\\O—>O
2-k O—0 O\\\\\\O—>O
1-k O—0 O\\\\\\O—>O
K ® SO0

Figure 12: The maps ¢+ from SHM(-Y (K), —T9) to SHM(—Y (K), —I'sx+1). The map
QSQJC’% 41 18 depicted on the left and gbi’fzk 41 on the right. They are represented by the
solid arrows. The circles (O denote the graded homologies. The dashed lines represent
the grading shifting when using different surfaces to construct the grading.

Dojp—1 D32, Dy, Doy1 D32, Dy Dy
K O—0 e
¥-10" .0—0 O-. o .0
¥-2 0" L0—0 0., "0—0" O
2-K O _O—0 0., "0—0" O
-k O O 0. "0—0" O
K O—0"

Figure 13: The maps ¢+ from SHM(—Y (K), —T'9x—1) to SHM(—Y (K), —I'g).
Now, we perform a grading shifting as follows:

SHM(=Y (K), =, S, 8)[o(n)] = SHM(=Y (K), =T, S, i + o (n)).

Here, 7(n) = —1 if n is even and 7(n) = 0 if n is odd, and
—1
o(n) = Lt i XU 2+ T(n)

We will simply write
SHM(~Y (K), ~T', S)[0],

ns n
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and the direct system becomes

T i1

— SHM(~Y (K), —T, ST)[o]

SHM(=Y (K), =I'nt1, Sp11)[0] — -

It is straightforward to check that, after the shifting, ¢ , ; is grading preserving
and ¢7 , . shifts the grading down by 1. Thus, we conclude the following.

Proposition 5.6. If S is a Seifert surface of K < Y, then S induces a grading on
KHM™ (=Y, K, p), which we write as

KHM™ (=Y, K, p, S, ).

Under this grading, the map U is of degree 1.

Definition 5.7. Suppose K c Y is an oriented knot and S is a Seifert surface of K.
We can define the tau invariant 7(Y, K, S) of K 'Y with respect to S as follows:

7(Y,K,S) = —max{i|3z e KHM ™ (Y, K,p, S,i), U’z # 0 for any j > 0.}

Here the base point can be fixed arbitrarily.

Question 5.8. What properties does (Y, K, S) have?

5.2 Basic properties

Proposition 5.9. Suppose Y is a closed oriented 3-manifold and K <Y is a knot
s0 that there exists an embedded disk S = D? with 0S = K. Then

KHM™ (-Y, K, p) =~ SHM(-Y (1), =9) ®r R[U].

Here, p € K is any choice of the base point. (Y (1),8) is the balanced sutured
manifold obtained from Y by removing a 3-ball and picking one simple closed curve
on the spherical boundary as the suture.

Proof. First assume that Y = S3, then (Y (1),d) is a product sutured manifold and
(Y(K),T,) = (V, 7(21 _n)), where (V, 7(21 _n)) is the balanced sutured manifold as
defined in Subsection 4.3. From Proposition 4.10, we know that

SHM(-V, =7, _y) = R™.

Suppose S, is a Seifert surface of K that intersects I' 1,—n) at 2n points, then
the argument in the proof of Proposition 4.10 can be appheé to calculate the graded
homology, and we conclude that: (Note S,, are disks when K is the unknot.)

SHM(—V, 7(1 ST i)[oe] =R
for all ¢ such that 1 —n < ¢ < 0. Moreover, the map
Y pgr : SHM(=V, _7(21,771)’ Sp)lo] — SHM(-V, _7(21,77171)’ Shelo]

is of degree —1 and is an isomorphism for all ¢ such that 1 —n < i < 0. Thus, we
conclude that
KHM ™ (-S* K,p) =~ R[U].

When Y is an arbitrary 3-manifold, we know that

(Y(K),Tn) = (Y(1),8) b (S*(K). ¢ ) © I,
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where h is a contact 1-handle, as introduced in Baldwin and Sivek [1], which connects
the two disjoint balanced sutured manifolds ((Y'(1), ) and (=S*(K), =73 _,,)). Thus,
we know that '

SHM(~Y (K),~I') = SHM(=Y (1), =0) ® (=S*(K), =71 _p))-

Moreover, the the above isomorphism intertwines with the maps 4% ,,,; on SHM(-Y'(K), —I';,)
and the maps id @ ¢% ,,,; on SHM(-Y (1), —0) ® (—=5*(K), —7(21 ), since the cor-
responding contact handle attachments are clearly disjoint from each other. Thus,

we conclude that

KHM ™ (-Y, K,p) =~ SHM(-Y (1), —6) ® R[U].

O

Proposition 5.10. Suppose K < Y is a null-homologous knot and S is a minimal
genus Seifert surface of L. Then, the direct system stabilizes: For any i € Z, if
n > g(S) — i, then we have an isomorphism

¢ i1 SHM(=Y(K), =T, 57, 0)[0]=SHM(=Y (K), =T'ny1, 5711, 1) [0].

n

Proof. We have the following exact triangle:

n+1
Yo

SHM(~Y (K), ~T,11) ’ SHM(~Y (K), T')

m wf,n

SHM(-Y(K), —=T'y)

We prove the proposition under the assumption that n = 2k is even. The other
case, when n is odd, is similar. When n is even, we know from Proposition 5.5 that

¢7—L,n+1(SH—M(_Y(K)’ _F’m S;’j)) = SH—M(_Y(K)a _Fn+1a Sn+1aj)'
By a similar argument, we have
¢ (SHM(—Y (K), =Tni1, Snt1,5)) © SHM(=Y (K), —T'os, SE", )

where Sy, is a Seifert surface of K that intersects the suture I'y, twice. Proposition
4.3 then implies that (recall n = 2k)

SHM(~ Y (K), ', 527, j) = SHM(~Y (K), ~T'p. S, + k).
However, the adjunction inequality in Lemma 2.7 implies that if j + k > ¢(5), then
SHM(~Y (K), T, S, j + k) = 0.
Thus, for j € Z so that j + k > ¢(S), we have
O g1 SHM(-Y(K), —T'n, S, j) = SHM(Y (K), L'yi1, Snv1, )

is an isomorphism. From the way we perform the grading shifting in Proposition 5.6,
we know that, for any j € Z,

SI{—M(_Y(K)a _F’m S:;,_j)[d] = SI{J(_Y(K)’ _Fna 577;5.7 + k)

Thus, for the fixed grading ¢ € Z as in the hypothesis of the proposition, when
n > g(S) — i, we have (i + k) + k > g(5) and this implies that the map

i T
O" palSHM(—Y (K),~T,57.0)[0] = P2 nt1|SHM(— Y (K),~T,57 it k)

is an isomorphism. O
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Corollary 5.11. Under the above conditions, there exists an integer Ny so that, for
any i < No, the U map induces an isomorphism:

—KHMi(iyv Kapv S7 Z) = —KHMi(iyv Kapv S7 i — 1)7
Proof. The proof is exactly the same as the above proposition. |

Corollary 5.12. For a knot K < Y, a Seifert surface S of K, and a fized point
pe K, we have
KHM™ (=Y, K,p,S,i) =0

fori> g, and
m_(_YaK7pa Sag) = m(_xKapNS?g)

Here, g is the genus of the Seifert surface S, and KHM(-Y, K, p, S, g) is defined in
Definition 5.5.

Proof. The first statement that
KHM™ (=Y, K,p,S,i) =0

for ¢ > ¢ follows from the adjunction inequality in Lemma 2.7.

For the second part of the statement, we prove the case where n = 2k+1 is odd and
the other case is exactly the same. Suppose (M’,v’) is obtained from (Y (K),T,,) by
a sutured manifold decomposition of S,, € Y (K). It is straight forward to check that
if we decompose (Y (K),T'y) along So, then we will get exactly the same balanced
sutured manifold (M’,~"). Hence, from Lemma 4.2 in [15], we know that

SH_M(—Y(K)7 _Fn7Sn+17g(S) + k + 1) = M(M/a’y/) = M(_K Kap7 SOOag(S))

Then, the corollary follows from Proposition 5.10 and the grading shifting we per-
formed in Proposition 5.6. |

Suppose K c Y is a fibred knot with fibre S of genus g. Suppose (S, h) is an open
book corresponding to the fibration of K < Y. It supports a contact structure £ on
Y. We call h not right-veering if there is an arc o < S and one end point p € da so
that near p < S, h(a) is to the left of a. See Figure 14. See Baldwin and Sivek [6]
for more details.

Figure 14: Not right-veering
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Corollary 5.13. Under the above setting, if h is not right-veering, we have
wi(iyv Kapv Svg) =R
and the generator is in the kernel of the U map.

Proof. This result is the main result in Baldwin and Sivek [6]. The only difference is
that we translate it into our language involving KHM ™. O

Proposition 5.14. We have an exact triangle:

KHM(-Y, K, p) KHM(-Y, K, p)

\/

KHM(-Y, K, p)
Proof. We will use the by-pass exact triangle

Vi
a n+1 SHM
‘M\ /
SHM (—

The maps {¢% ,,,1}nez, induce the U map. By a similar argument, the maps
(¢ 5 nez, and {¢%, }nez, induce the maps ¢ and ¢/ in the statement of the
proposition. Then, it is formal to check that the by-pass exact triangles (22) for all
n € Z, induce the desired one as stated in the proposition. O

SHM(~Y (K

Y(K),-T'y) (22)

5.3 Knots representing torsion classes

In this subsection, we extend the definition of KHM™ to the case where K is not
necessarily null-homologous, but represents a torsion class in H;(Y). Suppose Y is
a closed connected oriented 3-manifold. Suppose further that K < Y is an oriented
knot that represents a torsion class in Hq(Y). It is a basic fact that the map

iy : Hi (Y (K);Q) — H1(Y(K);Q),

which is induced by the inclusion map i : Y (K) — Y (K), has a kernel of dimension
one. Thus, we can find a curve a < 0Y(K) so that o bounds a properly embedded
surface S < Y(K). We always give S an orientation so that dS = « is oriented in
a coherent way as K. This surface is usually called a Rational Seifert surface of K.
For more details, readers are referred to Ni and Vafaee [20]. We still look at the
knot complement Y (K). On oY (K) =~ T?, there is a preferred class p which is the
meridian of K. There is no preferred longitude class, but we can pick any oriented
non-separating simple closed curve A on 0Y(K) so that [p] and [A] is an oriented
basis of H1(0Y (K)). Then, on Y (K), we can still define the sutures I, and Ty, and
there are by-pass exact triangles as in (5). Note the same formula as in (5) holds with
our new definitions of I';, and I'y;. Furthermore, Corollary 2.20 continues to hold for
exactly the same reason, so we can make the following definition.

Definition 5.15. Suppose K < Y is a knot representing a torsion class in H;(Y)
and p € K is a base point. Then, define the minus version of monopole knot Floer
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homology, which is denoted by KHM™ (=Y, K, p), to be the direct limit of the direct
system

.. — SHM(-Y(K),T},) Yo, SHM (Y (K),Tpy1) — ...

Here, the maps 9" ,, ., are defined in the exact triangle (5). By Corollary 2.20, the
maps {7 11 }nez, induce a map on KHM™, which we call U:

U:KHM (=Y, K,p) —» KHM ™ (-Y, K, p).

It is clear that Definition 5.15 is independent of the choice of the longitude A on
Y (K). Next, we want to use the rational Seifert surface S of K < Y to construct
a grading on KHM ™ (=Y, K, p). As in Proposition 5.6, we need to perform a grading
shifting. Instead of directly writing down the value of the shift, we define the shift in
an indirect way. Suppose, for any n € Z,, .S, is a rational Seifert surface of K, which
has the minimal possible intersection with the suture I',,. Suppose 5], is exactly the
surface S,, if |S;, "T',,| is of the form 4k+2, and ST is obtained from S,, by performing a
negative stabilization if else. We define a grading shifting, SHM(-Y (K), —T',,, S7)[o],
of SHM(-Y(K),—T4, S7), so that

SH_M(_Y(K)a =Ty, S,:;, Z)[U] = SH_M(_Y(K)a =Ty, S;al + O'(Tl))

Here, the value o(n) € Z is determined by the following property: The top non-
vanishing grading of SHM(—Y (K), —T',,, S7)[o] equals g(S), the genus of S.

Remark 5.16. Note the grading shifting we performed in Proposition 5.6 can also be
described in the above way.

Proposition 5.17. If S is a ration Seifert surface of K < Y, then S induces a
Z-grading on KHM™ (=Y, K, p), which we write as

—KHMi(iya Kvpa Sal)

Under this grading, the map U is of degree |, where | is an integer depending on the
knot K Y.

As we did in Subsection 5.2, we can prove that the direct system in Definition
5.15 stabilizes.

Proposition 5.18. Suppose K 'Y is a knot representing a torsion class in H1(Y'),
and S is a rational Seifert surface of L. Then, the direct system stabilizes: For any
1 € Z, there exists N so that if n > N, then we have an isomorphism

¢z,n+1 : SH—M(_Y(K)a =Ly, S;’ i)[O’]ESH_M(—Y(K), _Fn+1a S:;Jrlﬂ Z)[U]

The most common cases we might encounter a knot which represents a torsion
first homology class is when performing Dehn surgeries. Suppose K < Y is a null-
homologous knot, and S is a Seifert surface of K. Let Y (K) be the knot complement.
Let X\ and p represent the longitude and meridian on 0Y (K), respectively, according
to the framing induced S. We can perform a Dehn surgery along the knot K and

obtain a surgery manifold
Yy = Y(K)gSl x D?.

Suppose gy = ¢({1} x dD?) = goA — pop and Ay = (ST x {1}) = roA — sou. This
results in a surgery of slope —%. Now Ay and g form another framing on 0Y (K),

so that 1, is the meridian of the knot K = S* x {0} < Y. Note Y (K) is also a knot
complement of Ky < Yy and Ky is a knot inside Yy which represents a torsion class in
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H,(Y3). Hence, we can use the new framing to construct a minus version of monopole
knot Floer homology KHM ™ (—Y;, K) of (Y, Ky). Here, we omit the choice of base
points, since the discussion will be carried out on a fixed knot complement. We have
the following property.

Proposition 5.19. For any fized ig € Z, there exists N so that for any surgery slope

75—3 < —N, we have

KHM ™ (-Y, K, S, i¢) =~ KHM ™~ (—Yy, K4, S, io).

Proof. We use the framing (), 1) intricately and write both the curve g\ — pu or the
slope ,% as (g, —p). We use y(gr—pu) OF V(q,—p) to denote the suture consisting of two

curves of slope (¢, —p). Note, y(1,_n) = I'y, for the notation I', as used in Subsection
5.1.

From the stabilization properties in Propositions 5.10 and 5.18, we know that
there exists N1 > ¢g(S) — io such that for any n > Ny, we have

m_(*x K, Sv ZO) = SI{_M(*Y(K), —Y(1,-n)> STv iO)[U]v (23)
and
KHM™ (—Y¢, K¢, S, Zo) = SHM(—Y(K), “Y(Ag—npg) ST, ’LQ)[O’] (24)

Hence to prove the theorem, it is suffice to prove that for large enough n and large
enough surgery slope, we have

SHM(~Y (K), =71, —n)» S i0)[0] = SHM(=Y (K), Vi, -np,)s ST é0)[o].  (25)

Fix an ny > N, and write Ay — napry = g\ — pp. From the proof of Proposition
4.10, we can construct two sequences of slopes {(¢;, —p};)} and {(¢], —p})} inductively
as follows: Let (¢}, —pg) = (¢, —p), and, for any j > 1, suppose we have the continued
fraction of (¢j_,,—pj_;) to be

(q;‘—u *P}_O = [, Py Th—jr1]s

then define

(q], =p) = [r1, s hmjs Thjrr + 1], (&G, =D5) = [r1, o iy ]-

Note we identify [rq,...,7, —1] as [r1,...,7—1,7 + 1]. We end the sequence when

(@r—1, =Ph—1) = [r1] = (1,m). (26)

Here r1 < —2 is the first term in the continued fraction of (¢, —p) = (Ag — nape).

Remark 5.20. Note (go, —po) is the slope of the surgery that gives rise to (Y, Ky),
while (g4, —pj) = (g, —p) = Ay — napiy. Also we can pick no as large as we want.

To proceed, we only carry out the proof in the case where n is odd, and for any
Jj» pj is odd and pj is even. Other cases are similar. Under this assumption, we can
un-package the grading shifting we performed in Propositions 5.6 and 5.17, and to
prove (25) is equivalent to proving (we omit the surface S from the notation):

n—1 ; Po —
——) = SHM (=Y (K), =Y(g, i)+ 0 + 22

. 1
SI‘I_M(*Y(K), —Y(1,—n)> %0 + ) (27)

Forl=0,..,k—1, write
p—1
2

’L';=i0+
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Claim 1. There exists an N > 0 so that if the surgery slope —2 < —N| then,

q0
for any [ € {0, ...,k — 2}, there is an isomorphism:

SHM(=Y (K), =Y(g;,—p})+ S 1) = SHM(=Y(K), =Yg, ,,~p;, ) S i141)-

Claim 2. There exists an N > 0 so that if the surgery slope —z—g < —N, then we

have r1 > g(S) — io.
Assuming Claim 1 and 2, we now prove the proposition. By Claim 1, Claim 2,

and Proposition 5.10, we have (note we have assumed that 71 = —pj,_, is odd)
SI‘I_M(*Y(K), 77(1,—7})7 ST? ZO)[O—] = SI‘I_M(*Y(K), 7’7(1,7"1)5 STa ZO)[U]

-ry —1
= _SHM(*Y(K), —Y(,—r1)s Sv 1o + 12 )
= SH_(*Y(K), Yy, P 1) S, Zk—l)
= —SH (7Y(K)a 77((]6 —pg)? Sa 7’0)

. pp—1
= SHM(-Y/(K), =V(g;,~pp) fo + =5 —)-

Thus (27) is proved, and Proposition 5.19 follows.
To prove Claim 2, by definition, we have

P o= f([gj +1) and £ = S0+ 2P0 (28)

g ro+naqo

If we choose large enough ny (we can freely make ny larger), then we know that

p Po
LaJ = Lq_oJ -1 (29)

Hence, for any surgery slope —z—g < N = —(g(S) —ip), Claim 2 holds.
It remains to prove Claim 1. As in Subsection 4.3, the sutures of slopes (q], —p})
and (g, —py) fit into a by-pass exact triangle:

m(fY(K)a 77(q271,p;71))
Y1 Pi,2

SI_I—M(—Y(K)’ —’Y(q// " )

1P

SHM(=Y (K), =(q.p)))

(30)
If Y = S% and K is the unknot, then ¢; , = ¢_ j for k = 0,1,2 in the previous exact
triangle (16). As in Subsection 4.3, for all [ € {1,...,k — 1} and j € Z, we have

P10

+p;
o) ST ),

Y0+ (SHM(=Y(K), =v(g,—p)» S~ j) — SHM(=Y(K), =gy
1/’l,1 : SH_M(_Y(K)a _V(qi’,—pgl)a S+p;aj) - SH_M(_Y(K)a _,7(‘12717_1);71)’ Saj)a

Yr2 s SHM(=Y (K), =Yg, —p; 1)+ S>3) — (SHM(=Y (K), =y(gt,—pt): ST, 5).

/
Q1=

Note, in above formulae, we have assume that p/ , is odd for all [. From them, Claim
1 is equivalent to the fact that ¢y, is an isomorphism at the grading

/
. . . pl_1_1
j= ity =io+ ML
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which is further equivalent to that
m(fY(K)a 77(q2/,7p2/)7s+p25i;—1) =0. (31)

Note, by assumption, p/ = p;_, — pj is even. From the grading shifting property,
Proposition 4.3, we know that (31) is equivalent to

p—1
D

SI‘H\/I(—YY(I()7 _’Y(qgl,—p;’)’ S+,i;71 + ) = 0 (32)

Note we have [0S™ N 7y )| = 2p/ + 2. From (the vanishing statement of)
Lemma 4.2, we know that (32) happens if

. p/ 1 p//
i1+ 12 > g(S) + é (33)
Recall that ,
i =i+ !
-1 0 2 )
so we know that , B
’ P — g Py
[ >g(S) + o
Pl -t p
S) + 2L
=i + 5 + 5 > g(S) + 5
<p; > g(S) —ig+ 1.
Since, by (28) and (29), we have
0= phy =-m>2] >N
do
Thus, if we pick N = —(g(S) — o), then (33) holds and Claim 1 follows. This
concludes the proof of Proposition 5.19. O

6 Instantons and knot Floer homology

6.1 Instanton Floer homology and generalized eigenspace de-
compositions

Suppose Y is a closed connected oriented 3-manifold, and w is a fixed Hermitian line
bundle whose first Chern class ¢;(w) has an odd pairing with the fundamental class
of some surface. Suppose further that E is an U(2)-bundle whose determinant line
bundle A%2E is isomorphic to w. Let gg be the bundle of traceless skew-Hermitian
endomorphisms of F, and let Ag be the space of SO(3)-connections on gg. Let Gg
be the group of determinant-one gauge transformations and let By = Ag/Gr. Then,
we can use the Chern-Simons functional to construct a well defined SO(3) instanton
Floer homology over C, which we denote by I¥(Y).

If 2 € Y is a point, then there is an action u(x) on I(Y). The action p(z) has
eigenvalues 2 and —2. By slightly abusing the notations, from now on we use 1*(Y")
to denote only the generalized eigenspace of p(x) corresponding to eigenvalue 2.

Suppose ¥ < Y is a closed oriented embedded surface inside Y. Then, there is
also an action p(X) on I¥(Y"). We have the following result about the eigenvalues:

Proposition 6.1 (Kronheimer, Mrowka, [15]). If ¢;(w) and ¥ has an odd pairing,
then the eigenvalues of the action p(K) on I°(Y") belongs to the set of even integers
ranged from 2 — 2g(X) to 2g(X) — 2.

20
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If ¥ and ¥/ are two such embedded surfaces, then the action u(X) and pu(X)
commute. Then, we can look at the simultaneous generalized eigenspace. Similar to
Corollary 7.6 in Kronheimer and Mrowka [15], we can make the following definition.

Definition 6.2. Suppose we have a linear function \ : Ho(Y;Z) — 27, then we can
define
o= () U ker(ulo) = Mo)".
o€Hy(Y;Z) N=0
Such a function A is a called an eigenvalue function.

If the embedded surface ¥ represents a zero class in H2(Y;Q), then the action
(X)) is trivial. This means that if 7(Y )y # 0 then we can lift A to a linear map
(which we will use the same notation to denote)

A Hy(V;Q) — Q.

Thus, from now on, we regard \ as an element in H2(Y; Q). We then have a decom-
position
V)= @ I°0)\
AeH2(Y;Q)

Suppose R ¢ Y is a closed oriented embedded surface inside Y, then as we did in
Definition 2.4, we can define the following.

Definition 6.3. Suppose the pair (Y, R) is as above. Then, we can define the set
H*(Y|R) = {Ae H*(Y;Q)X([R]) = 29(R) — 2, I*(Y)x # 0},
The elements A € H*(Y|R) are called supporting eigenspace functions.

We have the following lemma which is the instanton correspondence to Lemma
4.7 for monopole theory.

Lemma 6.4. Suppose (W,v) is a cobordism between (Y,w) and (Y',w'). Suppose
further that X € H*(Y;Q) and N € H*(Y';Q) are two eigenvalue functions. Let
i:Y > W andi :Y' — W are the inclusion map. If

I(W.v)(I°(Y)x) 0 19 (Y')x # {0},
then there must be an element T € H*(W;Q) so that i*(t) = X and (i')*(7) = .

Proof. For a second homology class o and a rational number r € Q we can define

I“(Y,o,7) = U ker(u(o) — ).

N=0
By definition, we know that
W)= (] I“(Y.0.\0)).
oceH>(Y;Q)

Similarly, we can define I¢'(Y”, o/, r').
Note we can regard an element 7 € H2(W;Q) as a map

T: Hoy(W;Q) — Q.

Suppose there are no such 7 as in the statement of the lemma, then there is a class
oo € Hy(Y;Q) and a class o, € H3(Y’; Q) so that

i4(00) = i,,(c%) € Ha(W),
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while
o) # N (ay).

Thus, we know that
I(W,v)(I°(Y)x) © I(W, v)(I°(Y, 00, Moo))) < I (Y, 0, M00)).
The last inclusion follows from Lemma 2.6 in [6]. However, A(o) # A (0”) so
I<(Y", 00, Moo)) 0 1 (Y, 09, N'(4)) = {0}

Hence, we conclude )
IW,v)(I“(Y)x) n 19 (V') = {0},

which is a contradiction. Thus Lemma 6.4 follows. O

6.2 Sutured instanton Floer homology

Suppose (M, ~) is a balanced sutured manifold, then, as we did for monopole theory,
we can construct a closure of (M, ~) and apply the construction of instanton Floer
homology in the previous subsection. Pick a connected auxiliary surface T' of large
enough genus, then we can get a pre-closure

M=MUT x [-1,1], with 0M = R, U R_.

For the construction in instanton theory, we also need to pick a point p € T" so that
there are corresponding points p+ € Ry+. When choosing the gluing diffeomorphism
h : Ry — R_, we also require that h(p;) = p—. Thus, we know that, inside the
closure (Y, R), there is a closed curve p x S < Y. Let w be a complex line bundle
over Y whose first Chern class is dual to the curve p x S'. Then, we can make the
following definition.

Definition 6.5 (Kronheimer, Mrowka [15]). Define the sutured instanton Floer ho-
mology of (M,~) to be

SHI(M,7) =I*(Y|[R) = @ I*(V)x.
AeH*(Y|R)

Baldwin and Sivek [2] also made refinements of closures and constructed canonical
maps for the sutured instanton Floer homology.

Definition 6.6. A marked odd closure D = (Y, R,r,m,n, a) of (M,~) is a tuple so
that (Y, R, r,m,n) is a marked closure of (M, ) as in definition 2.9, the simple closed
curve « is disjoint from im(m), and « n (R x [—1,1]) is of the form r(p x [—1,1]).

We can pick a complex line bundle w whose first Chern class is dual to o wu 7.

Then we can define
SHI(D) = I*(Y|r(R x {0})).

Theorem 6.7 (Baldwin, Sivek [2]). Suppose (M,~) is a balanced sutured manifold,
and D and D' are two marked odd closures of (M,~). Then, there is a canonical map

&pp 1 SHI(D) — SHM(D'),

which is an isomorphism well defined up to multiplication by a non-zero element in C.
Furthermore, the canonical map satisfies the same functoriality properties as those of
the canonical maps for sutured monopole Floer homology in Theorem 2.10.
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Hence, we have a well defined projective transitive system
SHI(M, )

associated to (M,~v). For a knot, there is a similar discussion as in Subsection 2.2
and we have a well defined projective transitive system

KHI™ (Y, K, p)
associates to a triple (Y, K, p) for a knot K < Y and a base point p € K.
There are similar results for the contact gluing maps and by-pass exact triangles.

Theorem 6.8 (Li [19]). There is a gluing map for sutured instanton Floer homology,
satisfying the same properties as in Theorem 2.15.

Theorem 6.9 (Baldwin and Sivek [6]). Suppose (M,~v1), (M,~2) and (M,~s3) are
three balanced sutured manifolds which are related in the same way as in theorem
2.16. Then there is still a by-pass exact triangle

P12

SHI(—M, —v1) SHI(—M, —72)
P31 a3
SHI(—M, —v3)

where the maps 1;; comes from the gluing maps in sutured instanton Floer homology,
just as the monopole case in Subsection 2.3.

6.3 Statement of results

With Lemma 6.4 and Theorem 6.9 in place of Lemma 4.7 and Theorem 2.16, we can
recover all results we obtained in this paper for sutured monopole Floer homology.
We present those results without further proofs.

Proposition 6.10. Suppose (M, ) is a balanced sutured manifold and D, and D' are
two marked odd closures of the same genus. Then, the canonical map ®p p in sutured
instanton Floer theory can be interpreted in terms of the Floer excision cobordism, in
the same way as in Proposition 3.8.

Theorem 6.11. Suppose (M,~) is a balanced sutured manifold, and S is a properly
embedded surface inside M so that 0S is connected and [0S N | = 2n with n odd.
Then, S induces a grading on SHI(M,~) which we denote by

SHI(M, , 5,i).

Proposition 6.12. Suppose (M,~) is a balanced sutured manifold so that M is the
complement of a null-homologous knot K < X and v has two components. Suppose
further that S is a Seifert surface of K, viewed as a properly embedded surface in M,
so that |0S n | = 2n. Then, for any p,l,k € Z such that n + p is odd, we have

@(7]\45 -7, Spa l) = @(7]\45 -7, Sp+2k7l - k)

Proposition 6.13. Suppose V is a solid torus and v is a suture on 0V with 2n
P

components and slope T then

SHI(-V, —) = c@ pl)

o3
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Theorem 6.14. Suppose K is a null-homologous knot inside an closed connected
oriented 3-manifold Y and p € K is a base point. Then, there is a projective C-vector
space KHI™ (Y, K, p), whose elements are well defined up to multiplication by a non-
zero element in C, associated to the triple (Y, K,p). Also, there is a homomorphism

U :KHI (Y, K,p) — KHI~ (Y, K, p).

If S is a Seifert surface of K, then S induces a Z grading on KHI™ (Y, K, p) so that U
is of degree —1. Furthermore, analogous results to Proposition 5.9, Proposition 5.10,
Corollary 5.11, Corollary 5.12, Proposition 5.14, and Proposition 5.19 all hold for
KHI (Y, K, p).
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