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Tau invariants in monopole and instanton theories

Zhenkun Li

Abstract

In this paper we study the tau invariants in KHM~ and KHI~ for knots in S,
which were defined by the author in [11], and we will prove some basic properties such

as concordant invariance. We also use the technique in the current paper to compute
the KHM™ and KHI™ for twisted knots.
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1 Introduction

In [11], the author defined KHM ™~ and KHI™, served as the monopole and instanton
analogue of HFK~. The author also defined the tau invariants 7,; and 77 to be
the maximal grading of a non-U-torsion elements. In the present paper, we further
study the properties of tau invariants for knots inside S® and prove that they are
concordance invariants. Also we carried out some computations for twisted knots.

To state the results in a unified way, we will use KHG™ to denote both KHM™
and KHI ™. The letter G means ’gauge theoritic’. We will write the coefficient ring as
R but it should be understood to be the mod 2 Novikov ring for KHG™ and the field
of complex numbers C for KHI™. Similarly throughout the paper we will use SHG to
denote either SHM or SHI and use 7¢ to denote either 75; or 77. The main results of
the paper are summarized as follows.

Proposition 1.1. Suppose K < S is a knot and p € K is a fized base point. Then
KHG™ (—S3, K,p) has a unique infinite U-tower.

Proposition 1.2. The tau invariants 7¢(K) is a concordance invariance.

Proposition 1.3. Let K,, be the twisted knots as shown in figure 1. Let p € K,, be
a base point.
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(1). If m > 0, then
KHG™ (=5°, Kim,p) = RIUL @ (R1)™ " @ (Ro)™

and
KHG™ (=5%, Kpm,p) = R[U]-1® (R1)" ® (Ro)™ .

(2). If m <0, then

m_<_53a K’map) = @_(—SB,KW“])) = R[U]—l @ (Rl)m @ (Ro)m_l~
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K, Ko,
Figure 1: The one handle.

Acknowledgement. The author was supported by his advisor Tom Mrowkas
NSF grant funding No. 1808794. The author would like to thank his advisor for his
enormous helps. The author would like to thank C.-M. Michael Wong for helpful
conversations.

2 Preliminaries

Suppose K < S? is an oriented knot and S < S® is a (minimal genus) Seifert surface
of K. The surface S induces a framing on the boundary of the knot complement
S3(K), so we get longitude curve A and meridian curve . Let I',, be the union of two
disjoint, parallel, oppositely oriented simple closed curves of slope —n (or equivalently



Zhenkun Li 2 PRELIMINARIES

of class +([A\] — n[u]) € H1(053(K))), and let ', be the union of two meridians. In
Kronheimer and Mrowka [8], the suture I',, = dS3(K) was used to construct their
monopole and instanton knot Floer homologies.

Definition 2.1. Let p € K be a base point, then we can define
KHM(Y, K, p) = SHM(S*(K),T,).

Here SHM is the projective transitive system for defining sutured monopole Floer
homology as in Baldwin and Sivek [2], over the coefficient ring R which is the mod 2
Novikov ring.

The choice of base point seems not to appear in the above definition but it actually
crucial to resolving the extra ambiguity in defining KHM, arising from the choices
of knot complements, which is not an issue for defining SHM. So when we write
S3(K), we actually means a collection of knot complements so that each pair of them
is related by a canonical diffeomorphism. Similarly, we can define the following in
instanton theory.

Definition 2.2. Let p € K be a base point, then we can define
KHI(Y, K, p) = SHI(5*(K),T,,).

Here SHI is the projective transitive system for defining sutured monopole and in-
stanton Floer homologies as in Baldwin and Sivek [2], over the complex number C.

In the author’s previous paper [11], the sutures I',, are used to construct a com-
mutative diagram

s SHG(~S3(K), ~T) ~2 s SHG(—$3(K), ~Ts1) — -+ (1)

iwn,‘i’ i¢n+1,+

Pn41,—

- ——=SHG(-S*(K), ~Ty41) —> SHG(~S*(K), ~Tpi2) — -

Definition 2.3. Define KHG ™ (—S2, K, p) as the direct limit of the horizontal direct
system, after a proper grading shifting. The collection of maps {4y 1 }nez, defines a
map on the direct limit:

U:KHG (-S3 K,p) - KHG (-S3, K, p).

In [11] the author proved that a Seifert surface S induces a Z-grading (Alexander
grading) on KHG™ and U is of degree —1. Since we only work with knots inside S3,
the gradings induced by different choices of Seifert surfaces are the same, so we will
simply write the grading as

KHG™ (—S%, K, p,i), i€ Z.

Following the definition of tau invariant in Heegaard Floer homology by Ozsvath
and Szabé [13], we could make the following definition.
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Definition 2.4. 7¢(K) = max{i € Z|3 x € KHG™ (-S3, K, p,i), U’(x) # 0, Vj €
Z.}.
In the present paper, we can focus on the rank of KHG™. For KHI ™, this is clear

since it is a vector space over C and the rank just means the dimension as a complex
vector space. For KHM ™, we refer to the following lemma.

Lemma 2.5. For any pair (K,p) and any i € Z, we have that KHG™ (—S%, K, p,1)
is a finite rank free R module.

Proof. From [11] we know that there exists a large enough n € Z and integer j € Z
so that
KHM™ (~8% K, p,i) = SHM(~S°(K), =T, ).

Here i might not be equal to j because we have done a grading shifting in the definition
of KHM™. Hence clearly it is of finite rank.

To prove that it is free, recall that from Kronheimer and Mrowka [8], for any
balanced sutured manifold (M, ), we have

SHM (M, ~;Ty) = SHM(M,~;Zs) ®z, R.

This isomorphism respects the grading that can be defined on both sides. The usage
of Zs coeflicients is valid because of Sivek [15]. O

3 Concordance invariance of 7.

Throughout the section we have a knot K < $3 and the suture I';, and ', on 053(K)
which are described as in the previous section. Fix n € Z,. Then on 0S%(K), we
can pick a meridional curve « (irrelevant to the curve « as in figure 1) so that «
intersects the suture I',, twice. Let 0S3(K) x [—1,0] < S?(K) be a collar of 0S3(K)
inside the knot complement S3(K) and we can give an [—1,0]-invariant tight contact
structure on 053(K) x [—1, 0], so that each slice 0S3(K) x {t} for t € [—1,0] is convex
and the dividing set is (isotopic to) I',,. By Legendrian realization principle, we can
push « into the interior of the collar 0S®(K) x [—1,0] and get a Legendrian curve 3.
With respect to the surface framing, the curve § has tb = —1. When talking about
framings of 3, we will always refer to the surface framing with respect to 053(K).

From Baldwin and Sivek [3], since « intersects the suture (or the dividing set) I',,
twice, (after making o Legendrian) we can glue a contact 2-handle to (S*(K),T),)
along a, and get a new balanced sutured manifold (M, ). Suppose (Y, R) is a closure
of (S3(K),T,,) in the sense of Kronheimer and Mrowka [8], so that g(R) is large
enough, then from Baldwin and Sivek [1] we know that a closure (Yp, R) of (M,~)
can be obtained from (Y, R) by performing a 0-Dehn surgery along the curve 8. Note
inside Y, 8 is disjoint from R so the surgery can be made disjoint from R and hence
the surface R survives in Y. Now let (M_q,T,,) be the balanced sutured manifold
obtained from (S3(K),T,,) by performing a (—1)-Dehn surgery. Note 3 is contained
in the interior of S®(K) so the surgery does not influence the boundary as well as the
suture.
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Clearly, if we do a (—1)-Dehn surgery along 8 on Y, we will get a closure (Y_1, R)
for the balanced sutured manifold (M_;,T,). Applying the surgery exact triangle,
we get the following.

SHG(—M_1,-TI'y) SHG(—S*(K),~Ty)

\ Chm,

m(_M7 _P)/)

Remark 3.1. Here the surgery exact triangle seems to go in the wrong direction but
note the sutured manifolds have been reversed the orientations, so the maps in the
surgery exact triangle shall also reverse the directions.

Now let us figure out what are (M,v) and (M_4,T,). First (M,~) is obtained
from (S®(K),T,) by attaching a contact 2-handle along a meridional curve «, so it
is nothing but (D3,4), where ¢ is a connected simple closed curve on dD3. To figure
out (M_1,T},), note that we can view 3 and K inside the 3-sphere S® and f3 is a
meridional link around K. So a (—1)-Dehn surgery along 8 on S*(K) will result in
the same 3-manifold S3(K) while the framings on it is 1 larger than before performing
the surgery (See Rolfsen [14]). Hence we conclude that (M_y,T),) = (S3(K),T,—1)
(Note the framing of I',, is —n). Thus the above exact triangle becomes

%(_Sg(K)v_Fn—l) @(_SS(K%_FH) (2)

SHG (- D3, —5)

Lemma 3.2. Ifn > —tb(K), then the map Ch,, is surjective and hence
rk(SHG(-S3*(K), -T},)) = rk(SHG(—S*(K), —T',_1) + 1.

Here tb(K) is the mazimal possible Thurston-Bennequin number of a Legendrian
representative of the knot class of K, with respect to the standard tight contact struc-
ture on S®. See Ng [12].

Proof. Suppose &g is the standard tight contact structure on S3. Since n > —tb(K),
we can isotope K so that it is Legendrian with tb = —n. We can dig out a standard
Legendrian neighborhood of K and then the dividing set on the boundary of the
complement is the suture I';,. Hence when we glue back a contact 2-handle, we get
(D3, 6) together with the standard tight contact structure on it. From Baldwin and
Sivek [3] or [4], we know that the corresponding contact element is a generator of

SHG(—D?,—§) = R.

Also we know that the contact two handle attaching map C}, ,, preserves the contact
elements so C}, ., is surjective and hence we are done. O

Proposition 3.3. There is a unique infinite U-tower in KHG™(S3 K,p) for any
knot K < S3.
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Proof. From the author’s previous paper [11], we know that there are exact triangles

SHG(—S3(K SHG(—S3(K), ~Tny1)
SHG

Suppose S is a minimal genus Seifert surface of K, and choose n = 2¢(.S). We have
graded versions of the exact triangles (see proposition 5.5 in [11]) as follows:

m(_SS(K)v —Fn,S;{, ) h) SHG( SS(K)a _Fn+178n+17i) (3)

x \L’l[«'+,n+l

@(_53(}-{)7 _PH7S;n7i)

SHG(—S3(K), —T'n, S:,7) 2" SHG(—S3(K), —Tni1, Sni1,i) (4)

bon
CET l s

@(753(}’()7 71—‘#7 S:n’z)

Here the notations Sy, and S, follow from the ones in the author’s previous paper [11],
i.e. for all k, Sy is an isotopy of S so that 05 intersects the suture 'y transversely
at 2k points. The supscripts in S,:—rl denote the positive or negative stabilizations as
in section 3 of [11]. It’s well known (see Kronheimer and Mrowka [8]) that if i > ¢(5)
or i < —g(5), then

@(_SS(K% _Fuvsmi> =0

From the grading shifting property, proposition 4.3 in [11], we know that
SHG(—S*(K),—T, S, ™,i) =0
for

i<—g(S)+g:0.

Hence from (3), we conclude that (recall we have chosen n = 2¢(5))
SHG(—S*(K), Ty, Snsn. i) = SHG(~S3(K), Ty, S5 1) (5)

for all 7 < 0.
We can apply a similar argument and use (4) to show that

SHG(=S%(K), Tny1, Sny1,4) = SHG(=S*(K), Ty1, S, ,4)

6
;LHG(_SB(K%Fn-&-l)SﬁraZ‘_1) ( )

for all ¢ > 0. The last isomorphism also follows from the grading shifting property.
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From the construction of the grading in section 3 in the authors previous paper
[11], and the adjunction inequalities discussed in Kronheimer and Mrowka [8], we
know that

SHG(—S*(K),Tni1, Sny1,4) = 0, SHG(—=S?(K), 1, S, ,4) = 0
for
i>g(S)+n=29(5) ori<—g(S)—n=-2¢g(9).
From lemma 3.2 and lemma 4.2 of [11], we know that

LHG(_SB(K)anJrlv S;v 29(5)) = 0.

So from (5) and (6), we can fix all the gradings of SHG(—S3(K),—T,41) by the
corresponding term of SHG(—S?(K), —T',), except at the grading 0. Suppose

Tk(@(_sg(l()a _Fn+17 Sn-f—la O)) =,
then we conclude that
rk(SHG(—S?*(K), —T'y11) = rk(SHG(-S3(K), -T,) + .

Using the induction and the same argument as above, we can compute the graded
(SHG(—S3(K), —Tpnix) for all k € Z, as follows. If k is odd (recall n = 2¢(S)), then

we have

@(_SS(K% _Fn+ka Sn+k7 Z)

(0 i > g(8) + =t
SHG(—S%, T, Sifvi = 551) B << g(8) + 245=2
-\ ® 1k < g bl (7)
SHG(—8%, T, S, i+ 551)  —g(8) — 251 << -2
L0 i< —g(8) — =L
If k£ is even, then
@(—53([()7 —Lnsr, S:er i)
! i > g(5) + 2k
SHG(—8%, ~T,, S i — &) E<i<g(S)+ 2t -1
={ R* CEcicko (8)

SHG(—S%,—T,,, 5, i+ 51)  —g(S) - <i<-1-%

0 i< —g(S)— ntk
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So we conclude that
rk(SHG(—S?(K), —Tpik) = rk(SHG(-S3(K), —T,) + k - .

Then it follows from lemma 3.2 that x = 1. From proposition 5.8 and corollary 5.9
in the author’s previous paper [11], we know that this rank 1 will implies that there
is a unique infinite U tower in KHG™ . O

Lemma 3.4. The map

Ch,n : SHG(=S*(K),T) — SHG(-D?, =)
induces a surjective map

Cn : KHG™ (5%, K, p) — SHG(~D?, —9).
Furthermore, Cy, commutes with U.

Proof. The lemma, follows from corollary 3.2 and the following commutative diagrams.

SHG(-S SHG(—S5%,T41)
\ %
SHG(—
SHG(—S e SHG(—S5%,Ts1)

\ %
SHG(—

To prove those commutative diagrams, Recall that the maps v+ ,, are constructed via
by-pass attachments and by-pass attachments can be interpreted as contact handle
attachments (see Baldwin and Sivek [3]), and so is C},. Then the commutativity
follows from the observation that the region to attach contact handles for . ,, and
Cp,», are disjoint from each other. O

Corollary 3.5. We can give an alternative definition of 7¢(K) originally defined in
definition 2.4:

76(K) = max{i € Z | Chlkug-(—s2 K p,) 18 surjective}
Proof. This follows directly from proposition 3.3 and corollary 3.5. O

Corollary 3.6. There is an exact triangle

@7(_‘5‘37[{47) @7(_53,}'{7}7)
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Proof. The maps in the exact triangle (2) all commute with the maps ¥_,, in the
construction of the direct system, so we can pass them to the direct limit and still
get an exact triangle. O

Convention 3.7. In the rest of the paper, we will encounter many different maps.
To index them, the subscripts might be a tuple. For example, we will have a map

%0,—n : SHG(=S°(Ko), —T') = (=5°(K0), —Tn41)-

The subscripts will be ordered in the following way: the first will indicate which
topological object it is associated to (in the above example, it is associated to Kj).
The second will indicate how the map is constructed (in the above example it comes
from a negative by-pass attachment as in the author’s previous paper [11]). The third
will indicate the suture. The last will indicate the grading. May be some parts are
omitted from the subscript but the rest will still respect this order.

Proposition 3.8. The invariant 7¢(K) is a concordance invariant.

Proof. Suppose Ky and K7 are concordant. Then there exists a properly embedded
annulus A < S3 x [0,1] so that

(8% x {0}, A n 083 x {0}) = (83, Ky), (S® x {1},AnaS® x {1}) = (S3, K).
The pair (5% x [0,1], A) induces a map
FA,n . @(_SS(KIL _Fn) - @(—53(Kz), _Fn)

as follows. The pair (S x [0, 1], A) induces a cobordism W,, from Y1, to Yo, where
Y; , is a closure of (—S?(K;), —I',), and this cobordism induces the map F4 ,,. There
are two ways to describe W, which are both useful. Though both descriptions can be
found in the author’s previous paper [10].

First give a parametrization of A = S* x [0,1]. Then a tubular neighborhood of
A < 83 x [0,1] can be identified with A x D? = St x [0,1] x D?, with

Ax D?*n 8% x{0,1} = S* x {0,1} x D?.
Thus we know that
d(S® x [0,1]\A x D?) = —S3(Ky) u (S* x [0,1] x dD?) U S*(K}).
So suppose Y., is a closure of (—S3, —T',) then let
W = — (8% x [0, 1]\A x D2) U [Yo,\S*(K1)] % [0,1],
via a natural identification
S x [0,1] x 0D* = 8S3(Ky) x [0,1].
A second description of W is as follows. Recall that

a(S* x [0,1]\A x D?) = —S*(Ky) u (S* x [0,1] x dD?) U S3(K7)
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and clearly
0S3(Ky) = 0S*(K,) = S* x D?.

so as in lemma 3.3 in [10], S® x [0,1]\A x D? can be obtained from S®(K;) x [0,1]

by attaching a set of 4-dimensional handles H to the interior of S®(Ky) x {1}. Thus

as above if we choose a closure Yy, of (S3(Kj),T,,), we can attach the same set of

handles H to Yy, x {1} € Yy, x [0, 1] and the result is just the cobordism W.
Claim 1. F, , gives rise to a map

FA KHG ( S3aK07p0)_)&G_(_ngKlapl)a

where pg and p; are picked as follows. We pick a point p € S* and let p; = p x {i} in
the parametrization A = S* x [0, 1].
To prove the claim, it is enough to show that we have a commutative diagram

SHG (— 53 (Ko), ~T'y) — "~ SHG(—§3(K1), ~T',)

ill)o,,n iwl,,n

A,n+1

7SHG(_S3(KO)7_F7L+1)F4>SHG( S3(K1), —Tny2)

This commutativity follows from the fact that when constructing Fjy ,, we attach han-
dles to Yy, % [0, 1] to the region [int(S3(K))] x {1} (see above), while when construct-
ing the map ¥; _ ,,, we attach handles to Yy, x [0,1] to the region [0(S3(Kj))] x {1}
(see [11]), so the two set of handles are disjoint from each other and hence the corre-
sponding maps commute.

Claim 2. F'4 commutes with the U map on KHG™.

The proof of this claim is completely analogous to one for claim 1.

Claim 3. There is a commutative diagram

7KHG ( S KOvp() KHG Sg,Klvpl)

N /
SHG(—

where ()}, is defined as in lemma 3.4.
To prove the claim, it is enough to prove that the following digram commutes for

any n:
KHG ™ (—$3(Ko), —T) — KHG™ (—S*(K1), —T's) (9)
- o
SHG(—D?, —6) ——*—— SHG(-D?, -0)

As above, suppose we have a closure Y ,, for (—S3(Kj),T',). Let Y7, be the corre-
sponding closure for (—S3(K7),T,,) as in the construction of W above. Recall from
the construction of C}, ,, it is a 2-handle attaching map associated to a 2-handle at-
tached along a meridian curve a = 9S%(Ky). So we can slightly push it into the

10
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interior and get a curve 3. Then we get a closure Y{ for (—D3,—§) by performing
a 0-Dehn surgery on Y, along 3. Note the difference between S*(Ky) and S*(K7)
are contained in the interior so we also have the curve 5 c SS(Kl) < Yy . Thus
we can get another closure Y{ for (—D3, —§). We can form a cobordism W’ from Y
to Y{ by attaching the set of 4-dimensional handles H as in the proof of claim 1 to
Y] x {1} = Y§ x [0,1], and the attaching region is contained in int(S3(Ky)) < Yj.
Hence there is a commutative diagram just as in the proof of claim 1:

KHG ™ (—$%(Ko), ~T'y) —% KHG™ (—$3(K1), ~T')

\Lco,h, lcl,h

SHG(— D3, —5) SHG (- D3, —5)

Fy

where F is the map induced by the cobordism W’. So to prove (9), it is suffice to
show that W’ is actually a product Yy x [0, 1] and hence F’y = id. To do this, recall
that W' is obtained from Y{ by attaching a set of handles , while the region of
attachment is contained in int(S3(Kjp)) < int(D?3) < Y{§ x {1}. So this means that we
can split W’ into two parts

W =W"u (Y\D?) x [0,1]

and W” is obtained from D3 x [0,1] by attaching the set of handles H. Recall
that (D3,6) is obtained from (S3(Ky),T',) by attaching the contact 2-handle h so
topologically,
D3 = S3(Ky) u B
Note the 3-ball B3 is attached to S3(Kp) along the boundary, and the set of handles
H is attached to D3 x [0,1] within the region int(S3(Ky)) = D? x {1} so the two
attaching regions are disjoint. Thus
W” = D3 x[0,1] UH
= ((S3(Ko) u B®) x [0,1]) UH
S3(Ko) x [0,1]) uH U B® x [0,1]
(8% x [0, 1])\(A x DH] u B* x [0,1].

= (
-1
Note B3 is glued to S3(Kj) along an annulus on the boundary (the contact 2-handle
attachment), and so B3 x [0,1] is glued to [(S® x [0,1])\(4 x D?)] along annulus
times [0,1]. It is then straightforward to check that the resulting manifold (which is

W") is just diffeomorphic to D? x [0, 1]. Hence we are done.
Claim 4. The map

Fy : KHG™ (5%, Ko,po) —» KHG™ (=S K1, p1)

is grading preserving.
Note from proposition 5.8 in [11], we know that for any fixed k € Z, we can pick
a large enough odd n, so that for i = 0,1

n—1
2

KHG™ (—S%, K, pi, k) = SHG(—S*(K;), —T,, Spi, k + ).

11
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Hence to show that F4 is grading preserving, we only need to show that Flj , is
grading preserving. Recall here for ¢ = 0,1, S; ,, is a minimal genus Seifert surface
of K; which intersects the suture I',, exactly n points. Note we can identify the
boundaries

053 (Ko) = 0S*(K,)

via the parametrization A = S! x [0,1] and we can assume that under the above
identification
So.n 0 0S*(Ko) = S1. N 0S3(K7).

In section 3 of the author’s previous paper [11], we know how to construct the
grading on SHG based on a properly embedded surface. Now let Yp ,, be a closure of
(—S3(Kp), —T'n) so that the surface S, o extends to a closed one S, o, as in the con-
struction of grading. Then we have a corresponding closure Y7 ,, for (—S3(K7), —T'y,),
inside which Sy ,, extends to a closed surface Sl,n. To describe this surface, recall
that

Y1, = —5%(K)) [Yo,0\S® (K0)]

|
083 (Ko)=083 (K1)

as in the construction of W at the beginning of the proof. Then we can take
S1n = S1n U (S0, \S?(Kop)).
By using the Mayer-Vietoris sequence we know that
Hy((S? x [0,1])\(A x D?)) = 0.

So the closed surface —S; U A U S2 < (S® x [0,1])\(4 x D?) bounds a 3-chain
< (8% x [0,1])\(A x D?). Recall we have

W = —(5? x [0,1])\(4 x D?) U [Y5.,\S*(K1)] x [0,1]

Now inside W, let -
y =2 U ((S0,,\S*(Ko)) x [0,1]),

where the two pieces are glued along
A= S8"%[0,1] = 0(S0.,\S*(Ko)) x [0,1].
It is straightforward to check that
oy = _SO,n U 5'1,”.

Hence we conclude that ~ ~
[So,n] = [5071] € H1 (W)

Then it follows that F4 , preserves the grading.

Finally, the four claims above, together with corollary 3.5 and the fact that Ky
is concordant to K7 if and only if K; is concordant to Ky would directly prove the
proposition. O

12
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Corollary 3.9. If A is a Ribbon concordance from Ky to Ko, then the map
Fa:KHG™ (5% Ko,po) > KHG™ (5% K1, p1)
as in the claim 1 in the proof of proposition 3.8 is injective.

Proof. From works by Daemi, Lidman, Vela-Vick and Wong [6], for any n € Z,., the
map

Fa, : SHG(—S3(Ky), —T,) — SHG(—S3(K1), —T},)

is injective. So when passing to the direct limit, the F4 is also injective. O

4 Some computations

In this section we compute the KHG™ for the family of knots K, as in figure 1. In
particular, K; is the right handed trefoil, Ky is the unknot and K _; is the figure
eight.

From the Seifert algorithm, we can easily construct a genus 1 Seifert surface for
K,,, which we denote by S,,. Hence g(K,,) = 1 and also from Rolfsen [14] we know
that the (symmetrized) Alexander polynomial of K, is

Ag, (t) =mt+ (1 —2n) +mt™ L. (10)

First we are going to compute KHG(—S? K,,). Suppose (S3(K,,),I',) is the
balanced sutured manifold obtained by taking meridional sutures on the knot com-
plements. There is a curve o < int(S3(K,,)) as in figure 1 so that we have a surgery
exact triangle:

%(_53([{771)7_1—‘“) ﬂ(_SS(Km+1)7_FH)

\/

SHG(—M,-T,,)

Here K,, is described as above, and M is obtained from S3(K,,) by performing a
0-Dehn surgery along . We can use the surface S, which intersects the suture I';,
twice to construct a grading on the sutured monopole and instanton Floer homologies.
Since « is disjoint from S,,, there is a graded version of the exact triangle (since we
will always use the surface S, we will omit it from the notation):

SHG(—S*(Kn), Ty, i) SHG(—S*(Kpm+1), =Ty, 1)

\ /

@(_Ma _F/Ui)
(11)

Since S, has genus one and intersects the suture twice, all the graded sutured
monopole and instanton Floer homologies in (11) could only possibly be non-trivial

13
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for —1 <4 < 1. To understand what is SHG(—M,—T",), from Kronheimer and
Mrowka [7] and the author’s previous paper [9], the surgery exact triangle (3) is just
the same as the oriented Skein exact triangle and SHG(—M, —T") is isomorphic to the
monopole or instanton knot Floer homology of the oriented smoothing of K,,, which
is a Hopf link. Applying oriented Skein relation again on Hopf links, we can conclude
that

tk(SHG(~ M, ~T,,)) < 4. (12)

For the monopole and instanton knot Floer homologies of K; (trefoil), we could
look at the surgery exact triangle along the curve  in figure 2 and argue in the same
way as inKronheimer and Mrowka [7] to conclude

rk(SHG(—S*(K,),-T',) < 3.

From the knowledge of Alexander polynomial in (10) and Kronheimer and Mrowka
[8, 7], we know that
SHG(-S3*(Ky), —T,,i) =R (13)

fori=-1,0,1.

Figure 2: The trefoil and the circle 5.

Now let m =1 in (11). We know from (10) that
rk(SHG(—-S*(K3),-T,) > 7.
Then from the exactness, inequality (12) and (13), we know that

rk(m(_M’ _Fu)) =4

14
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To further examine each grade, we know that

R i=1,-1
SHG(—M,-T,,i) = R2 i=0 (14)
0 others

Thus by using the same argument and induction, we can compute for m > 0
R™ i=1,-1
SHG(-S*(Ky), —T,,i) =3 R*™1 i=0 (15)
0 others

Since K is the unknot, we can use the same technique to compute for m < 0 that
R-™ 1=1,-1
SHG(—S*(K,n), —T,,i) =4 R'72™ =0 (16)
0 others

Now we are ready to compute the minus version. Recall that the Seifert surface
induces a framing on the boundary of the knot complements as well as M. Write
I',, the suture consists of two curves of slope —n. We have graded version of by-pass
exact triangle (3) and (4) for even n as well as their cousins

SHG (=83 (Kpn), —T'w, S52,,1) 2 SHG (=8 (Kpn), ~Tos1, Sy nind)  (17)

m,n’
» l¢+,n+1
Tou

@(_SS(Km)v _FHV ngn’+v Z)
and

@(*Sg(Km)a 7Fn7 572 Z) g‘ @(*Sg(f(m), 7Fn+17 S;z,n+17 Z) (18)

m,n’
wf‘ni»l
Y—u

m(_sg(Km% _F;u S;':,n’_? Z)

for odd n.

A simple case to analyze is when m < 0. (For m = 0 has already been computed
in the author’s previous paper [10].) For the knot K,,, m < 0, take n = 1 in (17), we
have table 1.

Here, as in the author’s previous paper [11], the top and bottom non-vanishing
grading of SHG(—S3(K,,), —I',) can be computed via sutured manifold decomposi-
tion and coincide with the top and bottom non-vanishing grading of SHG(—S3(K,,), —I',,).

From the graded exact triangles on the rows of the table and an extra exact
triangle (2), we know that

b=zl—-m,c=2a+m, b+c<a+1.
Hence the only possibility is b = 1 —m, ¢ = a + m. Now take n = 2 in (3), we have

table.

15
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r, I Ty

1 —m —-m
0 1—-2m -m b
-1 -m a c

-2 —m —m

Table 1: The map v 1 for K,,. There is a (graded) exact triangle between the three
horizontal terms for each row. The leftmost column implies the gradings. The numbers
on other columns means the rank of corresponding (graded) homology. If it is a letter
(rather than a formula in m), it means that a priori, we don’t know what the rank is.

Here SHG(—S3(K,,), —I'3) can be computed as taking k = 1 in (7). We know
from the author’s previous paper [10] that

KHG™ (—S%, Ky, Pm, 1) = SHG(—S*(K), —T3, Sm.3,4 + 1)

for i = 1,0,—1 and the U map on KHG™ (—=S%, K, Pm, i) for i = 1,2 coincides with
the map wi,2 as in table 2. From the exactness, we know that U map is actually zero
at grading 1 and having kernel of rank —m at grading 0. Hence we conclude that

Proposition 4.1. Suppose m < 0 and the knot K,, is described as above. Then
LHG_(_S?Z Kpobm) = R[UJo® (R1)™™ @ (Ro)™™.

Here the subscripts means the grading of the element 1 € R and the formal variable
U has degree —1.
From the description it is clear that

Tg(Km) = O

To compute KHG™ of K,, for m > 0, we first deal with the case m = 1. Now
K is a right-handed trefoil. From Ng [12] we know that ¢tb(K;) = 1 and hence from
corollary 3.2, we know that

tk(SHG(— S (K1), ~T'1)) = tk(SHG(~S* (K1), ~To)) + 1.

Now let us compute SHG(—S3(K7), —Tg). Pick Sy to be a genus 1 Seifert surface of K
so that Sy is disjoint from I'y. We can use the surface S, a negative stabilization of Sy

16
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r, I'y I's
2 —-m —-m
(U
1 1—-2m —-m—7-=1—-m
,LpO
0 —m 1—m—2 o1
—1 a+m a+m
2 -m -m

Table 2: The map 14 2 for K,,. The sup-script means the map at a particular grading

as in the author’s previous paper [11] to construct a grading on SHG(—S3(K7), —T)).
From the construction of grading and the adjunction inequality, there could only be
three non-vanishing grading —1,0, 1. For grading 1 part, we can apply lemma 3.2 and
lemma 4.2 in [11] and hence look at the balanced sutured manifold (M’,~’) obtained
from (—S3(K),—T) by (sutured manifold) decomposing along the surface Sy:

SHG(—S*(K1), —To, Sy, 1) = SHG(M',v").

Since K is a fibred knot, the underlining manifold M’ is just a product Sp x [—1,1].
The suture ' is not just 0S x {0} but is actually three copies of d5x {0} on 05 x[—1,1].
We can find an annulus A < dS x [—1, 1] which contains the suture 4. Then we can
push the interior of A into the interior of S x [—1,1] and get a properly embedded
surface. If we further decompose (M’,~') along (the pushed) A, then we get a disjoint
union of a product balanced sutured manifold (S x [—1,1],05 x {0}) with a solid
torus with four longitudes as the suture. The sutured monopole and instanton Floer
homologies of the first are both of rank 1 and the second of rank 2, as in Kronheimer
and Mrowka [7] and the author’s previous paper [9]. Hence we conclude

SHG(—S*(K,), Ty, Sy ,1) = R?.

For the other two grading, note that from the grading shifting property, proposition
4.3 in [11], we have

ﬂ(isS(Kl)a 7F07SO_77;) = @(753([(1)7 *F07S(-)~_7i - 1)
= SHG(—S3*(K1), —To, (=So) ", 1 —i).

The second equality follows from the basic observation that if we reverse the orienta-
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tion of the surface Sy, we just get (—Sp)~. Hence
SHG(~8%(K1),~To, S5, —1) = SHG(~5°(K1), ~To, (~50) ~,2) =0
by the adjunction inequality and
SHG(—S3(K1), —To, Sy ,0) = SHG(—S*(K,), —To, (—S) ™, 1) = R%.
by the same argument as above. Thus
SHG(—S*(K;), —T1) = R®.

Similarly as above, there are only three possible non-vanishing gradings —1,0,1. We
have already known that the homology at top and bottom gradings are of rank 1
each, so the middle grading has rank 3. Let n = 1 in (17) and (18), we have table 3.

r, Iy Iy \ Ly I'y [y

2 \ 1 1

1 1 1 \ 1 3 b

0 1 1 b \ 1 1 c

-1 1 3 c | 1 1
—2 1 1 \

Table 3: The map v 1 (on the left) and ¢_; (on the right) for K.

From the exactness, we know that b = ¢ = 2. The rest of the computation is
straightforward and we conclude that

KHG™ (=53, K1,p1) = R[U]1 @ Ro. (19)
Now we have the map
Cypi i SHG(—-S?(K,),-T41) — SHG(-D?,4)

and by the description of KHG™ (—S2, K1,p1) above, lemma 3.5 and the fact that
Cy h,n commutes with ¢_ ,, (claim 1 in the proof of proposition 3.8), we know that

Cip1: SHG(-S3(Ky),—TI'1,1) — SHG(—D?, —4)

18
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is surjective and since SHG(—S3(K), —I'1, 1) has rank 1 it is actually an isomorphism.
Now we go back to the surgery exact triangle in (11), which corresponds to surgeries
on the curve o < int(S3(K,,)). Since « is disjoint from the boundary, (and as above,
disjoint from S,,), we have the following exact triangle for any m and n.

@(_Sg(K’rﬂL_FnaZ) %(_53(Km+1)7—rnai)

\ /

SHG(—M,—T',,,1)
(20)
There are contact 2-handle attaching maps

Cm,h,n : @(*SS(Km% *Fn) - m(nga 75)7

where the contact 2-handle is attached along a meridional curve on the knot comple-
ments. We can attach a contact 2-handle along the same curve on the boundary of
M, and the handle attaching maps commute with the maps in the exact triangle (20
and thus we have a diagram:

SHG(—S%(K,,) SHG(—S*(Km+1), —Tn, 1)
Cm hon SHG M, Fn,z Crms1,h,n
SHG(—D?3, —5) L SHG(~D?, —5)
x ‘( /

SHG(-S? x §'(1), —9)

(21)
Here S? x S! is obtained from S3 by performing a O-surgery along an unknot. The
balanced sutured manifold (S? x S(1),6) is obtained from S? x S! by removing a
3-ball and assigning a connected simple closed curve on the spherical boundary as
the suture. Its sutured monopole and instanton Floer homologies are computed in
Baldwin and Sivek [4] and the author’s previous paper [9] and is of rank 2. Thus the
exactness tells us that ¢ = 0, ¢1 is injective and ¢g is surjective.

Now take m = 0,n = 1,7 = 1, we know that

SHG(—M,-T4,1) = SHG(-S3(K,),-T'1,1) =R

and Chyyp,n is injective. Then take m to be an arbitrary non-negative integer and
n=1,5=11n (21). From (15) we know that

SHG(-S*(Kyn), T, 1) = R™.

By performing sutured manifold decompositions along S,, and using lemma 4.2 in
the author’s pervious paper [11], we know that

SHG(—S*(Km), —T'n, 1) =~ SHG(-S*(K,,), —T,, 1) = R™.

19



Zhenkun Li 4 SOME COMPUTATIONS

Recall from above discussions we have
SHG(—M,-T1,1) =R,

so in the exact triangle in (21), we know that 7, 1,1 is surjective. Then we can use
the commutativity part of (21) and conclude that

Cons1hn i SHG(—S*(K i), —T1,1) — SHG(—D?, —4)

is surjective. From the fact that 1+ , commutes with C}, ,, as in Claim 1 and 2 in
the proof of proposition 3.8, we know that this surjectivity means that the unique U
tower in KHG™ (=83, K., pm) actually starts at grading 1:

T6(Km) =1

for m > 0.
Take n =1 in (17), we have table 4.

r, I Iy
1 m m
0 2m —1 m&b
—1 m a c
-2 m m

Table 4: The map 4 1 for K,,.

The fact that 7¢(K,,) = 1 means that ¢9 | # 0, as ¢ ; corresponds to the U
map at grading 1 part of KHG™ (—S3, K, pm). Thus from the exactness we know

that
b=m+1, cza—m.

From the exact triangle (2) we know that
b+c<a+1

and hence b = m + 1,¢c = a — m. Finally we conclude that

Proposition 4.2. Suppose m > 0 and K, is described as above. Then
KHG™ (=%, K, pm) = R[UL ® (R1)™ ! @ (Ro)™

Furthermore, 17¢(Ky,) = 1.
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Now we could also compute the KHG™ of the knots K,,, the mirror image of K,,.
For m < 0, the computation is exactly the same as before, and we conclude that

Proposition 4.3. Suppose m < 0 and the knot K,, is described as above. Then
KHG™ (=5%, K, pm) = R[UJo @ (R1) ™" @ (Ro) ™™
From the description it is clear that
76(Km) = 0.

For m > 0, we have a similar diagram as in 21 as follows.

@(_Sg(l?m-kl)v_FnJ) M(_S:i(l?m)z_rnai)

SHG(-M, —T', i)
(22)
Let us first compute the case m = 1, when K, is the left handed trefoil. In this
case take n = 1 in (17), we get table 5.

r, Iy Iy

1 1 1
1

0 1 1——b

-1 1 a c

-2 1 1

Table 5: The map 14 ; for K.

The left handed trefoil is not right veering in the sense of Baldwin and Sivek [5], so
from their discussion we could conclude that ¢4 ; = 0. (This is how they prove that
the second top grading of the instanton knot Floer homology of a not-right-veering
knot is non-trivial. Though they only work in the instanton case, the monopole case
is exactly the same.) Thus we conclude that b = 0.

In (22), let m = 0,n = 2,i = 0. Note the grading is induced by S}

'm.2+ INeaning

a Seifert surface of the knot K, which intersects the suture I's transversely at four
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points and with a positive stabilization. This is to incorporate with (3). Thus we
know that

SHG(—S3(K1),—TI'5,0) = R’ = 0, SHG(—S3(Ky), —I'5,0) = R.

Here Ky is the unknot and we have computed the SHG of a solid torus with any
possible sutures in [11]. Thus we conclude that

SHG(—M,-T5,0) > R.
Use the exactness and induction, we then have
SHG(—S*(K,n),T2,0) = R, ¢, <m — 1.

For the knot K,,, take n = 2 in (3), we have table 6. Thus we conclude from

r, Iy I's
2 m m
1 2m —1 m&cm
0 m Cm & 1
—1 ? ?
2 m m

Table 6: The map 14 o for K,,. The sup-script means the map at a particular grading

the exactness that ¢,, = m — 1, ¢} , = 0 and 99 , = 0. As above, the two maps
@l 5 and ¥ , corresponds to the U maps of KHG™ (—S%, Ky, pn) at grading 1 and
0 respectively, and hence we conclude

Proposition 4.4. Suppose m > 0 and the knot K,, is described as above. Then
KHG™ (—5%, K, pm) = R[UI-1 @ (R1)™ @ (Ro)™ .
From the description it is clear that

Tg(km) =0.
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