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Abstract

In this paper, we generalize the work of the second author in [19] and prove a grad-
ing shifting property, in sutured monopole and instanton Floer theories, for general
balanced sutured manifolds. This result has a few consequences. First, we offer an
algorithm that computes the Floer homologies of a family of sutured handle-bodies.
Second, we obtain a canonical decomposition of sutured monopole and instanton Floer
homologies and build polytopes for these two theories, which was initially achieved by
Juhész [11] for sutured (Heegaard) Floer homology. Third, we establish a Thurston-
norm detection result for monopole and instanton knot Floer homologies, which were
introduced by Kronheimer and Mrowka in [16]. The same result was originally proved
by Ozsvath and Szabé for link Floer homology in [23]. Last, we generalize the con-
struction of minus versions of monopole and instanton knot Floer homology, which
was initially done for knots by the second author in [19], to the case of links. Along
with the construction of polytopes, we also proved that, for a balanced sutured man-
ifold with vanishing second homology, the rank of the sutured monopole or instanton
Floer homology bounds the depth of the balanced sutured manifold. As a corollary,
we obtain an independent proof that monopole and instanton knot Floer homolo-
gies, as mentioned above, both detect fibred knots in S3. This result was originally
achieved by Kronheimer and Mrowka in [16].

1 Introduction

Sutured manifold theory and Floer theory are two powerful tools in the study of 3-
dimensional topology. Sutured manifolds were first introduced by Gabai in [5] and
in subsequent papers. The core of sutured manifold theory is the sutured manifold
hierarchy. This enables one to decompose any taut sutured manifold, in finitely many
steps, into product sutured manifolds, which are the simplest possible ones. Gabai
used sutured manifolds and sutured manifold hierarchies to prove some important
results about 3-manifolds, including the remarkable property R conjecture.

Sutured (Heegaard) Floer homology was first introduced by Juhdsz in [9], while
some ad hoc versions were studied by Ghiggini in [7] and Ni in [20]. In particular, Ni
proved the celebrated result that the knot Floer homology, which was introduced by
Ozsvath and Szédbo in [22], detects fibred knots. His result is equivalent to the fact
that sutured Floer homology detects product balanced sutured manifolds, which was
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then generalized by Juhdsz in [11], where he proved that the rank of sutured Floer
homology bounds the depth of a balanced sutured manifold with vanishing second
homology.

The combination of sutured manifold theory with gauge theory was done by Kro-
nheimer and Mrowka in [16], where they defined sutured monopole and instanton
Floer homologies. These new Floer homologies have many significant applications in
the study of knots and 3-manifolds, including a new and simpler proof of the famous
property P conjecture. In [16], Kronheimer and Mrowka proved the following, in
correspondence to Ni’s result.

Theorem 1.1 (Kronheimer and Mrowka [16]). Suppose (M,~) is a balanced sutured
manifold and is a homology product. Suppose further that

tk(SHM(M, 7)) = 1 or rk(SHI(M, 7)) = L.

Then, (M,~) is a product sutured manifold.

Theorem 1.1 has many important applications. For instance, this theorem is
crucial in the proof that Khovanov homology detects unknots, by Kronheimer and
Mrowka [13], and that Khovanov homology detects trefoils, by Baldwin and Sivek [4].
In this paper, we generalize Theorem 1.1 and prove the following:

Theorem 1.2. Suppose (M, ) is a taut balanced sutured manifold, Ho(M) = 0, and
tk(SHM(M, ~)) < 281 or tk(SHI(M, v)) < 281,

Then,
d(M,~) < 2k.

Remark 1.3. If a balanced sutured manifold is a homology product, then Ho(M) = 0.
The converse is not necessarily true. Also, d(M,v) = 0 if and only if (M,v) is a
product sutured manifold.

As a direct corollary to Theorem 1.2, we offer a new proof to the following well-
known fact.

Theorem 1.4 (Kronheimer and Mrowka [16]). The monopole and instanton knot
Floer homologies, KHM and KHI, as defined in [16], both detect fibred knots.

In [27], Xie and Zhang constructed a version of sutured instanton Floer homology
on balanced sutured manifolds with tangles. In [26], they used their construction
as a tool to fully classify links whose Khovanov homologies have minimal possible
ranks. One crucial step in their proofs is to show that the sutured instanton Floer
homology they constructed detects product tangles inside product sutured manifolds.
In this paper, with Theorem 1.2, we can prove a slightly more general result than
their product-tangle-detection theorem.

Corollary 1.5. Suppose (M,~) is a balanced sutured manifold equipped with a ver-
tical tangle T. Suppose further that Ho(M\T) = 0 and SHI(M,~,T) = C. Then,
(M,~,T) is diffeomorphic to a product sutured manifold equipped with a product tan-
gle, i.e.,

(Ma'%T) = ([717 1] X Fv {0} X aF7 [*13 1] x {pl; -'-apn})'
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Here, F is a compact oriented surface-with-boundary, and p1, ..., pn are distinct points
on F.

Remark 1.6. Note we only need the requirement that Ho(M\T) = 0, instead of the
assumption that Hy(M) = 0 in the hypothesis of Theorem 1.2. The later condition
is stronger when tangles do exist. Our assumption is also weaker than the original
assumption that (M,~) must be a homology product in Xie and Zhang [27].

Despite many significant applications mentioned above, there are many basic as-
pects of sutured monopole and instanton Floer theories that remain in mystery. The
usual monopole and instanton theories were defined on closed oriented 3-manifolds,
while balanced sutured manifolds are compact oriented manifolds with non-trivial
boundaries. So, to define the sutured monopole and instanton Floer homologies,
Kronheimer and Mrowka constructed a special class of closed oriented 3-manifolds,
called closures, out of the sutured data. However, the choice of closure is not unique,
which lead to the following two questions:

Question 1.7. In [14], Kronheimer and Mrowka proved that different closures give
rise to isomorphic sutured monopole and instanton Floer homologies. Then, to what
extent can we say that all of the essential information of sutured monopole and in-
stanton Floer homologies is contained in the original balanced sutured manifold rather
than the full closure?

Question 1.8. The monopole Floer homology on a closed 3-manifold decomposes
along spin® structures (see [15]). Correspondingly, the instanton Floer homology de-
composes along eigenvalue functions (see [16]). Then, do we have a spin®-type de-
composition for sutured monopole or instanton Flor homology?

Question 1.9. How do sutured monopole and instanton Floer homologies tell us
information about the Thurston norm on a balanced sutured manifold?

Towards answering the first question, the second author proved in [19] the follow-
ing proposition:

Proposition 1.10 (Li [19]). Suppose (M,7) is a balanced sutured manifold with a
toroidal boundary, and vy consists of two components. Suppose further that Y is a
closure of (M, ), and s1 and s are two supporting spin® structures on 'Y, then there
is a 1-cycle x in M so that

c1(s1) — c1(s2) = P.D.[x] € H*(Y).

Similar statements hold in the instanton settings.

This theorem is central to the second author’s proof of a grading shifting property
for gradings associated to properly embedded surfaces inside those balanced sutured
manifolds that are described in the hypothesis of Proposition 1.10. The grading
shifting property has two consequences in that paper. The first is to compute the
sutured monopole and instanton Floer homologies of any sutured solid tori. The
second is to construct an Alexander grading on the minus versions of monopole and
instanton knot Floer homologies as well as proving many fundamental properties of
them.
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However, in the hypothesis of Proposition 1.10, it is required that M has a toroidal
boundary, and that the suture has only two components. These requirements are very
restrictive. For instance, one cannot use Proposition 1.10 to construct minus versions
of monopole and instanton knot Floer homologies for links. This is because the
sutured manifolds arising from links may have more than one boundary component,
and, thus, Proposition 1.10 does not apply. In this paper, we prove the same result,
as in Proposition 1.10, for any balanced suture manifolds.

Theorem 1.11. Suppose (M,~) is a balanced sutured manifold. Suppose further that
Y is a closure of (M,~), and s1 and sy are two supporting spin® structures on Y.
Then, there is a 1-cycle x in M so that

01(51) — Cl<52) = PD[SC] S Hz(Y)

Similar result holds in the instanton settings.

Thus, to answer Question 1.7, we could say that, in any closure, the difference
of any two supporting spin€ structures, in terms of the Poincaré dual of their first
Chern classes, is contained in the original balanced sutured manifold instead of the
whole closure. Also, Theorem 1.11 leads to a generalization of the grading shifting
property, which was initially discussed in Li [19], as follows.

Theorem 1.12. Suppose (M,7y) is a balanced sutured manifold and o € Ho(M,0M)
is a non-trivial homology class. Pick two surfaces S1 and Sy so that

[81,85'1] = [Sz,aSQ] = E HQ(M, aM),

and they are both admissible (see Definition 2.25) in (M,~). Then, there exist con-
stants Ias, Iy € Z, so that, for any j € Z, we have:

m(_Ma _77517j) = M(_M7 _77527]. - l]\/f)7

and
ﬂ(_Ma -, Sl7j) = ﬂ(_Mv _77527]. - ZI)

The general grading shifting property given by Theorem 1.12 helps compute the
sutured monopole and instanton Floer homology of some families of sutures on a
general handle body. In section 4, we use a concrete example to present the algorithm.
Theorem 1.12 also leads to a generalization of the minus version of monopole and
instanton knot Floer homologies for links:

Theorem 1.13. Suppose L < Y is a link so that each component of L is null-
homologous. Suppose further that L has r components and p is an r-tuple, consisting
of one point on each component of L. Then, associated to the triple (=Y, L, p), we
can construct an infinite-rank module KHM™ (=Y, L, p) over the rings R, the mod 2
Novikov ring. Moreover, KHM™ (=Y, L, p) is well defined only up to multiplication by
a unit in R and has the following properties.

(1) Suppose {S1, ..., Sy} is a collection of r Seifert surfaces, one for each component
of L, then they together induce a Z" grading on KHM™ (=Y, L, p) and KHI™ (=Y, L, p).
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(2) For each i € {1,...,r}, there is a morphism
Ui : KHM™ (=Y, L, p) —» KHM™ (Y, L, p),

which drops the grading associated to S; by 1 and preserves all other gradings. This
makes KHM™ (=Y, L, p) a module over R[Uy,...,U,].

(8) There exists N € Z so that if j = (j1, ..., jr) € Z" is a multi-grading and j; < N
for some i € {1,...,r}, then the morphism U; restricts to an isomorphism

>~

U; : KHM ™ (-Y, L, p,j) = KHM ™ (-Y, L, p, j"),

where 31 is obtained from j by replacing j; with j; — 1.

Furthermore, using instanton theory, we can construct KHI™ (=Y, L, p), which
is well defined up to a multiplication by a non-zero element in the field of complex
numbers, and properties (1), (2), and (3) all hold.

To answer Question 1.8, we construct a canonical decomposition of sutured monopole
and instanton Floer homologies, independent of the choices of closures. To ensure this
decomposition is canonical, we need to pre-fix an element of special type inside the
sutured monopole or instanton Floer homology, which we call a homogenous element.

Proposition 1.14. Suppose (M,~) is a balanced sutured manifold and a € SHM is
a homogenous element. Then there is a canonical decomposition

SHM(M,~) = @  SHM,(M,~,p).
peH?(M,0M;R)

A similar statement holds in the instanton settings.

Thus, we could define polytopes for sutured monopole and instanton Floer theo-
ries, to be the convex hulls of sets of p so that SHM,, (M, ~, p) # 0 or SHI (M, ~, p) #
0. The first definition of such a polytope was introduced by Juhész in the context of
sutured Floer theory. In this paper, we also proved the following:

Corollary 1.15. Suppose (M,~) is a taut balanced sutured manifold with Hy(M) =
0. Suppose further that (M,~) is reduced, horizontally prime, and free of essential
product disks. Then, the polytopes must both have maximal possible dimensions. In
particular, we conclude that

kg (SHM(M,v)) = b* (M) + 1, and dimc(SHI(M, 7)) = b* (M) + 1.

The proofs of Corollary 1.15 and Theorem 1.2 both rely on a technical result
proved in section 5, which describes in detail how sutured monopole and instanton
Floer homologies behave under sutured manifold decompositions. It is closely related
to the decomposition theorem, Proposition 6.9, in Kronheimer and Mrowka [16].

The polytopes we defined for sutured monopole and instanton theories are closely
related to the Thurston norms on the original balanced sutured manifold as well as
on the closures. In particular, the canonical decomposition in Proposition 1.14 and
the grading shifting property in Theorem 1.12 enable us to prove a Thurston norm
detection result for monopole and instanton knot Floer homologies. The same result
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was previously achieved by Ozsvéth and Szdbo in [23], for the link Floer homology
in Heegaard Floer theory.
Suppose Y is a closed oriented 3-manifold and L c Y is an oriented link. Let

L=Liu..uUL,

be the components of L. We require the following two conditions to hold for L c Y.

(1) The link complement, Y (L) = Y\N(L), is irreducible.

(2) The link complement Y (L) is boundary-incompressible.

Let I'), < dY (L) be the suture consisting of a pair of oppositely oriented merid-
ians on each boundary component of Y (L). Then, by Proposition 1.14, there is a
decomposition

KHM(Y, L) = SHM(Y (L),T,) = AP SHM,, (Y (L), T, p).
peH2(Y (L)Y (L);Q)

We make the following definition.
Definition 1.16. For a class a« € Hy(Y (L), Y (L)), define

@)= L omax ol —  omin )}
peH" (Y (L),0Y(L);Q) peH" (Y (L),0Y(L);Q)
SHM (Y (L),T',p)#0 SHM (Y (L),T';,p)#0

Theorem 1.17. Under the above settings,
() + ) Ko, i)l = y(o). (1)
i=1

Here z(-) is the Thurston-norm defined in Definition 2.5. (,) is to take the algebraic
intersection number of a class o € Ho(Y (L), 0Y (L)) with a class [p;] € H1(Y (L)),
where p; is a meridian of the link component L;.

Remark 1.18. Theorem 1.17 offers a complete answer to Question 1.9 in the case
when the boundary of the balanced sutured manifold consists of tori. Suppose M
is a connected compact oriented 3-manifold so that M is irreducible and boundary-
incompressible, and its boundary consists of tori, then we can perform Dehn fillings on
each boundary component of M. The cores of the Dehn fillings give us a Link inside
the resulting closed 3-manifold Y, which satisfies the hypothesis of Theorem 1.17.
Since the Dehn surgery can be performed along any non-separating simple closed
curves, Theorem 1.17 covers all the cases when the suture v on 0M consists of a pair
of non-separating simple closed curves on each boundary component of M. For a
more general suture, when it may have more than two component on some boundary
component of M, we can modify the coefficients of the terms (h, u;» according to the
number of components, and the proof of Theorem 1.17 still applies verbatim.

Organization. In Section 2, we include the basic definitions and known results
that support the proofs in this paper. In Section 3, we study the set of supporting
spin® structures on any closure of a balanced sutured manifold. This will be the
basis for a generalized grading shifting result proven in Section 4. In Section 4,
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we also offer an algorithm that could potentially compute the sutured monopole
and instanton Floer homologies of a families of sutured handle bodies by carrying it
out on a particular example. In Section 5, we use the generalized grading shifting
property to construct a canonical decomposition of sutured monopole or instanton
Floer homology and further construct polytopes in these two theories. Also, we prove
some basic properties of the polytopes as well as the results regarding the depth of
a sutured manifold. In section 6, we present some applications to knots and links:
The first is to prove the Thurston-norm detection result for link complements, and
the second is to construct minus versions for links.
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thank Andrds Juhdsz and Yi Ni for helpful comments or conversations. The first
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2 Preliminaries

2.1 Basic definitions of Balanced sutured manifolds

Definition 2.1. A balanced sutured manifold is a pair (M, ) consisting of a compact
oriented 3-manifold M and a closed oriented 1-submanifold v € dM. On oM, let
A(v) = [-1,1] x v be an annular neighborhood of v < M, and let

R(7) = OM\int(A(7)).

They satisfy the following requirements.

(1) Neither M nor R(vy) has closed components.

(2) If we orient dR(y) = 0A(y) = {£1} x ~y in the same way as vy, then we require
that the orientation on 0R(vy) induces a unique orientation on R(7). This orientation
is called the canonical orientation on R(7y). We use R, (v) to denote the part of
R(y) whose canonical orientation coincides with the boundary orientation of oM,
and R_(7) the rest.

(3) We require that

X(R+ (7)) = x(R-(7)).

Definition 2.2. A balanced sutured manifold (M, ~) is called a product sutured man-
ifoldif M = [-1,1]x R, A(y) = [-1,1]xdR R+ (y) = {1} x Rand R_(y) = {—1} x R.
Here, R is compact oriented surface with no closed components.

Definition 2.3. Suppose M is a compact oriented 3-manifold. M is called irreducible
if every embedded 2-sphere S? = M bounds an embedded 3-ball inside M.

Definition 2.4. Suppose M is a compact 3-manifold and R < M is an embedded
surface. R is called compressible if there is a simple closed curve @ < R so that «
does not bound a disk on R but bounds an embedded disk D < M with D n R = «.
R is called incompressible if it is not compressible. A 3-manifold is called boundary-
incompressible if its boundary is incompressible.
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Definition 2.5 (Thurston norm). Suppose M is a compact 3-manifold, and suppose
U c 0M is a submanifold of M. Suppose further that S is a properly embedded
surface inside M so that 0S < U. If S is connected, then define the norm of S to be

x(S) = max{—x(S), 0}.
In general, suppose the components of S are
S=5u..uS,,
where each S; is connected, then define the norm of S to be
x(S) = z(S1) + ... + 2(Sn).

Moreover, suppose « € Ho(M,U) is a non-trivial second relative homology class, then
define the norm of « to be

z(a) = min{z(S) | (S,0S) = (M,U), [S,05] = a € Hy(M,U)}.

Definition 2.6. Suppose M is a compact 3-manifold, and S < M is a properly
embedded surface. S is called norm-minimizing if

2(5) = z(a),
where o =[S, 0S] € Hy(M, N(0S)). Here, N(0S) is a neighborhood of 05 < 0M.

Definition 2.7 (Gabai [5]). A balanced sutured manifold (M, ) is called taut if the
following is true

(1) M is irreducible.

(2) R4 () and R_(v) are both incompressible.

(3) R4+ (v) and R_(v) are both norm-minimizing.

Definition 2.8 (Gabai [5]). Let (M,~) be a balanced sutured manifold. A product
annulus A in (M, ~y) is an annulus properly embedded in M such that 0A < R(y) and
0A N Ri(vy) # . A product disk is a disk D properly embedded in M such that
0D n A(7) consists of two essential arcs in A(7y).

Product annuli and product disks can detect where (M,~) is locally a product.
We have the following definition following Juhdsz [11].

Definition 2.9 (Juhdsz [11]). A balanced sutured manifold (M,~) is called reduced
if any product annulus A c M either bounds a cylinder D? x I so that 0D? x I = A,
or is isotopic to a component of A(y) inside M.

Definition 2.10 (Gabai [5]). Let (M,7) be a taut balanced sutured manifold. A
properly embedded surface S < M is called horizontal if the following four properties
hold.
(1) S has no closed components and is incompressible.
(2) 0S < A(y), and 0S is parallel to 0R . (7y) inside A(7).
)

(3) [S] = [B+(7)] in Hy(M, A(7)).

(4) x(9) = x(B+(7))-

We say that (M,~y) is horizontally prime if every horizontal surface in (M,~) is
parallel to either Ry (v) or R_(%).
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Definition 2.11 (Gabai [5]). Suppose (M,7) is a taut balanced sutured manifold.
The depth of (M, ), which we write d(M, ), is the minimal integer n so that there
exists a sequence of sutured manifold decompositions (for definitions, see Gabai [5]
or Scharlemann [24])

s s, S
(Mo, v0) ~ (My,v1) ™ oo %8 (M1, Yns1)s

so that each (M;,~;) is taut, (Mg, vo) = (M, ) and (M, 11,¥n+1) is a product sutured
manifold.

Theorem 2.12 (Gabai [5]). For any taut balanced sutured manifold, its depth is
finite.

2.2 Monopole and instanton Floer homologies on balanced su-
tured manifolds

To define sutured monopole and instanton Floer homologies, one needs to construct
a closed 3-manifold, together with a distinguishing surface, out of a balanced sutured
manifold (M,~). To do this, pick T to be a connected oriented surface so that the
following is true.

(1) There is an orientation reversing diffeomorphism

f:0T — .

(2) T has genus at least 2.
(3) There is a fixed base point p € T
Then, we can use f to glue T' x [—1,1] to M, along the annuli A(y), and let

M=M v [-1,1] xT.

idx f
The manifold M has two boundary components:
oM =R, UR_,

where
Ry = Ri(7) ka{il} xT.

Let h : Ry — R_ be an orientation preserving diffeomorphism so that h({1} x {p}) =
{—1} x {p}, then we can form a closed 3-manifold as follows:

Y =M u [-1,1] x R;.
id%h[ A Ry
Here, we use h to glue {1} x Ry to R_ c oM and use the identity map to glue

{—1} x Ry to Ry < OM. Let R = {0} x Ry < Y, and we make the following
definition.
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Definition 2.13. The manifold M is called a pre-closure of (M, ). The pair (Y, R)
is called a closure of the balanced sutured manifold (M,~). The choices T, f, and h
are called the auxiliary data. In particular, the surface T is called an auziliary surface
and h a gluing diffeomorphism.

Definition 2.14. The sutured monopole Floer homology of (M,~) is defined as
SHM(M,y) = HM(Y|R) = @ HM.(Y,sT,).
s€6%(Y|R)
Here, n < R is a non-separating simple closed curve and
&*(Y|R) = {s spin® structures on Y, ¢;(s)[R] = 2¢(R) — 2, m.(Y,ﬁ) # 0}
is called the set of supporting spin® structures. We use the mod 2 Novikov ring R for
coefficients.
Definition 2.15. The sutured instanton Floer homology of (M,~) is defined as

SHIMy) =I(Y|R) = @ (V)
AeH* (Y|R)

Here, w = S* x {p}, and the notation I*(Y), follows from Section 6 in [18]. The set
H*(Y|R) = {Ae H*(Y;Q), A[R] =2g(R) -2, I“(Y)x # 0}

is called the set of supporting eigenvalue functions. We use the field of complex
numbers C for coefficients.

Theorem 2.16. [Kronheimer and Mrowka [16]] The isomorphism classes of SHM (M, ~)
and SHI(M,~) are invariants for a fized balanced sutured manifold (M, ).

Only knowing that the isomorphism class is an invariant is sometimes not enough.
In [1], Baldwin and Sivek refined the definition of closures and construct canonical
maps between different closures. In particular, they proved the following.

Theorem 2.17. Suppose (M,~) is a balanced sutured manifold. Suppose further that
(Y1, R1) and (Ya, R2) are two closures of (M, ). Pick non-separating curves m1 < Ry
and ny © Ry to support local coefficients. Then, there exists a map

>~

&5 HM(Y1|Ry;T,,) = HM(Y3|Ry:T,,),

which is well-defined up to multiplication by a unit in the base ring. Moreover, it
satisfies the following properties.

(1) If (Y1, R1) = (Ya, Ry), then ®1 5 = id. Here, = means equal up to multiplica-
tion by a unit.

(2) If there is a third closure (Ys, R3) of (M,~), then

D13 =Py30P .

Similar results hold in the instanton settings.

10
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Hence, for a balanced sutured manifold (M, v), the sutured monopole or instanton
Floer homologies of closures, together with the canonical maps, form a projective
transitive system, and we can derive a canonical module which we denote by

SHM(M, ~) or SHI(M, 7).

They are well defined up to a unit in the corresponding base ring (field). For more
details, readers are referred to Baldwin and Sivek [1].

Floer excision is a very useful tool introduced by Kronheimer and Mrowka [16]
into the context of sutured monopole and instanton Floer homologies. It has several
different versions, but we only present the version that is be useful in later sections.
Suppose (M,~) is a balanced sutured manifold and M is a pre-closure of (M,~).
Recall that N

oM =Ry UR_.

Suppose we use two gluing diffeomorphisms, h; and hg, to obtain two closures (Y7, Ry)
and (Ya2, Ry ), respectively. Let h = h1_1 o ha, and let Y}, be the mapping torus of h :
R, — R, Then, we can form a cobordism W, which is from Y; LY ™" to Y5, as follows.
Let U be a disk as depicted in Figure 1, and four parts of its boundary, p1, gia, pi3, and
(4, are each identified with the interval [0, 1]. Glue three pieces [0,1] x M, U x R,
and [0,1] x [-1,1] x Ry together, and let

W = ([0,1] x M) iduk})z_l(U xRy) o ([0.1]x [-1,1] x R.).

Here, we use id to glue [0,1] x Ry to u; x Ry, use hy* to glue [0,1] x R_ to
pe x Ry, use h=1 to glue uz x Ry to [0,1] x {1} x R_ and use id to glue py x Ry to
[0,1] x {—1} x R4. Note all the gluing maps are identity on the [0, 1] direction.

Pick a non-separating curve n < T, and suppose the diffeomorphisms h; and ho
we choose at the beginning both preserve 7:

hi({1} x m) = {=1} xn, and ho({1} x 1) = {=1} x 7.
Then, we can use 7 to support local coefficients.

Theorem 2.18 (Kronheimer and Mrowka, [16]). The cobordism W induces an iso-
morphism

HM(W): HM(Y1|Ry;T,) @ HM(Y"|Ry; Zy) — HM (Ya|Ry:T).

There are three basic lemmas that are useful in later sections. Here we only
present them in the monopole settings, but all of them have correspondences in the
instanton settings.

Lemma 2.19 (Kronheimer and Mrowka [16]). The set of supporting spin® structures
&*(Y"R,) consists of a unique element s". Moreover, with Z coefficients,

HM(Y"Ry)=HM,Y" ") =7

When using local coefficients, pick a non-separating curve n < Ry and suppose R
be any suitable base ring for local coefficients, then

HM(Y"|Ry;T,) = HMJ,(Y" s";T,)) = R.

11
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—1 -1
:— h] h T
id || : id] | i
H2 u3
\
\
1 \ 1
1 | 1
M1 ! Ha !
1 1 1
1 1 1
; I N I B N
',’—_ \\\
M x [0,1] Ry xU R, x [-1,1]

Figure 1: Gluing three parts together to get W. The middle part is U x Ry, while the
R, directions shrink to a point in the figure.

Lemma 2.20 (Kronheimer and Mrowka [15]). Suppose Y is a closed oriented 3-
manifold and s is a spin® structure on'Y so that there is a embedded oriented surface
RcY sothat g(T) = 1, and |c1(s)[R]| > 2¢9(R) — 2. Then, we have

HM,(Y,s) = 0.
Similarly, for any local coefficients that could possibly be used,
HM,(Y,s;T,) = 0.

Lemma 2.21. Suppose (W,v) is a cobordism from Y to Y'. Suppose s is a spin®
structure on'Y and §' is a spin® structure on Y’ so that

HM(W)(HM.(Y,s)) n HMJ(Y",8) # {0},
then we know that
is(P.D.c1(s)) = ()5(P.D.cr(s)) € Hy(W).
Herei:Y - W and i : Y' — W' are the inclusions.
2.3 A grading on sutured monopole and instanton Floer ho-

mology

In [19], the second author constructed a grading on sutured monopole or instanton
Floer homology, associated to a properly embedded surface with a connected bound-
ary. We will present the construction in this subsection, while dropping the condition
that 05 is connected, using some new inputs from Kavi [12].

12
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Definition 2.22. Suppose (M, ) is a balanced sutured manifold, and S is a properly
embedded oriented surface. A stabilization of S is an isotopy of S to a surface S’, so
that the isotopy creates a new pair of intersection points:

08" ny=(0S ny)u{py,p-}.

We require that there are arcs o < 95’ and 8 < ~, which are oriented in the same
way as 05’ and ~, respectively, so that the following is true.

(1) We have da = 8 = {p+,p_}.

(2) The curves o and 8 cobound a disk D so that int(D) n (y u dS’) = ¢J. The
stabilization is called negative if D can be oriented so that 0D = a U (8 as oriented
curves. It is called positive if 0D = (—a) U 5.

Denote by S** the result of performing k many positive or negative stabilizations

of S.

\
@
Y

negative

oS positive

<
Y
Figure 2: The positive and negative stabilizations of S.

Lemma 2.23. Suppose (M,~) is a balanced sutured manifold, and S is a properly
embedded oriented surface. Suppose further that ST and S~ are obtained from S
by performing a positive and negative stabilization, respectively. Then, we have the
following.

(1) If we decompose (M, ) along S or ST, then the resulting two balanced sutured
manifolds are diffeomorphic.

13
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(2) If we decompose (M, ) along S~ , then the resulting balanced sutured manifold,
(M',~"), is not taut, because R4 (") are both compressible.

Remark 2.24. The positive and negative stabilization on S will be switched if we
reverse the orientation of S, that is, —(S™) is the same as (—S)~ and —(S7) is the
same as (—S)*. Accordingly, when changing the orientation of the suture, positive
and negative stabilizations are also switched.

Now we present the construction of the grading. This was originally written down
by Baldwin and Sivek in [4] and was then generalized one step further by the second
author in [19], to fit his needs of constructing a Z grading in the minus version of
monopole and instanton knot Floer homologies. In this subsection, we make a further
generalization and introduce the most general setups of constructing such a grading.

Definition 2.25. Suppose (M, ) is a balanced sutured manifold, and S is a properly
embedded surface inside M. Suppose further that S intersects with v transversely. S
is called admissible inside (M, ) if the value (]S n~| — x(S)) is an even integer.

Suppose (M, ) is a balanced sutured manifold, and S — M is an oriented admis-
sible properly embedded surface. In case 0S # J, suppose further that S intersects
with ~ transversely. Let n = %|S N y|. We fix an arbitrary ordering of the boundary
components of S and label all the intersection points of S with v as follows. On
each boundary component of S, index them according to the orientation of ¢S. For
different components of 05, we first index points on the boundary component that
comes first in the fixed ordering. Also, the first point to be indexed on each boundary
component of S is chosen to be a positive intersection of S with v (on ¢M). In this
way, we can assume that

Sy ={p1, ., p2n}-

In [19], when S has a connected boundary, the second author introduced the
notion of balanced pairings to help construct the grading. In Kavi [12], the notion
of balanced pairings was generalized to accommodate a general S. In this paper,
we omit the detailed definitions of balanced pairings and will use the generalized
definition from [12].

Suppose

P = {(ilajl)v e (Zna]n)}
is a balanced pairing of size n. Then, we can pick an auxiliary surface T for (M, ~)
so that the following is true.

(1) The genus of T is large enough.

(2) The boundary of T is identified with the suture ~.

(3) There are properly embedded arcs ay, ..., o, inside T so that the following two
properties hold.

(a) The classes [a1], ..., [a] are linearly independent in Hy (T, 0T).
(b) For k =1, ...,n, we have

day = {pik7pjk}‘
Then, we can form a pre-closure M of (M,~):

M=Mul[-1,1] x T.

14
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The manifold M has two boundary components:
oM =R, UR_.
The surface S extends to a properly embedded surface S inside M:
S=Su[-1,1]xa U...u[~1,1] x ay.

The definition of the balanced pairing makes sure that S Ry and S A R_ have
the same number of components, and the requirement (a) for a; makes sure that
components of S A Ry represent linearly independent classes in Hy(Ry). Thus, there
exists an orientation preserving diffeomorphism i : Ry — R_ so that

MSAR.)=S5nR_.

We can use M and h to obtain a closure (Y, Ry) of (M,~), and, inside Y, the surface
S extends to a closed surface S.

Definition 2.26. Define

SHM(M,~,S,i) = @ HM.(Y,sT,).
se&*(Y|R)
c1(s)[R]=2i

We say that this grading is associated to the surface S © M. The grading defined
on separate closures also induces a grading on the canonical module SHM (M, ), as
stated in Theorem 2.27. We write this grading on the canonical module as

SHM(M, ~, S, 4).

Theorem 2.27 (Kavi [12] and Li [19]). Suppose (M, ) is a balanced sutured manifold,
and S © M is a fixed orietned admissible properly embedded surface surface. Then,
the grading SHM (M, ~, S, 1) is independent of all the choices made in the construction
and, thus, is well-defined.

Using the grading, we can re-formulate Kronheimer and Mrowka’s decomposition
theorem, Proposition 6.9, in [16], as follows.

Lemma 2.28. Suppose (M,7) is a balanced sutured manifold and S < M is an
oriented admissible properly embedded surface. Suppose further that S satisfies the
hypothesis of Proposition 6.9 in [13], and (M',~") is obtained from (M,~) by a sutured
manifold decomposition along S. Let

1 1
gc = Z|S Nyl — iX(S)-

Then, we have
SHM(M, ", S, g.) = SHM(M',~").

15
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Figure 3: The by-pass exact triangle.

2.4 Bypasses
Suppose we have three balanced sutured manifold (M,~1), (M,~2) and (M,~s3)
that the underlining 3-manifolds are the same, but the sutures are different. Suppose
further that 71, 72, and 3 are only different with in a disk D < 0M, and, within the
disk D, they are depicted as in Figure 3.
There are exact triangles relating the

Theorem 2.29 (Baldwin and Sivek [2, 4]).
sutured monopole and instanton Floer homologies of three balanced sutured manifolds

as follows.
SHM(—M, —71) SHM(—M, —72)
SHM(—M, —v3)
SHI(—M, —1) SHI(—M, —v2)
SHI(—M, —s3)
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3 DIFFERENCE OF SUPPORTING SPIN® STRUCTURES

In contact geometry, a by-pass is a half disk, which carries some special contact
structure, attached along a Legendrian arc to a convex surface. For more details,
readers are referred to Honda [8]. There is a description of the maps in the above by-
pass exact triangle as follows. We explain how to obtain the map 112, and the other
two are the same. Let Z = dM x [0, 1], and we can pick the suture ; on dM x {0}
as well as the suture v on dM x {1}. Then, there is a special contact structure &2
on Z, which corresponds to the by-pass attachment. Hence, we can attach Z to M
by the identification 0M x {0} = 0M < M. The result, (M U Z,v2), is diffeomorphic
to (M, ~2), and we have

P12 = Pgy,

Here, ®¢,, is the gluing map associated to &2, as constructed by the second author
in [18].

There is a second way to interpret the maps v+ associated to by-pass attach-
ments based on [21]. In [21], Ozbagci proved that a by-pass attachment could be
realized by attaching a contact 1-handle followed by a contact 2-handle. In sutured
monopole and instanton Floer homologies, there are maps associated to the contact
handle attachments, due to Baldwin and Sivek [2, 3]. So, we can compose those
contact handle attaching maps to obtain . This was the original way Baldwin
and Sivek constructed the by-pass maps (when they define by-pass maps, there was
no construction of gluing maps) and proved the existence of the exact triangle. The
two interpretations are the same because of the functoriality of the gluing maps. For
details, readers are referred to Li [18]. Both descriptions of the by-pass maps are
useful in later sections.

3 Difference of supporting spin® structures

3.1 A basic calculation

Suppose (M,~) is a balanced sutured manifold, and M is a pre-closure of M with
oM = R, U R_. Suppose further that we pick two gluing diffeomorphisms hq, hs :
R, — R_ and obtain two closures (Y7, Ry ) and (Ya, Ry) of (M, ~), respectively. Let
h = h1_1 o hg, and let Y be the mapping torus of h. As in Subsection 2.2, we can
construct a Floer excision cobordism W from Y; b Y" to Y. Suppose i : Yo — W is
the inclusion map. In section 4 of Li [18], the map

i* . Hl(Yg) — Hl(W),

which is induced by the inclusion i : Yo < W, has played a very important role in
proving Proposition 1.10. In this subsection we compute the kernel of i,. A first
observation is that we could just work with Q coefficients, since for grading purpose,
torsion parts have no contributions.

From the description in Subsection 2.2, we know that W is obtained by gluing
three pieces together. We can compute its first homology by applying Mayer-Vietoris
sequences twice and get the following result.

H(W3Q) = [Hi(M;Q) @ ([s1], [8"D]/[im (s — 1) + im(hs — 1)]. (2)
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3 DIFFERENCE OF SUPPORTING SPIN® STRUCTURES

Here are a few things to be explained. First, recall in section 2, we require that the
gluing diffeomorphism h; and ho to fix the same base point p € T. This means that
there are circles s; < Y} and s" < Y of the form {p} x S, respectively. Then, s;
and s" naturally embed into W, and the class [s1], [s"] € Hy(W) are represented by
these two circles.

Second, recall we have a map hy : R, — R_, and, thus, there is a map

< (71_1;* 8 ) :Hi(Ry)® Hi(R_) —> Hi(Ry)® H1(R_).

Note Hi(R4+) @ H1(R_) can be viewed as Hy(Ry u R_) and there is an inclusion
j: Ry uR_— M. So, in equation (2), we use im(h; « — 1) to denote the subspace

e, )] mn

Note, from the maps h : Ry — Ry and j : Ry u R_ — ]\7, we have a space

~

Jx[im(hy — 1)] € Hy(M). Abusing the notation, in (2), we use im(hy; — 1) to denote
Jx[im(hy —1)] and omit j, from the notation. The sum im(hq 4 — 1) +im(hy — 1) is

~

the sum of the two subspaces, as described above, in Hy(M).
In a similar way, we can compute the first homology of Y5.

Hy(Y2;Q) = [H1(M; Q) @ ([s2])]/[im(ha s — 1)]. (3)

Here, the term im(hg 4 — 1) is similar to the term im(h;  — 1) in (2), and sg is the
circle S x {p} < Yz, similar to s; and s in (2). Hence, we can deduce the following.

Lemma 3.1. Leti: Yy — W be the inclusion. Then,
ker(iy) < [im(hy s — 1)]/[im(hex — 1)] € H1(Y2;Q).

Here, the term im(hy x — 1) is the same as the one appeared in (2), and the term
im(hg« — 1) is the same as the one appeared in (3).

Proof. 1t is straight forward to check that
ix([s2]) = [s1] + [s"] € H2(W; Q).
Hence, from (3), we know that the kernel must come from the quotient of Hy (]\7 ;Q):
ker(i) = Hi(M;Q)/[im(ha s — 1)] © Hy(Y2; Q).

Let « € ker(iy4) be any element in the kernel, then, from (3) and (2), we can find
a lift & € H1(M;Q) so that & € im(hy « — 1) + im(hy — 1). Equivalently, there are
classes 8,7 € H1(R+;Q) so that (recall j: Ry U R_ — M is the inclusion)

a = Ju[(h1)«(B) = B] + ju[hs(v) — ]

Write
&' = hy(y) —ve Hi(Ry;Q) € Hi(Ry b R_;Q),

18



3 DIFFERENCE OF SUPPORTING SPIN® STRUCTURES

then we know that (recall hg = hy o h)
1)x(@) +[&" = (h1)«(&)]

) - (hl)*(V) + [6‘/ - (hl)*(d/)]
(h2)sx () =7 + [v = (h)sx(M] + [& = (h1)(&)].

!
~

|
—~
>

Hence, we have

a =Jx[(h2)«(v) — 7]
+ Je[v = (h1)« (V)] +j*[5/ - (hl)*(d/)] + Jx[(h1)«(B) — B].

The first term is in im(ho 4 — 1) and the rest are in im(hq 4 — 1). So, we know that

a € [im(hy x — 1)]/[im(hex — 1)] < Hl(M, Q)/[im(ho,« — 1)] = H1(Y2;Q),

and this concludes the proof of Lemma 3.1. O

3.2 Adding 1-handles

Definition 3.2. Suppose (M,~) is a balanced sutured manifold. A product (or
contact) 1-handle is a tuple (¢, S, D3,6), where S < dD? is the disjoint union of two
embedded disks on dD?, § is a simple closed curve on ¢D?3, which intersects each
component of S in an arc, and ¢ : S — JM is an embedding so that ¢(§ N S) =
v ¢(S) € 0M. Then, we can form a new balanced sutured manifold

(M) = (M D%,y = \é(S) u (8\S)).

Remark 3.3. In Kronheimer and Mrowka [16], this process is called attaching a prod-
uct 1-handle, while in Baldwin and Sivek [2], the same process is called attaching a
contact 1-handle.

Lemma 3.4 (Kronheimer, Mrowka [16] or Baldwin, Sivek [2]). When using auziliary
surfaces of large enough genus, any pre-closure of (M,~) is a pre-closure of (M',~'),
and vice-versa.

Hence, by Lemma 3.4, we can freely add 1-handles to the original (M, ) without
changing its closure. A straightforward observation is the following.

Lemma 3.5. For any balanced sutured manifold (M,~), there exists a set of 1-
handles, {h1,...,h,} so that the following is true.

(1) If (M',~") is the resulting balanced sutured manifold after attaching all 1-
handles hq,..., hy,, then v is connected.

(2) Forl = 1,...,n, if (M;,v) is the resulting balanced sutured manifold after
attaching all 1-handles hq, ..., h, except hy, then Ry () are both connected.

Remark 3.6. The first condition is used in the proof of Lemma 3.7, and the second is
used in the proof of Lemma 3.9.

Thus, from any balanced sutured manifold (M, ), we can find a set of 1-handles,
{h1,..., hn}, according to Lemma 3.5. Let (M’,~') be the resulting balanced sutured
manifold after attaching all those 1-handles, then we have the following lemma.
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Lemma 3.7. Suppose (Y, R) is a closure of (M,~) with g(R) large enough. Then,
(Y, R) can also be regarded as a closure of (M',~') by Lemma 3.4. Suppose further
that 51 and s9 are two supporting spin® structures on Y, then there is a 1-cycle x in
M’ so that

P.D.Cl(ﬁl) — P.D.Cl(ﬁg) = [(E] € Hl(Y,Q)

Similar results hold in the instanton settings.

Proof. We start by constructing a special reference closure of (M’,~’). Pick an aux-
iliary surface 7', and let N
M=Mo[-1,1]xT

be a pre-closure of (M’,~') that is also a pre-closure of (M,~). We have
OM =R, UR_, Ry = Re(Y) u{+1} x T

We can pick a special gluing diffeomorphism A" : Ry — R_ so that h"|(1y g = idy.
Let (Y",R,) be the closure of (M’,~') arising from A" and M. We know that A" can
be split into two parts, f" = h"|g, (/) and idqv.

Thus, we have an alternative interpretation for Y. First, we can use f" :
Ry(v) — R_(y) to glue Ry (v) € oM’ to R_(y') < dM’, and M’ becomes a
manifold M] with a toroidal boundary. Note f"[sg, (/) = id, so we have a natural
framing s” and 4" on dMj. Here, s” is obtained as follows. If ¢ € 4/ is a point, then
we have an arc [—1,1] x {¢} = A(v). Note f” identifies {1} x {g} with {—1} x {q}, so
[-1,1] x {q} becomes a circle s" inside dM;]. Second, we can glue M] and S* x T’
together to form Y:

V' =M yS T

where ¢ : OM{ — 0(S* xT") maps s! to the S* direction and maps v’ to 07" direction.
Let g(T) =k, and let {ay, by, ..., ar, b} be a set of generators of Hy(T") as in Figure
4. Then, we can use Mayer Vietoris sequence to conclude the following:

Hi(v7;Q) = (Hy(M'5Q)/fim(f = D) @[], [aa], -, [be])- (4)

Here, the term im(f} — 1) is similar to the term im(hy » — 1) in (2). Suppose s
is a supporting spin® structure on Y, then we can write P.D.ci(s) in terms of the
description of H1(Y") in 4. The coefficient of the class [s"] can be understood to be
2g(R) — 2 by looking at the pairing

ci1(s)[R] = 29(R) — 2.

The coefficients of [a1], ..., [bx] are all zero, since we can apply the adjunction in-
equality in Lemma 2.20 to the tori b; x S, ...,ar x S' < Y. Thus, we conclude the
following.

Lemma 3.8. Suppose s is a supporting spin® structure on Y, then there is a 1-cycle
[z] in M’ so that

P.D.ci(s) = [z] + (29 —2)[s"] € H1(Y"; Q).

Similar statement holds in the instanton settings.
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Figure 4: A basis for Hy(T").

Now suppose h : Ry — R_ is any gluing diffeomorphism, and (Y, R) is the
resulting closure of (M’,7). Let » = (h")"*oh : Ry — Ry be a diffeomorphism,
and let Y¥ be the mapping torus of ¢». We can form an excision cobordism W
from Y" LYY to Y, as in Subsection 2.2. Then, we can compute via MayerVietoris
sequences that

Hi (V") = (Hi (5 Q)/fim(tx — 1)]) @ ([s*]). (5)

Here, s¥ is the same as the term s" in (2). Leti:Y — W, 4" : Y™ — W, and
i¥ : Y¥ — W be the inclusions. Suppose s is a supporting spin® structure on Y,
then, from Lemma 2.21, we know that there is a supporting spin® structure s” on Y
so that
ix[P.D.ci(s)] = i, [P.D.ci(s%)] + iY[P.D.c1(s%)] € Hi(W;Q).
Here, s¥ is the unique spin® structure on Y%, as in Lemma 2.19. To find all possible
values of P.D.cy(s), we first find a class [z] € H1(Y; Q) so that

ix([2]) = iL[P.D.c1(s%)] + il [P.D.c1(s%)] € Hy(W;Q),

and then
P.D.ci(s) € [z] + ker(ix) < H1(Y;Q).

Note ker(i,) has been understood by Lemma 3.1.
To find the class [z], by Lemma 3.8, we know that there exists a 1-cycle z in M’
so that
P.D.ci(s") = [z] + (29 — 2)[s"] € H1(Y";Q).

For 5%, we can check similarly (or see Subsection 4.2 in Li [19]) that there is a 1-cycle
y in R4 so that

P.D.c;(sV) = [y] + (29 — 2)[s¥] € H,(YV; Q).

Inside W, there are annuli z x [0, 1] and y x [0, 1] and a pair of pants from s" L1 s¥
Y™ LYY to s c Y. Hence, we can take z to be the 1-cycle in Y, of the form

z=z+y+ (29 —2)s.
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Note z is in M’ and y is in R, so there are natural ways to regard them as 1-cycles
in Y. Thus, we know that

ix([2]) = iL[P.D.ci(s%)] + il [P.D.ci(s%)] € Hi(W;Q)
and, hence,
P.D.ci(s) € [z] + [y] + (29 — 2)[s] + ker(ix) € H1(Y;Q). (6)
From Lemma 3.1, we know that

ker(iy) < [im(hy — 1)]/[im(hs — 1)].

Note that bl —1 = fi — 1 since h|p/x(1y = idys. By construction, [im(fy —1)] is
contained in Hq(M’), and, thus, we know that ker(i,) can only contribute to the part
[z] in (6). As a result, we conclude that there is a 1-cycle ' in M’ so that

P.D.ci(s) = [2'] + [y] + (29 — 2)[s] € H1(Y; Q).

Note [y] + (29 — 2)[s] is independent of the choice of the supporting spin® structure
on Y, so we conclude the proof of Lemma 3.7. O

3.3 Dropping 1-handles

Recall we have a balanced sutured manifold (M, ), and we have a set of 1-handles,
{h1,...,hn}, as in Lemma 3.5. Recall further that (M’ ,~') is the resulting balanced
sutured manifold after attaching all of those 1-handles. In Lemma 3.7, we prove
that, in terms of the Poincaré dual of the first Chern classes, the difference of two
supporting spin¢ structures on Y is contained in M’. In this subsection, we sharpen
the result and prove that the difference must lie in M instead of the whole M’, which
is exactly the statement of Theorem 1.11.

Suppose, for | = 1,...,n, (M;,) is the resulting balanced sutured manifold after
attaching all 1-handles hy, ..., h,, except h;. Then, (M’,~’) is obtained from (M, ;)
by attaching h;. Recall, from Subsection 3.2, we have an auxiliary surface 7" for M’
and a pre-closure M. Then, from Lemma 3.4, M is also a pre-closure for (M, ;).

Thus, any closure (Y,R) arising from M is also a closure for (M;, ).

Lemma 3.9. For any fized l, suppose (Y, R) is a closure of (M,~) with g(R) large
enough, then (Y, R) is also a closure for (My,~) by Lemma 3.4. Suppose further that
51,59 are two supporting spin® structures on Y, then there is a 1-cycle in M; so that

P.D.Cl(ﬁl) — P.D.Cl(ﬁg) = [I] € Hl(Y,Q)
Similar result holds in the instanton settings.

Proof of Theorem 1.11. Note (M',~') and (M;,~;) are obtained from (M,~) by at-
taching 1-handles. So, there are injections

Hy(M;Q) — Hy(M;;Q) — Hy(M";Q).

22



3 DIFFERENCE OF SUPPORTING SPIN® STRUCTURES

Also, inside H;(M’';Q), we have
Hy(M) = (| Hi(M).
=1

So, Lemma 3.9, together with Lemma 3.4, implies Theorem 1.11. O

Proof of Lemma 3.9. By Lemma 3.7, we know that there is a 1-cycle x is in M’ which
satisfies the statement of the lemma, but our goal is to show that x can be chosen
inside M;. Recall, in the proof of Lemma 3.7, we pick a special reference closure Y
by requiring h"|p/ (13 = idr (and f" = h"|g, (41)). To prove the current lemma, we
will need an even more special closure, by making further restrictions on f”. Though
we will keep using the notations Y, h™ and f", etc.

To explain the further restriction on f", recall that (M’,~') is obtained from
(M;,~;) by attaching the 1-handle h;. We can write

Hy(M";Q) = Hi(My; Q) ©<ew),

where «; consists of the core of the 1-handle h; together with an arc inside M;. Let
D; be the co-core of the 1-handle h;. It is a properly embedded disk D; < M’ that
intersects «y transversely at one point, and 0D; intersects Ry (') in arcs ;4. See
Figure 5. Note, by the condition (2) in Lemma 3.5, the arcs §; + are non-separating
inside R4 (7"). Thus, from Lemma 3.6 in Li [18], we can find a map f” which sends

B+ to B-.
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Figure 5: The one handle h;.

Now we can use the new h” to obtain the closure (Y, Ry). It not only satisfies
all requirements needed to conclude the proof of Lemma 3.7, but also has some new
features. Suppose the co-core D; intersects +' at two points p;, q; and let v < T” be a
simple arc with end points p;, q;. Then, we know that

Dy =Dy (v x [-1,1])
is a properly embedded surface in M so that

aﬁlﬂRi=Ci=BiU’yX{i1}.

23



3 DIFFERENCE OF SUPPORTING SPIN® STRUCTURES

From the above construction, we know that h"(C}) = C_. Hence, Dy becomes a
torus T; < Y. (It is straightforward to compute the Euler characteristic to see that
it is indeed a torus.) Note this torus T; intersects ¢ transversely at one point, but is
disjoint from all other generators of

Hi(M'; Q) = Hi(M;; Q) @ {[au])-

As a result, we can use the adjunction inequality in Lemma 2.20 to make a refine-
ment of Lemma 3.8 as follows.

Lemma 3.10. Suppose s is a supporting spin® structure on Y, then there is a 1-cycle
[z] in M; so that

P.D.ci(s) =[z] + (29 — 2)[s"] € H1(Y";Q).

Similar results hold in the instanton settings.

Suppose (Y, R, ) is an arbitrary closure of (M, ), arising from the pre-closure M
and a gluing diffeomorphism h. We can form the diffeomorphism = (h")~! o h,
the mapping torus Y%, and the excision cobordism W, as in the proof of Lemma 3.7.
Suppose further that s is a supporting spin® structure on Y, then we know from (6)
that

P.D.ci(s) € [z] + [y] + (29 — 2)[s] + ker(ix) < H1(Y;Q),

where i : Y — W is the inclusion, y is a 1-cycle on R, s is the curve {p} x St c Y,
and z is a 1-cycle in M; guaranteed by Lemma 3.10.
From Lemma 3.1, we know that

ker(ix) < [im(h —1)]/[im (A2« — 1)].
By construction, we know that
im(hy —1) = im(f; — 1) = Hi(M"; Q).
To conclude the proof of Lemma 3.9, we need to show that
im(h — 1) = im(fy —1) = Hi(M;Q),
and this is equivalent to show that, under the decomposition
Hi(M";Q) = Hi(My; Q) @ {[cu]),

any element [z] € im(f; — 1) can not have a non-zero [¢;] component.
To prove this final statement, suppose [z] € im(f; — 1) is of the form

[2] = a-[oa] + Hi(M;;Q)

for some a € Q, then we need to show that a = 0. Note, from (4), we know that
[2] =0€ Hy(Y"). Also, inside Y7, [z]-[T}?] = a, since, by construction, [ay]-[T7] = 1,
and le N M; = . Thus, we know that a = 0, and this concludes the proof of lemma
3.9. O
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4 General grading shifting formula

In this section, we prove the generalized grading shifting formula, Theorem 1.12, as
stated in the introduction. We also use it to compute the sutured monopole and
instanton Floer homologies of some particular sutured handle-bodies.

Proposition 4.1. Suppose (M,~) is a balanced sutured manifold, and S < M is a
properly embedded surface. Pick i€ Z so that the surface S*, which is obtained from
S by performing i times of stabilizations, is admissible (see Definition 2.25). Pick
any k € Z. Then, there exist constants lys,l; € Z so that, for any j € Z, we have:

SHM(—M, =, §*%*, j) = SHM(=M, —v, 5%, j — lar),

and 4 ,
ﬂ(_Ma -, Sl+2kaj) = ﬂ(_Mv e Sluj - ll)

Moreover, if the sutured manifold decompositions of (M,~y) along S and —S are both
taut, then Iy =1l = k.

Proof. We now prove the first part of the proposition, namely the existence of [ and
the fact that it is independent of j. As usual, we argue this in the monopole settings,
but the same is true for the instanton settings. Suppose (M,~) and S are defined
the same as in the hypothesis of the proposition. We follow the idea in Subsection
2.3, to construct a closure (Y, R) of (M,~) so that both S* and S**2¥ extend to
closed surfaces. To do this, put both S* and S**2¥ in M so that they are transverse
and 05" n 08"T? = (¥ in Y. Note we can always achieve this. If S intersects
v, then the positive and negative stabilizations can be performed in an arbitrarily
small neighborhood of S N 7, so we can simply start with two parallel copies of S
and perform ¢ and i 4+ 2k stabilizations respectively. If 05 n vy = &, then positive
and negative stabilizations happen on different sides of S, and we can always perturb
them to be distinct. See figure 6.

Now we pick a connected auxiliary surface T for (M, ), which is of large enough
genus. For both S° and S**2*, we can apply the construction of gradings as in
Subsection 2.3. If the genus of T" is chosen to be large enough, then we could arrange
the arcs, which come from both 05* and 0S*+2%, all represent linearly independent
classes in Hy(T,0T). We can then form the pre-closure M = M v [—1,1] x T and it
has two boundary components oM = Ry u R_. As in Subsection 2.3, we know that
Si and S+2* hoth extend to properly embedded surfaces S¢, Si+2% < M, and there
are equal number of boundary components on R, and on R_.

Thus, we can pick an orientation preserving diffeomorphism h : R, — R_ so that

(S ARy) =S nR_, and h(S"*? A R,) = §*?* A R_.

Using h and M, we obtain a closure (Y, Ry) of (=M, —v) so that there are closed
surfaces S* < Y and §i+2k c Y. Pick a non-separating simple closed curve 1 which
is disjoint from S% U §**2%. Then, as in Subsection 2.3, we know that

SHM(~M,—v,58,j)= @  HM.(Y,sT,),

5€G*(Y|Ry)
c1(s)[S']=2j
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A
o Qv

Sz‘ Si+2k
Figure 6: Pushing off S7+2.

and
SHM(~M,—7, S j)= @  HM.(Y.sT,)
s€6*(Y|Ry)
c1(s)[§F2F] =25

Now, suppose 1,52 € &*(Y|R,) are two supporting spin® structures, then, from
Theorem 1.11, we know that there is a 1-cycle x < M so that

[61(51) — 61(52)] = PD[.T] € HZ(Y)
Since z ¢ M and S* is isotopic to S**2* in M, we know that

[Cl (51) —C1 (52)] [51] — [Cl (51) —a (52)] [§1+2k]

Thus, the number

lar = %(cl(sl)[gi] — er(s1)[SH]) = %(01(52)[@‘] — e1(s2)[STH2H))

is the desired constant in the statement of the proposition.

When the decomposition of (M,~) along S and —S are both tight, then we can
settle down the value of [ by looking at the top or bottom non-vanishing grading and
conclude | = k. This part of the proof is exactly the same as the proof of Proposition
4.3 in Li [19]. O

Conjecture 4.2. In general, we always have | = k.

Corollary 4.3. Suppose (M,~) is a taut balanced sutured manifold and D < M
is a disk so that D intersects v transversely four times. Suppose further that the
decompositions of (M,~) along D and —D are (M',~') and (M",~"), respectively. If
at least one of the two decompositions is taut, then

SHM(M,~) = SHM(M',~") @ SHM(M",~").
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Similar results holds for the instanton settings.

Proof. Without loss of generality, we can assume that (M’ ,+) is taut. We can per-
form a positive stabilization on D to make it admissible. Then, it induces a grading

SHM(M, v, D%, 4).

The adjunction inequality in Lemma 2.20 tells us that there are only three non-trivial
gradings, being ¢ = —1,0,1. Lemma 2.23 and Lemma 2.28 then imply that

SHM(M, ~, D*, 1) = SHM(M’,+'),

SHM(M,~, D", —1) = 0.
Applying Proposition 4.1 and Lemma 2.28, we know that

SI—IJ(M3’77D+7O) = SI—IJ(M777D_7 _1)
= M(M,’Y, (7D)+7 1)
~ SI_IiM(M”,’Y”)

Hence, we are done. O

This gives an affirmative answer to Conjecture 4.3 in Li [17].

Corollary 4.4. Suppose V is a solid torus, and v* consists of four longitudes. When
using Z coefficients, we have

SHM(V,~v*) = 72

With the help of Proposition 4.1, we can prove the general grading shifting prop-
erty, Theorem 1.12, as stated in the introduction.

Proof of Theorem 1.12. Assume that S; and Sy are transverse to each other. We
need to isotope S; and Sy into Sil’zll and Sﬁf’zé, respectively. Here, i1,i2 = 0 indicate
the number of positive stabilizations on S; and Ss, respectively. Similarly, ¢}, < 0
correspond to the negative stabilizations. We require the following six conditions to
hold. . o,

(1) Both S}V and S5 are admissible, and no more intersection points are
created during the stabilizations.

(2) Any positive intersection of Sil’il with S;z’iz is contained in R4 (), and any
negative intersection is contained in R_ (7).

(3) If 0y is a component of 55;”41 and 6; N S;Z’ié # &, then 0; Ny # .
(4) If 0 is a component of 0S5>** and 6 N S;""" # &, then 0y Ny # .
(5). If §; is a component of 65;"""* N R(v), then § intersects S;°'"> at most once.

(6). If 62 is a component of 65;2’i2 N R(v), then ¢ intersects S’il’il at most once.
Pick a connected auxiliary surface 7' of large enough genus, and form the pre-
closure M = M u [-1,1] x T. It has two boundary components:

oM =R, UR_.
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21,11

We can carry out the construction of gradings in Subsection 2.3 on both S and

S”’Zz Suppose
\S“’“ N y|, and ng = f|S’Z2’l2 Nyl

Pick two balanced palrlngs 771 and Ps, as introduced in Subsection 2.3, for the two
surfaces S“’ ' and S 2’12, respectively. Inside T, pick a set of disjoint properly em-
bedded arcs {aj, ... oznl,,Bl,. ,ﬁnz} so that the end points of «y, are identified with
the intersection points of S i N ~, according to the balanced palrlng P, and the

end points of B; are identified with the intersection points of Slz’ 2

the balanced pairing Ps. There is one special requirement for 771

N 7, according to

(7) If §; is a component of 85;1’2/1 N R(7), which intersects S;Z’Zé non-trivially,
then there is an arc ag, so that day, is identified with 0d,

Strictly speaking, 0§ < dR(7y), but we could regard dd to be on =, since 0R(7) is
parallel to . Similarly, we require the following for Pa.

(8) If &2 is a component of 85;”/2 N R(y), which intersects Sil’z/l non-trivially,
then there is an arc §;, so that 03;, is identified with 0ds.

Note when we perform enough positive and negative stabilizations, the balanced
pairing satisfying the constraints (7) and (8) always exist. When the genus of T
is large enough, we can choose the arcs, ai, ..., an,, 51, ..., Bn2, to represent linearly

independent classes in Hy (T, 0T). Then, inside M , Sil’il and S;“Q extend to properly
embedded surfaces §“’“ and §;2’12, respectively. From the construction, we know that

65”’“ N R, and 65”’“ N R_ have equal number of boundary components. Thus, let

i, gir ot
05" "' NnRy =C11U...uCys, and 0S;" ' NR_=C_1uU..uC_j

Similarly, we can assume
i Gzt
05" "Ry =Di1uU..uDyy, and 0552 NnR_=D_1U..uD_,.

Note the intersection points of 5”;1’1,1 and 5;2’112 are in one-to-one-correspondence
to the intersection points of S; and Sy by requirement (1). We claim that 057 n 0S5
consists of an even number of positive and negative points. Indeed, 05; ndS; = 95; N
S;, and it is clear that the algebraic intersection number of 05; and S; is zero. Hence,
on Ry, we have a collection of circles C4 1,...,C+ s, D+ 1...D+ ;. They represent
linearly independent classes in Hy(Ry). There might be intersections between Cy j
with Dy ;, but, by requirement (5), (6), (7), and (8), each C4 j intersects with
at most one D ;, and each D ; intersects with at most one Ci . Hence, the
pattern of C4 1,...,Cy s, D1 1,...,D4 4 on Ry is exactly the same as the pattern of
C_1,..C_5,D_1,...,D_,on R_. As aresult, there exists an orientation preserving
diffeomorphism h : R, — R_ so that

(85”’11 NRy)= 65”’“ R_, and h(&SZ"”l2 NRy)= 6522’12 NR_.
Hence, we can obtain a closure (Y, R.) of (M,~) from M and h. Inside Y there

are two closed surfaces S'il’il and 5ff’i27 and they induce gradings on SHM (M, v) that
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are associated to Sil’il and S;z’iz, respectively. The rest of the proof is then exactly
the same as the proof of Proposition 4.1. O

Next, we want to compute the sutured monopole and instanton Floer homolo-
gies of the following balanced sutured manifold (M,~), as depicted in Figure 7.
(Strictly speaking, they are the sutured monopole and instanton Floer homologies
of (~M,—7).)

Figure 7: The sutured manifold (M,~). The three curves (red, blue and green) are the
sutures. The disk D is used to construct a grading.

The idea is to apply the by-pass exact triangles repeatedly. There is a graded
version of by-pass exact triangles, as in Li [19], generalizing the by-pass exact triangle
introduced in Subsection 2.4.

SHM(—M, —v, D, i) — SHM(—M, —y1, D12, i) (7)

T

m(_Mv -2, D;7Z)

Here, the surfaces D is chosen as in Figure 7 so that it has six transverse intersection
with the suture 7. The surfaces Dy, Do € M are isotopic to D, but having minimal
possible transverse intersection with ~; (two intersections) and «y, (four intersections)
respectively. The sup-scripts in Dy and Dy 2 imply the number of positive or negative
stabilizations performed on the surfaces D; < M and D, < M, as introduced in
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Subsection 2.3. A direct check shows that (M,~;) is a product sutured manifold and
the suture 79 is depicted as in Figure 8.

Figure 8: The sutured manifold (M,~2). The three curves (red, blue and green) are the
sutures.

Now we know that
SHM(—M, —~1) = SHM(—~M, —v1, D1,0) = R.
As a result, by Lemma 2.23 and Lemma 2.28, we know that

R i=1

SHM(—M, *'Ylle_Q i) = { 0 others ®

From the construction of gradings in Subsection 2.3 and the adjunction inequality in
Lemma 2.20, we know that

SHM(—M, 72, D5 ,4) = 0

for i > 1 or i < —1. From Lemma 2.23 and Lemma 2.28, we know that
SHM(—M, —v2, D5 ,1) = 0.

Hence, from the graded exact triangle in (7), we conclude that

SHM(—M, —v) = R ® SHM(—M, —2). (9)
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To compute the sutured monopole Floer homology of (M,~,), we perform the
same trick once more and conclude that

SHM(—M, —v2) = R @ SHM(—M, —v3), (10)

where (M, ~3) is the balanced sutured manifold as depicted in Figure 9.

Figure 9: The sutured manifold (M,~3). The three curves (red, blue and green) are the
sutures.

To compute the sutured monopole Floer homology of (M, ~y3), we could perform
a sutured manifold decomposition along the disk D as depicted in Figure 9. Sup-
pose (My,v4) is the resulting balanced sutured manifold, then, from Kronheimer and
Mrowka [16], we know that

SHM(—M, —~3) = SHM(—My, —7s4).

Furthermore, the balanced sutured manifold (My,~4) is a solid torus equipped with
two curves of slope % as the suture, as depicted in Figure 10, so from Li [19], we know
that

SHM(—M, —v3) =~ SHM(—My, —y4) = R,

Finally, we conclude that
Proposition 4.5. SHM(—M, —v) =~ R5.
The same type of arguments in instanton theory yields the following.

Corollary 4.6. SHI(—M, —v) = C®.
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Figure 10: The sutured manifold (M,~4). The three curves (red, blue and green) are the
sutures.

5 Polytopes

5.1 Constructing the polytope

Suppose (M,) is a balanced sutured manifold, and « € Ho(M,0M) is a second
relative homology class. From Theorem 1.12, there is a grading on SHM (M, ~) or
SHI(M,~) associated to «, which is well-defined up to an overall grading shifting.
Hence, we can define the following.

Definition 5.1. An element a in SHM(M,~) or SHI(M,~) is called homogenous if
for any homology class « € Ho(M,0M), the element a is homogenous with respect to
the grading associated to a.

Lemma 5.2. For any taut balanced manifold (M, ), there exist non-zero homogenous
elements in SHM(M,~) and SHI(M, 7).

Proof. Pick a basis a,...,a, for Ho(M,0M). Pick admissible properly embedded
surfaces 51, ...,.5, to represent aq, ..., a,, respectively. We can carry out the proof
of Theorem 1.12 again. This time we have n many surfaces instead of just two, but
the construction is exactly the same. As a result, we obtain a special closure (Y, R)
of the balanced sutured manifold (M,~) so that, inside Y, the surfaces Si,..., S,
extends to closed surfaces Si, ..., Sy, respectively, and the surfaces Si, ..., .S, are the
ones used to define gradings on SHM(M,~) associated to Si,..., Sy, respectively.
Also, pick some suitable non-separating simple closed curves n on R to support local
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coefficients. On Y, the surfaces S, ..., S, induces a Z"-grading on HM (Y|R; r,)
by looking at the evaluation of the first Chern classes of spin® structures on those
closed surfaces. Suppose s is a supporting spin® structures (see Definition 2.14) on

Y,and a € HM «(Y,50;T,)) is a non-zero element, then we know that the element a
is homogenous with respect to all the gradings induced by S, ..., S,,. We claim that
it is a homogenous element as defined in Definition 5.1.

To prove the claim, suppose o € Ha(M, ) is any homology class. Since aq, ..., ay,
form a basis of Hy(M, ), a is a linear combination of o, ..., ,,. Thus, we can perform
a sequence of double curve surgeries (for definition, see Scharlemann [24]) on Sy, ..., S,
to obtain a properly embedded surface S that represents the class o € Hy(M, 7).
Correspondingly, we can perform the same set of double curve surgeries on Sy, ..., S,
to obtain a closed surface S — Y, which extends S and which induces the grading
associated to S. Then, we know that the element a is a homogenous element with

respect to the grading associated to .S, and this concludes the proof of lemma 5.2. [

Lemma 5.3. Suppose (M,~) is a balanced sutured manifold, and a,b € SHM(M,~)
are two homogenous elements. Then, there is a well defined element p(a,b) € H?(M, oM ; Q)
associated to the (ordered) pair (a,b).

The same result holds in the instanton setups.

Proof. We first construct the map
pa,b) : Ho(M,0M) — Z.

For any class a € Ho(M,0M), we pick a surface S that represents the class o and is
admissible. Define

p(a,b)(a) = difference between a and b under the grading associated to S.

This is well defined by Theorem 1.12. This map is linear by essentially the same type
of argument as in the proof of Lemma 5.2. Then, we can regard p(a, b) as an element
in H?(M,0M; Q). O

Definition 5.4. Suppose (M, ) is a balanced sutured manifold, and a € SHM (M, v)
is a homogenous element. For an element p € H?(M,0M;R), define

SHM,, (M, ~, p) = {be SHM(M, ), p(a,b) = pe H*(M,0M;R)},

and
SHI, (M., p) = {be SHI(M,), p(a,b) = pe H2(M,0M;R)}.
Let
SM,(M,~) = {p e H*(M,0M;R), SHM,(M,~,p) # 0}
and

SI,(M,~) = {pe H*(M,0M;R), SHL,(M,~,p) # 0}.

Define the polytopes PMy(M,~) and PI,(M,~) to be the convex hull of SM,(M,~)
and SI,(M,~), respectively.
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Lemma 5.5. Suppose a and b are two homogenous elements in SHM(M, v), then the
polytopes PM,(M,~) < H*(M,0M;R) is a translate of PMy(M,~) < H*(M,0M;R).
The same result holds in the instanton setups.

Proof. 1t is straightforward from the construction. O

5.2 Dimension formula

Lemma 5.6. Suppose (M,7) is a taut balanced sutured manifold with Ho(M) = 0,
and A is an incompressible product annulus. Then, we can pick an orientation of A
so that the sutured manifold decomposition of (M,~) along the oriented A yields a
taut balanced sutured manifold (M',~"), that SHM (M’,~") is a direct summand of
SHM(M,~), and that SHI(M',~") is a direct summand of SHI(M,~).

Proof. Since A is incompressible, we know that dA < R(vy) does not bound a disk.
Note that Lemma 4.2 in Scharlemann [25] makes sure that no matter which orientation
of A we choose, the balanced sutured manifold after the decomposition is taut. There
are three cases:

Case 1. Both components of dA are homologically essential on R(7).

Case 2. Both components of 0A are homologically trivial on R(7y). Then, there
are V, < Ry (y) and V— < R_(v) so that 0V, U 0V_ = dA (as unoriented curves).
Thus, we have a closed surface Vi U A U V_. The fact that Hy(M) = 0 implies that
this closed surface is separating, or equivalently, A separates M into two parts, of
which one has boundary V, u A U V_. Thus, this part is disjoint from .

For the above two cases, the lemma follows from Proposition 6.7 of Kronheimer
and Mrowka [16].

Case 3. One component of 0A is homologically essential, and the other is inessen-
tial. Then we can choose a suitable orientation of A to make 0A being boundary
coherent, in the sense of Kronheimer and Mrowka [16], so that Proposition 6.9 in
that paper applies, and, thus, we conclude the proof of Lemma 5.6. O

Lemma 5.7. Suppose (M,~) is a taut balanced sutured manifold and S < M is
a properly embedded decomposing surface. Suppose p,q < S N~y are two points of
different signs. Then, we can attach a product 1-handle, in the sense of Definition
3.2, to obtain a new taut balanced sutured manifold (My,v1) and a new properly
embedded surface S1 < My so that the decomposition

s
(M, )~ (M',5)
1s taut if and only if the decomposition
Sy
(My,71) > (My,~1)
is taut. Furthermore, there is a commutative diagram
SHM(Mi, 1)~ SHM (M, ).
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A similar statement holds in the instanton settings.

Proof. This is how Kronheimer and Mrowka proved Proposition 6.9 in [16]. S} is ob-
tained from S by attaching a 2-dimensional 1-handle inside the 3-dimensional product
1-handle. See Figure 11.

71 e A T L L L

Figure 11: Adding a product 1-handle.

O

Proposition 5.8. Suppose (M,7) is a balanced sutured manifold with Ho(M) = 0
and is taut, reduced, horizontally prime, and free of non-separating essential product
disks. Suppose a € Ho(M,0M) is a non-zero class. Then, we can find properly
embedded surfaces S and S’ in M so that

(1) [S] = —[5"] = a € Hy(M,oM).

(2) The sutured manifold decompositions

(M,5) S (M',7') and (M,5) & (M”,~")

are both taut.
(8) SHM(M',~") and SHM (M",~") are direct summands of SHM (M,~), (by
Proposition 6.9 of Kronheimer and Mrowka [16]) and

SHM(M',~'yn SHM(M",~") =0

in SHM (M, ).
(4) The same result holds for SHI.

Proof. From Lemma 0.7 in Gabai [6], we can pick an S so that the following holds

(i) S represents the class a € Hy(M,0M).

(ii) For any component V of R(7), if S n V has a closed component, then S n V
consists of parallel, parallel oriented non-separating simple closed curves.

(iii) For any component ¢ of 0R(7y), all the intersection points of S with ¢ are of
the same sign.
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(iv) S intersects A(7y) in parallel and coherently oriented essential arcs.
(v) The sutured manifold decomposition

(M,~) 2 (M,

is taut.
To find S’, we proceed as follows, according to Gabai [5], Scharlemann [25] or
Juhasz [11]. Pick U = N(0S) u A(vy) < dM. Pick a large enough k € Z so that

z(—a+ (k+1[R()]) = z(—a + k[R()]) + 2(R(v)),

where z(-) is the Thurston norm for classes in Hy(M,U). Pick a norm-minimizing
embedded surface which represents the class —a + k[R(y)], and disregard all compo-
nents of it, which represent the zero homology class, then the remaining surface S’ is
the desired one. Note

[0S'] = —[0S] + 2k - [y] € Hy(U).

Here, it is 2k rather than k, because each copy of R(7) contributes 2[y]. We can
arrange so that 05’ is obtained from —0dS and 2k copies of v by an oriented smooth-
ing as in Figure 12. From construction of S’, we know that the sutured manifold
decomposition

(M, ) 5 (M",5")

is taut.

/"
= 0l >
R(v) e
A(y)

—0S

Figure 12: The smoothing inside A(7).
From the above construction of S, we know that S nvy = 5" n~. So, assume that
1 1
n= §\Sﬂ7\ = §|S' Nl

Also, assume that 05 n R(v) (and thus 05" n R(7)) has m closed components. Write
them as
By u...u By, < 0Sn R(v),
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and orient B; by the boundary orientation of S. Write Sy the surface obtained from S
by performing one negative stabilization on each B;, and let ST be the surface obtained
by performing one positive stabilization on each B;. By Lemma 4.5 in Juhasz [10],
both Sy and ST exist. We also want to modify S’ correspondingly. Note part of
05’ is coming from —0dS, so positive stabilizations near this part of ¢S’ corresponds
to negative stabilizations on S. Thus, we perform positive stabilizations on S’, in
correspondence to the negative stabilizations performed on S. Since dS’ contains
many copies of 0R(vy) < A(v), when performing the positive stabilizations to create
intersections of B; with v, the isotopy also creates self intersections of S’. We then
perform double curve surgeries, in the sense of Scharlemann [25], to resolve all self
intersections created by the positive stabilizations, and let S be the resulting surface.
See Figure 13. On A(7), this double curve surgery behaves exactly in the same way as
the oriented smoothing that is depicted in Figure 12. It is important that we choose
positive stabilizations to perform on S’, so the decomposition of (M, ~y) along S|, gives
the same result as decomposing along S’

SI
(M,~) ~% (M",~").

A &)

= =
oS’ = [ \ S

» J \ J e
Positive stabilization Double curve surgery

Figure 13: A positive stabilization on S’ followed by a double curve surgery.

We can attach m + n copies of product 1-handle, as in Lemma 5.7, along the
intersections of Sy with . We require that the pair of intersection points created by
a negative stabilization on S are paired together by a product 1-handle. Let (M7, 1)
be the resulting balanced sutured manifold. The surface Sy extends to a properly
embedded surface S; < M; as in Lemma 5.7.

The surface S{) can also extend, though in a slightly complicated way. As in Figure
14, in each product 1-handle, there is one (vertical) 2-dimensional 1-handle to be glued
to the part of 05 that comes from —d5, and 2k copies of (horizontal) 2-dimensional
1-handles to be glued to the part of 0S5 that corresponds to the k copies of dR(y).
We can perform a double curve surgery on those two collections of 2-dimensional
1-handles, as in Figure 14, and then glue the resulting surface to S, when gluing the
product 1-handle to (M,~). In this way, S| extends to a properly embedded surface
St in (My,71). Let (M1,~1) and (M{,~{) be obtained from (Mi,~1) by decomposing
along S and S7, respectively. (M{,~{) is taut by Lemma 5.7, since it is obtained
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from (M"”,~") by attaching a few product 1-handles, as indicated in Figure 14. After
decomposing along S}, each product 1-handle is decomposed into (2n + 1) many
product 1-handles that are attached to (M”,~”). In that figure, n = 3, and the six
arcs in the right-subfigure divides the original product 1-handle into 7 parts.

L Rey)

N

smoothing

N

A7)

Figure 14: Double curve surgery on a cross section of the product 1-handle. On the right:
the 2-dimensional 1-handles after the double curve surgery will cut the original product
1-handle into 2k + 2 small ones.

From the construction, we also know that
S0 Ri(m1) = =510 Re(m),
and S7 n A(v1) consists of 2k parallel copies of ;. Now let
SiNnRy(m1)=By1v..uBynuCiiu..uCi,

and
SiNnR_(m)=B_1v..uB_,uC_ju..uC_,

Here, B+ ; are the boundary components of S; that comes from attaching a product
1-handle along the pair of intersection points created by a negative stabilization on S
near B;. Note s and t are not necessarily equal. Without loss of generality, we could
assume that s > t.

Pick (V,6) be a balanced sutured manifold where V' = S* x D? is a solid torus
and J consists of two longitudes. Let D < V be a standard meridian disk in V', which
has two intersections with the suture §. Let Dy be the surface obtained from D by
performing a negative stabilization, as shown in Figure 15. It has four intersections
with the suture 0. Attach two product 1-handle along two pairs of points (p1,p4)
and (p2,p3), as labeled in the figure, and let the resulting balanced sutured manifold
be (V1,71). Do extends to a properly embedded surface Dy as in Lemma 5.7. Note
Dy n R4 (d1) has one components and D; n R_(d1) has two components. Now we
want to construct another surface D] inside V;. First, let D’ be the result of a double
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curve surgery of —Dg with k copies of R(d). It is crucial that our choice of Dy makes
the sutured manifold decomposition

V,8) 2 (v, 4"

taut. We can check directly that V" is a 3-ball and ~” is a simple closed curve on
0V”, and, hence, it is a product sutured manifold. Next, when attaching two product
1-handles to (V, §), we repeat the procedure explained above, with which we construct
S1 out of S, and thus construct a properly embedded surface D] inside V; out of
Dj. Tt is straightforward to check that the decomposition of (V4,7) along D] yields
a product sutured manifold (V{’,~7).

D pyp1p2 D3 p3s po pips DY

Figure 15: The balanced sutured manifold (V,v) together with the surfaces Dy and DT,

So, we could form the disjoint union
(Mz,72) = (M1, 71) u (s —)(V1,01), S2=S1u (s —t)D1, S5 =Sj v (s —t)Di.

Since the decomposition of (M7, ~1) along S7 is taut (as we have explained) and the
decomposition of (V1,71) along D] is also taut (by a direct check), we know that the
decomposition of (Ms,72) along S5 is taut. However, the decomposition along S is
not, as we will explain later.

Pick a connected auxiliary surface T for (Ma,v2) and form a pre-closure

M=M,u[-1,1]x T, M = Ry UR_, Ry = Ry(y2) U {+1} x T.

Since (M7, 1) is obtained from (M, «) by attaching product 1-handles, and (V4, d1)
is itself a product sutured manifold, we know that M is also a pre-closure of (M, 7).
By construction, we know that

SgﬁRi :—SéﬁRi,

and there are same number of components of Sy N Ry and S; n R_. Moreover, since
T is connected, the components of S; N R4 represent linearly independent classes in
H1(R4). Thus, we could find an orientation preserving diffeomorphism i : Ry — R_
so that

]’L(Sg M R+) = SQ M R_,
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and we can use M as well as & to construct a closure (Y, Ry) for both (M,~) and
(Mz,72). Inside Y, Sy becomes a closed surface S.

Though there is no sutures on the boundary of M , the theory of balanced sutured
manifolds in Kronheimer and Mrowka [16] extends to M effectively. In particular, we
could define

SHM(M) = HM(Y|Ry) = SHM(M,~) = SHM (My, ).

The surface 52 extends to a surface 52 < M as the union of Sh with 2k coples of T.
Suppose (M " 4") is the result of the sutured manifold decomposition of M along SQ,
then (M” ") can be obtained from (MY, ~4) by attaching 2k +1 copies of the product
region T' x [—1,1]. Recall that (MJ,~4) is obtained from (Maz,~2) by decomposing
along S5 and thus is the disjoint union of (M7 ,~{) with (s — t) copies of product
sutured manifolds (V{",~v7). Furthermore, (M7, ~7) is obtained from (M”,~") by
attaching a few product 1-handles, so we finally conclude that

SHM(M",5") =~ SHM(M",~"),

since attaching product regions (or product 1-handles), disjoint union with product
manifolds will never change the sutured monopole Floer homology.

Back to the point that (M”,5") is the decomposition of M along S4. The decom-
position theorem, Proposition 6.9 in Kronheimer and Mrowka [16], continues to hold
in this case, and we conclude that SHM (M”,3") is a direct summand of SHM (M).

More precisely, 5’2 becomes a closed surface S’ = Y, and we have

SHM(M" ") = SHM(M" 5") = @D HM,(Y,s). (11)
s€6*(Y|Ry)
e ()[5']=29(5) 2

We also want to identify the summand SHM (M’,~') inside SHM (M) = SHM (M, ~).
We cannot proceed directly as we did for SHM (M",~"), since the decomposition of
M along Sy is not taut. This is because the decomposition of (M,~) along Sy and
(V,~) along Dy are both not taut, since, at the beginning, we picked Sy and Dy by
performing negative stabilizations (see Lemma 2.23). Let ST and D' be obtained from
S and D performing positive stabilizations instead of negative ones. We can repeat
the whole construction again with Sy and Dy replaced by ST and DT, respectively.
Attach m + n product 1-handle along the intersection points of 05T with v, and let
(Mf,'yir ) be the result. There is a properly embedded surface SI c M{r Similarly,
attach two product 1-handles to (V,~), and let (Vf,'yir ) be the result. Then, there is
a properly embedded surface DJ{ c VlT. We can form the disjoint union

(M3, 78) = (M) w (s = ) (V] 7]), 83 = ST u (s = 6)D].

Pick an auxiliary surface T' that has the same genus as T and form a pre-closure
M. We can pick a suitable gluing diffeomorphism A’ and obtain a closure (YT R! 1)

Inside YT, the surface S} becomes a closed surface St.The decomposition of M' along
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Sg is taut. The argument that concludes (11) applies again, and we have

SHM(M',~') = D HM, (Y1, s). (12)
se&*(YT|RL)
c1(s)[S1]=29(5")—2

Since g(T") = ¢(T), we know that g(RL) = g(R4). Thus, as in Subsection 2.2,
there is an excision cobordism W, from YT U Y7 to Y, which induces an isomorphism

o: HM(Y'|RY) - HM(Y|R,).

Here, Y is a mapping torus of a diffeomorphism on RE_, arising from A', h, and
a suitable identification Rl = R.. The difference between the surfaces ST and S
originates from whether we performed positive or negative stabilizations. So, the
proof of Proposition 4.1 in Li [19] applies to the present context, and we know that
inside W,
[ST] = [S] + [Z1] + - [Z] + [Z4] + o + [2 ]

Here, each ¥; or E;. is a connected closed oriented surface of genus 2. ¥; corresponds
to a positive or negative stabilization on S, and E} corresponds to a positive or
negative stabilization on D. As a result of the adjunction inequality in Lemma 2.20,
we have

SHM(M',~') < P HM.(YT,s). (13)
seS*(Y|Ry)
c1(5)[S]=2g9(S)—2—2(s—t)—2m

Finally, we argue that
SHM(M', ') n SHM(M",~") = {0}.

Suppose not, then, from (11) and (13), there is a supporting spin® structure s €
S*(Y|R4+) so that

c1(s)[S] = 29(S) —2 —2(s — t) — 2m, and ¢, (s)[S"] = 29(S") — 2.
From the construction, we know that
[S'] = —[S] + 2k - [Ry] = Ha(Y).
Hence, the above equalities and inequalities imply
29(S) =2 —2(s —t) = 2m + 29(5") = 2 < c1(s)[S] + e1(s)[S'] = 2k - [29(R+) — 2],
which is equivalent to
X(S) + x(5) +2(s —t) + 2m = 2k - x(Ry). (14)

Now let us compute each of the three terms in (14) regarding the Euler characteristics.

First, x(S) = x(S2), and, by construction, Sy = S; L (s—t)D;. Furthermore, we know
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that S; is obtained from Sy by attaching m + n copies of 2-dimensional 1-handles,
that Sy is isotopic to S, and that D; is obtained from a disk D by attaching two
copies of 2-dimensional 1-handles. Thus, we conclude that

X(82) = x(8) = (m+n) + (s —t)(=1) = x(5) = (m +n) — (s — ).
Second, we know that y(S54) = x(53), and
Sh =8 U D, U (2k)-T.

Note that there are m + n product 1-handles attached to (M,~), and, inside each
product 1-handle, there are (2k + 1) copies of 2-dimensional 1-handles attached to S’.
Thus, we have that

X(51) = x(8') — (2k + 1)(m + n).

Similarly, we conclude that
X(Dh) = x(D') —2(2k +1).

Also, D' is obtained by a double curve surgery on —D, which is a disk, with k& copies
of R(J), which is the disjoint union of two annuli. Thus, we conclude that

xX(S) =x(S") = (m+n) — (s —t) + 2k - x(T) — 2k(m + n) — 4k(s — t).
Third, we know that
Ri=Riym)u(s—t) Ry (01) VT
Here, R, (v1) is obtained from R, (y) by attaching m + n copies of 2-dimensional
1-handles, and R (d1) is obtained from R, (d) (an annulus) by attaching 2 copies of
2-dimensional 1-handles. Thus, we know that
X(Ri) = X(R+(7) + x(T) = (m +n) —2(s — t).
Putting everything together, (14) is equivalent to

X(S) + x(8") = 2n = 2k - x(R1(7))-

This directly contradicts Lemma 5.9, since, by definition, we have

1
= ~|S Al
n 2| Nl

Lemma 5.9. Suppose (M,~v), S and S are as above in Proposition 5.8, then

X(S) + x(8") =[S n 9] < 2k - x(R4(7)).
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Proof. This is exactly the inequality
X(S) + x(S") + I(S) + I(S") < r(S,t) +r(S,¢t)
in the proof of Theorem 6.1 in Juhdsz [11]. It is by definition that
1(8) = (') = 518 7,
and Juhdsz also proved that
r(S,t) + r(S',t) = 2k - x(R+(7)).
Note 2k in this paper corresponds to k in his paper. O

Remark 5.10. Note the assumption in Proposition 5.8 is slightly stronger than the
hypothesis of Theorem 6.1 in Juhdsz [11], i.e., we require both being reduced and
containing no essential product disks, while Juhasz only required being reduced. The
difference between the two setups is some special family of balanced sutured manifolds,
which are reduced but also contain essential product disks. By Lemma 2.13 in [11],
there are only two such balanced sutured manifolds, namely the product sutured
manifolds (times[—1,1] x F,{0} x 0F), where F is a sphere with two or three disks
removed. It is also worth mentioning that the requirement of containing no essential
product disks. Clearly, the two special product sutured manifolds described above are
counterexamples to Theorem 6.1 in Juhdsz [11]. The small error made in the proof
of Theorem 6.1 in his paper is that, at some point, he used the assumption of being
reduced and applied Lemma 2.13 in [11] to rule out essential product disks from the
discussion, but he didn’t exclude the two special product sutured manifolds from the
hypothesis, where clearly Lemma 2.13 in [11] failed.

Corollary 5.11. Suppose (M,~) is a balanced sutured manifold with Ho(M) = 0.
Suppose further that (M,~) is taut, horizontally prime, reduced, and free of essential
product disks. Then, the dimensions of PM,(M,~) and PI,(M,v) (see definition
5.4) are both dimgH?(M, oM;Q).

Proof. We prove in the monopole settings. Pick any a € Ho(M,0M) so that « # 0.
As in the proof of Proposition 5.8, we can find two properly embedded surfaces S and
S’ in M representing « and —q, a closure Y of (M,~) and suitable closed surfaces
S and S’ originate from S and S’, respectively. Let b be a homogenous elements in
the top grading induced by S and let ¢ be a homogenous elements in the top grading
induced by S’. Suppose further that they are supported by spin® structures s;, and
5. on Y. We know from the definition that

(6,0)(@) = 5er(0) = ex(s)] @)

We claim that p(b,c)(«) # 0. Suppose the contrary, then we know that

e1(5)[S] = e1()[S] = 29(8) — 2 — 2(s — 1) — 2m, (15)
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and
c1(s0)[S] = 29(5") — 2. (16)

Here, s,t,m are constants in the construction of S and S’, as in the proof of Propo-
sition 5.8. Then, formulae (15) and (16) lead to exactly the same contradiction as in
the proof of Proposition 5.8.

Since p(b,c)(a) # 0 and o € Ho(M,3M) is chosen arbitrarily, we conclude that
the polytope PM,(M,~) must have maximal possible dimension. O

Corollary 5.12. Suppose (M,~) is a taut balanced sutured manifold with Hy(M) = 0.
Then
rk(SHM(M,v)) = dimg H*(M, 0M;R) + 1

and
dimc (SHI(M, v)) = dimg H*(M,0M;R) + 1

Proof. To have dimension d = dimg H?(M, 0M;R), there must be at least d+1 points
inside the polytope and we are done. O

Now we are ready to prove Theorem 1.2 as stated in the introduction.

Proof of Theorem 1.2. This is essentially the proof of Proposition 7.6 in Juhasz [11]
but carried out in the monopole or the instanton settings. We will present the proof
in the monopole settings, and the instanton case follows from a similar argument.
First suppose k = 0. By Proposition 2.16 and Proposition 2.18 in Juhész [11], we
can perform a sutured manifold decomposition on (M,~) to obtain (M’,~’) that is
taut, reduced, and horizontally prime. By Lemma 5.1 in Juhész [11], Hy(M’) = 0.
By Proposition 6.6 in Kronheimer and Mrowka [16] and Lemma 5.6 in this paper,

1 <tk(SHM(M',v')) < tk(SHM(M,7)) < 2.

Hence, tk(SHM (M',~")) = 1. By Proposition 5.8, this implies that Ho(M', 0M') = 0
and consequently, Hy(0M') = 0, which means M’ is a sphere. (Hz(M') = 0 implies
that 0M’ is connected.) Since M’ is irreducible, M’ must be a 3-ball, and +" must
be connected due to tautness. So, (M’,7’) is a product sutured manifold and so is
(M, 7).

Now we assume that the conclusion of the proposition holds for £ — 1, and next,
we prove it for k. This part of the proof is exactly the same as in Juhdsz [11], so we
only sketch as follows: if (M,~) is not horizontally prime, then we could decompose
along non-boundary-parallel horizontal surfaces and get a disjoint union of balanced
sutured manifolds. Each component has a sutured monopole Floer homology of rank
at most 2¥, and thus inductive hypothesis applies. If (M,~) is horizontally prime
we can perform a sutured manifold decomposition to make it reduced, and applying
Proposition 5.8 to choose a suitable decomposition surface so that a (second) sutured
manifold decomposition along the chosen surface will reduce the dimension by at least
a half. Then, the inductive hypothesis applies again, and this concludes the proof of
theorem 1.2. O
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As a corollary to the above proposition, we offer a new proof to the fact that
the monopole and instanton knot Floer homology constructed by Kronheimer and
Mrowka [16] detects fibred knots in S3.

Corollary 5.13. Suppose K < 5S> is a knot. Then, the following three things are
equivalent.

(1) tk(KHM(S3, K, g(K))) = 1.

(2) tk(KHI(S?, K, g(K))) = 1.

(3) K is a fibred knot.

Proof. We only prove that (1) and (3) are equivalent. From Kronheimer and Mrowka
[16], we know that
KHM(S*, K) = SHM(S*(K),T,)

where S®(K) is the knot complement and T',, is the suture consisting of two meridians
on 053(K). Pick a minimal genus Seifert surface, S = S® of K. We know that the
decomposition

(S3(K),T,) % (M, )

is taut, and (
KHM(S? K,g(K)) =~ SHM(M,~).

Thus, the corollary follows from Theorem 1.2. L

Proof of Corollary 1.5. By Lemma 7.10 in Xie and Zhang [27], we have an isomor-
phism
SHM(M,~,T) =~ SHI(Mr,~vr),

where (Mr,~r) is some balanced sutured manifold arising from the triple (M,~,T)
as explained in Section 7 in [27], and SHI(Mt,~r) is the usual sutured instanton
Floer homology defined by Kronheimer and Mrowka in [16]. From the description of
My in [27], we know that Hy(Mr) = Ho(M\T') and hence Theorem 1.2 applies. O

6 Application to knots and links

6.1 Thurston-norm detection

In this subsection, we prove Theorem 1.17. We only work in the monopole settings
and the proof in the instanton settings is exactly the same. First, we need some
preparations.

Lemma 6.1. Suppose (M,~) is a taut balanced sutured manifold so that M is boundary-
incompressible and the boundary of M consists of a few tori. Suppose further that
a € Hy(M,0M) is a non-zero second relative homology class. Then, there is a properly
embedded surface S < M with the following properties.

(1) [S,05] = o€ Ho(M,0M).

(2) x(8) = —z(a).

(3) For any component ¥ of OM, S n'Y consists of a disjoint union of coherently
oriented non-separating simple closed curves on X.

(4). S is incompressible.
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Proof. Pick a surface S so that [S,0S] = a € Ha(M,0M), and x(S) = z(a). Since
M is irreducible, we can assume that there is no spherical component of S. We have
assumed that M is boundary-incompressible, so we can also assume that there is no
disk component of S. Thus, we have z(a) = z(S) = —x(9).

To achieve condition (3) in the conclusion of the lemma, if a component « of 05
bounds a disk on M, then we can cap off « using the disk it bounds on ¢ M. Capping
off by a disk does not increase the norm, so we can assume that the surface S does
not have a boundary component that bounds a disk on dM.

Pick a component ¥ of M. By assumption, X is a torus. Since no component
of S n ¥ bounds a disk, we know that S n X consists of a disjoint union of parallel
non-separating simple closed curves. If two components of S n ¥ are adjacent on ¥
but are oriented reversely, we can glue the annulus, which they co-bound on 3, to
S. After possible compressions and throwing away any spherical or disk components
arising from the compression, we still call the resulting surface S. Note gluing annuli,
performing compressions, and throwing away spherical and disk components do not
increase the norm. Thus, we conclude the proof of Lemma 6.1. O

Lemma 6.2. Suppose (M,~y) is a taut balanced sutured manifold so that M is boundary-
incompressible, and the boundary of M consists of a few tori. Suppose o € Ho(M,~)
1 a non-zero second relative homology class, and S is a properly embedded surface in-
side M satisfying conditions (1)-(3) in Lemma 6.1. Then, the decomposion of (M, )
along S is taut.

Proof. Suppose the sutured manifold decomposition of (M, ) along S yields (M’,v’),
then we can regard M’ as a submanifold of M. Suppose X is a component of dM,
then by assumption, ¥ is a torus. If ¥ n .S = ¢F, then ¥ is also a component of M.
Thus, we have

Y nE=9n%, and R+(Y)nX = Rs(y)n V.

If VS # &, then 0M' AV consists of a disjoint union of annuli, which, regardless
of the orientations, are bounded by pairs of parallel curves in 0S " V. Let A c V
be a component of 0M’ n V. There are two cases, depending on the intersection of
the suture v with the surface S. In both cases, it is straightforward to check how ~/
looks like.

Case 1. (SNnX)n(ynX) = . In this case, the annulus A possibly contains
multiple components of 7, and they remains in 7/. Thus, A may contain either one
or three components of 7’ (note v N X has two components), and each component of
~" is parallel to 0A. See Figure 16.

Case 2. (SnY)n(ynX) # . In this case, ¥ n A consists of an even
number of essential arcs in A, and adjacent arcs are oriented oppositely. Then, after
the decomposition, A contains exactly one components of 7/, and this component is
parallel to dA. See Figure 17.

Suppose A, ..., A, are all the annular components of 0M’ n 0M that contain
three components of +'. Push the interiors of A; into the interior of M’ to make
them properly embedded. Then, we can perform a sutured manifold decomposition
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Rk ]

S P ISR O

Figure 16: Left, before the decomposition. The vertical (blue) curves represent S, and
the horizontal curves represent ¥.. The (red) dots represent the suture . Right, after the
decomposition. The (red) dots represent the suture +'.

on (M’,v'), along the surface A; U ... U A,, after the pushing off. The resulting
balanced sutured manifold (M”,~") is a disjoint union:

(M",4") = (M",5") 0 (Vi,71) U oo U (Vi 7).

Here, for i = 1,...,n, V; is a framed solid torus and ~} is the suture on dV consisting
of four longitudes. With Q coefficients, we know from Li [17] that

SHM(V;, 7)) = Q%
From Proposition 6.9 in Kronheimer and Mrowka [16], we know
SHM(M',y') =~ SHM(M",~") =~ SHM(M" ,7") ®q Q2"
Thus, (M’,~") is taut if and only if (M, ~") is.

It is then suffice to prove that (M”,~") is taut. Note we can regard M"” = M’,

and, thus, we can assume
M" = M\int(N(9)).

Let S+ be parallel copies of S in ON(.S), then S are part of the boundary of M".
Let X5 be the union of components of 0M which are disjoint from S, and let

Fi = 25 M Ri(V)
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A A

Figure 17: Left, before the decomposition. The two (blue) circles are the boundary of A.
The (red) arcs represent the suture 7. Right, after the decomposition. The two dashed
circles are the boundary of A, and the (red) solid curve represent the suture +'.

Then, we can describe Ry (y") as follows:
Ri(y") = Fi u Ss.

By assumption, both F and Sy are incompressible and norm-minimizing in M,
hence they are also incompressible and norm-minimizing in M"”. The fact that M
is irreducible implies that M" is the same. Thus, we conclude the proof of lemma
6.2. O

Corollary 6.3. The decomposition of (M,~) along —S is also taut.

Proof of Theorem 1.17. For any « € Hy(M,0M), pick a surface S as in Lemma 6.1.
Then, by corollary 6.3, the decomposition of (Y (L),I',) along S and —S are both
taut. Suppose

1
n= §|Sﬁ’}/|,

then we know, from condition (3) in the statement of Lemma 6.1, that

n= 7 Kol
i=1

We possibly need to perform a stabilization on S to achieve admissibility. Suppose
the ST is obtained from S by perform m many positive stabilizations on S. Here,
m = 0 or 1. Note m = 0 means that the original S is admissible, and we take S = S.
From Lemma 2.20, Lemma 2.23, and Lemma 2.28, we know that

SHM(Y (L),T,,, S*™, g.) # 0, and SHM(Y (L), Ty, S7™,i) = 0 for i > ge.
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Here, we have g. = 3(—x(S) +n + m).
Similarly, we have

SHM(Y (L),T,,, (=S)""™, g.) # 0, and SHM(Y (L), T, (=S)*™,i) = 0 for i > g..
Note (—S)*™ = —(S~™), and, hence,
SHM(Y (L), Ty, S7™, —ge) = SHM(Y (L), Iy, (=8)*™, gc) # 0,
and
SHM(Y (L),T,,,S™™,4) =0 for i < —g..
Apply proposition 4.1, we know that

SHM(Y(L), Ty, ™, m — ge) = SHM(Y (L), Ty, (=) "™, gc) # 0,

and
SHM(Y (L), T, ST™,i) = 0 for i <m — ge.

From the definition of the function y(-) in Definition 1.16 and the construction
of the canonical decomposition of sutured monopole Floer homology in 5.4, we know
that

y(a) = max{i | SHM(Y (L), T,,,S*™, i) # 0} — min{i | SHM(Y'(L),T,, S™™,4) # 0}
=0c — (m - gc)
=2g.—m
=—x(S)+n+m-—m

—a(a) + Y] Kapo)l.

This concludes the proof of Theorem 1.17. O

Suppose L = S2 is a link with r components. Then we know that Ho(S3(L),0S3(L)) =~
Z". Thus there is a Z" grading on KHM (53, K) and KHI(S3, K), according to the
proof of lemma 5.2. Here KHM and KHI are the monopole and instanton knot
Floer homologies introduced by Kronheimer and Mrowka in [16]. This leads to the
following question.

Question 6.4. Can we recover the multi-variable Alexander polynomial using the Z"
grading on KHM or KHI?

6.2 Minus version for links

Suppose Y is a closed oriented 3-manifold and L < Y is an oriented link. Let Ly,
Ls,...,L, be the components of L. We assume further that each component of L is null-
homologous in Y. Thus, for i = 1, ...,r, we can find (and fix) a Seifert surface S; c Y
for L;. Note S; possibly intersects with Lj, for j # i. Also, for i =1,...,7, let p; € L;
be a fixed base point. Let p = (p1,...,p). In this subsection, we construct minus
versions of monopole and instanton knot Floer homologies for the triple (=Y, L, p).
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6 APPLICATION TO KNOTS AND LINKS

Remark 6.5. Here, we require that each component of L to be null-homologous, to fix
a Seifert surface for each component of the link. It is possible to weaken this condition
by simply requiring that the whole link L represents the zero class in H;(Y) and fix
a Seifert surface S for it. The construction in this subsection can be easily adapted
to the more general setup.

Let Y(L) = Y\N(L) be the knot complement and let T; be the boundary compo-
nent of Y (L) corresponding to the knot L;. The Seifert surface S; induces a framing
on T;. We call the longitude \; and the meridian y;. For n = (ny,...,n,) € Z", let Ty,
be the suture on dY (L) so that I'y, n T; consists of two parallel simple closed curves
of class +[u; — n);]. We have the following lemma.

Remark 6.6. It seems that the choice of base points p does not appear in the above
set up. However, p helps to resolve the ambiguity arising from the choice of the link
complements. Since this issue is fully clarified in Baldwin and Sivek [1] and Li [19],
we won’t discuss on it anymore in this paper.

Lemma 6.7. Suppose n = (nq,...,n,.) € (Z4)". Let n' be obtained from m by replacing
n; with n; +1, and let n” be obtained from n by replacing n; with +00, then there are
ezact triangles:

M(_Y(L)7 _Fn)

Here, 1+ n; are the map associated to a positive or negative by-pass attached to
Y (L),T',, which is performed on the boundary component T; of Y (L). (See Subsection

2.4.)

There are similar exact triangles in the instanton settings.

Proof. This is a direct application of Theorem 2.29. For more details, readers are
referred to Section 2 of Li [19]. O

To use a better notation, for i = 1,...,7, let €’ = (0, ..., 1,...,0) € Z" be the vector
whose entries are all 0 except of being 1 on the i-th place. We have the following
lemma.

Lemma 6.8. For any ne€ (Z+)" and i,j € {1,...,r}, we have the following commu-
tative diagram:

SHM(—Y (L), ~T'p) ———=""~ SHM(~Y (L), ~T'py )

Y- n,j Y et
w*m#re]‘,i

M(_Y(L)v _Fn+ej) —_— M(_Y(L)a _Fn-&-ei-&-ej)
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6 APPLICATION TO KNOTS AND LINKS

Proof. As explained in Subsection 2.4, the by-pass maps, 1+ n ;, ultimately come from
contact handle attaching maps. Since the by-passes corresponding to vertical and
horizontal maps happen on different boundary components of Y (L), the corresponding
contact handle attachments commute, and so do the by-pass maps. O

Definition 6.9. We define the minus version of monopole link Floer homology of a
based link L < =Y, which is denoted by KHM™ (Y, L, p) , to be the direct limit of
the direct system

{¢_ n; SHM(-Y(L),Tyw) —» SHM(-Y(L),Tyyei),ne (Zy)" i€ 1,... 1}

We define KHI™ (—Y, L, p) in a similar manner.

Lemma 6.10. For any ne (Z4)" and i,j € {1,...,r}, we have the following commu-
tative diagram:

SHM(~Y (L), ~T') ———"" > SHM(~Y (L), ~T )

1/““"’]. w+,n+ei>j

w*,n+e-7‘,i

SHM(-Y (L), Ty 4ei) —————= SHM (=Y (L), —Tpivitei)
There are similar commutative diagrams in the instanton settings.

Proof. 1If i # j, this follows from exactly the same argument as in the proof of Lemma
6.8. If i = j, this follows from the proof of the same type of commutative diagram
in the construction of minus versions for knots by the second author. See Corollary
2.22 in Li [19]. O

Definition 6.11. For any fixed i € {1, ...,r}, The set of maps
{w+,n,i : M(_Y(L); _Fn) - m(_Y(L)7 _Fn+ei>}

induces a map
Ui : KHM™ (=Y, L,p) —» KHM™ (-Y, L, p),

which we call the i-th U map.
We define
U,:KHI (-Y,L,p) > KHI (-Y,L,p)

in a similar manner.

Proposition 6.12. For any i,j € {1,...,7}, the maps U; and U; commute with each
other.

Proof. The proof is exactly the same as the proof of Lemma 6.8. O
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6 APPLICATION TO KNOTS AND LINKS

Next, we construct a Z" grading on KHM ™ (Y, L, p), based on the chosen Seifert
surfaces S1,..., S, of L1, ..., L.

Recall that L < Y has components Li, Lo, ..., L., and L; has a Seifert surface
S; that could possibly intersect other components of the link. By a slight abuse of
notation, let \S; also denote the intersection of the original Seifert surface with the link
complement Y (L). Thus, the boundary of S; consists of a longitude on T; and a few
(possibly none) meridians on T, for j # i. For fixedi € {1,....,r} andn = (ny,...,n,) €
(Z4)", let S; n be the isotopy of S; so that 0S; n has the least possible intersections
with the suture I'y, € 0Y'(L). This means that the longitudinal boundary component
of S; n intersects I'y, at 2n; points, and each meridional boundary component of S; ,,
intersects I'y, at two points. Applying the construction of gradings in Subsection 2.3,
the surface S; n, or its stabilizations, give rise to a grading on SHM(-Y (L), —T'y,).
We then have the following proposition.

Proposition 6.13. Fiz any i € {1,...,7} and ne€ (Z)". If n; is even, then, for any
j € Z, we have

qpi,n,i(SI{iM(*Y(L)v 71—1”7 S;TLna ])) = SI{J(*Y(L), 7Fn+e’i ) Si,'n+ei7j)
If n; is odd, then, for any j € Z,

Gt i (SHM(=Y (L), T, 77, 5)) © SHM(=Y (L), ~Tpei, S35, i)
Furthermore, for any k # i, the maps 1+ n 1 preserve the gradings associated to
Sin and its stabilizations.
Similar statements hold for the instanton settings.

Proof. For 14 pn;, the proof is exactly the same as the proof of Proposition 5.5 in Li
(19]. For ¢4 n with k # i, note S; , has a few meridional components on the Ty, so
the by-passes, which corresponds to the maps ¥+ y %, can actually be made disjoint
from S; n. L

Similar to the constructions in Section 5 of Li [19], if n; is odd, let ST, be just
Sin, and if n; is even, let ST, be a negative stabilization of S; , performed near T;.
We can use ST, to define a grading on SHM(-Y(L),I'y). We also need to perform a
grading shift. Let

n

SI{J(_Y(LL _Fnﬂ Sz":nm]){g’b} = SI—IJ(_Y(L)a _Frn Sznmj + l2J)a

where |z] is to take the maximal integer which is no larger than z.

Proposition 6.14. Using the grading SHM(=Y (L), =Ty, S7,,, ){0:}, we can con-
struct a Z-grading on KHM™ (=Y, L, p). The i-th U map, U;, drops the grading by 1,
and all other U maps, U, with k # i, preserve the grading.
Furthermore, all Seifert surfaces, Si, ..., Sy, together induce a Z' grading on KHM™ (=Y, L, p),

which we write as
m_(_}c L7p7.7)
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6 APPLICATION TO KNOTS AND LINKS

Here, j € Z" denote a multi-grading. As a result, together with the commutativity
of all U maps in Proposition 6.12, there is an R[Ux,...,U,] module structure on
KHM™ (=Y, L, p).

Similar results hold in the instanton settings.

Proof. The first half of the proposition follows from Proposition 6.13, and the second
half of the proposition follows from the proof of Lemma 5.2. O

The first computable example is the case of unlinks.

Proposition 6.15. Suppose Y is a closed oriented 3-manifold and L < Y is an unlink
of v components, i.e., there exists an embedded disk S; =~ D?, for each i € {1,...,7},
so that 0S; = L;, and all S; are disjoint from each other. Then,

KHM ™ (=Y, L, p) = SHM(-Y (r), —6") ®= R[U1,,U,].

Here, p is a chosen set of base points, and (Y (r),d") is the balanced sutured manifold
obtained from'Y by removing v disjoint 3-balls and picking one simple closed curve
on each spherical boundary of Y (r) as the suture.

Similar statements hold in the instanton settings.

Proof. For any n € (Z.)", we know that (Y (L),T'y,) can be obtained from the disjoint
union

(Y(r),6") b (S*(L1),Tp,) U e b (S*(Ly), T,)

by attaching r many contact 1-handles (see Definition 3.2). Each 1-handle connects
some (S3(L;),Ty,) to (Y(r),d"). As in Subsection 2.4, the by-pass maps 94 n; can
be realized as contact handle attaching maps and those contact handles are disjoint
form the contact 1-handles just described above. Hence, under the isomorphism

SHM(-Y (L), Ty) = SHM(Y (r),6") ® SHM(S*(L1),Tn,) ® ... ® SHM(S?(L,.), T, ),
we have an identification

Yimi=id® ... @Yt p, ® ... Qid,

where
Vi p, : SHM(=S3(L;), —Ty,) — SHM(=S*(L;), —=T'n,41)-

Hence, we are done. O

Proposition 6.16. Under the above setups, the direct system stabilizes, that is, for
any fized j € Z, there exists N € Z , so that for alli € {1,...,r} and n= (n1,...,n,.) €
(Z4)" such that n; > N, we have an isomorphism

Y nyi : SHM(=Y (L), =I'n, 57, j)[03] = SHM(=Y (L), —T'ny.ei, STy ei5 ) 03]

K2

Proof. This follows from exactly the same argument as in the proof of Proposition
5.8 in Li [19]. 0
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Proposition 6.17. Under the above setups, there exists an integer Ny, so that for
any fixed i € {1,...,r} and any multi-grading j = (j1,...,Jr) € Z" with j; < Ng, the
map U; restricts to an isomorphism

U; : KHM™ (Y, L, p, j) = KHM™ (Y, L, p,j — €').

Proof. This follows from exactly the same argument as in the proof of Corollary 5.9
in Li [19]. O
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