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Abstract

In this paper, we generalize the work of the second author in [19] and prove a grad-
ing shifting property, in sutured monopole and instanton Floer theories, for general
balanced sutured manifolds. This result has a few consequences. First, we offer an
algorithm that computes the Floer homologies of a family of sutured handle-bodies.
Second, we obtain a canonical decomposition of sutured monopole and instanton Floer
homologies and build polytopes for these two theories, which was initially achieved by
Juhász [11] for sutured (Heegaard) Floer homology. Third, we establish a Thurston-
norm detection result for monopole and instanton knot Floer homologies, which were
introduced by Kronheimer and Mrowka in [16]. The same result was originally proved
by Ozsváth and Szabó for link Floer homology in [23]. Last, we generalize the con-
struction of minus versions of monopole and instanton knot Floer homology, which
was initially done for knots by the second author in [19], to the case of links. Along
with the construction of polytopes, we also proved that, for a balanced sutured man-
ifold with vanishing second homology, the rank of the sutured monopole or instanton
Floer homology bounds the depth of the balanced sutured manifold. As a corollary,
we obtain an independent proof that monopole and instanton knot Floer homolo-
gies, as mentioned above, both detect fibred knots in S3. This result was originally
achieved by Kronheimer and Mrowka in [16].

1 Introduction

Sutured manifold theory and Floer theory are two powerful tools in the study of 3-
dimensional topology. Sutured manifolds were first introduced by Gabai in [5] and
in subsequent papers. The core of sutured manifold theory is the sutured manifold
hierarchy. This enables one to decompose any taut sutured manifold, in finitely many
steps, into product sutured manifolds, which are the simplest possible ones. Gabai
used sutured manifolds and sutured manifold hierarchies to prove some important
results about 3-manifolds, including the remarkable property R conjecture.

Sutured (Heegaard) Floer homology was first introduced by Juhász in [9], while
some ad hoc versions were studied by Ghiggini in [7] and Ni in [20]. In particular, Ni
proved the celebrated result that the knot Floer homology, which was introduced by
Ozsváth and Szábo in [22], detects fibred knots. His result is equivalent to the fact
that sutured Floer homology detects product balanced sutured manifolds, which was
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1 INTRODUCTION

then generalized by Juhász in [11], where he proved that the rank of sutured Floer
homology bounds the depth of a balanced sutured manifold with vanishing second
homology.

The combination of sutured manifold theory with gauge theory was done by Kro-
nheimer and Mrowka in [16], where they defined sutured monopole and instanton
Floer homologies. These new Floer homologies have many significant applications in
the study of knots and 3-manifolds, including a new and simpler proof of the famous
property P conjecture. In [16], Kronheimer and Mrowka proved the following, in
correspondence to Ni’s result.

Theorem 1.1 (Kronheimer and Mrowka [16]). Suppose pM,γq is a balanced sutured
manifold and is a homology product. Suppose further that

rkpSHMpM,γqq “ 1 or rkpSHIpM,γqq “ 1.

Then, pM,γq is a product sutured manifold.

Theorem 1.1 has many important applications. For instance, this theorem is
crucial in the proof that Khovanov homology detects unknots, by Kronheimer and
Mrowka [13], and that Khovanov homology detects trefoils, by Baldwin and Sivek [4].
In this paper, we generalize Theorem 1.1 and prove the following:

Theorem 1.2. Suppose pM,γq is a taut balanced sutured manifold, H2pMq “ 0, and

rkpSHMpM,γqq ă 2k`1 or rkpSHIpM,γqq ă 2k`1.

Then,
dpM,γq ď 2k.

Remark 1.3. If a balanced sutured manifold is a homology product, then H2pMq “ 0.
The converse is not necessarily true. Also, dpM,γq “ 0 if and only if pM,γq is a
product sutured manifold.

As a direct corollary to Theorem 1.2, we offer a new proof to the following well-
known fact.

Theorem 1.4 (Kronheimer and Mrowka [16]). The monopole and instanton knot
Floer homologies, KHM and KHI, as defined in [16], both detect fibred knots.

In [27], Xie and Zhang constructed a version of sutured instanton Floer homology
on balanced sutured manifolds with tangles. In [26], they used their construction
as a tool to fully classify links whose Khovanov homologies have minimal possible
ranks. One crucial step in their proofs is to show that the sutured instanton Floer
homology they constructed detects product tangles inside product sutured manifolds.
In this paper, with Theorem 1.2, we can prove a slightly more general result than
their product-tangle-detection theorem.

Corollary 1.5. Suppose pM,γq is a balanced sutured manifold equipped with a ver-
tical tangle T . Suppose further that H2pMzT q “ 0 and SHIpM,γ, T q – C. Then,
pM,γ, T q is diffeomorphic to a product sutured manifold equipped with a product tan-
gle, i.e.,

pM,γ, T q – pr´1, 1s ˆ F, t0u ˆ BF, r´1, 1s ˆ tp1, ..., pnuq.
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Here, F is a compact oriented surface-with-boundary, and p1, ..., pn are distinct points
on F .

Remark 1.6. Note we only need the requirement that H2pMzT q “ 0, instead of the
assumption that H2pMq “ 0 in the hypothesis of Theorem 1.2. The later condition
is stronger when tangles do exist. Our assumption is also weaker than the original
assumption that pM,γq must be a homology product in Xie and Zhang [27].

Despite many significant applications mentioned above, there are many basic as-
pects of sutured monopole and instanton Floer theories that remain in mystery. The
usual monopole and instanton theories were defined on closed oriented 3-manifolds,
while balanced sutured manifolds are compact oriented manifolds with non-trivial
boundaries. So, to define the sutured monopole and instanton Floer homologies,
Kronheimer and Mrowka constructed a special class of closed oriented 3-manifolds,
called closures, out of the sutured data. However, the choice of closure is not unique,
which lead to the following two questions:

Question 1.7. In [14], Kronheimer and Mrowka proved that different closures give
rise to isomorphic sutured monopole and instanton Floer homologies. Then, to what
extent can we say that all of the essential information of sutured monopole and in-
stanton Floer homologies is contained in the original balanced sutured manifold rather
than the full closure?

Question 1.8. The monopole Floer homology on a closed 3-manifold decomposes
along spinc structures (see [15]). Correspondingly, the instanton Floer homology de-
composes along eigenvalue functions (see [16]). Then, do we have a spinc-type de-
composition for sutured monopole or instanton Flor homology?

Question 1.9. How do sutured monopole and instanton Floer homologies tell us
information about the Thurston norm on a balanced sutured manifold?

Towards answering the first question, the second author proved in [19] the follow-
ing proposition:

Proposition 1.10 (Li [19]). Suppose pM,γq is a balanced sutured manifold with a
toroidal boundary, and γ consists of two components. Suppose further that Y is a
closure of pM,γq, and s1 and s2 are two supporting spinc structures on Y , then there
is a 1-cycle x in M so that

c1ps1q ´ c1ps2q “ P.D.rxs P H2pY q.

Similar statements hold in the instanton settings.

This theorem is central to the second author’s proof of a grading shifting property
for gradings associated to properly embedded surfaces inside those balanced sutured
manifolds that are described in the hypothesis of Proposition 1.10. The grading
shifting property has two consequences in that paper. The first is to compute the
sutured monopole and instanton Floer homologies of any sutured solid tori. The
second is to construct an Alexander grading on the minus versions of monopole and
instanton knot Floer homologies as well as proving many fundamental properties of
them.
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However, in the hypothesis of Proposition 1.10, it is required that M has a toroidal
boundary, and that the suture has only two components. These requirements are very
restrictive. For instance, one cannot use Proposition 1.10 to construct minus versions
of monopole and instanton knot Floer homologies for links. This is because the
sutured manifolds arising from links may have more than one boundary component,
and, thus, Proposition 1.10 does not apply. In this paper, we prove the same result,
as in Proposition 1.10, for any balanced suture manifolds.

Theorem 1.11. Suppose pM,γq is a balanced sutured manifold. Suppose further that
Y is a closure of pM,γq, and s1 and s2 are two supporting spinc structures on Y .
Then, there is a 1-cycle x in M so that

c1ps1q ´ c1ps2q “ P.D.rxs P H2pY q.

Similar result holds in the instanton settings.

Thus, to answer Question 1.7, we could say that, in any closure, the difference
of any two supporting spinc structures, in terms of the Poincaré dual of their first
Chern classes, is contained in the original balanced sutured manifold instead of the
whole closure. Also, Theorem 1.11 leads to a generalization of the grading shifting
property, which was initially discussed in Li [19], as follows.

Theorem 1.12. Suppose pM,γq is a balanced sutured manifold and α P H2pM, BMq
is a non-trivial homology class. Pick two surfaces S1 and S2 so that

rS1, BS1s “ rS2, BS2s “ α P H2pM, BMq,

and they are both admissible (see Definition 2.25) in pM,γq. Then, there exist con-
stants lM , lI P Z, so that, for any j P Z, we have:

SHMp´M,´γ, S1, jq “ SHMp´M,´γ, S2, j ´ lM q,

and
SHIp´M,´γ, S1, jq “ SHIp´M,´γ, S2, j ´ lIq.

The general grading shifting property given by Theorem 1.12 helps compute the
sutured monopole and instanton Floer homology of some families of sutures on a
general handle body. In section 4, we use a concrete example to present the algorithm.
Theorem 1.12 also leads to a generalization of the minus version of monopole and
instanton knot Floer homologies for links:

Theorem 1.13. Suppose L Ă Y is a link so that each component of L is null-
homologous. Suppose further that L has r components and p is an r-tuple, consisting
of one point on each component of L. Then, associated to the triple p´Y, L,pq, we
can construct an infinite-rank module KHM´

p´Y,L,pq over the rings R, the mod 2
Novikov ring. Moreover, KHM´

p´Y, L,pq is well defined only up to multiplication by
a unit in R and has the following properties.

(1) Suppose tS1, ..., Sru is a collection of r Seifert surfaces, one for each component
of L, then they together induce a Zr grading on KHM´

p´Y, L,pq and KHI´p´Y,L,pq.
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(2) For each i P t1, ..., ru, there is a morphism

Ui : KHM´
p´Y, L,pq Ñ KHM´

p´Y,L,pq,

which drops the grading associated to Si by 1 and preserves all other gradings. This
makes KHM´

p´Y,L,pq a module over RrU1, ..., Urs.
(3) There exists N P Z so that if j “ pj1, ..., jrq P Zr is a multi-grading and ji ă N

for some i P t1, ..., ru, then the morphism Ui restricts to an isomorphism

Ui : KHM´
p´Y,L,p, jq

–
ÝÑ KHM´

p´Y,L,p, j:q,

where j: is obtained from j by replacing ji with ji ´ 1.
Furthermore, using instanton theory, we can construct KHI´p´Y,L,pq, which

is well defined up to a multiplication by a non-zero element in the field of complex
numbers, and properties (1), (2), and (3) all hold.

To answer Question 1.8, we construct a canonical decomposition of sutured monopole
and instanton Floer homologies, independent of the choices of closures. To ensure this
decomposition is canonical, we need to pre-fix an element of special type inside the
sutured monopole or instanton Floer homology, which we call a homogenous element.

Proposition 1.14. Suppose pM,γq is a balanced sutured manifold and a P SHM is
a homogenous element. Then there is a canonical decomposition

SHMpM,γq “
à

ρPH2pM,BM ;Rq
SHMapM,γ, ρq.

A similar statement holds in the instanton settings.

Thus, we could define polytopes for sutured monopole and instanton Floer theo-
ries, to be the convex hulls of sets of ρ so that SHMapM,γ, ρq ‰ 0 or SHIapM,γ, ρq ‰
0. The first definition of such a polytope was introduced by Juhász in the context of
sutured Floer theory. In this paper, we also proved the following:

Corollary 1.15. Suppose pM,γq is a taut balanced sutured manifold with H2pMq “
0. Suppose further that pM,γq is reduced, horizontally prime, and free of essential
product disks. Then, the polytopes must both have maximal possible dimensions. In
particular, we conclude that

rkRpSHMpM,γqq ě b1pMq ` 1, and dimCpSHIpM,γqq ě b1pMq ` 1.

The proofs of Corollary 1.15 and Theorem 1.2 both rely on a technical result
proved in section 5, which describes in detail how sutured monopole and instanton
Floer homologies behave under sutured manifold decompositions. It is closely related
to the decomposition theorem, Proposition 6.9, in Kronheimer and Mrowka [16].

The polytopes we defined for sutured monopole and instanton theories are closely
related to the Thurston norms on the original balanced sutured manifold as well as
on the closures. In particular, the canonical decomposition in Proposition 1.14 and
the grading shifting property in Theorem 1.12 enable us to prove a Thurston norm
detection result for monopole and instanton knot Floer homologies. The same result
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was previously achieved by Ozsváth and Szábo in [23], for the link Floer homology
in Heegaard Floer theory.

Suppose Y is a closed oriented 3-manifold and L Ă Y is an oriented link. Let

L “ L1 Y ...Y Lr

be the components of L. We require the following two conditions to hold for L Ă Y .
(1) The link complement, Y pLq “ Y zNpLq, is irreducible.
(2) The link complement Y pLq is boundary-incompressible.
Let Γµ Ă BY pLq be the suture consisting of a pair of oppositely oriented merid-

ians on each boundary component of Y pLq. Then, by Proposition 1.14, there is a
decomposition

KHMpY,Lq “ SHMpY pLq,Γµq “
à

ρPH2pY pLq,BY pLq;Qq
SHMapY pLq,Γµ, ρq.

We make the following definition.

Definition 1.16. For a class α P H2pY pLq, BY pLqq, define

ypαq “ max
ρPH2

pY pLq,BY pLq;Qq
SHMapY pLq,Γµ,ρq‰0

tρpαqu ´ min
ρPH2

pY pLq,BY pLq;Qq
SHMapY pLq,Γµ,ρq‰0

tρpαqu

Theorem 1.17. Under the above settings,

xpαq `
r
ÿ

i“1

|xα, µiy| “ ypαq. (1)

Here xp¨q is the Thurston-norm defined in Definition 2.5. x, y is to take the algebraic
intersection number of a class α P H2pY pLq, BY pLqq with a class rµis P H1pY pLqq,
where µi is a meridian of the link component Li.

Remark 1.18. Theorem 1.17 offers a complete answer to Question 1.9 in the case
when the boundary of the balanced sutured manifold consists of tori. Suppose M
is a connected compact oriented 3-manifold so that M is irreducible and boundary-
incompressible, and its boundary consists of tori, then we can perform Dehn fillings on
each boundary component of M . The cores of the Dehn fillings give us a Link inside
the resulting closed 3-manifold Y , which satisfies the hypothesis of Theorem 1.17.
Since the Dehn surgery can be performed along any non-separating simple closed
curves, Theorem 1.17 covers all the cases when the suture γ on BM consists of a pair
of non-separating simple closed curves on each boundary component of M . For a
more general suture, when it may have more than two component on some boundary
component of M , we can modify the coefficients of the terms xh, µiy according to the
number of components, and the proof of Theorem 1.17 still applies verbatim.

Organization. In Section 2, we include the basic definitions and known results
that support the proofs in this paper. In Section 3, we study the set of supporting
spinc structures on any closure of a balanced sutured manifold. This will be the
basis for a generalized grading shifting result proven in Section 4. In Section 4,
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we also offer an algorithm that could potentially compute the sutured monopole
and instanton Floer homologies of a families of sutured handle bodies by carrying it
out on a particular example. In Section 5, we use the generalized grading shifting
property to construct a canonical decomposition of sutured monopole or instanton
Floer homology and further construct polytopes in these two theories. Also, we prove
some basic properties of the polytopes as well as the results regarding the depth of
a sutured manifold. In section 6, we present some applications to knots and links:
The first is to prove the Thurston-norm detection result for link complements, and
the second is to construct minus versions for links.

Acknowledgement. The authors would like to thank their advisors David Shea
Vela-Vick and Tomasz Mrowka, for their enormous help. The authors would like to
thank András Juhász and Yi Ni for helpful comments or conversations. The first
author was supported by his advisor David Shea Vela-Vick’s NSF Grant 1907654 and
Simons Foundation Grant 524876. The second author was supported by his advisor
Tom Mrowkas NSF Grant 1808794.

2 Preliminaries

2.1 Basic definitions of Balanced sutured manifolds

Definition 2.1. A balanced sutured manifold is a pair pM,γq consisting of a compact
oriented 3-manifold M and a closed oriented 1-submanifold γ Ă BM . On BM , let
Apγq “ r´1, 1s ˆ γ be an annular neighborhood of γ Ă BM , and let

Rpγq “ BMzintpApγqq.

They satisfy the following requirements.
(1) Neither M nor Rpγq has closed components.
(2) If we orient BRpγq “ BApγq “ t˘1uˆ γ in the same way as γ, then we require

that the orientation on BRpγq induces a unique orientation on Rpγq. This orientation
is called the canonical orientation on Rpγq. We use R`pγq to denote the part of
Rpγq whose canonical orientation coincides with the boundary orientation of BM ,
and R´pγq the rest.

(3) We require that
χpR`pγqq “ χpR´pγqq.

Definition 2.2. A balanced sutured manifold pM,γq is called a product sutured man-
ifold if M “ r´1, 1sˆR, Apγq “ r´1, 1sˆBR R`pγq “ t1uˆR and R´pγq “ t´1uˆR.
Here, R is compact oriented surface with no closed components.

Definition 2.3. Suppose M is a compact oriented 3-manifold. M is called irreducible
if every embedded 2-sphere S2 ĂM bounds an embedded 3-ball inside M .

Definition 2.4. Suppose M is a compact 3-manifold and R Ă M is an embedded
surface. R is called compressible if there is a simple closed curve α Ă R so that α
does not bound a disk on R but bounds an embedded disk D ĂM with D XR “ α.
R is called incompressible if it is not compressible. A 3-manifold is called boundary-
incompressible if its boundary is incompressible.

7



2 PRELIMINARIES

Definition 2.5 (Thurston norm). Suppose M is a compact 3-manifold, and suppose
U Ă BM is a submanifold of BM . Suppose further that S is a properly embedded
surface inside M so that BS Ă U . If S is connected, then define the norm of S to be

xpSq “ maxt´χpSq, 0u.

In general, suppose the components of S are

S “ S1 Y ...Y Sn,

where each Si is connected, then define the norm of S to be

xpSq “ xpS1q ` ...` xpSnq.

Moreover, suppose α P H2pM,Uq is a non-trivial second relative homology class, then
define the norm of α to be

xpαq “ mintxpSq | pS, BSq Ă pM,Uq, rS, BSs “ α P H2pM,Uqu.

Definition 2.6. Suppose M is a compact 3-manifold, and S Ă M is a properly
embedded surface. S is called norm-minimizing if

xpSq “ xpαq,

where α “ rS, BSs P H2pM,NpBSqq. Here, NpBSq is a neighborhood of BS Ă BM .

Definition 2.7 (Gabai [5]). A balanced sutured manifold pM,γq is called taut if the
following is true

(1) M is irreducible.
(2) R`pγq and R´pγq are both incompressible.
(3) R`pγq and R´pγq are both norm-minimizing.

Definition 2.8 (Gabai [5]). Let pM,γq be a balanced sutured manifold. A product
annulus A in pM,γq is an annulus properly embedded in M such that BA Ă Rpγq and
BA X R˘pγq ‰ H. A product disk is a disk D properly embedded in M such that
BD XApγq consists of two essential arcs in Apγq.

Product annuli and product disks can detect where pM,γq is locally a product.
We have the following definition following Juhász [11].

Definition 2.9 (Juhász [11]). A balanced sutured manifold pM,γq is called reduced
if any product annulus A ĂM either bounds a cylinder D2ˆ I so that BD2ˆ I “ A,
or is isotopic to a component of Apγq inside M .

Definition 2.10 (Gabai [5]). Let pM,γq be a taut balanced sutured manifold. A
properly embedded surface S ĂM is called horizontal if the following four properties
hold.

(1) S has no closed components and is incompressible.
(2) BS Ă Apγq, and BS is parallel to BR`pγq inside Apγq.
(3) rSs “ rR`pγqs in H2pM,Apγqq.
(4) χpSq “ χpR`pγqq.
We say that pM,γq is horizontally prime if every horizontal surface in pM,γq is

parallel to either R`pγq or R´pγq.

8



2 PRELIMINARIES

Definition 2.11 (Gabai [5]). Suppose pM,γq is a taut balanced sutured manifold.
The depth of pM,γq, which we write dpM,γq, is the minimal integer n so that there
exists a sequence of sutured manifold decompositions (for definitions, see Gabai [5]
or Scharlemann [24])

pM0, γ0q
S0 pM1, γ1q

S1. ..
Sn pMn`1, γn`1q,

so that each pMi, γiq is taut, pM0, γ0q “ pM,γq and pMn`1, γn`1q is a product sutured
manifold.

Theorem 2.12 (Gabai [5]). For any taut balanced sutured manifold, its depth is
finite.

2.2 Monopole and instanton Floer homologies on balanced su-
tured manifolds

To define sutured monopole and instanton Floer homologies, one needs to construct
a closed 3-manifold, together with a distinguishing surface, out of a balanced sutured
manifold pM,γq. To do this, pick T to be a connected oriented surface so that the
following is true.

(1) There is an orientation reversing diffeomorphism

f : BT Ñ γ.

(2) T has genus at least 2.
(3) There is a fixed base point p P T .
Then, we can use f to glue T ˆ r´1, 1s to M , along the annuli Apγq, and let

ĂM “M Y
idˆf

r´1, 1s ˆ T.

The manifold ĂM has two boundary components:

BĂM “ R` YR´,

where
R˘ “ R˘pγqY

f
t˘1u ˆ T.

Let h : R` Ñ R´ be an orientation preserving diffeomorphism so that hpt1uˆtpuq “
t´1u ˆ tpu, then we can form a closed 3-manifold as follows:

Y “ ĂM Y
idYh

r´1, 1s ˆR`.

Here, we use h to glue t1u ˆ R` to R´ Ă BĂM and use the identity map to glue

t´1u ˆ R` to R` Ă BĂM . Let R “ t0u ˆ R` Ă Y , and we make the following
definition.

9
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Definition 2.13. The manifold ĂM is called a pre-closure of pM,γq. The pair pY,Rq
is called a closure of the balanced sutured manifold pM,γq. The choices T, f , and h
are called the auxiliary data. In particular, the surface T is called an auxiliary surface
and h a gluing diffeomorphism.

Definition 2.14. The sutured monopole Floer homology of pM,γq is defined as

SHMpM,γq “ HMpY |Rq “
à

sPS˚pY |Rq

~HM‚pY, s; Γηq.

Here, η Ă R is a non-separating simple closed curve and

S˚pY |Rq “ ts spinc structures on Y, c1psqrRs “ 2gpRq ´ 2, ~HM‚pY, sq ‰ 0u

is called the set of supporting spinc structures. We use the mod 2 Novikov ring R for
coefficients.

Definition 2.15. The sutured instanton Floer homology of pM,γq is defined as

SHIpM,γq “ IpY |Rq “
à

λPH˚pY |Rq

IωpY qλ.

Here, ω “ S1 ˆ tpu, and the notation IωpY qλ follows from Section 6 in [18]. The set

H˚pY |Rq “ tλ P H2pY ;Qq, λrRs “ 2gpRq ´ 2, IωpY qλ ‰ 0u

is called the set of supporting eigenvalue functions. We use the field of complex
numbers C for coefficients.

Theorem 2.16. [Kronheimer and Mrowka [16]] The isomorphism classes of SHMpM,γq
and SHIpM,γq are invariants for a fixed balanced sutured manifold pM,γq.

Only knowing that the isomorphism class is an invariant is sometimes not enough.
In [1], Baldwin and Sivek refined the definition of closures and construct canonical
maps between different closures. In particular, they proved the following.

Theorem 2.17. Suppose pM,γq is a balanced sutured manifold. Suppose further that
pY1, R1q and pY2, R2q are two closures of pM,γq. Pick non-separating curves η1 Ă R1

and η2 Ă R2 to support local coefficients. Then, there exists a map

Φ1,2 : HMpY1|R1; Γη1q
–
ÝÑ HMpY2|R2; Γη2q,

which is well-defined up to multiplication by a unit in the base ring. Moreover, it
satisfies the following properties.

(1) If pY1, R1q “ pY2, R2q, then Φ1,2
.
“ id. Here,

.
“ means equal up to multiplica-

tion by a unit.
(2) If there is a third closure pY3, R3q of pM,γq, then

Φ1,3
.
“ Φ2,3 ˝ Φ1,2.

Similar results hold in the instanton settings.
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Hence, for a balanced sutured manifold pM,γq, the sutured monopole or instanton
Floer homologies of closures, together with the canonical maps, form a projective
transitive system, and we can derive a canonical module which we denote by

SHMpM,γq or SHIpM,γq.

They are well defined up to a unit in the corresponding base ring (field). For more
details, readers are referred to Baldwin and Sivek [1].

Floer excision is a very useful tool introduced by Kronheimer and Mrowka [16]
into the context of sutured monopole and instanton Floer homologies. It has several
different versions, but we only present the version that is be useful in later sections.
Suppose pM,γq is a balanced sutured manifold and ĂM is a pre-closure of pM,γq.
Recall that

BĂM “ R` YR´.

Suppose we use two gluing diffeomorphisms, h1 and h2, to obtain two closures pY1, R`q
and pY2, R`q, respectively. Let h “ h´1

1 ˝ h2, and let Yh be the mapping torus of h :
R` Ñ R` Then, we can form a cobordism W , which is from Y1\Y

h to Y2, as follows.
Let U be a disk as depicted in Figure 1, and four parts of its boundary, µ1, µ2, µ3, and
µ4, are each identified with the interval r0, 1s. Glue three pieces r0, 1s ˆ ĂM , U ˆ R`
and r0, 1s ˆ r´1, 1s ˆR` together, and let

W “ pr0, 1s ˆ ĂMq Y
idYh´1

1

pU ˆR`q Y
idYh´1

pr0, 1s ˆ r´1, 1s ˆR`q.

Here, we use id to glue r0, 1s ˆ R` to µ1 ˆ R`, use h´1
1 to glue r0, 1s ˆ R´ to

µ2 ˆR`, use h´1 to glue µ3 ˆR` to r0, 1s ˆ t1u ˆR´ and use id to glue µ4 ˆR` to
r0, 1s ˆ t´1u ˆR`. Note all the gluing maps are identity on the r0, 1s direction.

Pick a non-separating curve η Ă T , and suppose the diffeomorphisms h1 and h2

we choose at the beginning both preserve η:

h1pt1u ˆ ηq “ t´1u ˆ η, and h2pt1u ˆ ηq “ t´1u ˆ η.

Then, we can use η to support local coefficients.

Theorem 2.18 (Kronheimer and Mrowka, [16]). The cobordism W induces an iso-
morphism

~HMpW q : HMpY1|R`; Γηq bHMpY
h|R`;Z2q Ñ HMpY2|R`; Γηq.

There are three basic lemmas that are useful in later sections. Here we only
present them in the monopole settings, but all of them have correspondences in the
instanton settings.

Lemma 2.19 (Kronheimer and Mrowka [16]). The set of supporting spinc structures
S˚pY h|R`q consists of a unique element sh. Moreover, with Z coefficients,

HMpY h|R`q “ ~HM‚pY
h, shq – Z.

When using local coefficients, pick a non-separating curve η Ă R` and suppose R
be any suitable base ring for local coefficients, then

HMpY h|R`; Γηq “ ~HM‚pY
h, sh; Γηq – R.

11



2 PRELIMINARIES

ĂM ˆ r0, 1s R` ˆ U R` ˆ r´1, 1s

id

h´11

id

h´1

µ2

µ1

µ3

µ4

Figure 1: Gluing three parts together to get W . The middle part is U ˆ R`, while the
R` directions shrink to a point in the figure.

Lemma 2.20 (Kronheimer and Mrowka [15]). Suppose Y is a closed oriented 3-
manifold and s is a spinc structure on Y so that there is a embedded oriented surface
R Ă Y so that gpT q ě 1, and |c1psqrRs| ą 2gpRq ´ 2. Then, we have

~HM‚pY, sq “ 0.

Similarly, for any local coefficients that could possibly be used,

~HM‚pY, s; Γηq “ 0.

Lemma 2.21. Suppose pW, νq is a cobordism from Y to Y 1. Suppose s is a spinc

structure on Y and s1 is a spinc structure on Y 1, so that

~HMpW qp~HM‚pY, sqq X~HM‚pY
1, s1q ‰ t0u,

then we know that

i˚pP.D.c1psqq “ pi
1q˚pP.D.c1ps

1qq P H1pW q.

Here i : Y ÑW and i1 : Y 1 ÑW 1 are the inclusions.

2.3 A grading on sutured monopole and instanton Floer ho-
mology

In [19], the second author constructed a grading on sutured monopole or instanton
Floer homology, associated to a properly embedded surface with a connected bound-
ary. We will present the construction in this subsection, while dropping the condition
that BS is connected, using some new inputs from Kavi [12].

12



2 PRELIMINARIES

Definition 2.22. Suppose pM,γq is a balanced sutured manifold, and S is a properly
embedded oriented surface. A stabilization of S is an isotopy of S to a surface S1, so
that the isotopy creates a new pair of intersection points:

BS1 X γ “ pBS X γq Y tp`, p´u.

We require that there are arcs α Ă BS1 and β Ă γ, which are oriented in the same
way as BS1 and γ, respectively, so that the following is true.

(1) We have Bα “ Bβ “ tp`, p´u.
(2) The curves α and β cobound a disk D so that intpDq X pγ Y BS1q “ H. The

stabilization is called negative if D can be oriented so that BD “ α Y β as oriented
curves. It is called positive if BD “ p´αq Y β.

Denote by S˘k the result of performing k many positive or negative stabilizations
of S.

BS

γ

γ

�
��

�
��*

HHH
HHHj

positive

negative

D

α

β

D

α

β

Figure 2: The positive and negative stabilizations of S.

Lemma 2.23. Suppose pM,γq is a balanced sutured manifold, and S is a properly
embedded oriented surface. Suppose further that S` and S´ are obtained from S
by performing a positive and negative stabilization, respectively. Then, we have the
following.

(1) If we decompose pM,γq along S or S`, then the resulting two balanced sutured
manifolds are diffeomorphic.

13



2 PRELIMINARIES

(2) If we decompose pM,γq along S´ , then the resulting balanced sutured manifold,
pM 1, γ1q, is not taut, because R˘pγ

1q are both compressible.

Remark 2.24. The positive and negative stabilization on S will be switched if we
reverse the orientation of S, that is, ´pS`q is the same as p´Sq´ and ´pS´q is the
same as p´Sq`. Accordingly, when changing the orientation of the suture, positive
and negative stabilizations are also switched.

Now we present the construction of the grading. This was originally written down
by Baldwin and Sivek in [4] and was then generalized one step further by the second
author in [19], to fit his needs of constructing a Z grading in the minus version of
monopole and instanton knot Floer homologies. In this subsection, we make a further
generalization and introduce the most general setups of constructing such a grading.

Definition 2.25. Suppose pM,γq is a balanced sutured manifold, and S is a properly
embedded surface inside M . Suppose further that S intersects with γ transversely. S
is called admissible inside pM,γq if the value p 1

2 |S X γ| ´ χpSqq is an even integer.

Suppose pM,γq is a balanced sutured manifold, and S ĂM is an oriented admis-
sible properly embedded surface. In case BS ‰ H, suppose further that S intersects
with γ transversely. Let n “ 1

2 |S X γ|. We fix an arbitrary ordering of the boundary
components of S and label all the intersection points of S with γ as follows. On
each boundary component of S, index them according to the orientation of BS. For
different components of BS, we first index points on the boundary component that
comes first in the fixed ordering. Also, the first point to be indexed on each boundary
component of S is chosen to be a positive intersection of S with γ (on BM). In this
way, we can assume that

S X γ “ tp1, ..., p2nu.

In [19], when S has a connected boundary, the second author introduced the
notion of balanced pairings to help construct the grading. In Kavi [12], the notion
of balanced pairings was generalized to accommodate a general S. In this paper,
we omit the detailed definitions of balanced pairings and will use the generalized
definition from [12].

Suppose
P “ tpi1, j1q, ..., pin, jnqu

is a balanced pairing of size n. Then, we can pick an auxiliary surface T for pM,γq
so that the following is true.

(1) The genus of T is large enough.
(2) The boundary of T is identified with the suture γ.
(3) There are properly embedded arcs α1, ..., αn inside T so that the following two

properties hold.
(a) The classes rα1s, ..., rαns are linearly independent in H1pT, BT q.
(b) For k “ 1, ..., n, we have

Bαk “ tpik , pjku.

Then, we can form a pre-closure ĂM of pM,γq:

ĂM “M Y r´1, 1s ˆ T.

14
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The manifold ĂM has two boundary components:

BĂM “ R` YR´.

The surface S extends to a properly embedded surface rS inside ĂM :

rS “ S Y r´1, 1s ˆ α1 Y ...Y r´1, 1s ˆ αn.

The definition of the balanced pairing makes sure that rS XR` and rS XR´ have
the same number of components, and the requirement (a) for αi makes sure that

components of rSXR˘ represent linearly independent classes in H1pR˘q. Thus, there
exists an orientation preserving diffeomorphism h : R` Ñ R´ so that

hprS XR`q “ rS XR´.

We can use ĂM and h to obtain a closure pY,R`q of pM,γq, and, inside Y , the surface
S extends to a closed surface S̄.

Definition 2.26. Define

SHMpM,γ, S, iq “
à

sPS˚pY |Rq
c1psqrRs“2i

~HM‚pY, s; Γηq.

We say that this grading is associated to the surface S Ă M . The grading defined
on separate closures also induces a grading on the canonical module SHMpM,γq, as
stated in Theorem 2.27. We write this grading on the canonical module as

SHMpM,γ, S, iq.

Theorem 2.27 (Kavi [12] and Li [19]). Suppose pM,γq is a balanced sutured manifold,
and S Ă M is a fixed orietned admissible properly embedded surface surface. Then,
the grading SHMpM,γ, S, iq is independent of all the choices made in the construction
and, thus, is well-defined.

Using the grading, we can re-formulate Kronheimer and Mrowka’s decomposition
theorem, Proposition 6.9, in [16], as follows.

Lemma 2.28. Suppose pM,γq is a balanced sutured manifold and S Ă M is an
oriented admissible properly embedded surface. Suppose further that S satisfies the
hypothesis of Proposition 6.9 in [13], and pM 1, γ1q is obtained from pM,γq by a sutured
manifold decomposition along S. Let

gc “
1

4
|S X γ| ´

1

2
χpSq.

Then, we have
SHMpM,γ, S, gcq – SHMpM 1, γ1q.
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pM,γ3q

pM,γ1q pM,γ2q

α
-

�
�

��	@
@
@@I

Figure 3: The by-pass exact triangle.

2.4 Bypasses

Suppose we have three balanced sutured manifold pM,γ1q, pM,γ2q and pM,γ3q so
that the underlining 3-manifolds are the same, but the sutures are different. Suppose
further that γ1, γ2, and γ3 are only different with in a disk D Ă BM , and, within the
disk D, they are depicted as in Figure 3.

Theorem 2.29 (Baldwin and Sivek [2, 4]). There are exact triangles relating the
sutured monopole and instanton Floer homologies of three balanced sutured manifolds
as follows.

SHMp´M,´γ1q
ψ12 // SHMp´M,´γ2q

ψ23uu
SHMp´M,´γ3q

ψ31

ii

SHIp´M,´γ1q
ψ12 // SHIp´M,´γ2q

ψ23vv
SHIp´M,´γ3q

ψ31

hh
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3 DIFFERENCE OF SUPPORTING SPINC STRUCTURES

In contact geometry, a by-pass is a half disk, which carries some special contact
structure, attached along a Legendrian arc to a convex surface. For more details,
readers are referred to Honda [8]. There is a description of the maps in the above by-
pass exact triangle as follows. We explain how to obtain the map ψ12, and the other
two are the same. Let Z “ BM ˆ r0, 1s, and we can pick the suture γ1 on BM ˆ t0u
as well as the suture γ2 on BM ˆ t1u. Then, there is a special contact structure ξ12

on Z, which corresponds to the by-pass attachment. Hence, we can attach Z to M
by the identification BM ˆt0u “ BM ĂM . The result, pM YZ, γ2q, is diffeomorphic
to pM,γ2q, and we have

ψ12 “ Φξ12 .

Here, Φξ12 is the gluing map associated to ξ12, as constructed by the second author
in [18].

There is a second way to interpret the maps ψ˘ associated to by-pass attach-
ments based on [21]. In [21], Ozbagci proved that a by-pass attachment could be
realized by attaching a contact 1-handle followed by a contact 2-handle. In sutured
monopole and instanton Floer homologies, there are maps associated to the contact
handle attachments, due to Baldwin and Sivek [2, 3]. So, we can compose those
contact handle attaching maps to obtain ψ˘. This was the original way Baldwin
and Sivek constructed the by-pass maps (when they define by-pass maps, there was
no construction of gluing maps) and proved the existence of the exact triangle. The
two interpretations are the same because of the functoriality of the gluing maps. For
details, readers are referred to Li [18]. Both descriptions of the by-pass maps are
useful in later sections.

3 Difference of supporting spinc structures

3.1 A basic calculation

Suppose pM,γq is a balanced sutured manifold, and ĂM is a pre-closure of M with

BĂM “ R` Y R´. Suppose further that we pick two gluing diffeomorphisms h1, h2 :
R` Ñ R´ and obtain two closures pY1, R`q and pY2, R`q of pM,γq, respectively. Let
h “ h´1

1 ˝ h2, and let Y h be the mapping torus of h. As in Subsection 2.2, we can
construct a Floer excision cobordism W from Y1 \ Y

h to Y2. Suppose i : Y2 Ñ W is
the inclusion map. In section 4 of Li [18], the map

i˚ : H1pY2q Ñ H1pW q,

which is induced by the inclusion i : Y2 ãÑ W , has played a very important role in
proving Proposition 1.10. In this subsection we compute the kernel of i˚. A first
observation is that we could just work with Q coefficients, since for grading purpose,
torsion parts have no contributions.

From the description in Subsection 2.2, we know that W is obtained by gluing
three pieces together. We can compute its first homology by applying Mayer-Vietoris
sequences twice and get the following result.

H1pW ;Qq “ rH1pĂM ;Qq ‘ xrs1s, rs
hsys{rimph1,˚ ´ 1q ` imph˚ ´ 1qs. (2)

17



3 DIFFERENCE OF SUPPORTING SPINC STRUCTURES

Here are a few things to be explained. First, recall in section 2, we require that the
gluing diffeomorphism h1 and h2 to fix the same base point p P T . This means that
there are circles s1 Ă Y1 and sh Ă Y h of the form tpu ˆ S1, respectively. Then, s1

and sh naturally embed into W , and the class rs1s, rs
hs P H1pW q are represented by

these two circles.
Second, recall we have a map h1 : R` Ñ R´, and, thus, there is a map

ˆ

´1 0
ph1q˚ 0

˙

: H1pR`q ‘H1pR´q Ñ H1pR`q ‘H1pR´q.

Note H1pR`q ‘ H1pR´q can be viewed as H1pR` \ R´q and there is an inclusion

j : R` \R´ Ñ ĂM . So, in equation (2), we use imph1,˚ ´ 1q to denote the subspace

im

„

j˚ ˝

ˆ

´1 0
ph1q˚ 0

˙

Ă H1pĂMq.

Note, from the maps h : R` Ñ R` and j : R` \ R´ Ñ ĂM , we have a space

j˚rimph˚ ´ 1qs Ă H1pĂMq. Abusing the notation, in (2), we use imph˚ ´ 1q to denote
j˚rimph˚ ´ 1qs and omit j˚ from the notation. The sum imph1,˚ ´ 1q ` imph˚ ´ 1q is

the sum of the two subspaces, as described above, in H1pĂMq.
In a similar way, we can compute the first homology of Y2.

H1pY2;Qq “ rH1pĂM ;Qq ‘ xrs2sys{rimph2,˚ ´ 1qs. (3)

Here, the term imph2,˚ ´ 1q is similar to the term imph1,˚ ´ 1q in (2), and s2 is the
circle S1ˆtpu Ă Y2, similar to s1 and sh in (2). Hence, we can deduce the following.

Lemma 3.1. Let i : Y2 ÑW be the inclusion. Then,

kerpi˚q Ă rimph1,˚ ´ 1qs{rimph2,˚ ´ 1qs Ă H1pY2;Qq.

Here, the term imph1,˚ ´ 1q is the same as the one appeared in (2), and the term
imph2,˚ ´ 1q is the same as the one appeared in (3).

Proof. It is straight forward to check that

i˚prs2sq “ rs1s ` rs
hs P H2pW ;Qq.

Hence, from (3), we know that the kernel must come from the quotient of H1pĂM ;Qq:

kerpi˚q Ă H1pĂM ;Qq{rimph2,˚ ´ 1qs Ă H1pY2;Qq.

Let α P kerpi˚q be any element in the kernel, then, from (3) and (2), we can find

a lift α̃ P H1pĂM ;Qq so that α̃ P imph1,˚ ´ 1q ` imph˚ ´ 1q. Equivalently, there are

classes β, γ P H1pR`;Qq so that (recall j : R` \R´ Ñ ĂM is the inclusion)

rα “ j˚rph1q˚pβq ´ βs ` j˚rh˚pγq ´ γs.

Write
α̃1 “ h˚pγq ´ γ P H1pR`;Qq Ă H1pR` \R´;Qq,
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then we know that (recall h2 “ h1 ˝ h)

α̃1 “ ph1q˚pα̃
1q ` rα̃1 ´ ph1q˚pα̃

1qs

“ ph2q˚pγq ´ ph1q˚pγq ` rα̃
1 ´ ph1q˚pα̃

1qs

“ ph2q˚pγq ´ γ ` rγ ´ ph1q˚pγqs ` rα̃
1 ´ ph1q˚pα̃

1qs.

Hence, we have

α̃ “j˚rph2q˚pγq ´ γs

` j˚rγ ´ ph1q˚pγqs ` j˚rα̃
1 ´ ph1q˚pα̃

1qs ` j˚rph1q˚pβq ´ βs.

The first term is in imph2,˚ ´ 1q and the rest are in imph1,˚ ´ 1q. So, we know that

α P rimph1,˚ ´ 1qs{rimph2,˚ ´ 1qs Ă H1pĂM,Qq{rimph2,˚ ´ 1qs “ H1pY2;Qq,

and this concludes the proof of Lemma 3.1.

3.2 Adding 1-handles

Definition 3.2. Suppose pM,γq is a balanced sutured manifold. A product (or
contact) 1-handle is a tuple pφ, S,D3, δq, where S Ă BD3 is the disjoint union of two
embedded disks on BD2, δ is a simple closed curve on BD3, which intersects each
component of S in an arc, and φ : S Ñ BM is an embedding so that φpδ X Sq “
γ X φpSq Ă BM . Then, we can form a new balanced sutured manifold

pM 1, γ1q “ pM Y
φ
D3, γ1 “ γzφpSq Y pδzSqq.

Remark 3.3. In Kronheimer and Mrowka [16], this process is called attaching a prod-
uct 1-handle, while in Baldwin and Sivek [2], the same process is called attaching a
contact 1-handle.

Lemma 3.4 (Kronheimer, Mrowka [16] or Baldwin, Sivek [2]). When using auxiliary
surfaces of large enough genus, any pre-closure of pM,γq is a pre-closure of pM 1, γ1q,
and vice-versa.

Hence, by Lemma 3.4, we can freely add 1-handles to the original pM,γq without
changing its closure. A straightforward observation is the following.

Lemma 3.5. For any balanced sutured manifold pM,γq, there exists a set of 1-
handles, th1, ..., hnu so that the following is true.

(1) If pM 1, γ1q is the resulting balanced sutured manifold after attaching all 1-
handles h1,..., hn, then γ1 is connected.

(2) For l “ 1, ..., n, if pMl, γlq is the resulting balanced sutured manifold after
attaching all 1-handles h1, ..., hn except hl, then R˘pγlq are both connected.

Remark 3.6. The first condition is used in the proof of Lemma 3.7, and the second is
used in the proof of Lemma 3.9.

Thus, from any balanced sutured manifold pM,γq, we can find a set of 1-handles,
th1, ..., hnu, according to Lemma 3.5. Let pM 1, γ1q be the resulting balanced sutured
manifold after attaching all those 1-handles, then we have the following lemma.
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Lemma 3.7. Suppose pY,Rq is a closure of pM,γq with gpRq large enough. Then,
pY,Rq can also be regarded as a closure of pM 1, γ1q by Lemma 3.4. Suppose further
that s1 and s2 are two supporting spinc structures on Y , then there is a 1-cycle x in
M 1 so that

P.D.c1ps1q ´ P.D.c1ps2q “ rxs P H1pY ;Qq.
Similar results hold in the instanton settings.

Proof. We start by constructing a special reference closure of pM 1, γ1q. Pick an aux-
iliary surface T 1, and let

ĂM “M 1 Y r´1, 1s ˆ T 1

be a pre-closure of pM 1, γ1q that is also a pre-closure of pM,γq. We have

BĂM “ R` YR´, R˘ “ R˘pγ
1q Y t˘1u ˆ T 1.

We can pick a special gluing diffeomorphism hr : R` Ñ R´ so that hr|t1uˆT 1 “ idT 1 .

Let pY r, R`q be the closure of pM 1, γ1q arising from hr and ĂM . We know that hr can
be split into two parts, fr “ hr|R`pγ1q and idT 1 .

Thus, we have an alternative interpretation for Y r. First, we can use fr :
R`pγ

1q Ñ R´pγ
1q to glue R`pγ

1q Ă BM 1 to R´pγ
1q Ă BM 1, and M 1 becomes a

manifold M 1
1 with a toroidal boundary. Note fr|BR`pγ1q “ id, so we have a natural

framing sr and γ1 on BM 1
1. Here, sr is obtained as follows. If q P γ1 is a point, then

we have an arc r´1, 1s ˆ tqu Ă Apγq. Note fr identifies t1u ˆ tqu with t´1u ˆ tqu, so
r´1, 1s ˆ tqu becomes a circle sr inside BM 1

1. Second, we can glue M 1
1 and S1 ˆ T 1

together to form Y r:
Y r “M 1

1Y
φ
S1 ˆ T 1,

where φ : BM 1
1 Ñ BpS1ˆT 1q maps s1 to the S1 direction and maps γ1 to BT 1 direction.

Let gpT q1 “ k, and let ta1, b1, ..., ak, bku be a set of generators of H1pT
1q as in Figure

4. Then, we can use MayerVietoris sequence to conclude the following:

H1pY
r;Qq “

´

H1pM
1;Qq{rimpf r˚ ´ 1qs

¯

‘ xrsrs, ra1s, ..., rbksy. (4)

Here, the term impfr˚ ´ 1q is similar to the term imph1,˚ ´ 1q in (2). Suppose s
is a supporting spinc structure on Y r, then we can write P.D.c1psq in terms of the
description of H1pY

rq in 4. The coefficient of the class rsrs can be understood to be
2gpRq ´ 2 by looking at the pairing

c1psqrRs “ 2gpRq ´ 2.

The coefficients of ra1s, ..., rbks are all zero, since we can apply the adjunction in-
equality in Lemma 2.20 to the tori b1 ˆ S1, ..., ak ˆ S1 Ă Y . Thus, we conclude the
following.

Lemma 3.8. Suppose s is a supporting spinc structure on Y r, then there is a 1-cycle
rxs in M 1 so that

P.D.c1psq “ rxs ` p2g ´ 2qrsrs P H1pY
r;Qq.

Similar statement holds in the instanton settings.
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a1 ak

b1 bk

Figure 4: A basis for H1pT
1q.

Now suppose h : R` Ñ R´ is any gluing diffeomorphism, and pY,Rq is the
resulting closure of pM 1, γ1q. Let ψ “ phrq´1 ˝ h : R` Ñ R` be a diffeomorphism,
and let Y ψ be the mapping torus of ψ. We can form an excision cobordism W
from Y r \ Y ψ to Y , as in Subsection 2.2. Then, we can compute via MayerVietoris
sequences that

H1pY
ψ;Qq “

´

H1pR`;Qq{rimpψ˚ ´ 1qs
¯

‘ xrsψsy. (5)

Here, sψ is the same as the term sh in (2). Let i : Y Ñ W , ir : Y r Ñ W , and
iψ : Y ψ Ñ W be the inclusions. Suppose s is a supporting spinc structure on Y ,
then, from Lemma 2.21, we know that there is a supporting spinc structure sr on Y r

so that
i˚rP.D.c1psqs “ ir˚rP.D.c1ps

rqs ` iψ˚ rP.D.c1ps
ψqs P H1pW ;Qq.

Here, sψ is the unique spinc structure on Y ψ, as in Lemma 2.19. To find all possible
values of P.D.c1psq, we first find a class rzs P H1pY ;Qq so that

i˚przsq “ ir˚rP.D.c1ps
rqs ` iψ˚ rP.D.c1ps

ψqs P H1pW ;Qq,

and then
P.D.c1psq P rzs ` kerpi˚q Ă H1pY ;Qq.

Note kerpi˚q has been understood by Lemma 3.1.
To find the class rzs, by Lemma 3.8, we know that there exists a 1-cycle x in M 1

so that
P.D.c1ps

rq “ rxs ` p2g ´ 2qrsrs P H1pY
r;Qq.

For sψ, we can check similarly (or see Subsection 4.2 in Li [19]) that there is a 1-cycle
y in R` so that

P.D.c1ps
ψq “ rys ` p2g ´ 2qrsψs P H1pY

ψ;Qq.

Inside W , there are annuli xˆ r0, 1s and yˆ r0, 1s and a pair of pants from sr \ sψ Ă
Y r \ Y ψ to s Ă Y . Hence, we can take z to be the 1-cycle in Y , of the form

z “ x` y ` p2g ´ 2qs.
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Note x is in M 1 and y is in R`, so there are natural ways to regard them as 1-cycles
in Y . Thus, we know that

i˚przsq “ ir˚rP.D.c1ps
rqs ` iψ˚ rP.D.c1ps

ψqs P H1pW ;Qq

and, hence,

P.D.c1psq P rxs ` rys ` p2g ´ 2qrss ` kerpi˚q Ă H1pY ;Qq. (6)

From Lemma 3.1, we know that

kerpi˚q Ă rimph
r
˚ ´ 1qs{rimph˚ ´ 1qs.

Note that hr˚ ´ 1 “ fr˚ ´ 1 since h|T 1ˆt1u “ idT 1 . By construction, rimpfr˚ ´ 1qs is
contained in H1pM

1q, and, thus, we know that kerpi˚q can only contribute to the part
rxs in (6). As a result, we conclude that there is a 1-cycle x1 in M 1 so that

P.D.c1psq “ rx
1s ` rys ` p2g ´ 2qrss P H1pY ;Qq.

Note rys ` p2g ´ 2qrss is independent of the choice of the supporting spinc structure
on Y , so we conclude the proof of Lemma 3.7.

3.3 Dropping 1-handles

Recall we have a balanced sutured manifold pM,γq, and we have a set of 1-handles,
th1, ..., hnu, as in Lemma 3.5. Recall further that pM 1, γ1q is the resulting balanced
sutured manifold after attaching all of those 1-handles. In Lemma 3.7, we prove
that, in terms of the Poincaré dual of the first Chern classes, the difference of two
supporting spinc structures on Y is contained in M 1. In this subsection, we sharpen
the result and prove that the difference must lie in M instead of the whole M 1, which
is exactly the statement of Theorem 1.11.

Suppose, for l “ 1, ..., n, pMl, γlq is the resulting balanced sutured manifold after
attaching all 1-handles h1, ..., hn except hl. Then, pM 1, γ1q is obtained from pMl, γlq
by attaching hl. Recall, from Subsection 3.2, we have an auxiliary surface T 1 for M 1

and a pre-closure ĂM . Then, from Lemma 3.4, ĂM is also a pre-closure for pMl, γlq.

Thus, any closure (Y,R) arising from ĂM is also a closure for pMl, γlq.

Lemma 3.9. For any fixed l, suppose pY,Rq is a closure of pM,γq with gpRq large
enough, then pY,Rq is also a closure for pMl, γlq by Lemma 3.4. Suppose further that
s1, s2 are two supporting spinc structures on Y , then there is a 1-cycle in Ml so that

P.D.c1ps1q ´ P.D.c1ps2q “ rxs P H1pY ;Qq.

Similar result holds in the instanton settings.

Proof of Theorem 1.11. Note pM 1, γ1q and pMl, γlq are obtained from pM,γq by at-
taching 1-handles. So, there are injections

H1pM ;Qq ãÑ H1pMl;Qq ãÑ H1pM
1;Qq.
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3 DIFFERENCE OF SUPPORTING SPINC STRUCTURES

Also, inside H1pM
1;Qq, we have

H1pMq “
n
č

l“1

H1pMlq.

So, Lemma 3.9, together with Lemma 3.4, implies Theorem 1.11.

Proof of Lemma 3.9. By Lemma 3.7, we know that there is a 1-cycle x is in M 1 which
satisfies the statement of the lemma, but our goal is to show that x can be chosen
inside Ml. Recall, in the proof of Lemma 3.7, we pick a special reference closure Y r

by requiring hr|T 1ˆt1u “ idT 1 (and fr “ hr|R`pγ1q). To prove the current lemma, we
will need an even more special closure, by making further restrictions on fr. Though
we will keep using the notations Y r, hr and fr, etc.

To explain the further restriction on fr, recall that pM 1, γ1q is obtained from
pMl, γlq by attaching the 1-handle hl. We can write

H1pM
1;Qq “ H1pMl;Qq ‘ xαly,

where αl consists of the core of the 1-handle hl together with an arc inside Ml. Let
Dl be the co-core of the 1-handle hl. It is a properly embedded disk Dl Ă M 1 that
intersects αl transversely at one point, and BDl intersects R˘pγ

1q in arcs βl,˘. See
Figure 5. Note, by the condition (2) in Lemma 3.5, the arcs βl,˘ are non-separating
inside R˘pγ

1q. Thus, from Lemma 3.6 in Li [18], we can find a map fr which sends
β` to β´.

β´

β`

Dl

αl

γ1

Figure 5: The one handle hl.

Now we can use the new hr to obtain the closure pY r, R`q. It not only satisfies
all requirements needed to conclude the proof of Lemma 3.7, but also has some new
features. Suppose the co-core Dl intersects γ1 at two points pl, ql and let γ Ă T 1 be a
simple arc with end points pl, ql. Then, we know that

rDl “ Dl Y pγ ˆ r´1, 1sq

is a properly embedded surface in ĂM so that

B rDl XR˘ “ C˘ “ β˘ Y γ ˆ t˘1u.
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3 DIFFERENCE OF SUPPORTING SPINC STRUCTURES

From the above construction, we know that hrpC`q “ C´. Hence, rDl becomes a
torus Tl Ă Y r. (It is straightforward to compute the Euler characteristic to see that
it is indeed a torus.) Note this torus Tl intersects αl transversely at one point, but is
disjoint from all other generators of

H1pM
1; Qq “ H1pMl; Qq ‘ xrαlsy.

As a result, we can use the adjunction inequality in Lemma 2.20 to make a refine-
ment of Lemma 3.8 as follows.

Lemma 3.10. Suppose s is a supporting spinc structure on Y r, then there is a 1-cycle
rxs in Ml so that

P.D.c1psq “ rxs ` p2g ´ 2qrsrs P H1pY
r;Qq.

Similar results hold in the instanton settings.

Suppose pY,R`q is an arbitrary closure of pM,γq, arising from the pre-closure ĂM
and a gluing diffeomorphism h. We can form the diffeomorphism ψ “ phrq´1 ˝ h,
the mapping torus Y ψ, and the excision cobordism W , as in the proof of Lemma 3.7.
Suppose further that s is a supporting spinc structure on Y , then we know from (6)
that

P.D.c1psq P rxs ` rys ` p2g ´ 2qrss ` kerpi˚q Ă H1pY ;Qq,

where i : Y Ñ W is the inclusion, y is a 1-cycle on R`, s is the curve tpu ˆ S1 Ă Y ,
and x is a 1-cycle in Ml guaranteed by Lemma 3.10.

From Lemma 3.1, we know that

kerpi˚q Ă rimph
r
˚ ´ 1qs{rimph2,˚ ´ 1qs.

By construction, we know that

imphr˚ ´ 1q “ impfr˚ ´ 1q Ă H1pM
1;Qq.

To conclude the proof of Lemma 3.9, we need to show that

imphr˚ ´ 1q “ impfr˚ ´ 1q Ă H1pMl;Qq,

and this is equivalent to show that, under the decomposition

H1pM
1;Qq “ H1pMl;Qq ‘ xrαlsy,

any element rzs P impfr˚ ´ 1q can not have a non-zero rαls component.
To prove this final statement, suppose rzs P impfr˚ ´ 1q is of the form

rzs “ a ¨ rαls `H1pMl;Qq

for some a P Q, then we need to show that a “ 0. Note, from (4), we know that
rzs “ 0 P H1pY

rq. Also, inside Y r, rzs¨rT 2
l s “ a, since, by construction, rαls¨rT

2
l s “ 1,

and T 2
l XMl “ H. Thus, we know that a “ 0, and this concludes the proof of lemma

3.9.
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4 GENERAL GRADING SHIFTING FORMULA

4 General grading shifting formula

In this section, we prove the generalized grading shifting formula, Theorem 1.12, as
stated in the introduction. We also use it to compute the sutured monopole and
instanton Floer homologies of some particular sutured handle-bodies.

Proposition 4.1. Suppose pM,γq is a balanced sutured manifold, and S Ă M is a
properly embedded surface. Pick i P Z so that the surface Si, which is obtained from
S by performing i times of stabilizations, is admissible (see Definition 2.25). Pick
any k P Z. Then, there exist constants lM , lI P Z so that, for any j P Z, we have:

SHMp´M,´γ, Si`2k, jq “ SHMp´M,´γ, Si, j ´ lM q,

and
SHIp´M,´γ, Si`2k, jq “ SHIp´M,´γ, Si, j ´ lIq.

Moreover, if the sutured manifold decompositions of pM,γq along S and ´S are both
taut, then lM “ lI “ k.

Proof. We now prove the first part of the proposition, namely the existence of l and
the fact that it is independent of j. As usual, we argue this in the monopole settings,
but the same is true for the instanton settings. Suppose pM,γq and S are defined
the same as in the hypothesis of the proposition. We follow the idea in Subsection
2.3, to construct a closure pY,Rq of pM,γq so that both Si and Si`2k extend to
closed surfaces. To do this, put both Si and Si`2k in M so that they are transverse
and BSi X BSi`2k “ H in Y . Note we can always achieve this. If BS intersects
γ, then the positive and negative stabilizations can be performed in an arbitrarily
small neighborhood of S X γ, so we can simply start with two parallel copies of S
and perform i and i ` 2k stabilizations respectively. If BS X γ “ H, then positive
and negative stabilizations happen on different sides of S, and we can always perturb
them to be distinct. See figure 6.

Now we pick a connected auxiliary surface T for pM,γq, which is of large enough
genus. For both Si and Si`2k, we can apply the construction of gradings as in
Subsection 2.3. If the genus of T is chosen to be large enough, then we could arrange
the arcs, which come from both BSi and BSi`2k, all represent linearly independent
classes in H1pT, BT q. We can then form the pre-closure ĂM “M Y r´1, 1s ˆ T and it

has two boundary components BĂM “ R` YR´. As in Subsection 2.3, we know that

Si and Si`2k both extend to properly embedded surfaces rSi, rSi`2k Ă ĂM , and there
are equal number of boundary components on R` and on R´.

Thus, we can pick an orientation preserving diffeomorphism h : R` Ñ R´ so that

hprSi XR`q “ rSi XR´, and hprSi`2k XR`q “ rSi`2k XR´.

Using h and ĂM , we obtain a closure pY,R`q of p´M,´γq so that there are closed
surfaces sSi Ă Y and sSi`2k Ă Y . Pick a non-separating simple closed curve η which
is disjoint from sSi Y sSi`2k. Then, as in Subsection 2.3, we know that

SHMp´M,´γ, Si, jq “
à

sPS˚pY |R`q

c1psqr sS
i
s“2j

~HM‚pY, s; Γηq,
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S

γ

Si Si`2k

γ γS

Si

Si`2k

Si`2k

Si

Figure 6: Pushing off Si`2k.

and
SHMp´M,´γ, Si`2k, jq “

à

sPS˚pY |R`q

c1psqr sS
i`2k

s“2j

~HM‚pY, s; Γηq.

Now, suppose s1, s2 P S˚pY |R`q are two supporting spinc structures, then, from
Theorem 1.11, we know that there is a 1-cycle x ĂM so that

rc1ps1q ´ c1ps2qs “ P.D.rxs P H2pY q.

Since x ĂM and Si is isotopic to Si`2k in M , we know that

rc1ps1q ´ c1ps2qsrsS
is “ rc1ps1q ´ c1ps2qsrsS

i`2ks.

Thus, the number

lM “
1

2
pc1ps1qrsS

is ´ c1ps1qrsS
i`2ksq “

1

2
pc1ps2qrsS

is ´ c1ps2qrsS
i`2ksq

is the desired constant in the statement of the proposition.
When the decomposition of pM,γq along S and ´S are both tight, then we can

settle down the value of l by looking at the top or bottom non-vanishing grading and
conclude l “ k. This part of the proof is exactly the same as the proof of Proposition
4.3 in Li [19].

Conjecture 4.2. In general, we always have l “ k.

Corollary 4.3. Suppose pM,γq is a taut balanced sutured manifold and D Ă M
is a disk so that D intersects γ transversely four times. Suppose further that the
decompositions of pM,γq along D and ´D are pM 1, γ1q and pM2, γ2q, respectively. If
at least one of the two decompositions is taut, then

SHMpM,γq – SHMpM 1, γ1q ‘ SHMpM2, γ2q.
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4 GENERAL GRADING SHIFTING FORMULA

Similar results holds for the instanton settings.

Proof. Without loss of generality, we can assume that pM 1, γ1q is taut. We can per-
form a positive stabilization on D to make it admissible. Then, it induces a grading

SHMpM,γ,D`, iq.

The adjunction inequality in Lemma 2.20 tells us that there are only three non-trivial
gradings, being i “ ´1, 0, 1. Lemma 2.23 and Lemma 2.28 then imply that

SHMpM,γ,D`, 1q – SHMpM 1, γ1q,

SHMpM,γ,D`,´1q “ 0.

Applying Proposition 4.1 and Lemma 2.28, we know that

SHMpM,γ,D`, 0q “ SHMpM,γ,D´,´1q

“ SHMpM,γ, p´Dq`, 1q

– SHMpM2, γ2q

Hence, we are done.

This gives an affirmative answer to Conjecture 4.3 in Li [17].

Corollary 4.4. Suppose V is a solid torus, and γ4 consists of four longitudes. When
using Z coefficients, we have

SHMpV, γ4q – Z2.

With the help of Proposition 4.1, we can prove the general grading shifting prop-
erty, Theorem 1.12, as stated in the introduction.

Proof of Theorem 1.12. Assume that S1 and S2 are transverse to each other. We

need to isotope S1 and S2 into S
i1,i

1
1

1 and S
i2,i

1
2

n , respectively. Here, i1, i2 ě 0 indicate
the number of positive stabilizations on S1 and S2, respectively. Similarly, i11, i

1
2 ď 0

correspond to the negative stabilizations. We require the following six conditions to
hold.

(1) Both S
i1,i

1
1

1 and S
i2,i

1
2

2 are admissible, and no more intersection points are
created during the stabilizations.

(2) Any positive intersection of S
i1,i

1
1

1 with S
i2,i

1
2

2 is contained in R`pγq, and any
negative intersection is contained in R´pγq.

(3) If θ1 is a component of BS
i1,i

1
1

1 and θ1 X S
i2,i

1
2

2 ‰ H, then θ1 X γ ‰ H.

(4) If θ2 is a component of BS
i2,i

1
2

2 and θ2 X S
i1,i

1
1

1 ‰ H, then θ2 X γ ‰ H.

(5). If δ1 is a component of BS
i1,i

1
1

1 XRpγq, then δ intersects S
i2,i

1
2

2 at most once.

(6). If δ2 is a component of BS
i2,i

1
2

2 XRpγq, then δ intersects S
i1,i

1
1

1 at most once.
Pick a connected auxiliary surface T of large enough genus, and form the pre-

closure ĂM “M Y r´1, 1s ˆ T . It has two boundary components:

BĂM “ R` YR´.
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We can carry out the construction of gradings in Subsection 2.3 on both S
i1,i

1
1

1 and

S
i2,i

1
2

2 . Suppose

n1 “
1

2
|S
i1,i

1
1

1 X γ|, and n2 “
1

2
|S
i2,i

1
2

2 X γ|.

Pick two balanced pairings P1 and P2, as introduced in Subsection 2.3, for the two

surfaces S
i1,i

1
1

1 and S
i2,i

1
2

2 , respectively. Inside T , pick a set of disjoint properly em-
bedded arcs tα1, ..., αn1 , β1, ..., βn2u so that the end points of αk are identified with

the intersection points of S
i1,i

1
1

1 X γ, according to the balanced pairing P1, and the

end points of βj are identified with the intersection points of S
i2,i

1
2

2 X γ, according to
the balanced pairing P2. There is one special requirement for P1:

(7) If δ1 is a component of BS
i1,i

1
1

1 X Rpγq, which intersects S
i2,i

1
2

2 non-trivially,
then there is an arc αk0 so that Bαk0 is identified with Bδ1

Strictly speaking, Bδ Ă BRpγq, but we could regard Bδ to be on γ, since BRpγq is
parallel to γ. Similarly, we require the following for P2.

(8) If δ2 is a component of BS
i2,i

1
2

2 X Rpγq, which intersects S
i1,i

1
1

1 non-trivially,
then there is an arc βj0 so that Bβj0 is identified with Bδ2.

Note when we perform enough positive and negative stabilizations, the balanced
pairing satisfying the constraints (7) and (8) always exist. When the genus of T
is large enough, we can choose the arcs, α1, ..., αn1

, β1, ..., βn2, to represent linearly

independent classes in H1pT, BT q. Then, inside ĂM , S
i1,i

1
1

1 and S
i2,i

1
2

2 extend to properly

embedded surfaces rS
i1,i

1
1

1 and rS
i2,i

1
2

2 , respectively. From the construction, we know that

B rS
i1,i

1
1

1 XR` and B rS
i1,i

1
1

1 XR´ have equal number of boundary components. Thus, let

B rS
i1,i

1
1

1 XR` “ C`,1 Y ...Y C`,s, and B rS
i1,i

1
1

1 XR´ “ C´,1 Y ...Y C´,s.

Similarly, we can assume

B rS
i2,i

1
2

2 XR` “ D`,1 Y ...YD`,t, and B rS
i2,i

1
2

2 XR´ “ D´,1 Y ...YD´,t.

Note the intersection points of rS
i1,i

1
1

1 and rS
i2,i

1
2

2 are in one-to-one-correspondence
to the intersection points of S1 and S2 by requirement (1). We claim that BS1 X BS2

consists of an even number of positive and negative points. Indeed, BSiXBSj “ BSiX
Sj , and it is clear that the algebraic intersection number of BSi and Sj is zero. Hence,
on R˘, we have a collection of circles C˘,1, ..., C˘,s, D˘,1...D˘,t. They represent
linearly independent classes in H1pR`q. There might be intersections between C˘,k
with D˘,j , but, by requirement (5), (6), (7), and (8), each C˘,k intersects with
at most one D˘,j , and each D˘,j intersects with at most one C˘,k. Hence, the
pattern of C`,1, ..., C`,s, D`,1, ..., D`,t on R` is exactly the same as the pattern of
C´,1, ..., C´,s, D´,1, ..., D´,t on R´. As a result, there exists an orientation preserving
diffeomorphism h : R` Ñ R´ so that

hpB rS
i1,i

1
1

1 XR`q “ B rS
i1,i

1
1

1 XR´, and hpB rS
i2,i

1
2

2 XR`q “ B rS
i2,i

1
2

2 XR´.

Hence, we can obtain a closure pY,R`q of pM,γq from ĂM and h. Inside Y there

are two closed surfaces S̄
i1,i

1
1

1 and S̄
i2,i

1
2

n , and they induce gradings on SHMpM,γq that
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are associated to S
i1,i

1
1

1 and S
i2,i

1
2

2 , respectively. The rest of the proof is then exactly
the same as the proof of Proposition 4.1.

Next, we want to compute the sutured monopole and instanton Floer homolo-
gies of the following balanced sutured manifold pM,γq, as depicted in Figure 7.
(Strictly speaking, they are the sutured monopole and instanton Floer homologies
of p´M,´γq.)

D

@
@
@@

By-pass

Figure 7: The sutured manifold pM,γq. The three curves (red, blue and green) are the
sutures. The disk D is used to construct a grading.

The idea is to apply the by-pass exact triangles repeatedly. There is a graded
version of by-pass exact triangles, as in Li [19], generalizing the by-pass exact triangle
introduced in Subsection 2.4.

SHMp´M,´γ,D, iq // SHMp´M,´γ1, D
´2
1 , iq

��
SHMp´M,´γ2, D

`
2 , iq

jj
(7)

Here, the surfaces D is chosen as in Figure 7 so that it has six transverse intersection
with the suture γ. The surfaces D1, D2 Ă M are isotopic to D, but having minimal
possible transverse intersection with γ1 (two intersections) and γ2 (four intersections)
respectively. The sup-scripts in D`2 and D´2

1 imply the number of positive or negative
stabilizations performed on the surfaces D1 Ă M and D2 Ă M , as introduced in
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Subsection 2.3. A direct check shows that pM,γ1q is a product sutured manifold and
the suture γ2 is depicted as in Figure 8.

@
@
@
@

By-pass

Figure 8: The sutured manifold pM,γ2q. The three curves (red, blue and green) are the
sutures.

Now we know that

SHMp´M,´γ1q “ SHMp´M,´γ1, D1, 0q “ R.

As a result, by Lemma 2.23 and Lemma 2.28, we know that

SHMp´M,´γ1, D
´2
1 , iq “

"

R i “ 1
0 others

(8)

From the construction of gradings in Subsection 2.3 and the adjunction inequality in
Lemma 2.20, we know that

SHMp´M,´γ2, D
`
2 , iq “ 0

for i ą 1 or i ă ´1. From Lemma 2.23 and Lemma 2.28, we know that

SHMp´M,´γ2, D
`
2 , 1q “ 0.

Hence, from the graded exact triangle in (7), we conclude that

SHMp´M,´γq “ R‘ SHMp´M,´γ2q. (9)
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To compute the sutured monopole Floer homology of pM,γ2q, we perform the
same trick once more and conclude that

SHMp´M,´γ2q “ R‘ SHMp´M,´γ3q, (10)

where pM,γ3q is the balanced sutured manifold as depicted in Figure 9.

D

Figure 9: The sutured manifold pM,γ3q. The three curves (red, blue and green) are the
sutures.

To compute the sutured monopole Floer homology of pM,γ3q, we could perform
a sutured manifold decomposition along the disk D as depicted in Figure 9. Sup-
pose pM4, γ4q is the resulting balanced sutured manifold, then, from Kronheimer and
Mrowka [16], we know that

SHMp´M,´γ3q – SHMp´M4,´γ4q.

Furthermore, the balanced sutured manifold pM4, γ4q is a solid torus equipped with
two curves of slope 1

3 as the suture, as depicted in Figure 10, so from Li [19], we know
that

SHMp´M,´γ3q – SHMp´M4,´γ4q – R3.

Finally, we conclude that

Proposition 4.5. SHMp´M,´γq – R5.

The same type of arguments in instanton theory yields the following.

Corollary 4.6. SHIp´M,´γq – C5.
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Figure 10: The sutured manifold pM,γ4q. The three curves (red, blue and green) are the
sutures.

5 Polytopes

5.1 Constructing the polytope

Suppose pM,γq is a balanced sutured manifold, and α P H2pM, BMq is a second
relative homology class. From Theorem 1.12, there is a grading on SHMpM,γq or
SHIpM,γq associated to α, which is well-defined up to an overall grading shifting.
Hence, we can define the following.

Definition 5.1. An element a in SHMpM,γq or SHIpM,γq is called homogenous if
for any homology class α P H2pM, BMq, the element a is homogenous with respect to
the grading associated to α.

Lemma 5.2. For any taut balanced manifold pM,γq, there exist non-zero homogenous
elements in SHMpM,γq and SHIpM,γq.

Proof. Pick a basis α1, ..., αn for H2pM, BMq. Pick admissible properly embedded
surfaces S1, ..., Sn to represent α1, ..., αn, respectively. We can carry out the proof
of Theorem 1.12 again. This time we have n many surfaces instead of just two, but
the construction is exactly the same. As a result, we obtain a special closure pY,Rq
of the balanced sutured manifold pM,γq so that, inside Y , the surfaces S1, ..., Sn
extends to closed surfaces S̄1, ..., S̄n, respectively, and the surfaces S̄1, ..., S̄n are the
ones used to define gradings on SHMpM,γq associated to S1, ..., Sn, respectively.
Also, pick some suitable non-separating simple closed curves η on R to support local
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coefficients. On Y , the surfaces S̄1, ..., S̄n induces a Zr-grading on HMpY |R; Γηq
by looking at the evaluation of the first Chern classes of spinc structures on those
closed surfaces. Suppose s0 is a supporting spinc structures (see Definition 2.14) on

Y , and a P ~HM‚pY, s0; Γηq is a non-zero element, then we know that the element a
is homogenous with respect to all the gradings induced by S̄1, ..., S̄n. We claim that
it is a homogenous element as defined in Definition 5.1.

To prove the claim, suppose α P H2pM,γq is any homology class. Since α1, ..., αn
form a basis of H2pM,γq, α is a linear combination of α1, ..., αn. Thus, we can perform
a sequence of double curve surgeries (for definition, see Scharlemann [24]) on S1, ..., Sn
to obtain a properly embedded surface S that represents the class α P H2pM,γq.
Correspondingly, we can perform the same set of double curve surgeries on S̄1, ..., S̄n
to obtain a closed surface S̄ Ă Y , which extends S and which induces the grading
associated to S. Then, we know that the element a is a homogenous element with
respect to the grading associated to S, and this concludes the proof of lemma 5.2.

Lemma 5.3. Suppose pM,γq is a balanced sutured manifold, and a, b P SHMpM,γq
are two homogenous elements. Then, there is a well defined element ρpa, bq P H2pM, BM ;Qq
associated to the (ordered) pair pa, bq.

The same result holds in the instanton setups.

Proof. We first construct the map

ρpa, bq : H2pM, BMq Ñ Z.

For any class α P H2pM, BMq, we pick a surface S that represents the class α and is
admissible. Define

ρpa, bqpαq “ difference between a and b under the grading associated to S.

This is well defined by Theorem 1.12. This map is linear by essentially the same type
of argument as in the proof of Lemma 5.2. Then, we can regard ρpa, bq as an element
in H2pM, BM ;Qq.

Definition 5.4. Suppose pM,γq is a balanced sutured manifold, and a P SHMpM,γq
is a homogenous element. For an element ρ P H2pM, BM ;Rq, define

SHMapM,γ, ρq “ tb P SHMpM,γq, ρpa, bq “ ρ P H2pM, BM ;Rqu,

and
SHIapM,γ, ρq “ tb P SHIpM,γq, ρpa, bq “ ρ P H2pM, BM ;Rqu.

Let
SMapM,γq “ tρ P H2pM, BM ;Rq, SHMapM,γ, ρq ‰ 0u

and
SIapM,γq “ tρ P H2pM, BM ;Rq, SHIapM,γ, ρq ‰ 0u.

Define the polytopes PMapM,γq and PIapM,γq to be the convex hull of SMapM,γq
and SIapM,γq, respectively.
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Lemma 5.5. Suppose a and b are two homogenous elements in SHMpM,γq, then the
polytopes PMapM,γq Ă H2pM, BM ;Rq is a translate of PMbpM,γq Ă H2pM, BM ;Rq.
The same result holds in the instanton setups.

Proof. It is straightforward from the construction.

5.2 Dimension formula

Lemma 5.6. Suppose pM,γq is a taut balanced sutured manifold with H2pMq “ 0,
and A is an incompressible product annulus. Then, we can pick an orientation of A
so that the sutured manifold decomposition of pM,γq along the oriented A yields a
taut balanced sutured manifold pM 1, γ1q, that SHMpM 1, γ1q is a direct summand of
SHMpM,γq, and that SHIpM 1, γ1q is a direct summand of SHIpM,γq.

Proof. Since A is incompressible, we know that BA Ă Rpγq does not bound a disk.
Note that Lemma 4.2 in Scharlemann [25] makes sure that no matter which orientation
of A we choose, the balanced sutured manifold after the decomposition is taut. There
are three cases:

Case 1. Both components of BA are homologically essential on Rpγq.
Case 2. Both components of BA are homologically trivial on Rpγq. Then, there

are V` Ă R`pγq and V´ Ă R´pγq so that BV` Y BV´ “ BA (as unoriented curves).
Thus, we have a closed surface V` YAY V´. The fact that H2pMq “ 0 implies that
this closed surface is separating, or equivalently, A separates M into two parts, of
which one has boundary V` YAY V´. Thus, this part is disjoint from γ.

For the above two cases, the lemma follows from Proposition 6.7 of Kronheimer
and Mrowka [16].

Case 3. One component of BA is homologically essential, and the other is inessen-
tial. Then we can choose a suitable orientation of A to make BA being boundary
coherent, in the sense of Kronheimer and Mrowka [16], so that Proposition 6.9 in
that paper applies, and, thus, we conclude the proof of Lemma 5.6.

Lemma 5.7. Suppose pM,γq is a taut balanced sutured manifold and S Ă M is
a properly embedded decomposing surface. Suppose p, q Ă S X γ are two points of
different signs. Then, we can attach a product 1-handle, in the sense of Definition
3.2, to obtain a new taut balanced sutured manifold pM1, γ1q and a new properly
embedded surface S1 ĂM1 so that the decomposition

pM,γq
S
 pM 1, γ1q

is taut if and only if the decomposition

pM1, γ1q
S1 pM 1

1, γ
1
1q

is taut. Furthermore, there is a commutative diagram

SHMpM 1, γ1q � � //

“

��

SHMpM,γq

“

��
SHMpM 1

1, γ
1
1q

� � // SHMpM1, γ1q.
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A similar statement holds in the instanton settings.

Proof. This is how Kronheimer and Mrowka proved Proposition 6.9 in [16]. S1 is ob-
tained from S by attaching a 2-dimensional 1-handle inside the 3-dimensional product
1-handle. See Figure 11.

γ

Apγq

S

S

γ1

S

S

Figure 11: Adding a product 1-handle.

Proposition 5.8. Suppose pM,γq is a balanced sutured manifold with H2pMq “ 0
and is taut, reduced, horizontally prime, and free of non-separating essential product
disks. Suppose α P H2pM, BMq is a non-zero class. Then, we can find properly
embedded surfaces S and S1 in M so that

(1) rSs “ ´rS1s “ α P H2pM, BMq.
(2) The sutured manifold decompositions

pM,γq
S
 pM 1, γ1q and pM,γq

S1

 pM2, γ2q

are both taut.
(3) SHMpM 1, γ1q and SHMpM2, γ2q are direct summands of SHMpM,γq, (by

Proposition 6.9 of Kronheimer and Mrowka [16]) and

SHMpM 1, γ1q X SHMpM2, γ2q “ 0

in SHMpM,γq.
(4) The same result holds for SHI.

Proof. From Lemma 0.7 in Gabai [6], we can pick an S so that the following holds
(i) S represents the class α P H2pM, BMq.
(ii) For any component V of Rpγq, if S X V has a closed component, then S X V

consists of parallel, parallel oriented non-separating simple closed curves.
(iii) For any component δ of BRpγq, all the intersection points of S with δ are of

the same sign.
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(iv) S intersects Apγq in parallel and coherently oriented essential arcs.
(v) The sutured manifold decomposition

pM,γq
S
 pM 1, γ1q

is taut.
To find S1, we proceed as follows, according to Gabai [5], Scharlemann [25] or

Juhasz [11]. Pick U “ NpBSq YApγq Ă BM . Pick a large enough k P Z` so that

xp´α` pk ` 1qrRpγqsq “ xp´α` krRpγqsq ` xpRpγqq,

where xp¨q is the Thurston norm for classes in H2pM,Uq. Pick a norm-minimizing
embedded surface which represents the class ´α` krRpγqs, and disregard all compo-
nents of it, which represent the zero homology class, then the remaining surface S1 is
the desired one. Note

rBS1s “ ´rBSs ` 2k ¨ rγs P H1pUq.

Here, it is 2k rather than k, because each copy of Rpγq contributes 2rγs. We can
arrange so that BS1 is obtained from ´BS and 2k copies of γ by an oriented smooth-
ing as in Figure 12. From construction of S1, we know that the sutured manifold
decomposition

pM,γq
S1

 pM2, γ2q

is taut.

Rpγq

Apγq

γ

Rpγq

Apγq
´BS

Figure 12: The smoothing inside Apγq.

From the above construction of S1, we know that SX γ “ S1X γ. So, assume that

n “
1

2
|S X γ| “

1

2
|S1 X γ|.

Also, assume that BSXRpγq (and thus BS1XRpγq) has m closed components. Write
them as

B1 Y ...YBm Ă BS XRpγq,
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and orient Bi by the boundary orientation of S. Write S0 the surface obtained from S
by performing one negative stabilization on each Bi, and let S: be the surface obtained
by performing one positive stabilization on each Bi. By Lemma 4.5 in Juhasz [10],
both S0 and S: exist. We also want to modify S1 correspondingly. Note part of
BS1 is coming from ´BS, so positive stabilizations near this part of BS1 corresponds
to negative stabilizations on S. Thus, we perform positive stabilizations on S1, in
correspondence to the negative stabilizations performed on S. Since BS1 contains
many copies of BRpγq Ă Apγq, when performing the positive stabilizations to create
intersections of Bi with γ, the isotopy also creates self intersections of S1. We then
perform double curve surgeries, in the sense of Scharlemann [25], to resolve all self
intersections created by the positive stabilizations, and let S10 be the resulting surface.
See Figure 13. On Apγq, this double curve surgery behaves exactly in the same way as
the oriented smoothing that is depicted in Figure 12. It is important that we choose
positive stabilizations to perform on S1, so the decomposition of pM,γq along S10 gives
the same result as decomposing along S1:

pM,γq
S10 pM2, γ2q.

BS1

γ

BS1

BS1

Positive stabilization Double curve surgery

Figure 13: A positive stabilization on S1 followed by a double curve surgery.

We can attach m ` n copies of product 1-handle, as in Lemma 5.7, along the
intersections of S0 with γ. We require that the pair of intersection points created by
a negative stabilization on S are paired together by a product 1-handle. Let pM1, γ1q

be the resulting balanced sutured manifold. The surface S0 extends to a properly
embedded surface S1 ĂM1 as in Lemma 5.7.

The surface S10 can also extend, though in a slightly complicated way. As in Figure
14, in each product 1-handle, there is one (vertical) 2-dimensional 1-handle to be glued
to the part of BS10 that comes from ´BS, and 2k copies of (horizontal) 2-dimensional
1-handles to be glued to the part of BS10 that corresponds to the k copies of BRpγq.
We can perform a double curve surgery on those two collections of 2-dimensional
1-handles, as in Figure 14, and then glue the resulting surface to S10, when gluing the
product 1-handle to pM,γq. In this way, S10 extends to a properly embedded surface
S11 in pM1, γ1q. Let pM 1

1, γ
1
1q and pM2

1 , γ
2
1 q be obtained from pM1, γ1q by decomposing

along S1 and S11, respectively. pM2
1 , γ

2
1 q is taut by Lemma 5.7, since it is obtained
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from pM2, γ2q by attaching a few product 1-handles, as indicated in Figure 14. After
decomposing along S11, each product 1-handle is decomposed into p2n ` 1q many
product 1-handles that are attached to pM2, γ2q. In that figure, n “ 3, and the six
arcs in the right-subfigure divides the original product 1-handle into 7 parts.

Apγq

´S1

Rpγ1q

-smoothing

Figure 14: Double curve surgery on a cross section of the product 1-handle. On the right:
the 2-dimensional 1-handles after the double curve surgery will cut the original product
1-handle into 2k ` 2 small ones.

From the construction, we also know that

S11 XR˘pγ1q “ ´S1 XR˘pγ1q,

and S11 XApγ1q consists of 2k parallel copies of γ1. Now let

S1 XR`pγ1q “ B`,1 Y ...YB`,m Y C`,1 Y ...Y C`,s

and
S1 XR´pγ1q “ B´,1 Y ...YB´,m Y C´,1 Y ...Y C´,t

Here, B˘,i are the boundary components of S1 that comes from attaching a product
1-handle along the pair of intersection points created by a negative stabilization on S
near Bi. Note s and t are not necessarily equal. Without loss of generality, we could
assume that s ě t.

Pick pV, δq be a balanced sutured manifold where V “ S1 ˆ D2 is a solid torus
and δ consists of two longitudes. Let D Ă V be a standard meridian disk in V , which
has two intersections with the suture δ. Let D0 be the surface obtained from D by
performing a negative stabilization, as shown in Figure 15. It has four intersections
with the suture δ. Attach two product 1-handle along two pairs of points pp1, p4q

and pp2, p3q, as labeled in the figure, and let the resulting balanced sutured manifold
be pV1, γ1q. D0 extends to a properly embedded surface D1 as in Lemma 5.7. Note
D1 X R`pδ1q has one components and D1 X R´pδ1q has two components. Now we
want to construct another surface D11 inside V1. First, let D1 be the result of a double
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curve surgery of ´D0 with k copies of Rpδq. It is crucial that our choice of D0 makes
the sutured manifold decomposition

pV, δq
D1

 pV 2, γ2q

taut. We can check directly that V 2 is a 3-ball and γ2 is a simple closed curve on
BV 2, and, hence, it is a product sutured manifold. Next, when attaching two product
1-handles to pV, δq, we repeat the procedure explained above, with which we construct
S11 out of S10, and thus construct a properly embedded surface D11 inside V1 out of
D10. It is straightforward to check that the decomposition of pV1, γ1q along D11 yields
a product sutured manifold pV 21 , γ

2
1 q.

D D:p4 p1 p2 p3 p3 p2 p1 p4

Figure 15: The balanced sutured manifold pV, γq together with the surfaces D0 and D:.

So, we could form the disjoint union

pM2, γ2q “ pM1, γ1q \ ps´ tqpV1, δ1q, S2 “ S1 Y ps´ tqD1, S
1
2 “ S11 Y ps´ tqD

1
1.

Since the decomposition of pM1, γ1q along S11 is taut (as we have explained) and the
decomposition of pV1, γ1q along D11 is also taut (by a direct check), we know that the
decomposition of pM2, γ2q along S12 is taut. However, the decomposition along S2 is
not, as we will explain later.

Pick a connected auxiliary surface T for pM2, γ2q and form a pre-closure

ĂM “M2 Y r´1, 1s ˆ T, BĂM “ R` YR´, R˘ “ R˘pγ2q Y t˘1u ˆ T.

Since pM1, γ1q is obtained from pM,γq by attaching product 1-handles, and pV1, δ1q

is itself a product sutured manifold, we know that ĂM is also a pre-closure of pM,γq.
By construction, we know that

S2 XR˘ “ ´S
1
2 XR˘,

and there are same number of components of S2 XR` and S2 XR´. Moreover, since
T is connected, the components of S2 XR˘ represent linearly independent classes in
H1pR˘q. Thus, we could find an orientation preserving diffeomorphism h : R` Ñ R´
so that

hpS2 XR`q “ S2 XR´,
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and we can use ĂM as well as h to construct a closure pY,R`q for both pM,γq and
pM2, γ2q. Inside Y , S2 becomes a closed surface S̄.

Though there is no sutures on the boundary of ĂM , the theory of balanced sutured
manifolds in Kronheimer and Mrowka [16] extends to ĂM effectively. In particular, we
could define

SHMpĂMq “ HMpY |R`q “ SHMpM,γq “ SHMpM2, γ2q.

The surface S12 extends to a surface rS12 Ă
ĂM as the union of S12 with 2k copies of T .

Suppose pĂM2, γ̃2q is the result of the sutured manifold decomposition of ĂM along rS12,

then pĂM2, γ̃2q can be obtained from pM2
2 , γ

2
2 q by attaching 2k`1 copies of the product

region T ˆ r´1, 1s. Recall that pM2
2 , γ

2
2 q is obtained from pM2, γ2q by decomposing

along S12 and thus is the disjoint union of pM2
1 , γ

2
1 q with ps ´ tq copies of product

sutured manifolds pV 21 , γ
2
1 q. Furthermore, pM2

1 , γ
2
1 q is obtained from pM2, γ2q by

attaching a few product 1-handles, so we finally conclude that

SHMpĂM2, rγ2q – SHMpM2, γ2q,

since attaching product regions (or product 1-handles), disjoint union with product
manifolds will never change the sutured monopole Floer homology.

Back to the point that pĂM2, γ̃2q is the decomposition of ĂM along rS12. The decom-
position theorem, Proposition 6.9 in Kronheimer and Mrowka [16], continues to hold

in this case, and we conclude that SHMpĂM2, rγ2q is a direct summand of SHMpĂMq.

More precisely, rS12 becomes a closed surface S̄1 Ă Y , and we have

SHMpM2, γ2q “ SHMpĂM2, rγ2q “
à

sPS˚pY |R`q
c1psqrS̄

1
s“2gpS̄1q´2

~HM‚pY, sq. (11)

We also want to identify the summand SHMpM 1, γ1q inside SHMpĂMq “ SHMpM,γq.
We cannot proceed directly as we did for SHMpM2, γ2q, since the decomposition of
ĂM along S2 is not taut. This is because the decomposition of pM,γq along S0 and
pV, γq along D0 are both not taut, since, at the beginning, we picked S0 and D0 by
performing negative stabilizations (see Lemma 2.23). Let S: and D: be obtained from
S and D performing positive stabilizations instead of negative ones. We can repeat
the whole construction again with S0 and D0 replaced by S: and D:, respectively.
Attach m ` n product 1-handle along the intersection points of BS: with γ, and let
pM :

1 , γ
:
1q be the result. There is a properly embedded surface S:1 Ă M :

1 . Similarly,

attach two product 1-handles to pV, γq, and let pV :1 , γ
:
1q be the result. Then, there is

a properly embedded surface D:1 Ă V :1 . We can form the disjoint union

pM :
2 , γ

:
2q “ pM

:
1 , γ

:
1q \ ps´ tqpV

:
1 , γ

:
1q, S

:
2 “ S:1 Y ps´ tqD

:
1.

Pick an auxiliary surface T : that has the same genus as T and form a pre-closure
ĂM :. We can pick a suitable gluing diffeomorphism h: and obtain a closure pY :, R:`q.

Inside Y :, the surface S:2 becomes a closed surface S̄:.The decomposition of ĂM : along
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S:2 is taut. The argument that concludes (11) applies again, and we have

SHMpM 1, γ1q “
à

sPS˚pY :|R:
`
q

c1psqrS̄
:
s“2gpS̄:q´2

~HM‚pY
:, sq. (12)

Since gpT :q “ gpT q, we know that gpR:`q “ gpR`q. Thus, as in Subsection 2.2,
there is an excision cobordism W , from Y :YYT to Y , which induces an isomorphism

Φ : HMpY :|R:`q Ñ HMpY |R`q.

Here, YT is a mapping torus of a diffeomorphism on R:`, arising from h:, h, and

a suitable identification R:` “ R`. The difference between the surfaces S̄: and S̄
originates from whether we performed positive or negative stabilizations. So, the
proof of Proposition 4.1 in Li [19] applies to the present context, and we know that
inside W ,

rS̄:s “ rS̄s ` rΣ1s ` ...rΣms ` rΣ
1
1s ` ...` rΣ

1
s´ts.

Here, each Σi or Σ1j is a connected closed oriented surface of genus 2. Σi corresponds
to a positive or negative stabilization on S, and Σ1j corresponds to a positive or
negative stabilization on D. As a result of the adjunction inequality in Lemma 2.20,
we have

SHMpM 1, γ1q Ă
à

sPS˚pY |R`q
c1psqrS̄sě2gpS̄q´2´2ps´tq´2m

~HM‚pY
:, sq. (13)

Finally, we argue that

SHMpM 1, γ1q X SHMpM2, γ2q “ t0u.

Suppose not, then, from (11) and (13), there is a supporting spinc structure s P
S˚pY |R`q so that

c1psqrS̄s ě 2gpS̄q ´ 2´ 2ps´ tq ´ 2m, and c1psqrS̄
1s “ 2gpS̄1q ´ 2.

From the construction, we know that

rS̄1s “ ´rS̄s ` 2k ¨ rR`s Ă H2pY q.

Hence, the above equalities and inequalities imply

2gpS̄q ´ 2´ 2ps´ tq ´ 2m` 2gpS̄1q ´ 2 ď c1psqrS̄s ` c1psqrS̄
1s “ 2k ¨ r2gpR`q ´ 2s,

which is equivalent to

χpS̄q ` χpS̄1q ` 2ps´ tq ` 2m ě 2k ¨ χpR`q. (14)

Now let us compute each of the three terms in (14) regarding the Euler characteristics.
First, χpS̄q “ χpS2q, and, by construction, S2 “ S1\ps´tqD1. Furthermore, we know
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that S1 is obtained from S0 by attaching m ` n copies of 2-dimensional 1-handles,
that S0 is isotopic to S, and that D1 is obtained from a disk D by attaching two
copies of 2-dimensional 1-handles. Thus, we conclude that

χpS2q “ χpSq ´ pm` nq ` ps´ tqp´1q “ χpSq ´ pm` nq ´ ps´ tq.

Second, we know that χpS̄12q “ χprS12q, and

rS12 “ S11 YD
1
1 Y p2kq ¨ T.

Note that there are m ` n product 1-handles attached to pM,γq, and, inside each
product 1-handle, there are p2k`1q copies of 2-dimensional 1-handles attached to S1.
Thus, we have that

χpS11q “ χpS1q ´ p2k ` 1qpm` nq.

Similarly, we conclude that

χpD11q “ χpD1q ´ 2p2k ` 1q.

Also, D1 is obtained by a double curve surgery on ´D, which is a disk, with k copies
of Rpδq, which is the disjoint union of two annuli. Thus, we conclude that

χpS̄1q “ χpS1q ´ pm` nq ´ ps´ tq ` 2k ¨ χpT q ´ 2kpm` nq ´ 4kps´ tq.

Third, we know that

R` “ R`pγ1q Y ps´ tq ¨R`pδ1q Y T.

Here, R`pγ1q is obtained from R`pγq by attaching m ` n copies of 2-dimensional
1-handles, and R`pδ1q is obtained from R`pδq (an annulus) by attaching 2 copies of
2-dimensional 1-handles. Thus, we know that

χpR`q “ χpR`pγqq ` χpT q ´ pm` nq ´ 2ps´ tq.

Putting everything together, (14) is equivalent to

χpSq ` χpS1q ´ 2n ě 2k ¨ χpR`pγqq.

This directly contradicts Lemma 5.9, since, by definition, we have

n “
1

2
|S X γ|.

Lemma 5.9. Suppose pM,γq, S and S1 are as above in Proposition 5.8, then

χpSq ` χpS1q ´ |S X γ| ă 2k ¨ χpR`pγqq.
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Proof. This is exactly the inequality

χpSq ` χpS1q ` IpSq ` IpS1q ă rpS, tq ` rpS1, tq

in the proof of Theorem 6.1 in Juhász [11]. It is by definition that

IpSq “ IpS1q “ ´
1

2
|S X γ|,

and Juhász also proved that

rpS, tq ` rpS1, tq “ 2k ¨ χpR`pγqq.

Note 2k in this paper corresponds to k in his paper.

Remark 5.10. Note the assumption in Proposition 5.8 is slightly stronger than the
hypothesis of Theorem 6.1 in Juhász [11], i.e., we require both being reduced and
containing no essential product disks, while Juhász only required being reduced. The
difference between the two setups is some special family of balanced sutured manifolds,
which are reduced but also contain essential product disks. By Lemma 2.13 in [11],
there are only two such balanced sutured manifolds, namely the product sutured
manifolds ptimesr´1, 1s ˆ F, t0u ˆ BF q, where F is a sphere with two or three disks
removed. It is also worth mentioning that the requirement of containing no essential
product disks. Clearly, the two special product sutured manifolds described above are
counterexamples to Theorem 6.1 in Juhász [11]. The small error made in the proof
of Theorem 6.1 in his paper is that, at some point, he used the assumption of being
reduced and applied Lemma 2.13 in [11] to rule out essential product disks from the
discussion, but he didn’t exclude the two special product sutured manifolds from the
hypothesis, where clearly Lemma 2.13 in [11] failed.

Corollary 5.11. Suppose pM,γq is a balanced sutured manifold with H2pMq “ 0.
Suppose further that pM,γq is taut, horizontally prime, reduced, and free of essential
product disks. Then, the dimensions of PMapM,γq and PIapM,γq (see definition
5.4) are both dimQH

2pM, BM ;Qq.

Proof. We prove in the monopole settings. Pick any α P H2pM, BMq so that α ‰ 0.
As in the proof of Proposition 5.8, we can find two properly embedded surfaces S and
S1 in M representing α and ´α, a closure Y of pM,γq and suitable closed surfaces
S̄ and S̄1 originate from S and S1, respectively. Let b be a homogenous elements in
the top grading induced by S̄ and let c be a homogenous elements in the top grading
induced by S̄1. Suppose further that they are supported by spinc structures sb and
sc on Y . We know from the definition that

ρpb, cqpαq “
1

2
rc1psbq ´ c1pscqspαq.

We claim that ρpb, cqpαq ‰ 0. Suppose the contrary, then we know that

c1pscqrS̄s “ c1psbqrS̄s ě 2gpS̄q ´ 2´ 2ps´ tq ´ 2m, (15)
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and
c1pscqrS̄

1s “ 2gpS̄1q ´ 2. (16)

Here, s, t,m are constants in the construction of S̄ and S̄1, as in the proof of Propo-
sition 5.8. Then, formulae (15) and (16) lead to exactly the same contradiction as in
the proof of Proposition 5.8.

Since ρpb, cqpαq ‰ 0 and α P H2pM, BMq is chosen arbitrarily, we conclude that
the polytope PMapM,γq must have maximal possible dimension.

Corollary 5.12. Suppose pM,γq is a taut balanced sutured manifold with H2pMq “ 0.
Then

rkpSHMpM,γqq ě dimRH
2pM, BM ;Rq ` 1

and
dimCpSHIpM,γqq ě dimRH

2pM, BM ;Rq ` 1

Proof. To have dimension d “ dimRH
2pM, BM ;Rq, there must be at least d`1 points

inside the polytope and we are done.

Now we are ready to prove Theorem 1.2 as stated in the introduction.

Proof of Theorem 1.2. This is essentially the proof of Proposition 7.6 in Juhasz [11]
but carried out in the monopole or the instanton settings. We will present the proof
in the monopole settings, and the instanton case follows from a similar argument.

First suppose k “ 0. By Proposition 2.16 and Proposition 2.18 in Juhász [11], we
can perform a sutured manifold decomposition on pM,γq to obtain pM 1, γ1q that is
taut, reduced, and horizontally prime. By Lemma 5.1 in Juhász [11], H2pM

1q “ 0.
By Proposition 6.6 in Kronheimer and Mrowka [16] and Lemma 5.6 in this paper,

1 ď rkpSHMpM 1, γ1qq ď rkpSHMpM,γqq ă 2.

Hence, rkpSHMpM 1, γ1qq “ 1. By Proposition 5.8, this implies that H2pM
1, BM 1q “ 0

and consequently, H1pBM
1q “ 0, which means BM 1 is a sphere. (H2pM

1q “ 0 implies
that BM 1 is connected.) Since M 1 is irreducible, M 1 must be a 3-ball, and γ1 must
be connected due to tautness. So, pM 1, γ1q is a product sutured manifold and so is
pM,γq.

Now we assume that the conclusion of the proposition holds for k ´ 1, and next,
we prove it for k. This part of the proof is exactly the same as in Juhász [11], so we
only sketch as follows: if pM,γq is not horizontally prime, then we could decompose
along non-boundary-parallel horizontal surfaces and get a disjoint union of balanced
sutured manifolds. Each component has a sutured monopole Floer homology of rank
at most 2k, and thus inductive hypothesis applies. If pM,γq is horizontally prime
we can perform a sutured manifold decomposition to make it reduced, and applying
Proposition 5.8 to choose a suitable decomposition surface so that a (second) sutured
manifold decomposition along the chosen surface will reduce the dimension by at least
a half. Then, the inductive hypothesis applies again, and this concludes the proof of
theorem 1.2.
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6 APPLICATION TO KNOTS AND LINKS

As a corollary to the above proposition, we offer a new proof to the fact that
the monopole and instanton knot Floer homology constructed by Kronheimer and
Mrowka [16] detects fibred knots in S3.

Corollary 5.13. Suppose K Ă S3 is a knot. Then, the following three things are
equivalent.

(1) rkpKHMpS3,K, gpKqqq “ 1.
(2) rkpKHIpS3,K, gpKqqq “ 1.
(3) K is a fibred knot.

Proof. We only prove that (1) and (3) are equivalent. From Kronheimer and Mrowka
[16], we know that

KHMpS3,Kq “ SHMpS3pKq,Γµq

where S3pKq is the knot complement and Γµ is the suture consisting of two meridians
on BS3pKq. Pick a minimal genus Seifert surface, S Ă S3 of K. We know that the
decomposition

pS3pKq,Γµq
S
 pM,γq

is taut, and
KHMpS3,K, gpKqq – SHMpM,γq.

Thus, the corollary follows from Theorem 1.2.

Proof of Corollary 1.5. By Lemma 7.10 in Xie and Zhang [27], we have an isomor-
phism

SHMpM,γ, T q – SHIpMT , γT q,

where pMT , γT q is some balanced sutured manifold arising from the triple pM,γ, T q
as explained in Section 7 in [27], and SHIpMT , γT q is the usual sutured instanton
Floer homology defined by Kronheimer and Mrowka in [16]. From the description of
MT in [27], we know that H2pMT q “ H2pMzT q and hence Theorem 1.2 applies.

6 Application to knots and links

6.1 Thurston-norm detection

In this subsection, we prove Theorem 1.17. We only work in the monopole settings
and the proof in the instanton settings is exactly the same. First, we need some
preparations.

Lemma 6.1. Suppose pM,γq is a taut balanced sutured manifold so that M is boundary-
incompressible and the boundary of M consists of a few tori. Suppose further that
α P H2pM, BMq is a non-zero second relative homology class. Then, there is a properly
embedded surface S ĂM with the following properties.

(1) rS, BSs “ α P H2pM, BMq.
(2) χpSq “ ´xpαq.
(3) For any component Σ of BM , S XΣ consists of a disjoint union of coherently

oriented non-separating simple closed curves on Σ.
(4). S is incompressible.
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6 APPLICATION TO KNOTS AND LINKS

Proof. Pick a surface S so that rS, BSs “ α P H2pM, BMq, and xpSq “ xpαq. Since
M is irreducible, we can assume that there is no spherical component of S. We have
assumed that M is boundary-incompressible, so we can also assume that there is no
disk component of S. Thus, we have xpαq “ xpSq “ ´χpSq.

To achieve condition (3) in the conclusion of the lemma, if a component α of BS
bounds a disk on BM , then we can cap off α using the disk it bounds on BM . Capping
off by a disk does not increase the norm, so we can assume that the surface S does
not have a boundary component that bounds a disk on BM .

Pick a component Σ of BM . By assumption, Σ is a torus. Since no component
of S X Σ bounds a disk, we know that S X Σ consists of a disjoint union of parallel
non-separating simple closed curves. If two components of S X Σ are adjacent on Σ
but are oriented reversely, we can glue the annulus, which they co-bound on Σ, to
S. After possible compressions and throwing away any spherical or disk components
arising from the compression, we still call the resulting surface S. Note gluing annuli,
performing compressions, and throwing away spherical and disk components do not
increase the norm. Thus, we conclude the proof of Lemma 6.1.

Lemma 6.2. Suppose pM,γq is a taut balanced sutured manifold so that M is boundary-
incompressible, and the boundary of M consists of a few tori. Suppose α P H2pM,γq
is a non-zero second relative homology class, and S is a properly embedded surface in-
side M satisfying conditions (1)-(3) in Lemma 6.1. Then, the decomposion of pM,γq
along S is taut.

Proof. Suppose the sutured manifold decomposition of pM,γq along S yields pM 1, γ1q,
then we can regard M 1 as a submanifold of M . Suppose Σ is a component of BM ,
then by assumption, Σ is a torus. If Σ X S “ H, then Σ is also a component of BM .
Thus, we have

γ1 X Σ “ γ X Σ, and R˘pγ
1q X Σ “ R˘pγq X V.

If V XS ‰ H, then BM 1XV consists of a disjoint union of annuli, which, regardless
of the orientations, are bounded by pairs of parallel curves in BS X V . Let A Ă V
be a component of BM 1 X V . There are two cases, depending on the intersection of
the suture γ with the surface S. In both cases, it is straightforward to check how γ1

looks like.
Case 1. pS X Σq X pγ X Σq “ H. In this case, the annulus A possibly contains

multiple components of γ, and they remains in γ1. Thus, A may contain either one
or three components of γ1 (note γ XΣ has two components), and each component of
γ1 is parallel to BA. See Figure 16.

Case 2. pS X Σq X pγ X Σq ‰ H. In this case, γ X A consists of an even
number of essential arcs in A, and adjacent arcs are oriented oppositely. Then, after
the decomposition, A contains exactly one components of γ1, and this component is
parallel to BA. See Figure 17.

Suppose A1, ..., An are all the annular components of BM 1 X BM that contain
three components of γ1. Push the interiors of Ai into the interior of M 1 to make
them properly embedded. Then, we can perform a sutured manifold decomposition
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A
Σ

S S

γ

Figure 16: Left, before the decomposition. The vertical (blue) curves represent S, and
the horizontal curves represent Σ. The (red) dots represent the suture γ. Right, after the
decomposition. The (red) dots represent the suture γ1.

on pM 1, γ1q, along the surface A1 Y ... Y An, after the pushing off. The resulting
balanced sutured manifold pM2, γ2q is a disjoint union:

pM2, γ2q “ pM3, γ3q Y pV1, γ
4
1q Y ...Y pVn, γ

4
nq.

Here, for i “ 1, ..., n, Vi is a framed solid torus and γ4
i is the suture on BV consisting

of four longitudes. With Q coefficients, we know from Li [17] that

SHMpVi, γ
4
i q – Q2.

From Proposition 6.9 in Kronheimer and Mrowka [16], we know

SHMpM 1, γ1q – SHMpM2, γ2q – SHMpM3, γ3q bQ Q2n .

Thus, pM 1, γ1q is taut if and only if pM3, γ3q is.
It is then suffice to prove that pM3, γ3q is taut. Note we can regard M3 “ M 1,

and, thus, we can assume
M3 “MzintpNpSqq.

Let S˘ be parallel copies of S in BNpSq, then S˘ are part of the boundary of M3.
Let ΣB be the union of components of BM which are disjoint from S, and let

F˘ “ ΣB XR˘pγq.
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A

BA Ă BS

γ

A

Figure 17: Left, before the decomposition. The two (blue) circles are the boundary of A.
The (red) arcs represent the suture γ. Right, after the decomposition. The two dashed
circles are the boundary of A, and the (red) solid curve represent the suture γ1.

Then, we can describe R˘pγ
3q as follows:

R˘pγ
3q “ F˘ \ S˘.

By assumption, both F˘ and S˘ are incompressible and norm-minimizing in M ,
hence they are also incompressible and norm-minimizing in M3. The fact that M
is irreducible implies that M3 is the same. Thus, we conclude the proof of lemma
6.2.

Corollary 6.3. The decomposition of pM,γq along ´S is also taut.

Proof of Theorem 1.17. For any α P H2pM, BMq, pick a surface S as in Lemma 6.1.
Then, by corollary 6.3, the decomposition of pY pLq,Γµq along S and ´S are both
taut. Suppose

n “
1

2
|S X γ|,

then we know, from condition (3) in the statement of Lemma 6.1, that

n “
r
ÿ

i“1

|xα, µiy|.

We possibly need to perform a stabilization on S to achieve admissibility. Suppose
the S`m is obtained from S by perform m many positive stabilizations on S. Here,
m “ 0 or 1. Note m “ 0 means that the original S is admissible, and we take S0 “ S.
From Lemma 2.20, Lemma 2.23, and Lemma 2.28, we know that

SHMpY pLq,Γµ, S
`m, gcq ‰ 0, and SHMpY pLq,Γµ, S

`m, iq “ 0 for i ą gc.

48



6 APPLICATION TO KNOTS AND LINKS

Here, we have gc “
1
2 p´χpSq ` n`mq.

Similarly, we have

SHMpY pLq,Γµ, p´Sq
`m, gcq ‰ 0, and SHMpY pLq,Γµ, p´Sq

`m, iq “ 0 for i ą gc.

Note p´Sq`m “ ´pS´mq, and, hence,

SHMpY pLq,Γµ, S
´m,´gcq “ SHMpY pLq,Γµ, p´Sq

`m, gcq ‰ 0,

and
SHMpY pLq,Γµ, S

´m, iq “ 0 for i ă ´gc.

Apply proposition 4.1, we know that

SHMpY pLq,Γµ, S
`m,m´ gcq “ SHMpY pLq,Γµ, p´Sq

`m, gcq ‰ 0,

and
SHMpY pLq,Γµ, S

`m, iq “ 0 for i ă m´ gc.

From the definition of the function yp¨q in Definition 1.16 and the construction
of the canonical decomposition of sutured monopole Floer homology in 5.4, we know
that

ypαq “ maxti | SHMpY pLq,Γµ, S
`m, iq ‰ 0u ´minti | SHMpY pLq,Γµ, S

`m, iq ‰ 0u

“ gc ´ pm´ gcq

“ 2gc ´m

“ ´χpSq ` n`m´m

“ xpαq `
r
ÿ

i“1

|xα, µiy|.

This concludes the proof of Theorem 1.17.

Suppose L Ă S3 is a link with r components. Then we know that H2pS
3pLq, BS3pLqq –

Zr. Thus there is a Zr grading on KHMpS3,Kq and KHIpS3,Kq, according to the
proof of lemma 5.2. Here KHM and KHI are the monopole and instanton knot
Floer homologies introduced by Kronheimer and Mrowka in [16]. This leads to the
following question.

Question 6.4. Can we recover the multi-variable Alexander polynomial using the Zr
grading on KHM or KHI?

6.2 Minus version for links

Suppose Y is a closed oriented 3-manifold and L Ă Y is an oriented link. Let L1,
L2,...,Lr be the components of L. We assume further that each component of L is null-
homologous in Y . Thus, for i “ 1, ..., r, we can find (and fix) a Seifert surface Si Ă Y
for Li. Note Si possibly intersects with Lj , for j ‰ i. Also, for i “ 1, ..., r, let pi P Li
be a fixed base point. Let p “ pp1, ..., prq. In this subsection, we construct minus
versions of monopole and instanton knot Floer homologies for the triple p´Y, L,pq.
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Remark 6.5. Here, we require that each component of L to be null-homologous, to fix
a Seifert surface for each component of the link. It is possible to weaken this condition
by simply requiring that the whole link L represents the zero class in H1pY q and fix
a Seifert surface S for it. The construction in this subsection can be easily adapted
to the more general setup.

Let Y pLq “ Y zNpLq be the knot complement and let Ti be the boundary compo-
nent of Y pLq corresponding to the knot Li. The Seifert surface Si induces a framing
on Ti. We call the longitude λi and the meridian µi. For n “ pn1, ..., nrq P Zr, let Γn

be the suture on BY pLq so that Γn X Ti consists of two parallel simple closed curves
of class ˘rµi ´ nλis. We have the following lemma.

Remark 6.6. It seems that the choice of base points p does not appear in the above
set up. However, p helps to resolve the ambiguity arising from the choice of the link
complements. Since this issue is fully clarified in Baldwin and Sivek [1] and Li [19],
we won’t discuss on it anymore in this paper.

Lemma 6.7. Suppose n “ pn1, ..., nrq P pZ`qr. Let n1 be obtained from n by replacing
ni with ni` 1, and let n2 be obtained from n by replacing ni with `8, then there are
exact triangles:

SHMp´Y pLq,´Γnq
ψ˘,n,i // SHMp´Y pLq,´Γn1q

ψ˘,n1,itt
SHMp´Y pLq,´Γn2q

ψ˘,n2,i

jj

Here, ψ˘,n,i are the map associated to a positive or negative by-pass attached to
Y pLq,Γn, which is performed on the boundary component Ti of Y pLq. (See Subsection
2.4.)

There are similar exact triangles in the instanton settings.

Proof. This is a direct application of Theorem 2.29. For more details, readers are
referred to Section 2 of Li [19].

To use a better notation, for i “ 1, ..., r, let ei “ p0, ..., 1, ..., 0q P Zr be the vector
whose entries are all 0 except of being 1 on the i-th place. We have the following
lemma.

Lemma 6.8. For any n P pZ`qr and i, j P t1, ..., ru, we have the following commu-
tative diagram:

SHMp´Y pLq,´Γnq
ψ´,n,i //

ψ´,n,j

��

SHMp´Y pLq,´Γn`eiq

ψ
´,n`ei,j

��
SHMp´Y pLq,´Γn`ej q

ψ
´,n`ej ,i // SHMp´Y pLq,´Γn`ei`ej q
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6 APPLICATION TO KNOTS AND LINKS

Proof. As explained in Subsection 2.4, the by-pass maps, ψ˘,n,i, ultimately come from
contact handle attaching maps. Since the by-passes corresponding to vertical and
horizontal maps happen on different boundary components of Y pLq, the corresponding
contact handle attachments commute, and so do the by-pass maps.

Definition 6.9. We define the minus version of monopole link Floer homology of a
based link L Ă ´Y , which is denoted by KHM´

p´Y,L,pq , to be the direct limit of
the direct system

tψ´,n,i : SHMp´Y pLq,Γnq Ñ SHMp´Y pLq,Γn`eiq,n P pZ`qr, i P 1, ..., ru.

We define KHI´p´Y, L,pq in a similar manner.

Lemma 6.10. For any n P pZ`qr and i, j P t1, ..., ru, we have the following commu-
tative diagram:

SHMp´Y pLq,´Γnq
ψ´,n,i //

ψ`,n,j

��

SHMp´Y pLq,´Γn`eiq

ψ
`,n`ei,j

��
SHMp´Y pLq,´Γn`ej q

ψ
´,n`ej ,i // SHMp´Y pLq,´Γn`ei`ej q

There are similar commutative diagrams in the instanton settings.

Proof. If i ‰ j, this follows from exactly the same argument as in the proof of Lemma
6.8. If i “ j, this follows from the proof of the same type of commutative diagram
in the construction of minus versions for knots by the second author. See Corollary
2.22 in Li [19].

Definition 6.11. For any fixed i P t1, ..., ru, The set of maps

tψ`,n,i : SHMp´Y pLq,´Γnq Ñ SHMp´Y pLq,´Γn`eiqu

induces a map
Ui : KHM´

p´Y, L,pq Ñ KHM´
p´Y,L,pq,

which we call the i-th U map.
We define

Ui : KHI´p´Y,L,pq Ñ KHI´p´Y,L,pq

in a similar manner.

Proposition 6.12. For any i, j P t1, ..., ru, the maps Ui and Uj commute with each
other.

Proof. The proof is exactly the same as the proof of Lemma 6.8.
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6 APPLICATION TO KNOTS AND LINKS

Next, we construct a Zr grading on KHM´
p´Y, L,pq, based on the chosen Seifert

surfaces S1, ..., Sr of L1, ..., Lr.
Recall that L Ă Y has components L1, L2, ..., Lr, and Li has a Seifert surface

Si that could possibly intersect other components of the link. By a slight abuse of
notation, let Si also denote the intersection of the original Seifert surface with the link
complement Y pLq. Thus, the boundary of Si consists of a longitude on Ti and a few
(possibly none) meridians on Tj , for j ‰ i. For fixed i P t1, ..., ru and n “ pn1, ..., nrq P
pZ`qr, let Si,n be the isotopy of Si so that BSi,n has the least possible intersections
with the suture Γn Ă BY pLq. This means that the longitudinal boundary component
of Si,n intersects Γn at 2ni points, and each meridional boundary component of Si,n
intersects Γn at two points. Applying the construction of gradings in Subsection 2.3,
the surface Si,n, or its stabilizations, give rise to a grading on SHMp´Y pLq,´Γnq.
We then have the following proposition.

Proposition 6.13. Fix any i P t1, ..., ru and n P pZ`qr. If ni is even, then, for any
j P Z, we have

ψ˘,n,ipSHMp´Y pLq,´Γn, S
˘
i,n, jqq Ă SHMp´Y pLq,´Γn`ei , Si,n`ei , jq

If ni is odd, then, for any j P Z,

ψ˘,n,ipSHMp´Y pLq,´Γn, S
˘2
i,n , jqq Ă SHMp´Y pLq,´Γn`ei , S

˘

i,n`ei , jq

Furthermore, for any k ‰ i, the maps ψ˘,n,k preserve the gradings associated to
Si,n and its stabilizations.

Similar statements hold for the instanton settings.

Proof. For ψ˘,n,i, the proof is exactly the same as the proof of Proposition 5.5 in Li
[19]. For ψ˘,n,k with k ‰ i, note Si,n has a few meridional components on the Tk, so
the by-passes, which corresponds to the maps ψ˘,n,k, can actually be made disjoint
from Si,n.

Similar to the constructions in Section 5 of Li [19], if ni is odd, let Sτi,n be just
Si,n, and if ni is even, let Sτi,n be a negative stabilization of Si,n performed near Ti.
We can use Sτi,n to define a grading on SHMp´Y pLq,Γnq. We also need to perform a
grading shift. Let

SHMp´Y pLq,´Γn, S
τ
i,n, jqtσiu “ SHMp´Y pLq,´Γn, S

τ
i,n, j ` t

n

2
uq,

where txu is to take the maximal integer which is no larger than x.

Proposition 6.14. Using the grading SHMp´Y pLq,´Γn, S
τ
i,n, jqtσiu, we can con-

struct a Z-grading on KHM´
p´Y,L,pq. The i-th U map, Ui, drops the grading by 1,

and all other U maps, Uk with k ‰ i, preserve the grading.
Furthermore, all Seifert surfaces, S1, ..., Sr, together induce a Zr grading on KHM´

p´Y,L,pq,
which we write as

KHM´
p´Y,L,p, jq.
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Here, j P Zr denote a multi-grading. As a result, together with the commutativity
of all U maps in Proposition 6.12, there is an RrU1, ..., Urs module structure on
KHM´

p´Y, L,pq.
Similar results hold in the instanton settings.

Proof. The first half of the proposition follows from Proposition 6.13, and the second
half of the proposition follows from the proof of Lemma 5.2.

The first computable example is the case of unlinks.

Proposition 6.15. Suppose Y is a closed oriented 3-manifold and L Ă Y is an unlink
of r components, i.e., there exists an embedded disk Si – D2, for each i P t1, ..., ru,
so that BSi “ Li, and all Si are disjoint from each other. Then,

KHM´
p´Y,L,pq – SHMp´Y prq,´δrq bR RrU1, , Urs.

Here, p is a chosen set of base points, and pY prq, δrq is the balanced sutured manifold
obtained from Y by removing r disjoint 3-balls and picking one simple closed curve
on each spherical boundary of Y prq as the suture.

Similar statements hold in the instanton settings.

Proof. For any n P pZ`qr, we know that pY pLq,Γnq can be obtained from the disjoint
union

pY prq, δrq \ pS3pL1q,Γn1
q \ ...\ pS3pLrq,Γnr q

by attaching r many contact 1-handles (see Definition 3.2). Each 1-handle connects
some pS3pLiq,Γniq to pY prq, δrq. As in Subsection 2.4, the by-pass maps ψ˘,n,i can
be realized as contact handle attaching maps and those contact handles are disjoint
form the contact 1-handles just described above. Hence, under the isomorphism

SHMp´Y pLq,Γnq – SHMpY prq, δrq b SHMpS3pL1q,Γn1
q b ...b SHMpS3pLrq,Γnr q,

we have an identification

ψ˘,n,i “ idb ...b ψ˘,ni b ...b id,

where
ψ˘,ni : SHMp´S3pLiq,´Γniq Ñ SHMp´S3pLiq,´Γni`1q.

Hence, we are done.

Proposition 6.16. Under the above setups, the direct system stabilizes, that is, for
any fixed j P Z, there exists N P Z , so that for all i P t1, ..., ru and n “ pn1, ..., nrq P
pZ`qr such that ni ą N , we have an isomorphism

ψ´,n,i : SHMp´Y pLq,´Γn, S
τ
i,n, jqrσis – SHMp´Y pLq,´Γn`ei , S

τ
i,n`ei , jqrσis.

Proof. This follows from exactly the same argument as in the proof of Proposition
5.8 in Li [19].
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Proposition 6.17. Under the above setups, there exists an integer N0, so that for
any fixed i P t1, ..., ru and any multi-grading j “ pj1, ..., jrq P Zr with ji ă N0, the
map Ui restricts to an isomorphism

Ui : KHM´
pY, L,p, jq – KHM´

pY, L,p, j´ eiq.

Proof. This follows from exactly the same argument as in the proof of Corollary 5.9
in Li [19].
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[22] Peter Ozsváth and Zoltán Szabó. Holomorphic disks and knot invariants. Adv.
Math., 186(1):58–116, 2004.
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