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Abstract

Given a set of points P and axis-aligned rectangles R in the plane, a point p ∈ P is called exposed if

it lies outside all rectangles in R. In the max-exposure problem, given an integer parameter k, we

want to delete k rectangles from R so as to maximize the number of exposed points. We show that

the problem is NP-hard and assuming plausible complexity conjectures is also hard to approximate

even when rectangles in R are translates of two fixed rectangles. However, if R only consists of

translates of a single rectangle, we present a polynomial-time approximation scheme. For general

rectangle range space, we present a simple O(k) bicriteria approximation algorithm; that is by

deleting O(k2) rectangles, we can expose at least Ω(1/k) of the optimal number of points.
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1 Introduction

Let S = (P, R) be a geometric set system, also called a range space, where P is a set of

points and each R œ R is a collection of subsets of P , also called a range. We are primarily

interested in range spaces defined by a set of points in two dimensions and ranges defined by

axis-aligned rectangles. We say that a point p œ P is exposed if no range in R contains p.

The max-exposure problem is defined as follows: given a range space (P, R) and an integer

parameter k Ø 1, remove k ranges from R so that a maximum number of points are exposed.

That is, we want to find a subfamily Rú ™ R with |Rú| = k, so that the number of exposed

points in the (reduced) range space (P, R \ Rú) is maximized.

The max-exposure problem arises naturally in many geometric coverage settings. For

instance, if points are the location of clients, and ranges are coverage of some facilities in the

plane, then exposed points are those not covered by any facility. The max-exposure problem

in this case gives a worst-case bound on the number of clients that can be exposed if an

adversary disables k facilities. Similarly, in distributed sensor networks, ranges correspond

to sensing zones, points correspond to physical assets being monitored by the network,

and the max-exposure problem computes the number of assets exposed when k sensors

are compromised.
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More broadly, the max-exposure problem is related to the densest k-subgraph problem in

hypergraphs. In the densest k-subhypergraph problem, we are given a hypergraph H = (X, E),

and we want to find a set of k vertices with a maximum number of induced hyperedges. In

general hypergraphs, finding k-densest subgraphs is known to be (conditionally) hard to

approximate within a factor of n1≠‘, where n is the number of vertices. The max-exposure

problem is equivalent to the densest k-subhypergraph problem on a dual hypergraph, the

vertex set X corresponds to the ranges R, and set of edges E of the dual hypergraph

correspond to the set of points P . In the rest of the paper, we will use n = |R| for the

number of ranges in R and m = |P | to be the number of points. We show that if the range

space is defined by convex polygons, then the max-exposure problem is just as hard as the

densest k-subhypergraph problem. However, for ranges defined by axis-aligned rectangles,

one can achieve much better approximation. In particular, we obtain the following results.

We show that the max-exposure problem is NP-hard and assuming the dense vs random

conjecture to be true, it is also hard to approximate better than a factor of O(n1/4) even

if the range space is defined by only two types of rectangles in the plane. (For range

space defined by convex polygons, we show that max-exposure is equivalent to densest

k-subhypergraph problem, which is hard to approximate within O(n1≠‘)).

When ranges are defined by translates of a single rectangle, we give a polynomial-time

approximation scheme (PTAS) for max-exposure. The PTAS stands in sharp contrast to

the inapproximability of ranges defined by two types of rectangles. Moreover, as an easy

consequence of this result, we obtain a constant approximation when the ratio of longest

and smallest side of rectangles in R is bounded by a constant. However, we do not know

if max-exposure with translates of a single rectangle can be solved in polynomial time or

is NP-hard.

For ranges defined by arbitrary rectangles, we present a simple greedy algorithm that

achieves a bicriteria O(k)-approximation. No such approximation is possible for general

hypergraphs. If rectangles in R have a bounded aspect ratio, the approximation improves

to O(
Ô

k).

Related Work. Coverage and exposure problems have been widely studied in geometry

and graphs. In the classical set cover problem, we want to select a subfamily of k sets

that cover the maximum number of items (points) [14, 17]. For the set cover problem, the

classical greedy algorithm achieves a factor log n approximation on the number of sets needed

to cover all the items, or factor (1 ≠ 1/e) approximation on the number of items covered

by using exactly k sets. Similarly, in geometry, the art gallery problems explore coverage

of polygons using a minimum number of guards. Unlike coverage problems where greedy

algorithms deliver reasonably good approximation, the exposure problems turn out to be

much harder. Specifically, choosing k sets whose union is of minimum size is much harder

to approximate with a conditional inapproximability of O(n1≠‘) where n is the number

of elements and O(m1/4≠‘) where m is the number of sets [10]. This so-called min-union

problem is essentially the densest k-subgraph problem on hypergraphs [9]. The densest

k-subgraph problem for graphs has a long history [15, 3, 2, 6]. The classical coverage

problems have been extensively studied for geometric set systems and significantly better

approximation bounds have been achieved for them [1, 7, 20]. Several other variations such

as the set multi-cover problem [8, 12] where each input point needs to be covered by more

than one set have also been studied. Also closely related to max-exposure is the geometric

constraint removal problem [4, 13], where given a set of ranges, the goal is to expose a path
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between two given points by deleting at most k ranges (a path is exposed if it lies in the

exterior of all ranges). Even for simple shapes such as unit disks (or unit squares) [5, 19], no

PTAS is known for this problem.

The remainder of the paper is organized as follows. In Section 2, we discuss our hardness

results followed by the bicriteria O(k)-approximation in Section 3. In Section 4, we study the

case when R consists of translates of a fixed rectangle and describe a PTAS for it. Finally, in

Section 5, we use these ideas to obtain a bicriteria O(
Ô

k)-approximation when aspect ratio

of rectangles in R is bounded by a constant.

2 Hardness of Max-Exposure

We show that max-exposure problem for geometric ranges is both NP-hard and inapproximable

within a polynomial factor, under some well known hardness conjectures. In particular, we

first show that the densest k-subgraph on bipartite graphs (bipartite-DkS) can be easily

reduced to the max-exposure problem. In the bipartite-DkS problem, we are given a bipartite

graph G = (A, B, E), an integer k, and we want to compute a set of k vertices such that the

induced subgraph on those k vertices has the maximum number of edges. Given an instance

G = (A, B, E) of bipartite-DkS, we will construct a max-exposure instance as follows.

Let R1 = [0, ‘] ◊ [0, n] be a thin vertical rectangle and R2 = [0, n] ◊ [0, ‘] be a thin

horizontal rectangle. For each vertex vi œ A, we create a copy Ri of R1, and place it such

that its lower-left corner is at (i, 0). Similarly, for each vertex vj œ B, we create a copy Rj of

R2, and place it such that its lower-left corner is at (0, j). These |A| + |B| rectangles create

a checkerboard arrangement, with |A| ◊ |B| cells of intersection. For each edge (vi, vj) œ E,

we place a single point in the cell corresponding to intersection of Ri and Rj . It is now easy

to see that G has a k-subgraph with mú edges if and only if we can expose mú points in

this instance by removing k-rectangles: the removed rectangles are exactly the k vertices

chosen in the graph, and each exposed point corresponds to the edge included in the output

subgraph. (See also Figure 1.)

I Lemma 1. The max-exposure problem is at least as hard as bipartite-DkS.

Since bipartite-DkS is known to be NP-hard [16], we have the following.

I Theorem 2. Max-exposure problem with axis-aligned rectangles is NP-hard.

2.1 Hardness of Approximation

The construction in the preceding proof shows that max-exposure with rectangles is at least

as hard as bipartite-DkS problem. Moreover, the geometric construction uses translates of

only two rectangles R1, R2. In the following, we show that even with such a restricted range

space, the problem is also hard to approximate. To that end we prove that bipartite-DkS

cannot be approximated better than a factor O(n1/4), where n is the number of vertices in

this graph. More precisely, if the densest subgraph over k vertices has mú edges, it is hard

to find a subgraph over k vertices that contains at least Ω(mú/n1/4≠‘) edges in polynomial

time. This hardness of approximation is conditioned on the so-called dense vs random

conjecture [10] being true. Roughly speaking, we are given a graph G, constants 0 < –, — < 1,

and a parameter k, and we want to distinguish between the following two cases.

1. (Random) G = G(n, p) where p = n–≠1, that is, G has average degree approximately n–.

2. (Dense) G is adversarially chosen so that the densest k-subgraph of G has average

degree k— .

APPROX/RANDOM 2019
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3 A Bicriteria O(k)-approximation Algorithm

In this section, we present a simple approximation algorithm for the max-exposure problem

that achieves bicriteria O(k)-approximation for range spaces defined by arbitrary axis-aligned

rectangles. Specifically, if the optimal number of points exposed is mú, the algorithm picks a

subset of k2 rectangles such that the number of points exposed is at least mú/ck, for some

constant c. In fact, the results hold for any polygonal range with O(1) complexity.

This bicriteria approximation should be contrasted with the fact that no such approxima-

tion is possible for for the densest k-subhypergraph problem: that is, one cannot compute

a set of O(kb) vertices for any constant b such that the number of edges in the induced

subhypergraph is at least optimal. Thus the geometric properties of the range space have a

significant impact on the problem complexity. In particular, if R consists of rectangle ranges,

we show that the following strategy picks a subset of –k ranges such that the number of

points exposed is at least –mú/ck2, for a parameter 1 Æ – Æ k and constant c that will be

fixed later. Choosing – = k gives us the claimed bound.

Our algorithm is essentially greedy. We divide the points into maximal equivalence classes,

where each class is the maximal subset of points belonging to the same subset of ranges. We

define R(p) as the set of ranges that contain a point p œ P , and remove all points that are

contained in more than k ranges, since they can be never exposed in the optimal solution.

Therefore, without loss of generality, we can assume that |R(p)| Æ k for all points p œ P .

Algorithm 1 Greedy-Bicriteria.

1. Partition P into a set G of groups where each group Gi œ G is an equivalence class of

points that are contained in the same set of ranges. That is, for any p œ Gi, pÕ œ Gj , we

have R(p) = R(pÕ) if i = j and R(p) ”= R(pÕ), otherwise.

2. Sort the groups in G by decreasing order of their size |Gi| and select the first – groups.

Return mÕ =
q

1ÆiÆ– |Gi| as the number of points exposed.

Observe that every point p œ Gi is contained in the same set of ranges Ri = R(p) and

|Ri| Æ k. Therefore, the total number of ranges that we remove is at most –k. It remains to

show that the number of points exposed mÕ is at least –mú/ck2.

I Lemma 6. Let mÕ be the number of points exposed by the algorithm Greedy-Bicriteria,

and let mú be the optimal number of exposed points, Then, mÕ Ø –mú/ck2.

Proof. Consider the optimal set Rú of k ranges that are deleted, and let P ú be the set of

exposed points. We partition the set of points P ú into groups Gú as before, such that each

group Gú
i œ Gú is identified by the range set Rú

i = R(p), for any p œ Gú
i . Since P ú ™ P , we

must have that Gú ™ G. This holds because for every group Gú
i œ Gú there must be a group

Gi œ G such that Rú
i = Ri. Moreover since P ú is the maximum set of points that can be

exposed, we must have that Gú
i = Gi. Finally, we note that the number of groups |Gú| is

bounded by the number of cells in the arrangement of ranges in Rú which is at most ck2 for

some fixed constant c, for all O(1)-complexity ranges.

If the groups in G are arranged by decreasing order of their sizes, we have that

mú =
ÿ

1ÆiÆ|Gú|

|Gú
i | Æ

ÿ

1ÆiÆ|Gú|

|Gi| Æ
ÿ

1ÆiÆck2

|Gi| Æ ck2

–

ÿ

1ÆiÆ–

|Gi| =
ck2

–
· mÕ

J
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In order to gain some intuition, we will first consider the following two natural dynamic

programming formulations for the problem.

DP-template-0. Suppose that the points in P are ordered by their increasing x-coordinates

and let xi be the x-coordinate of the ith point pi. We define a subproblem as S(i, kÕ, Rd)

which represents the maximum number of points in Pi that can be exposed by removing kÕ

ranges from the set Ri \ Rd. If we define x0 = 0, then S(0, k, ÿ) gives the optimal number of

exposed points for our problem.

Let ki = |R(pi) \ Rd| be the number of ranges of Ri \ Rd that contain pi. Then, we can

can express the subproblems at i in terms of subproblems at i + 1 as follows.

S(i, kÕ, Rd) = max

I

S(i + 1, kÕ ≠ ki, Rd fi R(pi)) + 1 expose pi

S (i + 1, kÕ, Rd) otherwise

Roughly speaking, at x = xi which is the event corresponding to a point pi œ P , we have

two choices : expose pi or do not expose pi. If we expose pi, we pay for deleting the ranges in

Ri \ Rd that contain pi and mark them as deleted by adding to the deleted range set Rd.

Moreover, since we only delete ranges from Ri \ Rd, we can assume that Rd = Rd fl Ri at

each xi. It is easy to see that this correctly computes the optimal number of exposed points.

However, there is one complication: a priori it is not clear how to bound the number of range

subset Rd used by this dynamic program. We later argue that the geometry of range space

for Type-0 ranges allows us to use only a polynomial number of choices.

DP-template-1. An alternative approach is to consider both point and begin-range events.

That is, x = xi is either incident to a point pi œ P or to the left vertical side of a range

Ri œ R. Then, we can define a subproblem by the tuple S(i, kÕ, Pf ) which represents the

maximum number of points in (Pi \ Pf ) that can be exposed by removing kÕ ranges in Ri. If

we define x0 = 0, then S(0, k, ÿ) gives the optimal number of exposed points. Let P (Ri) ™ P

be the set of points contained in the range Ri, then we have the following recurrence.

S(i, kÕ, Pf ) = max

I

S(i + 1, kÕ ≠ 1, Pf ) delete range Ri

S(i + 1, kÕ, Pf fi P (Ri)) otherwise

(event x = xi was beginning of a range Ri œ Ri)

= max

I

S(i + 1, kÕ, Pf ) if pi œ Pf , cannot expose pi

S(i + 1, kÕ, Pf ) + 1 otherwise, expose pi

(otherwise, event x = xi was a point pi œ Pi)

In the above formulation, at each begin-range event for some Ri œ Ri, we have two choices:

delete Ri or do not delete Ri. If Ri was deleted, we reduce the budget kÕ by one. Otherwise,

if Ri was not deleted, we can never expose the points in P (Ri), and therefore we add P (Ri)

to the forbidden point set Pf . The correctness of the dynamic program follows from the fact

that for every point pi, all the ranges containing it must begin before x = xi, and we expose

pi only if those ranges were deleted. Finally, since we only expose points in Pi \ Pf , we can

assume that Pf = Pf fl Pi at each xi. Again, it is not obvious how many different subsets

Pf are needed by the dynamic program. However, we will later show that by keeping track

of polynomial number of sets Pf , we can solve max-exposure with Type-1 ranges.

APPROX/RANDOM 2019
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We note that the Type-0 and Type-1 ranges may superficially seem symmetric but once

we fix the order of computing subproblems, they become structurally different. Therefore, we

would need slightly different techniques to handle each type. For the ease of exposition, we

present dynamic programs for Type-0 and Type-1 ranges separately and finally combine them.

We first define the following ordering relations that will be useful. Let ¸ be a horizontal

line, and let d(p, ¸) denote the orthogonal distance of p œ P from ¸. If p, pÕ œ P are two

points, we say that p is closer to ¸ than pÕ if d(p, ¸) < d(pÕ, ¸). Similarly, for a range R œ R

that is anchored to ¸, let d(R, ¸) be the vertical distance inside the unit square C between

¸ and the side of R parallel to ¸. If R, RÕ œ R are two ranges, we say that R is closer (or

equivalently RÕ is farther ) from ¸ if both R, RÕ are anchored to ¸ and d(R, ¸) < d(RÕ, ¸).

(See Figure 4.)

4.1.1 Max-exposure with Type-0 Ranges

Recall that Type-0 ranges intersect the vertical lines x = 0 and are anchored to either ¸0

or ¸1. We will apply the formulation discussed in DP-template-0. The key challenge here

is to bound the number of possible deleted range sets Rd. Towards that end, we make the

following claim.

I Lemma 7. Let q0, q1 be the two exposed points strictly to the left of x = xi that are closest

to ¸0 and ¸1 respectively. Then our dynamic program only needs to consider the set of deleted

ranges Rd = R(q0) fi R(q1) at x = xi conditioned on q0, q1.

Proof. Observe that since R consists of Type-0 ranges, every range in Ri must intersect

the vertical line x = xi. Suppose we partition Ri into ranges R0
i that are anchored to ¸0

and R1
i that are anchored to ¸1. Let P Õ ™ P be the set of all exposed points strictly to the

left of x = xi. Observe that for all p œ P Õ, any range R œ R0
i that contains p must also

contain q0. Therefore, we must have R0
i fl R(p) ™ R0

i fl R(q0), for all p œ P Õ. Similarly,

R1
i fl R(p) ™ R1

i fl R(q1), for all p œ P Õ. Hence,
t

pœP Õ Ri fl R(p) = R(q0) fi R(q1). Recall

that Rd is precisely the set of ranges at x = xi that contain any exposed point to the left of

x = xi, so we have Rd = R(q0) fi R(q1). J

Therefore, if our dynamic program remembers the exposed points q0, q1, then we can compute

the deleted range set Rd = R(q0) fi R(q1) at x = xi. There are O(m2) choices for the pair

q0, q1, so the number of possible sets Rd is also O(m2). We can therefore identify our

subproblems by the tuple S(i, kÕ, q0, q1) which represents the maximum number of exposed

points with x-coordinates xi or higher using kÕ rectangles from the set Ri \ Rd. With

ki = |R(pi) \ Rd|, we obtain the following recurrence:

S(i, kÕ, q0, q1) = max

I

S (i + 1, kÕ ≠ ki, closer(pi, q0), closer(pi, q1)) + 1 expose pi

S (i + 1, kÕ, q0, q1) otherwise

where the function closer(pi, q0) returns whichever of pi, q0 is closer to ¸0, and closer(pi, q1)

returns whichever of pi, q1 is closer to ¸1. The optimal solution is given by S(0, k, qú
0 , qú

1),

where qú
0 = (0, 1) and qú

1 = (0, 0) are two artificial points with R(qú
0) = R(qú

1) = ÿ (not

contained in any range). The base case is defined by the vertical line x = 1 and is initialized

with zeroes for all q0, q1 and kÕ Ø 0. Any subproblem with kÕ < 0 has value ≠Œ.
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Here, farther(Ri, Q0) returns whichever of Ri, Q0 is farther from ¸0; and farther(Ri, Q1)

returns whichever of Ri, Q1 is farther from ¸1. The optimal solution is given by P (0, k, Qú
0, Qú

1),

where Qú
0, Qú

1 are two artificial ranges of zero-width : Qú
0 is anchored to ¸0 and is defined

by corners (0, 0) and (0, 1); similarly, Qú
1 is anchored to ¸1 and is defined by corners

(0, 1) and (1, 1).

I Remark 9. We note that remembering constant number of exposed points q0, q1 or a

constant number of undeleted ranges Q1, Q2 by themselves cannot solve both Type-0 and

Type-1 ranges. For instance, in Figure 6(a) with Type-0 ranges, if R1, R2 were both not

deleted but we remembered one of them, then we will incorrectly expose one of p, pÕ. Similarly

in Figure 6(b) with Type-1 ranges, if p1, p2 were both exposed but we only remembered one

of them, we will pay for one of the ranges R, RÕ again when we expose p3. However, since the

previous dynamic programs for Type-0 and Type-1 ranges express subproblems at event i in

terms of subproblems at event i + 1, we can easily combine them with minor adjustments.

4.1.3 Combining them together

In the following, we combine the dynamic programs for Type-0 and Type-1 ranges to obtain

a dynamic program for max-exposure in a unit square C. We will need a couple of changes.

First, the events at x = xi are now defined by either a point pi œ P or beginning of a

Type-1 range Ri. Next, the deleted range set Rd at x = xi will only consist of Type-0 ranges

and is defined as Rd = Ri0 fl (R(q0) fi R(q1)) where Ri0 ™ Ri is the set of Type-0 ranges

that intersect the vertical line x = xi, The forbidden point set Pf = P (Q0) fi P (Q1) stays

the same. Here q0, q1, Q0, Q1 are same as defined before. The subproblems represent the

maximum number of points in Pi \Pf that can be exposed by deleting kÕ ranges from Ri \Rd.

If ki = |R(pi) \ Rd|, then we obtain the following combined recurrence.

S(i, kÕ, q0, q1, Q0, Q1) =

max

Y

_

_

]

_

_

[

S(i + 1, kÕ, q0, q1, Q0, Q1) if pi œ Pf , cannot expose pi

S(i + 1, kÕ, q0, q1, Q0, Q1) choose to not expose pi

S(i + 1, kÕ ≠ ki, q0, q1, Q0, Q1) + 1 otherwise, expose pi

(event x = xi was a point pi œ Pi)

max

Y

_

_

]

_

_

[

S(i + 1, kÕ ≠ 1, q0, q1, Q0, Q1) delete Type-1 range Ri

S(i + 1, kÕ, q0, q1, farther(Ri, Q0), Q1) Ri not deleted and anchored to ¸0

S(i + 1, kÕ, q0, q1, Q0, farther(Ri, Q1)) Ri not deleted and anchored to ¸1

(event x = xi was beginning of a Type-1 range Ri œ Ri)

The optimal solution is given by S(0, k, qú
0 , qú

1 , Qú
0, Qú

1). The correctness of the above

formulation follows from the fact that when we choose to expose pi, we are guaranteed that

all Type-1 ranges in R(pi) have already been deleted, and the expression ki only charges for

Type-0 ranges containing pi. As for the running time, for each event x = xi, we compute

O(kn2m2) entries and computing each entry takes constant time. Since there are O(n + m)

events, we obtain the following.

I Lemma 10. Given a set P of m points in a unit square C and a set of n unit square

ranges R, we can compute their max-exposure in O(k(n + m)n2m2) time.
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program similar to that for max-exposure within a cell where we express the subproblems at

x = xi in terms of subproblems to the right of x = xi. However, there are some important

differences in how we define our subproblems. First, events at a vertical line x = xi are one

of three types:

1. cell-boundary: x = xi is coincident with left-boundary of a cell Cj œ C,

2. begin-range: x = xi is coincident with left-vertical side of a range Ri œ R

3. point: x = xi is incident to an input pi œ P

Moreover for a given cell Cj , in addition to the points q0, q1, and ranges Q0, Q1, we will

also need to remember two additional ranges : L0 (anchored to ¸0) and L1 (anchored to

¸1) that begin in Cj≠1, were not deleted and are farthest from ¸0, ¸1 respectively. For the

sake of clarity, we will use Z0 = (q0, Q0, L0) to denote the triplets corresponding to ¸0 and

Z1 = (q1, Q1, L1) to denote the triplets corresponding to ¸1.

Suppose x = xi lies in the cell Cj . Then we show that the set of deleted ranges Rd

consisting of Type-0 ranges in Cj , and the set of forbidden points Pf can be uniquely

identified using the triples Z0, Z1.

Deleted Type-0 range-set Rd Let Rj≠1 be the set of ranges that begin in cell Cj≠1,

and therefore are Type-1 with respect to Cj≠1. Suppose we define L>0 ™ Rj≠1 to

be the set consisting of ranges anchored to ¸0 and farther from ¸0 than L0. Similarly,

L>1 ™ Rj≠1 consists of ranges anchored to ¸1 and farther from ¸1 than L1. Then, we

define Rd = (R(q0) fi R(q1) fi L>0 fi L>1).

Forbidden point-set Pf We define Pf = (P (L0) fi P (L1) fi P (Q0) fi P (Q1)).

Finally, we say that a range R dominates another range RÕ, if both R, RÕ begin in the

same cell Cj and RÕ fl Cj ™ R fl Cj . That is, R completely contains the part of RÕ that lies

in cell Cj . Note that the key difference from earlier formulations is that at a begin-range

event for a Type-1 range Ri in cell Cj , we choose to ignore Ri if it is dominated by ranges

Q0 or Q1, because the points of Ri contained in Cj already lie in the forbidden set Pf . With

ki = |R(pi) \ Rd|, we obtain the following recurrence.

S(i, kÕ, Z0, Z1) = S(i + 1, k, U(Z0, Cj), U(Z1, Cj))

(event x = xi is left-boundary of cell Cj)

max

Y

_

_

]

_

_

[

S(i + 1, kÕ, Z1, Z2) if pi œ Pf , cannot expose pi

S(i + 1, kÕ, Z1, Z2) otherwise, choose to not expose pi

S(i + 1, kÕ ≠ ki, Z1, Z2) + 1 otherwise, expose pi

(otherwise, event x = xi was a point pi in cell Cj)

max

Y

_

_

_

_

]

_

_

_

_

[

S(i + 1, kÕ, Z0, Z1) if either Q0 or Q1 dominates Ri, ignore Ri

S(i + 1, kÕ ≠ 1, Z0, Z1) otherwise, delete Type-1 range Ri

S(i + 1, kÕ, U(Z0, Ri), Z1) otherwise if Ri is not deleted and anchored to ¸0

S(i + 1, kÕ, Z0, U(Z1, Ri)) otherwise, Ri is not deleted and anchored to ¸1

(otherwise, event x = xi was beginning of a Type-1 range Ri in cell Cj.)

The function U(Z, E) used above is defined as follows. Roughly speaking, it updates the

triplets Z œ {Z0, Z1} based on the event E and returns an updated triplet. We have the

following three cases.

For a cell-boundary event Cj , if we have Z0 = (q0, Q0, L0), the function U(Z0, Cj) =

(qú
0 , Qú

0, Q0). Similarly, U(Z0, Cj) = (qú
1 , Qú

1, Q1). This corresponds to resetting the

points q0, q1, rectangles Q0, Q1 for the current cell Cj , and remembering the rectangles

L0, L1 from the previous cell Cj≠1.
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I Lemma 14. The restricted max-exposure instance such that all points in P lie within a

unit-width horizontal strip bounded by lines ¸0, ¸1 and R consists of unit squares can be solved

in O(k(n + m)n4m2) time, where m = |P | and n = |R|.

Using similar ideas as Lemma 11, the above lemma readily gives a 2-approximation for

max-exposure. More precisely, we can embed the input instance on to a unit-sized grid

as before, but instead of solving max-exposure in a cell, we use the above algorithm to

solve max-exposure locally in a row of the grid. Since each range R œ R can intersect at

most two rows, R is split into two sub-ranges R1, R2 contained in at most two rows. Since

these new sub-ranges in two different rows are disjoint, there exists an optimal solution with

2k sub-ranges. Therefore, if we have already computed the local solutions for each row i,

using the algorithm DP-Approx we can compute global(1, 2k) which exposes at least optimal

number of points using at most 2k ranges.

I Corollary 15. There exists a 2-approximation algorithm for max-exposure with unit square

ranges running in O(k(n + m)n4m2) time.

Generalizing to h anchor lines. The dynamic program for max-exposure in a horizontal

strip bounded by two anchor lines ¸0, ¸1 can be generalized to the case when we have h anchor

lines ¸1, ¸2, . . . , ¸h. However, there is a minor technical change required. Observe that for a

given anchor line ¸i, there can be points and anchored ranges on either side of ¸i. Therefore,

we will need to remember the closest exposed points and the farthest undeleted ranges on

both sides of ¸i. So for each anchor line ¸i, we will need the triplet Z+
i = (q+

i , Q+
i , L+

i ) for

points and ranges above ¸i and the triplet Z≠
i = (q≠

i , Q≠
i , L≠

i ) for points and ranges below ¸i.

The dynamic program will now need to remember at most 4h ranges and 2h points which

gives a running time of O(k(n+m)n4hm2h). If we denote a collection of h consecutive anchor

lines by a bundle of width h, then we have the following.

I Lemma 16. Max-exposure in a bundle of width h can be solved in O(k(n + m)n4hm2h)

time.

4.4 An (1 + ‘)-Approximation Algorithm

We are now ready to describe our PTAS for the problem. Suppose the anchor lines correspond

to the horizontal lines of the uniform unit-sized grid G. Since we have already solved

max-exposure exactly for h consecutive rows in G, we can now apply standard shifting

techniques [18] to obtain an (1 + ‘)-approximation. If P ú is the optimal set of exposed points,

then we show how to compute a set of (1 + ‘)k ranges deleting which will expose at least

|P ú| points. Note that using similar ideas, it is also possible to expose at least (1 ≠ ‘)|P ú|

points by deleting exactly k ranges (See Appendix B).

Suppose that anchor lines ¸1, ¸2, . . . , ¸z are ordered by increasing y-coordinates. We define

a bundle Bj to be a set of h consecutive anchor lines, identified by the lowest index anchor

¸j . We also define bundle-set to be a sequence of consecutive bundles, identified by the index

of the lowest bundle. For instance the bundle B1 comprises of anchor lines ¸1 through ¸h

(inclusive). And the bundle-set B1 comprises of bundles B1, Bh, B2h, . . . BÁz/hË. The lines

¸1, ¸h, . . . , ¸Áz/hË form the bundle boundaries ˆB1 of bundle-set B1.

For each bundle Bj œ B1, we can use the dynamic program from Lemma 16 to solve

max-exposure locally. Using the exact solution for each bundle as local solution, we can use

the algorithm DP-Approx (from Section 4.2) to combine them into a global solution for the
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bundle-set B1 given by P (B1) = global(1, (k + k/h)). We repeat this for each bundle-set Bi

for all i œ {1, 2, . . . , h}, and return the point set P (Bi) that has maximum cardinality over

all i œ {1, 2, . . . , h}.

It remains to show that this achieves a good approximation. To see this, we observe

that the only ranges that may be double counted are the ones that are anchored to bundle

boundaries of ˆBi. In the following, we show that this number is a small fraction of the

optimum solution. (Proof in Appendix A.3.)

I Lemma 17. The bundle boundaries ˆBi, ˆBj for any two bundle-set Bi, Bj are disjoint,

and therefore the set of ranges anchored to lines in ˆBi are also disjoint. Then, there exists

a bundle-set Bmin such that the number of ranges of the optimal solution anchored to lines in

ˆBmin is at most k/h.

Choosing ‘ = 1/h gives us a set of (1+ ‘)k objects such that the number of points exposed

by selecting these objects is at least the optimum number of points.

I Theorem 18. There exists an (1 + ‘)-approximation algorithm for max-exposure with unit

square ranges running in O(k(n + m)n4/‘m2/‘) time.

5 Extensions and Applications

In this section, we discuss some extensions and applications of our the results from previous

section. We say that the range family R consists of fat rectangles if every range R œ R is

a rectangle of bounded aspect ratio. Moreover, we say that R consists of similar and fat

rectangles, if ranges in R are rectangles and the ratio of the largest to the smallest side in

R is constant. We show that if R consists of similar and fat rectangles, one can achieve a

constant approximation. Moreover, if R consists of fat rectangles one can achieve a bicriteria

O(
Ô

k)-approximation.

5.1 Approximation for Similar and Fat Rectangles

Let a, b be the length of smallest and largest sides of rectangles in R such that b/a = c is

constant. Then we can modify the input instance as follows. Replace each range R œ R by

tiling it with at most c2 squares of sidelength a such that the area occupied by R and its

replacements are the same. Now, we have a modified set of ranges RÕ consisting of squares

that have the same sidelength. Consider the optimal solution with k ranges Rú that exposes

mú points. It is easy to see that the set Rú corresponds to at most c2k ranges in the modified

instance, and therefore deleting c2k ranges from RÕ exposes at least mú points. Therefore,

we can run the polynomial-time 2-approximation algorithm (Corollary 15) to obtain a set of

at most 2c2k ranges that expose at least mú points.

I Theorem 19. Given a set of points P , a set of rectangle ranges R such that the ratio of

largest to smallest side in R is bounded by a constant, then there exists a polynomial time

O(1)-approximation algorithm for max-exposure.

5.2 Approximation for Fat Rectangles

We now consider the case when rectangles in R have bounded aspect ratio. That is for all

rectangles R œ R, the ratio of its two sides is bounded by a constant c. We transform the

input ranges R to obtain a modified set of ranges RÕ as follows. For each rectangle R œ R,

let x be the length of the smaller side of R. Then we replace R by at most ÁcË squares each

of sidelength x. If mú is the optimal number of points exposed by deleting k ranges from R,

APPROX/RANDOM 2019
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then there exists a set of O(k) ranges in RÕ deleting which will expose at least mú points.

Observe that the set RÕ consists of square ranges, of possibly different sizes. Therefore, if we

can obtain an f -approximation for square ranges, we can easily obtain O(f)-approximation

with fat rectangles.

5.2.1 A Bicriteria O(
√

k)-approximation for Squares

We will describe an approximation algorithm for the case when the set of ranges R consists

of axis-aligned squares. We achieve an approximation algorithm in three steps. First, we

partition the point set by assigning them to one of the input squares. Next, we solve the

problem exactly for a fixed square. Finally, we combine these solutions to achieve a good

approximation to the optimal solution.

We define A : P æ R to be a function that assigns a point in P to exactly one range in

R. If R(pi) is the set of squares that contain pi, then A(pi) is the smallest square in R(pi).

This assignment scheme ensures the following property.

I Lemma 20. Let R œ R be a square and let P (R) = A≠1(R) be the set of points assigned

to it. Moreover, let RÕ ™ R be the set of squares that intersect R and contain at least one

point in P (R). Then, every square RÕ œ RÕ must have sidelength bigger than that of R, and

therefore contains at least one corner of R.

Now suppose we fix a square R, and consider a restricted max-exposure instance with the

set of its assigned points P (R). Since, ranges that contain a point in P (R) are all bigger then

R, this case is essentially the same as points inside a unit square, and therefore Lemma 10 can

be easily extended to solve it exactly. This gives us the following algorithm. Here 1 Æ – Æ k

is a parameter.

Algorithm 3 Greedy-Squares.

1. For every square R œ R, apply Lemma 10 over the point set P (R) to expose the maximum

set of points P (R, k) ™ P (R) by deleting k ranges.

2. Order squares in R by decreasing |P (R, k)| values, and pick the set S ™ R of first –

squares. Return
t

RœS P (R, k) as the set of exposed points.

I Lemma 21. Let mú be the optimal number of points exposed using k squares, then algorithm

Greedy-Squares computes a set of at most –k squares that expose at least –mú/k points.

For – =
Ô

k, the above algorithm achieves a bicriteria O(
Ô

k)-approximation. Since an

f -approximation for square ranges gives an O(f)-approximation for fat rectangles, we obtain

the following.

I Theorem 22. Given a set of points P and a set of ranges R consisiting of rectangles of

bounded aspect ratio, then one can obtain a bicriteria O(
Ô

k)-approximation for max-exposure

in polynomial time.

6 Conclusion

In this paper, we introduced the max-exposure problem over the range space (P, R) and

presented approximation algorithms for rectangle range spaces. We showed that the problem

is hard to approximate even when R consists of two types of rectangles, and therefore focused
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on the complexity of the problem for the case when R consists of translates of a single

rectangle. We show that in this case, the geometry of ranges can be exploited to obtain a

PTAS. A natural question to consider is how does the complexity of the problem change

with more general shapes. In particular, does there exist a constant approximation when R

consists of axis-aligned squares?
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A Missing Proofs

A.1 Proof of Lemma 3

Given a graph GÕ = (V Õ, EÕ) sampled from one of the dense or random instances, we first

construct a bipartite graph G = (A, B, E) as follows. For every vertex v œ V Õ, we add a vertex

va to A and vb to B. Now for every edge e = (u, v) œ EÕ, we add the pair of edges e1 = (ua, vb)

and e2 = (va, ub) to E. That is, every edge e œ EÕ is mapped to two copies e1, e2 œ E and

we can define par(e1) = par(e2) = e. Similarly, we define par(ua) = par(ub) = u. We say

that G is dense if the underlying graph GÕ was sampled from the dense case, otherwise we

say that G is random.

Consider a set of kú = 2k vertices in G. If G came from the dense case, there must be a

set of 2k vertices that have 2k—+1 edges between them. So the number of edges in dense

case mú
d Ø 2k—+1. Otherwise, we are in the random case. Consider the optimal set of 2k

vertices V ú and let Eú be the set of edges in the induced subgraph G[V ú]. Now consider the

corresponding set of vertices Vp = {par(v) | v œ V ú} of the original graph GÕ and the set of

edges Ep in the induced subgraph GÕ[Vp]). We have that |Vp| Æ |V ú| = 2k and |Ep| Ø |Eú|/2

because for each edge e = (u, v) œ Eú, we will have the edge par(e) = (par(u), par(v)) œ Ep.

We can now bound the number of edges Ep over 2k vertices in the random case to be

Õ(max(2k, 4k2n–≠1)) w.h.p, and therefore the optimum number of edges in the random case

is mú
r = |Eú| Æ 2|Ep| = Õ(max(k, k2n–≠1)) w.h.p.

Choosing k = n1/2, – = 1
2 , — = 1

2 ≠ ‘, gives us mú
r = Õ(n1/2) w.h.p. and mú

d = Ω̃(n
3≠2‘

4 ).

Suppose, we could approximate this problem within a factor O(n1/4≠‘), then in the dense

case, the number of edges computed by this approximation algorithm is Ω̃(n
1+‘

2 ) which is

strictly more than the maximum possible edges in the random case. Therefore, we would be

able to distinguish between dense and random cases, and thereby refuting the conjecture for

these values of –, — and k.

A.2 Proof of Lemma 11

Figure 9 Embedding a max-exposure instance with unit square ranges on a unit-sized grid.

Optimal solution in each grid cell can be computed exactly using Lemma 10.

Consider the optimal set of ranges Rú ™ R. Observe that each range R œ Rú intersects

at most four grid cells. Let Ri = R fl Ci be the rectangular region defined by intersection

of R and Ci. Clearly, there are at most four regions Ri for each R œ Rú and therefore 4k

in total. At this point, the regions in cell Ci are disjoint from regions in some other cell

Cj œ C. Therefore, optimal solution exposes |P ú| points over a set of cells Cú such that the

set Rú has at most 4k disjoint components in the cells Cú. Since we can solve the problem

exactly for each cell and can combine them using the above dynamic program, we have that

global(1, 4k) Ø |P ú| and we achieve a 4-approximation.
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For the running time, we observe that solving max-exposure locally in a cell Ci takes

O(k(ni + mi)n
2
i m2

i ) time, where ni is the number of ranges that intersect Ci and mi is the

number of points in P that lie in Ci. Summed over all cells, we get the following bound.

ÿ

i

k(ni + mi)n
2
i m2

i Æ k
ÿ

i

(ni + mi)
ÿ

i

n2
i

ÿ

i

m2
i

Æ k(n + m) (
ÿ

i

ni)
2 (

ÿ

i

mi)
2 = O(k(n + m)n2m2)

Once the local solutions are computed, the dynamic program that merges them into a global

solution has O(k|C|) subproblems and computing each subproblem takes O(k) time. Recall

that every cell in C contains at least one point, so |C| Æ n and the merge step takes an

additional O(k2n) time.

A.3 Proof of Lemma 17

Let Rú ™ R be the optimal set of ranges, and let Rú
i ™ Rú be the set of ranges anchored to

lines in ˆBi. Since
t

iœ{1,...h} ˆBi is the set of all anchor lines, we have

€

iœ{1,...h}

Rú
i = Rú =∆

ÿ

iœ{1,...h}

|Rú
i | = k

=∆
ÿ

iœ{1,...h}

|Rú
min| Æ k =∆ |Rú

min| Æ k/h

A.4 Proof of Lemma 21

It is easy to see that the number of squares is at most –k. To show the bound on number of

points exposed, consider the optimal solution Rú and let the optimal set of points exposed

by Rú to be P ú. We will now use the same assignment procedure Aú : P ú æ Rú to assign

points in P ú to a square in Rú. That is, Aú(pi) is the smallest square in Rú that contains pi.

We claim that Aú(pi) = A(pi) for all pi œ P ú since every square that contains pi lies in Rú.

Moreover, let P ú(R) denote the set of points of P ú assigned to R.

Let mú be the optimal number of points that are exposed, and mÕ be the number of

points exposed by the algorithm. Now assume that the squares in R are ordered such that

|P (Ri, k)| Ø |P (Rj , k)| for all i < j. Then, we have the following.

mú =

-

-

-

-

-

€

RœRú

P ú(R)

-

-

-

-

-

=
ÿ

RœRú

|P ú(R)|

Æ
ÿ

1ÆiÆk

|P (Ri, k)| Æ k

–

ÿ

1ÆiÆ–

|P (Ri, k)|

=
k

–
mÕ

B PTAS for Unit Square Ranges on Number of Exposed Points

Given a set of points P , unit square ranges R, we will now show that the PTAS for unit

square ranges can be modified so that we can compute a set of k ranges that expose at

least (1 ≠ ‘) fraction of the maximum possible number of points. For simplicity we assume

that h is odd. The basic setup is the same: we have the anchor lines ¸1, ¸2, . . . , ¸z that
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are unit distance apart. However, there is one important change, we will only use the

odd-numbered lines ¸1, ¸3, . . . , ¸h, ¸h+2, . . . , ¸z to define bundles. For instance, the bundle

B1 now consists of the anchor lines ¸1, ¸3, . . . , ¸h, while the bundle-set B1 now comprises of

bundles B1, Bh, B2h, . . . , Bz/h. Same as before, the lines ¸1, ¸h, . . . , ¸z/h form the boundary

ˆB1. We have the following algorithm.

Algorithm 4 PTAS-Exposed-Points.

1. Assign each point p œ P to the closest line among l1, l3, . . . lz.

2. For each i œ {1, 3, . . . , h}, process bundle set Bi as follows.

Let Pi be the set of points assigned to anchor lines lj œ ˆBi, boundaries of Bi.

Using the exact algorithm for each bundle B œ Bi as local solutions, we run the

algorithm DP-Approx (from Section 4.2) over the point set P \ Pi to obtain global

solutions given by global(1, k). Let P (Bi) be the set of exposed points returned by

DP-Approx.

3. Return the set P (Bi) that has maximum cardinality over all i œ {1, 3, . . . , h}.

Clearly, the number of ranges used by the above algorithm is k. It remains to show that

the number of points mÕ exposed by the algorithm is also close to mú, the optimal number

of exposed points. Let P ú ™ P be the optimal set of exposed points.

I Lemma 23. The bundle boundaries ˆBi, ˆBj for any two bundle-set Bi, Bj are disjoint,

and therefore the set of points assigned to lines in ˆBi are also disjoint. Then, there exists a

bundle-set Bmin such that the number of points of P ú assigned to its boundaries ˆBmin is at

most 2mú

h≠1 .

Proof. let P ú
i ™ P ú be the set of points in P ú that are assigned to lines in boundaries ˆBi

of some bundle Bi. Since
t

iœ{1,3,...,h} ˆBi is the set of all anchor lines to which we assign

points, we have

€

iœ{1,3,...h}

P ú
i = P ú =∆

ÿ

iœ{1,3...h}

|P ú
i | = mú

=∆
ÿ

iœ{1,3,...h}

|P ú
min| Æ mú =∆

3

h ≠ 1

2

4

|P ú
min| Æ mú

=∆ |P ú
min| Æ 2mú

h ≠ 1
J

Observe that for the bundle-set Bmin, we may have removed Pmin points, but the remaining

set P \Pmin consists at least mú ≠ 2mú

h≠1 = (1≠ 2
h≠1 )mú points of the optimal set P ú. Moreover,

observe that we have removed points that are within a unit distance on either side of anchor line

¸j œ ˆBmin, the set of ranges deleted in each bundle are disjoint from another. Therefore, the

value P (Bmin) returned by the algorithm DP-Approx exposes at least P \Pmin = (1≠ 2
h≠1 )mú

points by deleting k ranges. If we set h = 2/‘ + 1 we have the following result.

I Theorem 24. There exists an (1 ≠ ‘)-approximation on the number of exposed points for

max-exposure with unit-square ranges running in k(nm)O(1/‘) time.


