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Abstract

We consider the problem of embedding a relation, represented as a directed graph, into
Euclidean space. For three types of embeddings motivated by the recent literature on
knowledge graphs, we obtain characterizations of which relations they are able to capture,
as well as bounds on the minimal dimensionality and precision needed.
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1. Introduction

The problem of embedding graphs in Euclidean space has arisen in a variety of contexts
over the past few decades. Most recently, it has been used for making symbolic knowledge
available to neural nets, to help with basic reasoning tasks (Nickel et al., 2016). This
knowledge consists of relations expressed in tuples, like (Tokyo, is-capital-of, Japan).
Alternatively, each relation (like is-capital-of) can be thought of as a directed graph
whose nodes correspond to entities (such as cities and countries).

A wide array of methods have been proposed for embedding such relations in vector
spaces (Paccanaro and Hinton, 2001; Kemp et al., 2006; Sutskever et al., 2009; Bordes
et al., 2011; Nickel et al., 2011; Bordes et al., 2013; Socher et al., 2013; Nickel and Kiela,
2017). For instance, translational embeddings (Bordes et al., 2013) map each entity x to a
vector φ(x) ∈ Rd and each relation r to a vector Ψ(r) ∈ Rd. The intention is that for any
entities x, y and any relation r,

relation (x, r, y) holds ⇐⇒ φ(x) + Ψ(r) ≈ φ(y).

This is motivated in part by the success of word embeddings (Mikolov et al., 2013a), which
embed words in Euclidean space so that words with similar co-occurrence statistics lie
close to one another. It has been observed that these embeddings happen to obey linear
relationships of the type above for certain relations and entities, making it possible, for
instance, to use them for simple analogical reasoning (Mikolov et al., 2013b). Rather than
relying upon these haphazard coincidences, it makes sense to explicitly embed relations of
interest so that this property is assured.
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An alternative scheme, structured embeddings (Bordes et al., 2011), again assigns each
entity x a vector φ(x) ∈ Rd, but assigns each relation r a pair of d× d matrices, Lr and Rr,
so that

relation (x, r, y) holds ⇐⇒ Lrφ(x) ≈ Rrφ(y).

Notice that this is more general than translational embeddings because Lr can capture any
affine transformation by adding a constant-valued feature to φ.

Another example of an embedding method is bilinear embedding (Nickel et al., 2011), in
which each entity x gets a vector φ(x) ∈ Rd and each relation r gets a matrix Ar, so that

relation (x, r, y) holds ⇐⇒ φ(x)TAr φ(y) ≥ some threshold.

These three embedding methods—translational, structured, and bilinear—broadly rep-
resent the various schemes that have been proposed in the recent machine learning liter-
ature, and many other suggestions are variants of these. For instance, linear relational
embedding (Paccanaro and Hinton, 2001) assigns each entity x a vector φ(x) and each re-
lation r a matrix Mr so that (x, r, y) ⇐⇒ φ(y) ≈ Mrφ(x): a special case of structured
embedding.

Typically the parameters of the embeddings (the mapping φ as well as the vectors and
matrices for each relation) are fit to a given list of relation triples, using some suitable loss
function. They can then be used for simple reasoning tasks, such as link prediction.

In this paper, we take a formal approach to this whole enterprise.

1. What kinds of relations can be embedded using these methods? Can arbitrary rela-
tions be accurately represented?

2. What dimensionality is needed for these embeddings?

3. What precision is needed for these embeddings? This question turns out to play a
central role.

In particular, we will think of a relation as being reliably embeddable if it admits an
embedding that does not require too much precision or too high a dimension. We wish
to gauge what kinds of relations have this property.

In order to answer these questions, it is enough to look at a single relation at a time.
We therefore look at the problem of embedding a given directed graph in Euclidean space.

1.1 Related work

There is a substantial literature on embedding undirected graphs into Euclidean space. A
key result is the following.

Theorem 1 (Maehara (1984)) For any undirected graph G = (V,E), there is a mapping
φ : V → Rd such that {u, v} ∈ E ⇐⇒ ‖φ(u)− φ(v)‖ ≤ 1. Here d ≤ |V |.

We will call this an undirected distance embedding to avoid confusion with embeddings of
directed graphs, our main focus. The sphericity of an undirected graph G is defined as the
smallest dimension d for which such an embedding exists; computing it was proved NP-hard
by Kang and Muller (2012). The same paper showed an even more troubling result, that
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embeddings achieving this minimum dimension sometimes require precision (number of bits
per coordinate) exponential in |V |. This has been a key consideration in our formulation of
robustness.

An embedding of an undirected graph can also be based on dot products rather than
Euclidean distance. We call these undirected similarity embeddings. The following is known.

Theorem 2 (Reiterman et al. (1989)) For any undirected graph G = (V,E), there is a
mapping φ : V → Rd such that {u, v} ∈ E ⇐⇒ φ(u) · φ(v) ≥ 1. Here d ≤ |V |.

The minimum dimension d needed for an undirected similarity embedding is at most the
sphericity of G, but can be much smaller. A complete binary tree on n nodes, for instance,
has sphericity Ω(log n) but can be embedded in R3 using a dot-product embedding (Reit-
erman et al., 1989).

The present paper is about embeddings of directed graphs, and many of the results we
obtain are qualitatively different from the undirected case. We also diverge from earlier
theory work by giving precision a central role in the analysis, via a suitable notion of
robustness.

Another body of work, popular in theoretical computer science, has looked at embeddings
of distance metrics into Euclidean space (Linial et al., 1995). Here a metric on finitely
many points is specified by an undirected graph with edge lengths, where the distance
between two nodes is the length of the shortest path between them. The idea is to find
an embedding of the nodes into Euclidean space that preserves all distances. For many
graphs, an embedding of this type is not possible: for constant-degree expander graphs,
for instance, a multiplicative distortion of Ω(log n) is inevitable, where n is the number of
nodes. The problem we are considering differs in two critical respects: first, we only need
to preserve immediate neighborhoods, and second, we are dealing with directed graphs.

The machine learning literature has proposed many methods for embedding, such as
those mentioned above, along with empirical evaluation. There has also been work on
embeddings into non-Euclidean spaces: complex-valued (Trouillon et al., 2016) or hyper-
bolic (Nickel and Kiela, 2017). In this paper, we focus on the Euclidean case.

1.2 Overview of results

Let G = (V,E) be a directed graph representing a relation we wish to embed. Here V is
the set of entities, and an edge (u, v) means that the relation holds from u to v.

We begin by considering a formalization of translational embeddings. We find that only
a limited class of relations can be embedded this way: a directed cycle does not have a
translational embedding (Theorem 4), but any directed acyclic graph does (Theorem 5).

Next, we consider more powerful classes of embeddings: abstractions of the structured
and bilinear embeddings mentioned above, that we call distance embeddings and similarity
embeddings, respectively. We find, first, that all directed graphs admit both types of embed-
dings (Theorem 10). Moreover, the minimum dimension achievable in the two cases differs
by at most 1 (Theorem 18), and is closely related to the sign rank of the adjacency matrix
of the graph (Theorem 26). We present several examples of embeddings for canonical types
of graphs: paths, cycles, trees, and so on.
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We also explicitly focus on the precision of embeddings, which has not been a feature
of the earlier theory work on undirected graphs. In particular, we introduce a notion of
δ-robustness, where larger values of δ correspond to more robust embeddings. We relate this
directly to precision by showing that any graph that admits a δ-robust embedding also has
distance and similarity embeddings into the O((1/δ2) log n)-dimensional Boolean hypercube
(Theorem 23). In this way, the δ parameter translates directly into an upper bound on the
number of bits needed. We look at the robustness achievable on different families of graphs.
We find, for instance, that for any graph of maximum degree D, robustness δ ≥ 1/D can
be attained (Theorem 10). On the other hand, random dense graphs are not robustly
embeddable (Corollary 29).

Our analysis of embeddings focuses on two parameters: dimension and robustness. We
show that the former is NP-hard to minimize (Appendix B), while the latter can be maxi-
mized efficiently by semidefinite programming (Section 6). Thus robustness is a promising
optimization criterion for designing embeddings.

2. Translational embeddings

Definition 3 A translational embedding of a directed graph G = (V,E) is given by a
mapping φ : V → Rd, a unit vector z ∈ Rd, and thresholds {tu ≥ 0 : u ∈ V }, such that for
all u 6= v,

(u, v) ∈ E ⇐⇒ ‖φ(v)− (φ(u) + z)‖ ≤ tu.
If all the thresholds tu are identical, then we call it a uniform translational embedding.

Note that (i) the requirement that z be a unit vector is without loss of generality, and (ii)
we avoid checking self-edges in order to sidestep various complications. Paraphrasing, the
definition imposes an ordinal constraint: if (u, v) ∈ E but (u,w) 6∈ E, then φ(v) must lie
closer to φ(u) + z than does φ(w).

For instance, let Pn denote the directed path 1→ 2→ · · · → n. A uniform translational
embedding in R is given by φ(k) = k, z = 1, and any 0 < t < 1.

As another example, consider the directed complete bipartite graph containing all edges
from node set V1 to complementary node set V2. A uniform translational embedding to R
is again available: map

φ(u) =

{
0 for u ∈ V1
1 for u ∈ V2

with z = 1 and any 0 < t < 1.
It is of interest to determine what kinds of graphs can be embedded translationally. We

begin with a negative result.

Theorem 4 Cn, the directed cycle on n nodes, does not admit a translational embedding
for any n ≥ 3.

Proof Assume that u1 → u2 → · · · → un → u1 has a translational embedding (φ, z, {tu});
we will arrive at a contradiction.

First, for any edge x→ y, the conditions for (x, y) ∈ E and (y, x) 6∈ E are, respectively,

‖φ(y)− (φ(x) + z)‖2 ≤ t2x
‖φ(x)− (φ(y) + z)‖2 > t2y
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which can be rewritten

‖(φ(y)− φ(x))− z‖2 ≤ t2x
‖(φ(y)− φ(x)) + z‖2 > t2y.

The left-hand sides have ‖φ(y)− φ(x)‖2 and ‖z‖2 in common. Subtracting, we get

z · (φ(y)− φ(x)) >
1

4
(t2y − t2x).

Now we can apply this to the n edges of the cycle to yield the system of inequalities

z · (φ(u2)− φ(u1)) >
1

4
(t2u2 − t

2
u1)

z · (φ(u3)− φ(u2)) >
1

4
(t2u3 − t

2
u2)

...

z · (φ(u1)− φ(un)) >
1

4
(t2u1 − t

2
un)

The left-hand sides add up to zero, as do the right-hand sides, a contradiction.

On the other hand, any directed acyclic graph can be translationally embedded.

Theorem 5 Suppose directed graph G = (V,E) is acyclic. Then G admits a uniform
translational embedding.

Proof By topologically ordering G, assume without loss of generality that V = {1, 2, . . . , n}
and that all edges (i, j) ∈ E have i < j. Let G′ = (V,E′) denote the undirected version of
G, with an edge {i, j} ∈ E′ for every (i, j) ∈ E. By applying a result of Frankl and Maehara
(1988), we obtain an embedding ψ : V → Rd of G′ with the following characteristics:

• ‖ψ(i)‖2 = ∆, where ∆ ≥ 1 is at most the maximum degree of G′.

• If {i, j} ∈ E′ then ‖ψ(i)− ψ(j)‖2 = 2(∆− 1).

• If {i, j} 6∈ E′ then ‖ψ(i)− ψ(j)‖2 = 2∆.

We then define a uniform translational embedding of G into Rd+1 as follows:

φ(i) = (iδ, ψ(i)),

where δ = 1/(n−1). Take z = e1, the first coordinate direction, and threshold t =
√

2∆− 1.
To see that this works, pick any i < j. First off, if (i, j) ∈ E, then {i, j} ∈ E′ and

‖φ(j)− (φ(i) + z)‖2 = (jδ − iδ − 1)2 + ‖ψ(i)− ψ(j)‖2

≤ (1− δ)2 + 2(∆− 1) ≤ t2.

On the other hand, if (i, j) 6∈ E, then {i, j} 6∈ E′, and we have

‖φ(j)− (φ(i) + z)‖2 > ‖ψ(i)− ψ(j)‖2 = 2∆ > t2.
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Finally, we confirm that the embedding does not suggest a back edge from j to i:

‖φ(i)− (φ(j) + z)‖2 = (iδ − jδ − 1)2 + ‖ψ(i)− ψ(j)‖2

≥ (1 + δ)2 + 2(∆− 1) > t2.

Open problem 1 What characterization can be given for the minimum dimension of a
translational embedding of a dag?

3. Distance embeddings

Definition 6 A distance embedding of a directed graph G = (V,E) is given by a pair of
mappings φin, φout : V → Rd, and a threshold t, such that for all pairs of nodes u, v,

(u, v) ∈ E ⇐⇒ ‖φout(u)− φin(v)‖ ≤ t.

We will sometimes be interested in distance embeddings into the unit sphere, where all
φin(u) and φout(v) have length one.

This formalism captures several types of embedding that have been proposed in the
machine learning literature. Recall, for instance, the notion of a structured embedding (Bor-
des et al., 2011), given by φ : V → Rd and d × d matrices L and R, where (u, v) ∈ E ⇐⇒
Lφ(u) ≈ Rφ(v). This can be converted into a distance embedding by taking φout(u) = Lφ(u)
and φin(u) = Rφ(u). Conversely, if a graph has distance embedding φin, φout : V → Rd,
then it has a structured embedding (φ : V → R2d, L,R), where φ(u) is the concatenation
of φin(u) and φout(u) and matrices L and R retrieve the bottom and top d coordinates,
respectively, of a 2d-dimensional vector.

In the above formulation of distance embedding, there is a single threshold, t, that
applies for all points. An alternative would be to allow a different threshold tu for each
node u, so that

(u, v) ∈ E ⇐⇒ ‖φout(u)− φin(v)‖ ≤ tu.

This is easily simulated under our current definition, by adding an extra dimension. Given
an embedding φin, φout : V → Rd with varying thresholds tu, we can define φ̃in : φ̃out : V →
Rd+1 by φ̃in(u) = (φin(u), 0) and φ̃out(u) = (φout(u),

√
t2 − t2u), where t = maxu tu. Then

‖φout(u)− φin(v)‖ ≤ tu ⇐⇒ ‖φ̃out(u)− φ̃in(v)‖ ≤ t.

We will shortly see that every directed graph has a distance embedding. It is of interest,
then, to characterize the minimum achievable dimension.

Definition 7 Let ddist(G) be the smallest dimension d of any distance embedding of G. Let
d◦dist(G) be the smallest dimension of any distance embedding into the unit sphere.

A useful observation is that ddist and d◦dist do not differ by much.
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Theorem 8 For any directed graph G, we have ddist(G) ≤ d◦dist(G) ≤ ddist(G) + 1.

Proof The first inequality is trivial. We give an informal sketch of the second, since the
details appear in the proof of Theorem 22. A distance embedding φ of G in Rd can be
mapped to an embedding φ′ in a small neighborhood of the unit sphere Sd ⊂ Rd+1. To
see this, notice that scaling down φ (and t) by a constant factor maintains the embedding
property. If they are sufficiently downscaled that the set of embedded points lies within a
d-dimensional ball of very small radius, then this ball can be placed close to the surface of
the unit sphere in Rd+1, and the points can be projected to the surface of the sphere while
inducing an arbitrarily small multiplicative distortion in pairwise distances.

As described in the introduction, earlier work has brought out troubling pathologies in
the precision required for embedding an undirected graph: achieving the minimum possible
dimension could require the vectors to be specified using a number of bits that is exponential
in |V | (Kang and Muller, 2012). For this reason, we keep careful track of precision. Our
key tool in doing so is a notion of robustness, which we will later relate to both precision
and dimension.

Definition 9 Suppose a distance embedding of a directed graph G = (V,E) is given by
(φin, φout, t). We say the embedding is δ-robust, for δ > 0, if

• (u, v) ∈ E =⇒ ‖φout(u)− φin(v)‖2 ≤ t2.

• (u, v) 6∈ E =⇒ ‖φout(u)− φin(v)‖2 ≥ t2(1 + δ).

We now show that all directed graphs have distance embeddings.

Theorem 10 Let G = (V,E) be any directed graph. Let A be its |V | × |V | adjacency
matrix: that is, Auv is 1 if (u, v) ∈ E and 0 otherwise. Let k denote the rank of A and σ1
its largest singular value. Then G has a distance embedding into the unit sphere in Rk that
is (1/σ1)-robust.

Proof For convenience, label the vertices 1, 2, . . . , n. Take the singular value decomposition
of A so that A = UTΣV where U and V are n×n orthogonal matrices, and Σ is a diagonal
matrix with entries σ1 ≥ σ2 ≥ · · · ≥ σn. If rank k < n, then σk+1 = · · · = σn = 0.

Writing A = (Σ1/2U)T (Σ1/2V ), take φout(i) ∈ Rk to be the first k coordinates of the
ith column of Σ1/2U (the remaining coordinates are zero), and φin(i) ∈ Rk to be the first k
coordinates of the ith column of Σ1/2V . Then Aij = φout(i) · φin(j). These vectors all have

length at most
√
σ1; normalize them to unit length, to get φ̂out, φ̂in : V → Sk−1. Then

• (i, j) ∈ E =⇒ φ̂out(i) · φ̂in(j) ≥ 1/σ1 and ‖φ̂out(i)− φ̂in(j)‖2 ≤ 2(1− 1/σ1).

• (i, j) 6∈ E =⇒ φ̂out(i) · φ̂in(j) = 0 and ‖φ̂out(i)− φ̂in(j)‖2 = 2.

Setting t =
√

2(1− 1/σ1), we see the embedding is δ-robust for δ ≥ 1/(1−1/σ1)−1 ≥ 1/σ1.

As a consequence, any graph of constant degree is robustly embeddable. The proof of
the following corollary is deferred to the appendix.
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Corollary 11 Suppose all nodes in G have indegree ≤ ∆− and outdegree ≤ ∆+. Then G
has a distance embedding that is

√
1/(∆+∆−)-robust.

3.1 Differences from undirected embeddings

At first glance, directed embeddings may not seem all that different from undirected em-
beddings considering standard transformations between the two types of graphs, as defined
below. To show that the two cases are quite different, we now exhibit examples in which a
directed graph can be embedded in much lower dimension than its undirected counterpart.

Definition 12 1. For an undirected graph G, let
←→
G be the directed graph which has

edges (u, v), (v, u) ∈ E(
←→
G ) for every {u, v} ∈ E(G).

2. For a directed graph G, let G be the undirected graph with 2 vertices vout, vin for every
v ∈ V (G) and with edge {uout, vin} ∈ E(G) for every (u, v) ∈ E(G).

In both cases, it is easily seen that the minimum dimension required to embed the
directed version of the graph, ignoring self-edges, is at most the dimension needed for the
undirected version (that is, the sphericity). But the converse is not true even approximately.

Theorem 13 Let G = Kn,n be the undirected complete bipartite graph. Then G has spheric-

ity ≥ n whereas ddist(
←→
G ) ≤ 1.

The proof appears in the appendix. It is well-known that the sphericity of the complete
bipartite graph Kn,n is at least n (Maehara, 1986); a basic intuition is that embedding
undirected bipartite graphs can be difficult because they have large independent sets with
many common neighbors. However, for directed graphs this problem is mitigated by the
flexibility that comes from having two embeddings, φin and φout.

Our next example follows the same principle.

Theorem 14 Let G =
←→
Kn be a directed graph with every possible edge (including self loops).

Then ddist(G) = 0 while G has sphericity ≥ n.

3.2 Robustness yields low dimensionality

We now show that any graph with a δ-robust embedding can be embedded in dimension
O((1/δ2) log n).

Theorem 15 If G has a δ-robust distance embedding (in any dimension), then it also has
a δ

2 -robust embedding in O( 1
δ2

log n) dimensions.

Proof This is a consequence of a lemma of Johnson and Lindenstrauss (1984). Let
φout, φin : V → Rd, with threshold t, be a δ-robust embedding of G. The JL lemma
states that for any ε > 0, there exists a map f : Rd → Rm, with m = O((log n)/ε2), so that

(1− ε)‖φout(u)− φin(v)‖2 ≤ ‖f(φout(u))− f(φin(v))‖2 ≤ (1 + ε)‖φout(u)− φin(v)‖2,
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for all u, v ∈ V . To ensure that the new embedding is (δ/2)-robust, it suffices to take
ε = δ/8.

Later, we will see that a graph with a δ-robust embedding is in fact robustly embed-
dable in the O((1/δ2) log n)-dimensional Hamming cube. In this way, robustness implies
the existence of a low-dimensional embedding that requires only one bit of precision per
coordinate.

4. Similarity embeddings

Definition 16 A similarity embedding of a directed graph G = (V,E) is given by a pair of
mappings φL, φR : V → Rd and a threshold t, such that

(u, v) ∈ E ⇐⇒ φL(u) · φR(v) ≥ t.

We will often be interested in embeddings into the unit sphere, where the φL(u) and φR(u)
have unit norm. We use L,R notation as opposed to {in, out} to help distinguish similarity
embeddings from distance embeddings.

This is closely related to the notion of bilinear embedding (Nickel et al., 2011), which
assigns each node u to a vector φ(u) ∈ Rd so that (u, v) ∈ E ⇐⇒ φ(u)TAφ(v) ≥ t, for some
d× d matrix A. To obtain a similarity embedding, take φL(u) = φ(u) and φR(u) = Aφ(u).
Conversely, given a similarity embedding φL, φR : V → Rd, we can construct a bilinear
embedding by setting φ(u) to the 2d-dimensional concatenation of φL(u) and φR(u), and

taking A to be

(
0 I
0 0

)
.

The distance embedding constructed in Theorem 10 also functions as a similarity em-
bedding. Thus, such embeddings exist for every graph.

Definition 17 For directed graph G, let dsim(G) denote the smallest dimension into which
a similarity embedding can be given.

We now see that the dimensions ddist, d
◦
dist, dsim are almost identical.

Theorem 18 d◦dist(G)− 1 ≤ dsim(G) ≤ d◦dist(G) ≤ ddist(G) + 1 for any directed graph G.

Proof The inequality dsim(G) ≤ d◦dist(G) is immediate: any distance embedding into the
unit sphere automatically meets the requirements of a similarity embedding. The final
inequality is from Theorem 8. It thus remains to show that d◦dist(G) ≤ dsim(G) + 1.

Let φL, φR : V → Rd be a similarity embedding of G with threshold t. Indexing vertices
as 1, 2, . . . , n, let M be an n× n matrix with Mij = φL(i) · φR(j).

If J is the all-ones matrix, then M − tJ is matrix of rank at most d+ 1 such that

(M − tJ)ij ≥ 0⇐⇒ (i, j) ∈ E.

We will extract a distance embedding into the unit sphere from this matrix.
Express M − tJ as UTW for U,W ∈ R(d+1)×n. Next, normalize the columns of U and

W to unit length, to get Û and Ŵ . The key idea is that the pairwise dot products between
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these unit vectors still satisfy the above criterion. In short, taking φout(i) to be the ith

column of Û and φin(i) to be the ith column of Ŵ , we get a distance embedding of G into
the unit sphere in Rd+1:

(i, j) ∈ E ⇐⇒ φout(i) · φin(j) ≥ 0 ⇐⇒ ‖φout(i)− φin(j)‖2 ≤ 2.

Combined with Theorem 8, this means that |ddist(G) − dsim(G)| ≤ 1. In contrast, for
undirected graphs, the minimum dimension needed by a dot-product embedding could be
significantly less than for a distance embedding (Reiterman et al., 1989).

4.1 Robust similarity embeddings

Measuring the robustness of a similarity embedding is a bit different than for distance
embeddings. For instance, the threshold for a similarity embedding need not even be pos-
itive, and thus a term of form t(1 + δ) is not meaningful. We use an additive rather than
multiplicative notion of robustness.

Definition 19 We say a similarity embedding given by (φL, φR, t) is δ-robust, for δ > 0, if

(u, v) 6∈ E =⇒ φL(u) · φR(v) ≤ t− δmax
w∈V

max(‖φL(w)‖2, ‖φR(w)‖2).

The term maxw∈V ‖φ(w)‖2 ensures that rescaling a similarity embedding does not change
its robustness parameter.

Theorem 10 produces a distance embedding in the unit sphere, which is therefore also
a similarity embedding. The following is an immediate corollary.

Corollary 20 Let G = (V,E) be any directed graph. If its adjacency matrix has rank k
and largest singular value σ1, then G has a (1/σ1)-robust similarity embedding into the unit
sphere in Rk.

4.2 Relationship between similarity-robustness and distance-robustness

The two presented definitions of robustness are closely linked. Most immediately, robust
similarity embeddings necessarily imply the existence of robust distance embeddings.

Theorem 21 Let G be a graph that has a δ-robust similarity embedding. Then G has
distance-robustness at least δ/2.

An approximate converse is also true.

Theorem 22 Let G = (V,E) be a directed graph with a δ-robust distance embedding
(φin, φout, t) into Rd. Let B be the largest length of the vectors φin, φout, and define the
scaled diameter of the embedding as

∆ = max

(
B

t
, 1

)
.

Then G has a similarity embedding into Rd+1 with robustness δ2/(18∆4).
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4.3 Embeddings into the Hamming cube

We now show that any graph that has a δ-robust similarity embedding (into any dimension)
can be embedded robustly into the O((1/δ2) log n)-dimensional Hamming cube. Thus this
notion of robustness translates directly into a bound on the number of bits of precision
needed for embedding.

Theorem 23 Suppose directed graph G = (V,E) has a δ-robust similarity embedding into
the unit sphere. Then it has an O(δ)-robust distance embedding into {0, 1}k, where k =
O((1/δ2) log n), that is simultaneously an O(δ)-robust similarity embedding.

A proof is found in the appendix.
Notice that by combining Theorems 10 and 23, we see that any directed graph whose

indegrees and outdegrees are bounded by ∆ has both distance and similarity embeddings
into the O((1/∆2) log n)-dimensional Hamming cube that are O(1/∆)-robust.

A partial converse is immediate: any distance or similarity embedding into {0, 1}k is
necessarily at least (1/k)-robust. Thus, robustness can serve as an approximate proxy for
dimension.

On the other hand, it is unclear whether embeddability in low-dimensional Euclidean
space necessarily implies the existence of a robust embedding.

Open problem 2 Does the existence of a low-dimensional embedding imply that there also
exists a robust embedding?

5. Lower bounds

5.1 Sign rank

Our previous construction from the proof of Theorem 18 with M − tJ yields a matrix in
which positive elements correspond to edges in G, and negative elements correspond to
non-edges. This reveals a natural relationship between finding similarity embeddings and
finding low rank sign matrices of an adjacency graph.

Definition 24 A sign matrix M is a matrix whose entries are either + or −. The sign
rank of M is the minimum rank of any real-valued matrix whose entries agree in sign with
M . We use the convention that 0 is treated as neither + nor −, and consequently the
minimum rank matrix must have all non-zero elements.

There is a natural bijection between directed graphs on n nodes and sign matrices of
size n × n, with a matrix entry of + corresponding to an edge and − corresponding to a
non-edge. Let M(G) denote this sign matrix for directed graph G.

Definition 25 The sign rank of a graph G, denoted dsign(G), is taken to be the sign rank
of M(G).

Using the same construction we used in Theorem 18 we find that dsign(G) is closely
linked to our other notions of dimension.

Theorem 26 For any graph G, we have dsim(G) ≤ dsign(G) ≤ dsim(G) + 1.

11
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5.2 Random graphs

In this section, we show that with high probability, random dense directed graphs have
large embedding dimension, and thus low robustness. This is because there are far more
directed graphs on n nodes than there are n× n sign matrices of low sign rank.

Theorem 27 (Alon et al. (2016)) For r ≤ n/2, the number of n× n sign matrices of sign
rank at most r does not exceed 2O(rn logn).

Theorem 28 Let G be a random directed graph over n vertices such that each edge is
chosen independently with constant probability 0 < p < 1. Then for large enough n, with
high probability,

dsign(G) = Ω

(
nH(p)

log n

)
,

where H(p) = −p log p− (1− p) log(1− p).

Proof Consider a random graph G drawn by selecting each edge independently with
probability p. Fix any ε > 0 and consider the typical set Tε induced by these random
graphs, as per the asymptotic equipartition property (Cover and Thomas, 2006). It follows
that for sufficiently large n,

1. G ∈ Tε with probability ≥ 1− ε.

2. For any G ∈ Tε, we have Pr(G) ≤ 2−n
2(H(p)−ε).

By Theorem 27, for any r, the maximum number of elements G ∈ Tε for which M(G) has
sign rank ≤ r is 2O(rn logn). Consequently, the random graph G has sign rank at least r
with probability at least

P (dsign(G) ≥ r) ≥ 1− ε− 2O(rn logn)2−(n
2)(H(p)−ε).

Selecting r = CnH(p)
logn for a sufficiently small constant C finishes the proof.

Applying Theorems 15, 21 then shows that random graphs have low robustness.

Corollary 29 Let G be a random directed graph over n vertices such that each edge is
chosen with constant probability p. Then, with high probability, G has distance robustness
and similarity robustness at most O( logn√

n
).

6. Algorithms for robust embedding

We show in the appendix that computing ddist(G) and dsim(G) are both NP-hard problems.
On the other hand, computing the robustness of a graph G is more tractable.

We present a semidefinite programming approach to finding the distance-robustness
and similarity-robustness of G. This can be used (see Theorems 15 and 23) to construct
low-dimensional robust embeddings of G.

12
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6.1 Distance embeddings

Given a graph G = (V,E) with V = {v1, v2, . . . , vn}, we find a robustness-maximizing
distance embedding with a semidefinite program. For convenience, we will let xi denote
φout(vi) and yi denote φin(vi). We also include a scalar variable δ which represents the
robustness, and assume (without loss of generality) that our threshold t = 1. Then, the
following semidefinite program suffices.

maximize
x,y,t,δ

δ

subject to 〈xi, xi〉+ 〈yj , yj〉 − 2〈xi, yj〉 ≤ 1, (vi, vj) ∈ E
〈xi, xi〉+ 〈yj , yj〉 − 2〈xi, yj〉 ≥ 1 + δ, (vi, vj) /∈ E

6.2 Similarity embeddings

This similarity case is analogous, but has the detail that we restrict ourselves to unit vectors.
This is still guaranteed to find the optimal robustness since any similarity embedding can be
converted into a spherical embedding with the same robustness (albeit higher dimension).

maximize
x,y,t,δ

δ

subject to 〈xi, yj〉 ≥ t, (vi, vj) ∈ E
〈xi, yj〉 ≤ t− δ, (vi, vj) /∈ E
〈xi, xi〉 = 〈yi, yi〉 = 1, 1 ≤ i ≤ n
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Appendix A. Proofs to selected theorems

A.1 Proof of Corollary 11

Proof This follows immediately from Theorem 10 because the largest singular value of
the adjacency matrix will be at most

√
∆+∆−. This is doubtless a well-known fact, but for

completeness we give a brief explanation here.
The top singular value σ1 is the square root of the top eigenvalue of ATA, call it λ. Let

v be the corresponding eigenvector. Since ATA has no negative entries, we may assume
v ≥ 0 (flipping every entry of v to its absolute value can only increase vTATAv). If vi is
the largest entry of v,

λvi = (ATAv)i =

n∑
j=1

(ATA)ijvj ≤ vi
∑
j

(ATA)ij = vi

(∑
`

A`i

(∑
j

A`j

))
≤ vi∆−∆+.

Thus λ ≤ ∆+∆− and σ1 ≤
√

∆+∆−.

A.2 Proof of Theorem 13

Proof It is known that G has sphericity ≥ n (Maehara, 1986). To embed
←→
G , let A,B be

its partition into two independent sets. Then for any a ∈ A, φout(a) = −1, φin(a) = 1. For
any b ∈ B, φout(b) = 1, φin(b) = −1. This embedding φ, with t = 0, is a distance embedding
into R.

A.3 Proof of Theorem 21

Proof Let φ be a δ-robust similarity embedding of G. Rescale the embedding so that
φL,R(v) all have norm at most 1. Then it follows that for some t ∈ [−1, 1],

1. (u, v) ∈ E if and only if 〈φL(u), φR(v)〉 ≥ t.

2. (u, v) /∈ E, if and only if 〈φL(u), φR(v)〉 ≤ t− δ.

Next, we convert this embedding into a spherical embedding as follows. Let e, f be unit
vectors that are orthogonal to each other and to all vectors in our embedding. We append
suitable multiples of e to each φL(v) vector and of f to each φR(v), so that the resulting
vectors all have unit length. This operation preserves dot products and thus gives a spherical
embedding φ′ with robustness δ.

Since φ′ is spherical, it is also a distance embedding with φ′L,R = φ′out,in where

15



Bhattacharjee and Dasgupta

1. (u, v) ∈ E if and only if ‖φ′out(u)− φ′in(v)‖2 ≤ 2− 2t.

2. (u, v) /∈ E if and only if ‖φ′out(u)− φ′in(v)‖2 ≥ 2− 2t+ 2δ.

From here, we can lower-bound the distance robustness of φ′ by

2− 2t+ 2δ

2− 2t
− 1 ≥ δ

2
.

A.4 Proof of Theorem 22

Proof Recall our earlier idea, in the proof sketch for Theorem 8, of placing distance
embeddings on the unit sphere by mapping them onto a small neighborhood of the sphere.
We will now look at a particular realization of this method.

The distance embedding given by φin, φout : V → Rd can be scaled so that t = 1. We
then get the following, for all u, v ∈ V .

(a) (u, v) /∈ E if and only if ‖φout(u)− φin(v)‖2 ≥ 1 + δ.

(b) (u, v) ∈ E if and only if ‖φout(u)− φin(v)‖2 ≤ 1.

(c) All ‖φin(u)‖, ‖φout(u)‖ are ≤ ∆.

Let e be a unit vector orthogonal to all embedded vectors (i.e. a new dimension). For
some constant c > 0 whose value we will later set, let φ′L, φ

′
R : V → Rd+1 be defined by

φ′R(v) =
e+ c φin(v)√

1 + c2‖φin(v)‖2

φ′L(v) =
e+ c φout(v)√

1 + c2‖φout(v)‖2

Notice that these vectors have unit length. It follows that for any u, v,

〈φ′L(u), φ′R(v)〉 =
1 + c2〈φout(u), φin(v)〉√

(1 + c2‖φout(u)‖2)(1 + c2‖φin(v)‖2)

=
(1 + c2‖φout(u)‖2) + (1 + c2‖φin(v)‖2)− c2‖φout(u)− φin(v)‖2

2
√

(1 + c2‖φout(u)‖2)(1 + c2‖φin(v)‖2)

We now bound this quantity in the cases that (u, v) ∈ E and (u, v) /∈ E. In doing so, we
will show that φ′ is a similarity embedding, into the unit sphere, of the desired robustness.

Suppose (u, v) ∈ E. Using the inequality A + B ≥ 2
√
AB for A,B ≥ 0 as well as

property (b), we have

〈φ′L(u), φ′R(v)〉 ≥ 1− c2

2
· ‖φout(u)− φin(v)‖2√

(1 + c2‖φout(u)‖2)(1 + c2‖φin(v)‖2)

≥ 1− c2

2
.
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On the other hand, if (u, v) /∈ E, then by properties (a) and (c),

〈φ′L(u), φ′R(v)〉 ≤ 1

2

(√
1 + c2‖φout(u)‖2
1 + c2‖φin(v)‖2

+

√
1 + c2‖φin(v)‖2
1 + c2‖φout(u)‖2

)
− c2

2
· 1 + δ

1 + c2∆2
.

We can simplify the first term using the inequalities (1 + x) + 1/(1 + x) ≤ 2 + 2x2 and√
1 + x ≤ 1 + x/2 for x ≥ 0. Again using property (c), we get

〈φ′L(u), φ′R(v)〉 ≤ 1 +
c4∆4

4
− c2

2
· 1 + δ

1 + c2∆2
.

Set c =
√
δ/(3∆4). Then c2∆2 ≤ δ/3 and we get

〈φ′L(u), φ′R(v)〉 ≤ 1− c2

2

(
1 +

δ

2
− c2∆4

2

)
= 1− c2

2

(
1 +

δ

3

)
.

The robustness of a similarity embedding is measured additively, and follows by taking the
difference of the expressions for the cases when (u, v) ∈ E and (u, v) 6∈ E.

A.5 Proof of Theorem 23

Proof Write n = |V |. Suppose the 2n vectors φL(u), φR(u) lie on Sd−1, the unit sphere
in Rd, and constitute a δ-robust similarity embedding: for some threshold t, and any u, v,

• (u, v) ∈ E =⇒ φL(u) · φR(v) ≥ t+ δ, and

• (u, v) 6∈ E =⇒ φL(u) · φR(v) ≤ t.

We will embed these vectors into the Hamming cube using the random halfspace method of
Goemans and Williamson (1995) and Charikar (2002). Specifically, pick k vectors r1, . . . , rk
uniformly at random from Sd−1, and define the embedding h : Rd → {0, 1}k by h(x) =
(h1(x), . . . , hk(x)), where the ith hash function hi : Rd → {0, 1} is

hi(x) =

{
1 if ri · x ≥ 0
0 if ri · x < 0

Now, for any vectors x, y,

Pr(hi(x) 6= hi(y)) = Pr((ri · x)(ri · y) ≤ 0) =
θ

π
,

where θ is the angle between x and y. Thus for nodes u, v in G,

Pr(hi(φL(u)) 6= hi(φR(v))) = arccos(φL(u) · φR(v))/π{
≤ arccos(t+ δ)/π if (u, v) ∈ E
≥ arccos(t)/π if (u, v) 6∈ E (1)
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The difference between the two options is:

1

π
(arccos(t)− arccos(t+ δ)) =

1

π

∫ t+δ

t

dz√
1− z2

≥ δ

π
.

Write hL(u) = h(φL(u)) and hR(u) = h(φR(u)). Letting d(·) denote Hamming distance
in {0, 1}k, we have that the expected value of d(hL(u), hR(v)) is k times the quantity in
equation (1). A simple Chernoff-Hoeffding bound, unioned over all pairs u, v, then suffices
to show that if k = O((1/δ2) log n), then with probability at least 1− 1/n,

• (u, v) ∈ E =⇒ d(hL(u), hR(v)) ≤ k(arccos(t)− 2δ/3)/π, and

• (u, v) 6∈ E =⇒ d(hL(u), hR(v)) ≥ k(arccos(t)− δ/3)/π.

Thus hL, hR constitute an O(δ)-robust distance embedding. To see that this is also an
O(δ)-robust similarity embedding, notice that all the embedded vectors hL(u) and hR(u)
have expected squared Euclidean norm k/2, and given the setting of k, these norms will
be tightly concentrated, within multiplicative factor 1±O(δ), about their expected values.

Appendix B. NP hardness results

In this section, we show that it is NP-hard to find distance or similarity embeddings of
minimum dimension. We do so by adapting the results of Kang and Muller (2012) on undi-
rected embeddings to the directed case. First, we briefly review some definitions from their
paper. Readers interested in further details should consult their very clear presentation.

Definition 30 (Kang and Muller (2012))

1. An oriented k-hyperplane arrangement H = {h1, h2, . . . , hn} is a set of hyperplanes
in Rk each of which is given an orientation, so that all points in Rk are either on the
positive side of hi, denoted h+i , or the negative side, denoted h−i , or on hi itself.

2. The sign vector of a point p ∈ Rk with respect to H is the vector σ(p) ∈ {+,−, 0}n
such that

σ(p)i =


+ if p ∈ h+i
− if p ∈ h−i
0 if p ∈ hi

3. The combinatorial description of H is defined to be the set of all sign vectors, D(H) =
{σ(p) : p ∈ Rk}.

4. Consider any set S ⊂ {−,+}n containing (−,−,−, . . . ,−) and (+,+, . . . ,+). We
say S is k-realizable if there exists an oriented k-hyperplane arrangement H with
S ⊂ D(H).

5. k-realizability denotes the algorithmic problem of deciding, given a set S ⊂ {−,+}n
as input, whether S is k-realizable.

Theorem 31 (Kang and Muller (2012)) k-realizability is NP-hard for all k > 1.
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B.1 Distance embeddings

The main idea is to reduce from k-realizability. Given a set S ⊂ {−,+}n, we will con-
struct a graph G(S) in polynomial time, such that S is k-realizable if and only if G(S) has a
k-dimensional distance embedding. For convenience, we start by presenting the construction
from Kang and Muller (2012).

Definition 32 (Kang and Muller (2012)) For any S ⊂ {−,+}n, define GU (S) = (V,E) to
be the undirected graph with vertices

V = {a1, a2, . . . an} ∪ {b1, b2, . . . bn} ∪ {cσ : σ ∈ S}

and edges

• {cσ, cπ} ∈ E for all σ, π ∈ S

• {ai, aj}, {bi, bj} ∈ E for all i 6= j

• {ai, cσ} ∈ E if and only if σi = +

• {bi, cσ} ∈ E if and only if σi = −.

Theorem 33 (Kang and Muller (2012)) S is k-realizable if and only if GU (S) has a k-
dimensional undirected distance embedding.

Our directed construction is very similar to GU (S).

Definition 34 For S ⊂ {−,+}n, let GD(S) = (V,E) be the directed graph with vertices

V = {a1, a2, . . . an} ∪ {b1, b2, . . . bn} ∪ {cσ : σ ∈ S}

and edges

• (ai, cσ) ∈ E if and only if σi = +

• (bi, cσ) ∈ E if and only if σi = −.

Theorem 35 S is k-realizable if and only if GD(S) has a distance embedding of dimension
at most k.

Proof

⇒ Suppose GD(S) has a distance embedding φ with dimension k. Let hi be the hy-
perplane that is the perpendicular bisector of φout(ai) and φout(bi); orient it so that
φout(ai) lies on the positive side and φout(bi) on the negative side. Letting H =
{h1, h2, . . . , hn}, we claim that φin(cσ) has sign vector exactly σ with respect to H.
Thus S ⊂ D(H).

To prove our claim, consider any σ ∈ S, 1 ≤ i ≤ n. cσ has an edge from exactly one of
ai and bi and consequently φin(cσ) is closer to the corresponding φout(ai) or φout(bi).
Thus φin(cσ) is on the σi side of hi. Combining this over all i, we see that φin(cσ) has
sign vector σ as desired.
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⇐ Suppose S is k-realizable. Then by Theorem 33, GU (S) has a k-dimensional undirected
distance embedding φ (in the sense of Theorem 1). We construct a k-dimensional
distance embedding φ′ of GD(S) from φ as follows. φ′out(ai) = φ(ai), φ

′
out(bi) = φ(bi),

φ′in(cσ) = φ(cσ), and the remaining vectors are assigned so that they are each at
distance > 1 from all the other vectors. The only possible edges in such an embedding
are edges from {a1, a2, . . . an, b1, b2, . . . bn} → {cσ : σ ∈ S}. Since the corresponding
edges are in GU (S), it follows that φ′ is a valid embedding of GD(S) as desired.

Since the construction of GD(S) from S takes polynomial time, the hardness of k-
realizability implies the following.

Corollary 36 Computing ddist(G) for a directed graph G is NP-hard.

B.2 Similarity embeddings

This section is very similar to the previous one.

Definition 37 (Kang and Muller (2012)) For S ⊂ {−,+}n, define GU (S) = (V,E) to be
the undirected graph with vertices

V = {a1, a2, . . . an} ∪ {cσ : σ ∈ S}

and edges

• {ai, aj} ∈ E for all i 6= j

• {ai, cσ} ∈ E if and only if σi = +.

Theorem 38 (Kang and Muller (2012)) S is k-realizable if and only if GU (S) has a k-
dimensional undirected similarity embedding (in the sense of Theorem 2).

Definition 39 For S ⊂ {−,+}n, define GD(S) = (V,E) as the directed graph with vertices

V = {a1, a2, . . . an} ∪ {cσ : σ ∈ S}

and edges E = {(ai, cσ) : σi = +}.

Theorem 40 S is k-realizable if and only if dsim(GD(S)) ≤ k.

Proof

⇒ Suppose GD(S) has a similarity embedding φL, φR with dimension k and threshold t.
Let

hi = {v : 〈v, φL(ai)〉 = t},

and orient it so that h+i = {v : 〈v, φL(ai)〉 > t}. Let H = {h1, h2, . . . , hn}. We claim,
as in the corresponding case of Theorem 35, that φR(cσ) has sign vector exactly σ
with respect to H. This clearly suffices as it shows that σ ∈ D(H) for all σ ∈ S.
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⇐ Suppose S is k-realizable. Then by Theorem 38, GU (S) has a k-dimensional undirected
similarity embedding φ with threshold t = 1. Define φL(ai) = φ(ai), φR(cσ) = φ(cσ),
and set all remaining φL, φR vectors to zero. It is then easily checked that φL, φR is
a similarity embedding of GD(S) with threshold 1.

Corollary 41 Computing dsim(G) for a directed graph G is NP-hard.
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