
Robust Learning from Discriminative Feature Feedback

Sanjoy Dasgupta Sivan Sabato
Department of Computer Science and Engineering

University of California, San Diego
California, USA

Department of Computer Science
Ben-Gurion University of the Negev

Beer Sheva, Israel

Abstract

Recent work introduced the model of learning
from discriminative feature feedback, in which
a human annotator not only provides labels
of instances, but also identifies discriminative
features that highlight important differences
between pairs of instances. It was shown that
such feedback can be conducive to learning,
and makes it possible to efficiently learn some
concept classes that would otherwise be in-
tractable. However, these results all relied
upon perfect annotator feedback. In this pa-
per, we introduce a more realistic, robust ver-
sion of the framework, in which the annotator
is allowed to make mistakes. We show how
such errors can be handled algorithmically,
in both an adversarial and a stochastic set-
ting. In particular, we derive regret bounds in
both settings that, as in the case of a perfect
annotator, are independent of the number of
features. We show that this result cannot be
obtained by a naive reduction from the robust
setting to the non-robust setting.

1 Introduction

There has been a growing interest in learning from
data sets in which instances not only have labels but
may also have some information about relevant fea-
tures. One way to think about this is that the human
annotator labels each instance and also tries to pick
out one or two features of the instance that help to
(weakly) explain this label. The hope is that this will
(1) lead to better models being learned, (2) reduce the
number of instances needed for learning, and (3) help
pave the way for more explainable models.

Proceedings of the 23rdInternational Conference on Artificial
Intelligence and Statistics (AISTATS) 2020, Palermo, Italy.
PMLR: Volume 108. Copyright 2020 by the author(s).

For instance, early work in information retrieval (Croft
and Das, 1990) looked at a simple protocol in which a
user who labels a document (as, say, “sports”) also high-
lights one or two words (like “goalie”) that are predic-
tive of this label. Such feedback is not very costly, since
the labeler is in any case reading the document, but can
be very helpful with identifying relevant features in the
high-dimensional space of words. Numerous variations
of this idea have been explored for text and vision ap-
plications (Croft and Das, 1990; Raghavan et al., 2005;
Druck et al., 2008; Settles, 2011; Mac Aodha et al.,
2018). Some theoretical studies (Poulis and Dasgupta,
2017; Visotsky et al., 2019) have also formalized such
schemes and shown that, in some situations, they lead
to markedly better sample complexity than would be
achieved when learning from labels alone.

Another type of feature feedback, which has
been explored in human-in-the-loop computer vision
work (Branson et al., 2010; Zou et al., 2015), asks the
human to provide features that distinguish between
two instances: for instance, the feature “stripes” distin-
guishes a zebra from a horse. The idea is that this is
more concrete than suggesting predictive features and
might thus be easier for the annotator to do reliably,
especially in a multi-class setting. A formal model of
this process was recently suggested by Dasgupta et al.
(2018). In this protocol, termed discriminative feature
feedback, learning takes place in rounds of interaction,
where in each round the learner makes a prediction on
the current example, and provides a previous example
as an “explanation”. If the prediction is incorrect, the
teacher provides the correct prediction, and a feature
distinguishing the incorrect explanation from the cur-
rent example. The precise protocol and its semantics
are reviewed in Section 2. The work of Dasgupta et al.
(2018) provides a learning algorithm that uses this
type of discriminative feedback and gives a mistake
bound for it. Interestingly, the richer feedback makes
it possible to learn some concept classes, such as DNF
(disjunctive normal form, OR-of-AND) formulas, that
are known to be computationally hard to learn from
labels alone.

Robust Learning from Discriminative Feature Feedback

However, a significant drawback of that work is that
it assumes that the human teacher never makes mis-
takes when labeling points or providing discriminative
features. This is unrealistic in practice. In this paper,
we introduce a robust discriminative feature feedback
setting, and provide two robust algorithms for learning
in this setting. The first algorithm considers a fixed
data set that contains some “exceptions”: points on
which the teacher can make arbitrary errors. If, for
example, the learning task is to distinguish between
mammals, reptiles, amphibians, and so on, then these
exceptions might be animals like penguin or platypus,
corner cases that tend to defy simple rules. The second
algorithm is for a statistical setting in which points are
drawn i.i.d. from some underlying distribution, and a
constant fraction of them are exceptions. In both cases,
we provide proofs of correctness and mistake bounds.

Our contributions. Our first contribution (Section 3)
is to formulate a noise model for discriminative feature
feedback that allows the teacher to behave arbitrarily
on some subset of instances.

Second, we show that although the work of Dasgupta
et al. (2018) could, in principle, handle these excep-
tions by treating them as correct and devising more
complicated rules to accommodate them, this would
result in a large increase in the complexity of the con-
cepts being learned (Theorem 1). This, in turn, would
lead to a large number of mistakes on the data set.
To complete the argument, we provide a new lower
bound on the best mistake bound obtainable in the
perfect-annotation setting, as a function of representa-
tion size (Theorem 2). In particular, we show that if
the number of features is unbounded, as allowed by the
original discriminative feature feedback setting, then
this attempt to handle mistakes leads to a vacuous
mistake bound.

Finally, we provide two new algorithms for robust learn-
ing under discriminative feature feedback, first in an
adversarial setting where the ordering of instances is
worst-case (Section 5), and then in a stochastic setting
where the instances are sampled from an underlying
distribution (Section 6). In both cases, we provide
mistake bounds in terms of the size of the concept be-
ing learned and the number, or fraction, of exceptions
(Theorems 3 and 9), but without any dependence on
the number of features.

2 Preliminaries

Dasgupta et al. (2018) defined the discriminative
feature feedback model and studied it in a perfect-
annotation setting. Let c∗ be the target concept to be
learned, where c∗ is a mapping from the input space
X to a finite label space Y. The learner has access

to a set of Boolean features Φ on X , and expresses
concepts in terms of these. It is assumed that X can
be represented as the union of m sets in some family of
sets G = {G1, . . . , Gm}, X = G1 ∪G2 ∪ · · · ∪Gm. This
is the internal representation of the teacher. The rep-
resentation, which is unknown to the learner, satisfies
the following properties:

• Each of the sets is pure in its label: for each i,
there exists a label `(Gi) ∈ Y such that ∀x ∈
Gi, c

∗(x) = `(Gi)

• Any two sets Gi, Gj with `(Gi) 6= `(Gj) have a
discriminating feature: there is some φ ∈ Φ such
that if x ∈ Gi, φ(x) is satisfied, and if x ∈ Gj ,
φ(x) is not satisfied.

No restrictions are placed on the number of possible
features, which can even be infinite. Therefore, nega-
tions and logical combinations of features can also be
used as discriminative features.

For any x ∈ X , denote by G(x) ∈ G some set containing
x. If there are multiple such components, G(x) is some
fixed choice. The interactive learning protocol for the
noiseless model is as follows:

• A new instance xt arrives.

• The learner supplies a prediction ŷt, and an in-
stance x̂t which was previously seen with that label
(“an explanation”).

• If the prediction is correct, no feedback is obtained.

• If the prediction is incorrect, the teacher provides
the correct label yt = c∗(x), and a feature φ that
separates G(xt) from G(x̂t), that is

φ(x) =

{
true if x ∈ G(xt),

false if x ∈ G(x̂t).

Here, a feature is any mapping from examples to
true/false, which can either be given explicitly as
a coordinate of x, or be calculated from its represen-
tation. It is shown in Dasgupta et al. (2018) that a
legal representation of size m exists if and only if the
concept c∗ can be represented by a DNF formula of a
special form, which they call a “separable-DNF”. Das-
gupta et al. (2018) give an algorithm for this interaction
model, which obtains a mistake bound of m2, with no
dependence on the number of available features |Φ|.

3 A feedback model with mistakes

In this work, we propose an extension of the discrimi-
native feature feedback model to a model that allows

Sanjoy Dasgupta, Sivan Sabato

mistakes. First, note that any deterministic labeling
function (that is, one in which the same example al-
ways gets the same label) can be modeled in the perfect-
annotation model described above, since one can always
model G as a set of singletons, one for each example
in the input stream. However, this is clearly unhelpful,
as there can be no generalization to unseen examples,
and the number of mistakes that the algorithm makes
cannot be bounded. In particular, the mistake bound
of m2 obtained in Dasgupta et al. (2018) is meaningless
if m is equal to the number of examples. In fact, as
we show in Sec. 4, even a small number of adversarial
changes to a perfect model can lead to an unreasonably
large representation.

We thus propose to allow a trade-off between the num-
ber of components modeling the concept and the num-
ber of exceptions, which are examples that deviate from
the model. In this setting, we assume as above that
there are m components. However, instead of requir-
ing that for all x ∈ Gi, c∗(x) = `(Gi), we allow some
exceptions. Formally, let

M = M(c∗,G) := {x ∈ X | c∗(x) 6= `(G(x))}. (1)

This is the set of exceptions which deviate from the
representation G1, . . . , Gm. If the teacher provides a
discriminative feature between a pair of examples that
includes at least one exception, the feature might not
be one that discriminates the respective components.
In all other cases, the teacher behaves as in the perfect-
annotation setting.

We study two cases: one in which the input is adversar-
ial and |M | is upper-bounded by some integer, and one
in which the stream is an i.i.d. draw from a distribution
and the probability mass of M is upper-bounded by
some small value. An additional parameter that we
consider is related to the amount of consistency among
exceptions. Formally, for an example x̂ /∈ M and a
feature φ, define

Mx̂,φ = {x ∈M |φ is returned as the discriminating

feature between x and G(x̂)}. (2)

For any x̂, φ, we have Mx̂,φ ⊆M , thus one can always
upper-bound Mx̂,φ using the size of M . However, in
many cases it is more reasonable to assume that dif-
ferent exceptions would not generally use the same
discriminative features, for instance if the exceptions
are not the result of a coordinated corruption. Thus,
we set a separate upper bound on maxx̂/∈M,φ |Mx̂,φ|,
which can be significantly smaller than |M |.

We make an additional technical assumption, which
was not explicitly assumed in Dasgupta et al. (2018)
where a perfect annotator was assumed: If the same two
components are separated by the teacher more than

once during the whole interaction with the learner,
then the same feature is provided in all of these interac-
tions. Note that this requirement is always satisfied by
some representation, if examples separated by different
features are allocated to different components.

To conclude the definition of the setting, observe that
on top of exceptions as defined above, the teacher can
deviate from the interactive protocol in other ways.
For instance, it can provide a feature φ that does not
actually separate the two provided examples, or it can
flag the same label on the same example first as a cor-
rect label and then later as a wrong label, violating
the assumption of a deterministic labeling function.
However, these types of inconsistencies can be easily
identified when the feedback is provided, and ignored
by the learner. Thus, for simplicity, we assume below
that no such inconsistencies occur. Another type of
deviation from the protocol can occur if the teacher pro-
vides a feature that does not actually separate the two
components G(x) and G(x̂) (although it does separate
x and x̂). This type of exception can be handled the
same as exceptions in M . In summary, all exceptions
are either easy to identify immediately, or covered by
the current exception model.

4 Exceptions under the
perfect-annotation model

As discussed above, any deterministic labeling, includ-
ing one with exceptions as defined above, can be mod-
eled by the perfect-annotation setting, for instance
by creating a special group Gi for each exception,
and dissecting other groups to make sure that the
discriminative-feature property holds. In this section,
we show that nonetheless, attempting to reduce a model
with mistakes to a perfect-annotation model can result
in a very large mistake bound when the number of
possible features is large. First, we provide upper and
lower bounds on the number of components required
for such a reduction.

By a representation G, we mean a family of sets G =
{G1, G2, . . .} that cover X and a labeling `(Gi) of each
set. The size of the representation is |G|. Recall from
(1) that M(c,G) denotes the set of exceptions for a
given concept c and representation G.

Theorem 1. Let G be a representation of size m. Let
c̄ be a concept with k exceptions, that is |M(c̄,G)| = k.
Let Ḡ be a representation of a minimal size m̄ such that
|M(c̄, Ḡ)| = 0. Let d = |Φ| be the number of available
features. Then:

(a) m̄ ≤ m+ dk.

(b) There exists a case in which m = 1 while m̄ ≥ d+1.

Robust Learning from Discriminative Feature Feedback

The proof is provided in the supplementary material.
We remark that the bound in the theorem above is in-
timately related to the DNF exception problem, which
studies how many clauses are required to represent
a concept defined by a DNF of a certain size with
a bounded list of exceptions. This problem has been
studied in several works (Zhuravlev, 1985; Kogan, 1987;
Mubayi et al., 2006; Maximov, 2013), including in the
context of active learning with membership queries
(Angluin and Kriķis, 1994; Angluin et al., 1997); how-
ever, tight upper and lower bounds are not known for
this problem.

What is the significance of the representation size?
The algorithm of Dasgupta et al. (2018) for the perfect-
annotation setting makes Θ(m2) mistakes, where m is
the representation size. However, they do not answer
the question whether the order of this mistake bound
is optimal. The following lower bound shows that it
is, implying that the representation size is a crucial
property. In particular, combined with Theorem 1, it
follows that reducing the setting which allows mistakes
to the perfect-annotation setting when the number
of features is unbounded would result in a vacuous
mistake bound.

Theorem 2. If feature feedback is given with respect
to a representation of size m, then any algorithm must
have a mistake bound Ω(m2) in the perfect-annotation
setting.

The proof is provided in the supplementary material.
We have thus shown that a reduction of the setting with
mistakes to the perfect-annotation setting results in a
mistake bound that depends on the number of features
d, which can be unbounded. In the next section we
propose a robust algorithm which allows mistakes, and
obtains an improved mistake bound, which does not
depend on d.

5 Robust feature feedback in an
adversarial setting

In this section, we derive a robust algorithm under
an adversarial model. In this model, there are no
limitations on the input stream except that it conforms
to the interaction protocol described in Sec. 3. In
particular, the exceptions can appear at any arbitrary
location in the stream. We assume that the number
of exceptions (the size of M) is upper-bounded by
k for some integer k, and that for any x̂ /∈ M and
any φ, |Mx̂,φ| ≤ s for some integer s ≤ k; recall the
definitions (1) and (2). We say that s is an upper bound
on the number of similar exceptions. We propose an
algorithm for this setting, called RobustDFF, and derive
the following mistake bound for this algorithm.

Theorem 3. If there is a representation of size at
most m which satisfies the bounds of k and s defined
above, then the number of mistakes made by RobustDFF

is at most (m + k)((s + 1)(m − 1) + k + 2), which is
O
(

((s+ 1)m+ k) · (m+ k)
)
.

Note that for k = s = 0, we retrieve the optimal mis-
take bound order of O(m2) for the perfect-annotation
setting. Setting s = k obtains a mistake bound of
O(km(m + k)). Comparing this upper bound with
the conclusions from Theorem 1 for the case s = k, it
can be seen that a reduction to the perfect-annotation
setting leads to a mistake bound of O(m+ dk)2. Thus,
if d � m then the mistake bound of RobustDFF is
preferable. Below, we present the algorithm and the
mistake-bound analysis.

5.1 Robust algorithm for the adversarial
setting

Algorithm 1 RobustDFF: Robust discriminative fea-
ture feedback for the adversarial setting

Input: Max. components m, max. exceptions k,
max. similar exceptions s ≤ k.

1: t← 0
2: Get the label yo of the first example xo
3: Initialize L to an empty list
4: while true do
5: t← t+ 1
6: get a new point xt:
7: if ∃C[x̂] ∈ L such that xt satisfies C[x̂] then
8: Predict label[x̂] and provide example x̂
9: if prediction is incorrect then

10: Get correct label yt and feature φ
11: Update fcount[x̂], C[x̂], L by running:
12: HandleMistake(m, x̂, k, s, φ) (Alg. 2).
13: end if
14: else (no relevant rule exists)
15: Predict y0 and provide example x0
16: if prediction is incorrect then
17: Get correct label yt and feature φ.
18: Add to L an empty conjunction C[xt],
19: and set label[xt]← yt.
20: Initialize fcount[x̂](·) to 0.
21: end if
22: end if
23: end while

RobustDFF is listed in Alg. 1. It calls the procedure
HandleMistake, given in Alg. 2. The algorithm main-
tains a set of conjunctions (rules) which are iteratively
refined based on the feedback from the teacher. A rule
is created if an example that matches none of the exist-
ing conjunctions appears. A rule is refined if mistakes
with the feedback from the teacher warrants such a

Sanjoy Dasgupta, Sivan Sabato

Algorithm 2 HandleMistake: Handling an incorrect
prediction for a given rule

Input: Max. components m, max. exceptions k,
max. similar exceptions s ≤ k, rule representative
x̂, discriminating feature φ, access to fcount, C, L

Output: Updates values of fcount[x̂], C[x̂], L
1: Add 1 to fcount[x̂](φ)
2: if fcount[x̂](φ) > s then
3: C[x̂]← C[x̂] ∧ ¬φ
4: fcount[x̂](φ)← 0
5: if |C[x̂]| ≥ m then
6: delete C[x̂] from L
7: end if
8: else
9: b← m− 1− |C[x̂]|

10: if the sum of counters fcount[x̂](φ) for all φ
except for the b largest counters is more than k
then remove C[x̂] from L.

11: end if

refinement. A rule may also be deleted.

RobustDFF keeps track of the following information:

• The first labeled example (x0, y0).

• A list of conjunctions L.

• For every conjunction C[x] ∈ L, its label, denoted
label[x]

• For every conjunction C[x] ∈ L, a mapping
fcount[x] : Φ → N of counters, which count, for
each feature, how many times it was provided by
the teacher as a discriminating feature for x. Since
Φ might not be finite, fcount[x](φ) is only explic-
itly set when the counter is incremented for the
first time. All uninitialized counters are treated
as having a value of zero.

Exceptions might cause issues in rules in one of two
ways: either a rule is created based on an exception, or
it is wrongly refined based on one. To avoid the latter, a
rule based on a non-exception is only refined when there
is at least one non-exception that warrants this specific
refinement. This is guaranteed by collecting more than
s witnesses to a certain feature, before deciding on a
rule refinement based on this feature. Creating rules
based on exceptions is not prevented in RobustDFF.
Instead, the algorithm identifies rules that become
too large, or have too many separating features, and
removes them. We show in the analysis that this upper-
bounds the number of mistakes that the algorithm
makes due to rules based on exceptions, while keeping
good rules intact.

5.2 Mistake bound for the adversarial setting

We now prove Theorem 3, the mistake bound of
RobustDFF. We first prove several invariants of the
algorithm. First, we prove that in rules representing
components, these components are never split.

Lemma 4. At all times in the algorithm, if x̂ is not
an exception then conjunction C[x̂] is satisfied by ev-
ery point in G(x̂). In addition, for every literal φ in
C[x̂], there is some non-exception x such that G(x) is
separated from G(x̂) by φ.

Proof. We prove the claim by induction on the length
of C[x̂]. When C[x̂] is first created, it is an empty
conjunction so it is satisfied by all of G(x̂). When C[x̂]
is restricted by ¬φ in HandleMistake, it means that
s + 1 examples were separated from x̂ by φ. By the
assumption that |Mx̂,φ| ≤ s, it follows that at least one
of these examples, call it x, is not an exception, hence
G(x̂) is separated from G(x) by φ. This implies that
G(x̂) has no examples that are satisfied by φ. Hence,
after adding ¬φ to C[x̂], the extended C[x̂] is still
satisfied by G(x̂) and is separated by φ from G(x).

Next, we prove that two rules never represent the same
component.

Lemma 5. For any two non-exceptions x, x′, if there
are two rules C[x] and C[x′] in L then G(x) 6= G(x′).

Proof. Suppose x is observed earlier in the input se-
quence and x′ is observed later; If C[x] is generated
and C[x′] is also generated, this means that C[x], in its
form when x′ is observed, does not satisfy x′. But by
Lemma 4, C[x] always satisfies G(x). Hence, x′ /∈ G(x),
which implies the claim.

Next, we prove that only rules created by exceptions
might be deleted.

Lemma 6. If HandleMistake when run by RobustDFF

deletes the rule C[x̂], then x̂ is an exception.

Proof. Assume for contradiction that x̂ is not an ex-
ception but rule C[x̂] is deleted. A rule can get deleted
for one of two reasons. The first reason for deletion is
if the conjunction C[x̂] has at least m literals. Then,
by Lemma 4, for each such literal in C[x̂] there is some
non-exception x such that G(x) is separated from G(x̂)
using that literal. Since there are m components Gi,
there are at most m − 1 literals in C[x̂], which is a
contradiction to the size of C[x̂]. The second reason
for deletion is if the sum of the counters fcount[x̂](φ)
except for the largest b ≡ m − |C[x̂]| − 1 counters is
more than k. Suppose that x̂ is not an exception. By
Lemma 4, |C[x̂]| components are already separated

Robust Learning from Discriminative Feature Feedback

from it using literals in C[x̂]. At most b other com-
ponents could have some overlap with C[x̂]. Thus, at
most b of the non-zero counters fcount[x̂](φ) have a φ
which separates G(x̂) from some component that has
an overlap with C[x̂]. All other counters must have
been generated by exceptions, and the total number of
such exceptions is at least the sum of the other coun-
ters. By the condition for deleting a rule, more than
k such exceptions were observed. But this contradicts
the upper bound of k for exceptions.

In both cases, we reached a contradiction. Hence, x̂ is
an exception.

To bound the total number of mistakes, we first bound
the total number of rules created by the algorithm.

Lemma 7. RobustDFF creates at most m+ k rules.

Proof. By Lemma 5, the total number of rules in L
generated by non-exceptions is at most the number of
components, m. Therefore, at most m non-exception
rules are ever generated. By Lemma 6, only rules
generated by exceptions might be deleted. Since rules
are generated at most once for every input example,
and there are at most k exceptions in the input, at most
k rules generated by exceptions are ever generated.

Next, we bound the number of mistakes associated
with each rule.

Lemma 8. The number of mistakes resulting from
examples that have been matched to a single rule C[x]
is at most (s+ 1)(m− 1) + k + 1.

Proof. For all x, φ, at the end of each round of
RobustDFF, fcount[x](φ) ≤ s, since each new mistake
that is matched to C[x] increases some fcount[x](φ) by
1, and then, if fcount[x](φ) = s+ 1, zeros this counter
and extends C[x] by one. Therefore, for every feature
that end up extending C[x], there are at most s + 1
mistakes on C[x]. Letting r be the length of C[x] after
the last iteration in which it exists, this means that
exactly (s + 1)r mistakes are matched with features
that extend C[x].

The number of mistakes that do not match features that
extend C[x] is always at most k+s(m−1−|C[x]|) at the
end of an iteration, since if at any time during the run
the sum of counters is increased beyond this number,
it means that the sum of the counters except for the
m− 1− |C[x]| largest ones is k + 1, in which case the
rule gets deleted. Also, whenever the rule is extended,
one counter with value s is zeroed, thus this property
continues to hold. Thus, the total number of mistakes
for C[x] is at most (s+ 1)r+ k+ 1 + s(m− 1− r) ≤
s(m− 1) + r + k + 1, Since r ≤ m− 1, this proves the
claim.

Theorem 3 is now immediate, as follows: Each rule
makes at most (s + 1)(m − 1) + k + 1 mistakes by
Lemma 8. By Lemma 7, at most m+ k rule are gener-
ated by RobustDFF. In addition, a mistake that does
not match any rule creates a new rule, thus there are at
most m+ k such mistakes. In total, RobustDFF makes
at most (m+ k)((s+ 1)(m− 1) + k + 2) mistakes.

This concludes the analysis of the adversarial robust
algorithm. In the next section, we study a robust
algorithm for a stochastic setting.

6 Robust feature feedback in a
stochastic setting

In this section, we assume that the stream is drawn
from a stochastic source, with a probability of at most
ε that a drawn example is an exception. In addition,
we assume that for all non-exceptions x̂ and features
φ, the probability mass of Mx̂,φ is at most σ ≤ ε. The
algorithm gets an additional confidence parameter δ as
input, and guarantees are provided with a probability
of 1− δ.

For a stream of a given size n, it is possible to apply
Theorem 3 with k ≈ εn and s ≈ σn to get a mistake
bound for the stochastic setting. However, the resulting
bound grows quadratically with the stream size, render-
ing it vacuous. Thus, we propose a different algorithm,
called StRoDFF, and show that for this algorithm, the
rate of mistakes for large stream sizes is bounded. We
prove the following theorem.

Theorem 9. Let δ ≤ 1/e2. Suppose that the exception
rate is at most ε ≤ 1

4 and let the length of the stream
of examples be n. With a probability at least 1− δ, the
rate of mistakes of StRoDFF on a stream of size n is
upper bounded by

O
(

(σm+ ε)m log(1/δ) +m2 log2(n/δ)/
√
n
)
.

6.1 Robust algorithm for the stochastic
setting

StRoDFF is presented in Alg. 3. The structure of
StRoDFF is similar to that of RobustDFF, but some
adaptations are required to take advantage of the
stochastic assumption. The following additional in-
formation is stored by StRoDFF: tlr records the last
time that a new rule was created. Nlr counts the num-
ber of examples that were not satisfied by a rule since
round tlr. t(x̂) records the time that rule C[x̂] was
created, and t(x̂, φ) records the first time that an ex-
ample with a discriminative feature φ was provided for
the rule C[x̂]. In addition, StRoDFF uses the following

Sanjoy Dasgupta, Sivan Sabato

functions:

q(ε, t) := εt+
2

3
log(8t3/δ) +

√
2εt log(8t3/δ), (3)

γ(ε, r, t) :=
1

1− 2ε
(r + 4

√
r log3/2(

8t2

δ
))− r + 1. (4)

These functions are used to calculate exception thresh-
olds, in place of k and s that are used in RobustDFF.

A main difference between RobustDFF and StRoDFF is
that in StRoDFF, not every example which is not satis-
fied by current rules causes the creation of a new rule.
Instead, a rule is created only if a specific condition is
met (see line 21). This condition compares the number
of examples that fell outside L since the last creation
of a rule, to the number of examples that fell inside the
rules. It is used to guarantee that rules are only created
if there is sufficient probability mass outside current
rules, thus bounding the number of rules created by
exceptions.

Algorithm 3 StRoDFF: Robust discriminative feature
feedback for the stochastic setting

Input: Max. components m, max. prob. of exceptions
ε, max. prob. of similar exceptions σ, confidence δ

1: t← 0; Nlr ← 0, tlr ← 0.
2: Get the label yo of the first example xo;
3: Initialize L to an empty list
4: while true do
5: t← t+ 1; get a new point xt.
6: if ∃C[x̂] ∈ L such that xt satisfies C[x̂] then
7: Predict label[x̂] and provide example x̂
8: if prediction is incorrect then
9: Get correct label yt and feature φ

10: if fcount[x̂](φ) = 0, then t(x̂, φ)← t.
11: t′ ← t− t(x̂, φ) + 1.
12: ns ← q(σ, t′) + 1, nk ← q(ε, t′).
13: Update fcount[x̂], C[x̂], L by running:
14: HandleMistake(m, x̂, nk, ns, φ).
15: end if
16: else (no relevant rule exists)
17: Predict y0 and provide example x0
18: Nlr ← Nlr + 1
19: if prediction is incorrect then
20: Get correct label yt and feature φ.
21: if Nlr ≥ γ(ε, t− tlr −Nlr + 1, t) then
22: Add to L an empty conj. C[xt],
23: and set label[xt]← yt.
24: Initialize fcount[x̂](·) to 0.
25: t(x̂)← t, Nlr ← 0, tlr ← t.
26: end if
27: end if
28: end if
29: end while

6.2 Error bound for the stochastic setting

In this section, we prove Theorem 9. First, we define
the following events, which together guarantee the cor-
rectness of estimates based on q(·, ·) in the algorithm.

• ξ1 := { At any time t in StRoDFF, for any t′ ≤ t,
the number of exceptions observed in the last t′

iterations is at most q(ε, t′). }.

• ξ2 := { At any time t in StRoDFF, for any t′ ≤ t,
if in round t − t′ + 1 a mistake was made and a
feature φ separating x̂ was provided by the teacher,
then the number of exceptions in Mx̂,φ observed
afterwards, until iteration t (inclusive), is at most
q(σ, t′). }.

By Bernstein’s inequality and a union bound on all
the pairs t′ ≤ t, setting δ(t′, t) := δ/(4t3), we get that
ξ = ξ1 ∧ ξ2 holds with a probability at least 1− δ/2.

The proof of Theorem 9 is based on several lemmas.
Some of the analysis is analogous to that of RobustDFF.
However, upper-bounding the number of generated
rules requires a new statistical analysis. We first give
the lemmas that have direct analogs in the analysis
of RobustDFF. The following lemma is analogous to
Lemma 4.

Lemma 10. Assume ξ. At all times during the run of
StRoDFF, if x̂ is not an exception then C[x̂] is satisfied
by every point in G(x̂). In addition, for every literal φ
in C[x̂], there is some non-exception x such that G(x)
is separated from G(x̂) by φ.

Proof. The proof follows the same argument as the
proof of Lemma 4, except that in StRoDFF, instead of
waiting for s + 1 examples, HandleMistake restricts
C[x̂] by ¬φ if more than ns examples were separated
from x̂ by φ, where ns = q(σ, t− t(x̂, φ) + 1) + 1. By ξ2,
the number of exceptions in Mx̂,φ encountered since
the first such example, which was encountered in round
t(x̂, φ), is at most ns. Therefore, at least one of the
examples separated by φ is not an exception. The
rest of the proof remains the same as the proof of
Lemma 4.

The following lemma is analogous to Lemma 5, proved
above for RobustDFF.

Lemma 11. Assume ξ. In StRoDFF, for any two non-
exceptions x, x′, if there are two rules C[x] and C[x′]
in L then G(x) 6= G(x′).

Proof. The proof is identical to the proof of Lemma 5,
except that it uses Lemma 10 instead of Lemma 4.

Robust Learning from Discriminative Feature Feedback

The following lemma is analogous to Lemma 6, proved
above for RobustDFF.

Lemma 12. Assume ξ. In StRoDFF, if a rule C[x̂]
gets deleted then x̂ is an exception.

Proof. The proof is the same as that of Lemma 6,
except that Lemma 10 is used instead of Lemma 4.
In addition, instead of the upper bound of k on the
number of exceptions which is used by HandleMistake

when running from RobustDFF, in the case of StRoDFF
the upper bound in HandleMistake on the maximal
number of exceptions is set to nk := q(ε, t− t(x̂) + 1).
Thus, if the sum of the counters fcount[x̂](φ) except
for the largest b := m−|C[x̂]|−1 counters is more than
nk, then more than nk + 1 exceptions were observed
since the creation of the rule C[x̂] at time t(x̂), which
contradicts ξ. The rest of the proof is identical.

In the next lemma, it is shown that rules are not created
unless there is a significant probability mass outside
the current rules. The proof of this lemma is provided
in the supplementary material. The main idea of the
proof is to show that the condition on line 21 does not
hold unless there is a sufficient probability mass outside
the current set of rules. This is shown via a suitable
concentration inequality, combined with an analysis of
the dynamics of rule refinements in StRoDFF.

Lemma 13. Assume ε < 1
4 and δ ≤ 1/e2. With a

probability at least 1− δ/4, all the rules generated by
StRoDFF satisfy the following property: The probability
mass of examples that fall outside of L at the time the
new rule is created is at least 2ε.

The next lemma upper-bounds the number of rules
generated by StRoDFF. Crucially, unlike the case of
RobustDFF, this number does not depend on the total
number of exceptions, which is linear in the size of the
stream in the stochastic setting.

Lemma 14. Assume ε < 1
4 and δ ≤ 1/e2. With a

probability at least 1− δ, the total number of rules cre-
ated by the algorithm is at most R(m, δ) := 4m log(4/δ).

Proof. Assume that ξ holds, which occurs with proba-
bility at least 1− δ/2. By Lemma 11 the total number
of rules in L generated by non-exceptions is at most
the number of components, m. Therefore, at most m
non-exception rules are ever generated. To bound the
number of rules created based on exceptions, we bound
the probability, conditioned on a prefix of the stream,
that the next rule created by StRoDFF after processing
this prefix, is based on an exception. We use Lemma 13,
which shows that with a probability at least 1− δ/4, a
rule is created by StRoDFF only if the probability mass
of examples that are not satisfied by any of the current

rules is at least 2ε. Denote the event that the property
in Lemma 13 holds by ξ3.

Under ξ3, given that an example creates a new rule
in round t, this is a random example from the set of
examples not satisfied by the current set of rules L.
Since the probability mass of exceptions is at most ε,
and the probability mass outside L is at least 2ε, it
follows that any new rule has a probability of at most
a 1

2 to be based on an exception. Therefore, under
ξ3, the number of rules created until the next non-
exception rule is created is an independent geometric
random variable with a success probability of at least
a 1

2 . Moreover, at most m rules are created based on
non-exceptions. By Lemma 15, which is provided in the
supplementary material, the probability that more than
R(m, δ) := 4m log(4/δ) trials are required to obtain m
non-exception rules is less than δ/4. Applying a union
bound along with ξ3 and ξ, the overall probability that
this occurs is at least 1− δ.

The mistake bound for StRoDFF can now be proved.
The proof is provided in the appendix in the supple-
mentary material.

7 Conclusion

Discriminative feature feedback is a promising setting,
which allows a more natural learning from a knowl-
edgeable teacher. In this work, we showed that it is
possible to learn with discriminative feature feedback
even when the annotator is not perfect, and proved
mistake bounds that do not depend on the number of
features. We note that while the proposed algorithms
require the problem parameters as inputs, this can be
avoided by using a wrapper algorithm which searches
for good parameter values. We defer the details to
the long version of this work. The study of learning
with rich feedback has the potential to be applicable
to many real-life scenarios. In this work we have made
an important step towards this goal.

Acknowledgements

This research was supported by National Science Foun-
dation grant CCF-1813160, and by a United-States-
Israel Binational Science Foundation (BSF) grant
no. 2017641. Part of the work was done while the
authors were at the “Foundations of Machine Learn-
ing” program at the Simons Institute for the Theory
of Computing, Berkeley.

References

D. Angluin and M. Kriķis. Learning with malicious
membership queries and exceptions. In Proceedings

Sanjoy Dasgupta, Sivan Sabato

of the seventh annual conference on Computational
learning theory, pages 57–66. ACM, 1994.

D. Angluin, M. Kriķis, R. H. Sloan, and G. Turán.
Malicious omissions and errors in answers to mem-
bership queries. Machine Learning, 28(2-3):211–255,
1997.

S. Branson, C. Wah, B. Babenko, F. Schroff, P. Welin-
der, P. Perona, and S. Belongie. Visual recognition
with humans in the loop. In European Conference
on Computer Vision, 2010.

W. Croft and R. Das. Experiments with query acqui-
sition and use in document retrieval systems. In
Proceedings of the 13th International Conference on
Research and Development in Information Retrieval,
pages 349–368, 1990.

S. Dasgupta, A. Dey, N. Roberts, and S. Sabato. Learn-
ing from discriminative feature feedback. In Advances
in Neural Information Processing Systems, pages
3955–3963, 2018.

G. Druck, G. Mann, and A. McCallum. Learning
from labeled features using generalized expectation
criteria. In Proceedings of ACM Special Interest
Group on Information Retrieval, 2008.

A. Y. Kogan. Disjunctive normal forms of boolean
functions with a small number of zeros. USSR Com-
putational Mathematics and Mathematical Physics,
27(3):185–190, 1987.

O. Mac Aodha, S. Su, Y. Chen, P. Perona, and Y. Yue.
Teaching categories to human learners with visual
explanations. In IEEE Conference on Computer
Vision and Pattern Recognition, 2018.

Y. V. Maximov. Implementation of boolean functions
with a bounded number of zeros by disjunctive nor-
mal forms. Computational Mathematics and Mathe-
matical Physics, 53(9):1391–1409, 2013.

D. Mubayi, G. Turán, and Y. Zhao. The dnf exception
problem. Theoretical computer science, 352(1-3):
85–96, 2006.

S. Poulis and S. Dasgupta. Learning with feature
feedback. In Twentieth International Conference on
Artificial Intelligence and Statistics, 2017.

H. Raghavan, O. Madani, and R. Jones. Interactive
feature selection. In Proceedings of the 19th Inter-
national Joint Conference on Artificial Intelligence,
pages 841–846, 2005.

B. Settles. Closing the loop: fast, interactive semi-
supervised annotation with queries on features and
instances. In Empirical Methods in Natural Language
Processing, 2011.

R. Visotsky, Y. Atzmon, and G. Chechik. Learning
with per-sample side information. In AGI, 2019.

Y. I. Zhuravlev. Realization of boolean functions with
a small number of zeros by disjunctive normal forms
and related problems. Soviet Mathematics-Doklady,
32(3):771–775, 1985.

J. Zou, K. Chaudhuri, and A. T. Kalai. Crowdsourcing
feature discovery via adaptively chosen comparisons.
In Conference on Human Computation and Crowd-
sourcing (HCOMP), 2015.

Robust Learning from Discriminative Feature Feedback

AISTATS 2020 Supplementary Material

Robust Learning from Discriminative Feature Feedback
Sanjoy Dasgupta and Sivan Sabato

A Deferred Proofs

Proof of Theorem 1. For (a), we first observe that we
may assume without loss of generality that the com-
ponents in G are pairwise disjoint: iteratively, for any
two components G0, G1 that are not pairwise disjoint,
replace them with G′0, G′1 such that, for i ∈ {0, 1},

G′i := (Gi \G1−i) ∪ {x ∈ G0 ∩G1 | G(x) = Gi}.

The result is a representation with the same number
of components as G that are pairwise disjoint, and all
the responses of the teacher in the interaction protocol
remain the same.

Let c∗ be a concept that agrees with c̄ on all but the
k exceptions, such that |M(c∗,G)| = 0. We prove the
upper bound by induction on k. Suppose that for some
value of k, for any concept c′ such that |M(c′,G)| = k,
there is a representation G′ of size m′ ≤ m+ dk that
satisfies |M(c′,G′)| = 0. This trivially holds for k = 0.

Now, consider a concept c̄ such that |M(c̄,G)| = k + 1.
Let c′ be a concept which agrees with c∗ on all but
k elements, and agrees with c̄ on all but one element.
Let G′ = {G′1, . . . , G′m′} be the representation assumed
by the induction hypothesis for c′, and let x be the
single element such that c̄(x) 6= c′(x). We construct a
representation Ḡ for c̄.

Under the disjointness assumption, there is a single
component which includes x. Suppose it isG′1. For each
j ∈ [d], define the components Ḡ(j) as follows. Define
P xj := {z ∈ X | φj(z) 6= φj(x)}. Let Ḡ(j) := G′1 ∩ P xj .

Define an additional singleton component Ḡx = {x}.
Note that {Ḡ(j))}j∈[d]∪{Ḡx} exactly covers G′1. Define

Ḡ := {Ḡ(j)}j∈[d] ∪ {G′2, . . . , G′m′} ∪ {Ḡx}.

For any Ḡ ⊆ G′1 such that Ḡ 6= Ḡx, set `(Ḡ) :=
`(G′1). In addition, set `(Ḡx) := c̄(x). Ḡ is a legal
representation, with |M(Ḡ, c̄)| = 0. The legality of Ḡ
can be observed by noting that the union of Ḡ is X ,
that the labels of all components agree with c̄, and that
any two components in Ḡ with a different label can be
separated by a single feature: If Ḡ1 ⊆ G′i and Ḡ2 ⊆ G′j
for i 6= j and their labels disagree, then the same
feature that separates G′i and G′j separates Ḡ1 and Ḡ2.

If Ḡ1, Ḡ2 ⊆ G′1 and `(Ḡ1) 6= `(Ḡ2), then necessarily
one of the components is Ḡx and the other is Ḡ(j) for
some j. In this case, the feature j separates the two
components. The size of Ḡ is m′ + d ≤ m+ d(k + 1),

as required by the upper bound. Note that while Ḡ is
not pairwise disjoint, it can be converted to a pairwise-
disjoint representation by the process described above.
This completes the proof of the upper bound.

To prove the lower bound (b), it suffices to consider
the following example, defined over X = {0, 1}d, where
φj(x) is the value of coordinate j in x. Let G = {X},
`(X) = 0. Let c̄ be a concept that agrees with c∗ ≡ 0,
except on z0 = (0, . . . , 0). Let G′ be a representation
that has |M(c̄,G′)| = 0. We claim that |G′| ≥ d + 1.
Consider the vectors e1, . . . , ed. Suppose that some
G ∈ G′ has ei, ej ∈ G for i 6= j. Then no single feature
can separate G from the component that includes z0.
Therefore, there are at least d components for each of
ei, and a separate one for z0. This gives a lower bound
of d+ 1.

Proof of Theorem 2. Let Pm be the set of pairs (i, j)
such that i, j ∈ [m] and i < j. Define a set of features
Φ := {φpi,j | i, j ∈ [m], i 6= j, p ∈ {0, 1}}. Define a fam-

ily of 2|Pm| possible representations {GS}S⊆Pm . The
representation GS includes m components G1, . . . , Gm,
such that for i < j, component Gi is separated

from component Gj using the feature φ
Si,j

i,j , where
Si,j := I[(i, j) ∈ S]. In other words, for each pair
of components, one of two possible features φ0i,j , φ

1
i,j

separates them. We further define that in Gi the sep-
arating feature is positive, while it is negative in Gj .
For simplicity, we denote φj,i := ¬φi,j . Formally, Gi in
representation GS is the set of examples which satisfy(∧

j:i<j φ
Si,j

i,j

)∧(∧
j:i>j ¬φ

Si,j

i,j

)
. In all the represen-

tations, the label of the examples in Gi is set to i.1

Define an example xi,j for (i, j) ∈ Pm as follows: For
all l 6= i, j and z ∈ {0, 1}, all the features φzi,l and
φzj,l get the value that excludes them from Gl. The

feature φ0i,j is set to positive, and φ1i,j is set to negative.
Thus, in all representations S, xi,j ∈ Gi ∪ Gj , and
xi,j ∈ Gi if and only if (i, j) ∈ S. Now, consider a
stream of examples that presents xi,j for (i, j) ∈ Pm
in a uniformly random order and labels them using a
representation GS selected uniformly at random over
S ⊆ Pm, so that the label of xi,j is i if (i, j) ∈ S and j
otherwise.

The stream of examples is the same for all representa-

1A similar example with only two labels can be shown,
at the cost of a smaller multiplicative factor in the mistake
bound.

Sanjoy Dasgupta, Sivan Sabato

tions. Thus, the only information on S can be obtained
from the discriminative features. There are

(
m
2

)
pos-

sible elements in S, and each discriminative feature
feedback in this problem reveals whether (i, j) ∈ S for a
single pair (i, j). Moreover, if this is unknown for some
pair (i, j) when xi,j is revealed, then both values of Si,j
are equally likely conditioned on the run so far. In this
case, any algorithm will provide the wrong label with a
probability at least a half. Now, after less than |Pm|/2
mistakes, there is a probability of at least a half to ob-
serve such an example in the next iteration. Therefore,
in the first |Pm|/2 examples of the stream, there is a
probability of at least 1/4 that the algorithm makes
a mistake on the next example. Thus, the expected
number of mistakes is at least |Pm|/8 = Ω(m2).

To prove Lemma 13, we use the following concentration
inequality.

Lemma 15. Let δ ∈ (0, 1/e2), let k be an integer
and let p ∈ [12 , 1). The probability that a sum of k
independent geometric random variables with probabil-
ity of success p is larger than 1

p min(2k log(1/δ), (k +

4
√
k log3/2(1/δ))) is at most δ.

Proof. This lemma follows from Hoeffding’s inequal-
ity, by noting that the number of successes in N ex-
periments with success probability p is distributed as
Binom(N, p), and having

P[Binom(N, p) < k] ≤ exp(−2N(p− k/N)2).

First, defining N1 := 2k log(1/δ)/p, we have

k/N1 = p/(2 log(1/δ)) ≤ p(1− 1/
√

2).

Hence, p− k/N1 ≥ p/
√

2. It follows that

exp(−2N1(p− k/N1)2) ≤ exp(−N1p
2)

≤ exp(−N1p/2) = exp(−k log(1/δ)) ≤ δ.

Second, suppose that k ≥ 4 log(1/δ), and let α :=√
log(1/δ)/4k ≤ 1

4 . Defining

N2 := 2(1 + 4α)k/p =
1

p
(2k + 4

√
k log(1/δ)),

we have that

1/(p− α) = 1/p+ α/(p(p− α)) ≤ (1 + 4α)/p,

where the last inequality follows since p ≥ 1
2 and α ≤ 1

4 .
Therefore, N2 ≥ k/(p−α), hence k/N2 ≤ p− α, hence

exp(−2N2(p− k/N2)2) ≤ exp(−4(k/p)α2)

= exp(− log(1/δ)/p) ≤ δ.

The proof is completed by observing that the first
bound in the statement of the lemma is N1, and the
second bound is always larger than N2, and for k ≤
4 log(1/δ), it is larger than N1.

We now prove Lemma 13.

Proof of Lemma 13. Denote by Lt the set of rules L
at the end of round t of the run of StRoDFF. Let

Lt = {x ∈ X | ∃C ∈ Lt such that x satisfies C},

and denote pt := P[X ∈ Lt], where X is a random
example drawn according to the distribution creating
the input stream. We now prove the main claim: that
with a high probability, a rule is not created by StRoDFF

at round t unless pt−1 ≤ 1−2ε. The claim is proved by
induction on the sequence of rules created by StRoDFF.
For the basis of the induction, observe that p0 = 0,
since L0 is empty. Therefore, the first rule created by
StRoDFF certainly satisfies the claim for any ε < 1

2 . For
the induction step, suppose that the claim holds for the
first l rules created by StRoDFF. Let t0 be the round
in which the l’th rule was created, and condition on
the stream prefix ending in t0. We show that the next
rule also satisfies the claim.

First, for any round t ≥ t0 until a new rule is created,
pt is monotonic non-increasing. This is because the
possible transformations, other than creating a new
rule, are to restrict a rule or to delete a rule, both of
which can never increase the set of examples covered
by L. Therefore, if pt0 ≤ 1− 2ε, then regardless of the
round t in which the next rule is created, it satisfies
pt−1 ≤ 1 − 2ε. Thus, assume below that pt0 > 1 −
2ε ≥ 1

2 . pt0 is the probability that a random example
observed immediately after round t0 is satisfied by some
rule in Lt0 . Now, consider the first round after t0 that
an example in Lt0 arrives. Denote this round t1. The
value T1 := t1− t0 is a geometric random variable with
a success probability pt0 . By Lemma 15 with k := 1,
p := pt0 , with a probability at least 1− δ/(8t20),

T1 ≤
1

pt0
(1 + 4 log3/2(8t20/δ))) < γ(ε, 1, t0).

In the last inequality we used p0 > 1 − 2ε and the
definition of γ. Assume below that this event holds.

Now, consider Nlr, which counts in StRoDFF the num-
ber of examples since the creation of the last rule,
for which the default prediction (x0, y0) was provided.
These are the examples that were not satisfied by any
rule in L when they appeared. We prove by induction
on the rounds that a new rule is not created at least un-
til round t1. If a new rule was not created until round
t ∈ {t0 + 1, . . . , t1 − 1}, then Lt = Lt0 (since the set of
rules does not change until t1 when an example falls in

Robust Learning from Discriminative Feature Feedback

Lt0). In addition, Nlr = t− t0, since the examples until
round t1 are not in Lt = Lt0 , thus they get the default
prediction. Therefore, t− t0 −Nlr = 0. It follows that
in round t,

Nlr ≤ T1 < γ(ε, 1, t0) ≤ γ(ε, t− tlr −Nlr + 1, t).

This means that the condition in line 21 does not hold.
Thus, under the event above, a new rule will not be
created at round t. Since this holds by induction for
all t ∈ {t0 + 1, . . . , t1− 1}, it follows that if p0 > 1− 2ε
then a new rule is not created at least until the first
example in Lt0 arrives.

Now, Lt1 is the set of rules after this example arrives,
and the probability mass of examples in Lt1 is pt1 . More
generally, let ti be the first round after ti−1 in which
an example in Lti−1

appears. If no new rule is created
between t0 and ti, then in round ti, the set of rules
changes from Lti−1

to Lti . The number of rounds Ti :=
ti−ti−1 between each two such examples is a geometric
random variable with success probability pti−1 . Let r
be the number of examples satisfied by L which appear
in the stream until the next rule after t0 is created, and
suppose for contradiction that ptr > 1− 2ε. For q ≤ r,
define the random variable Sq :=

∑q
i=1 Ti. This is a

sum of q independent geometric random variables, each
with a probability of success larger than 1− 2ε (since
ptq ≥ ptr for all q ≤ r). Thus, Sq is dominated by a
sum of independent geometric random variables with a
success probability of 1− 2ε. Therefore, by Lemma 15,
with a probability at least δ/(8(t0 + q − 1)2)),

Sr ≤
1

1− 2ε
(q + 4

√
q log3/2(8(t0 + q − 1)2/δ))

< γ(ε, q, t0 + q − 1) + q − 1.

Assume below that this event holds for all q ≤ r. We
now prove that under the assumption on ptr , a new
rule is not created until tr, which is a contradiction.
Suppose for induction that since round t0 until round
t ≤ tr − 1, a new rule was not created. Let q ≤ r such
that t ∈ {tq−1 + 1, . . . , tq − 1}. We have tq = t0 + Sq.
Therefore, at round t, Nlr = t−t0−(q−1) < Sq−(q−1).
It follows that under the assumed event, in round t

Nlr < γ(ε, q, t0 + q − 1) ≤ γ(ε, t− tlr −Nlr + 1, t).

Here, we used the fact that t0 + q − 1 ≤ t. It follows
that the condition in line 21 does not hold in round
t, thus a new rule is not created in this round. By
induction, this holds for all t ≤ tr−1, which contradicts
the assumption that a rule was created until round tr.
Thus, if ptr > 1 − 2ε then a new rule is not created
at least until round tr. Since this analysis holds for
any value of r, we conclude that if all the events above
hold simultaneously, then a new rule is never created in
round t unless pt−1 ≤ 1− 2ε. By a union bound on the

created rules and the sequence of examples between
rule-creations, this is true with a probability at least
1− δ/4.

Proof of Theorem 9. First, we upper bound the num-
ber of mistakes on examples that are not satisfied by
any rule when they are observed. Let t1, t2, . . . , tR,
which sum to n, be the lengths of times between cre-
ations of new rules (where t1 is time of the first rule and
tR is the time between the last rule and the end of the
stream). We have by Lemma 14 that R ≤ R(m, δ) + 1.
We have 1/(1− 2ε) = 1 + 2ε/(1− 2ε) ≤ 1 + 4ε, where
the last inequality follows since ε ≤ 1

4 . Hence,

γ(ε, r, t) ≡ 1

1− 2ε
(r + 4

√
r log3/2(8t2/δ))− r + 1

≤ 8εr + 8
√
r log3/2(8t2/δ).

The number of mistakes resulting from examples not
satisfied by any rule is upper-bounded by

R∑
i=1

γ(ε, ti, n) ≤ 8εn+ 8

R∑
i=1

√
ti log3/2(8n2/δ)

≤ 8εn+ 8
√
Rn log3/2(8n2/δ).

In addition, any existing rule may generate at most
(m−1)(q(σ, n)+2)+q(ε, n)+1 mistakes (since it would
be deleted after that). Note that R = O(m log(1/δ)),
and q(ε, n) = O(εn + log(n/δ) +

√
n log(n/δ)). The

total upper bound is thus O
(
εn +

√
mn log2(n/δ) +

m log(1/δ)(εn+m(σn+ log(n/δ) +
√
n log(n/δ)

)
. Di-

viding by n and reorganizing, we get the error rate in
the statement of the lemma.

	Introduction
	Preliminaries
	A feedback model with mistakes
	Exceptions under the perfect-annotation model
	Robust feature feedback in an adversarial setting
	Robust algorithm for the adversarial setting
	Mistake bound for the adversarial setting

	Robust feature feedback in a stochastic setting
	Robust algorithm for the stochastic setting
	Error bound for the stochastic setting

	Conclusion
	Deferred Proofs

