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Abstract 

Different analytic techniques operate optimally with different 

types of data. As the use of EHR-based analytics expands to 

newer tasks, data will have to be transformed into different 

representations, so the tasks can be optimally solved. We 

classified representations into broad categories based on their 

characteristics, and proposed a new knowledge-driven 

representation for clinical data mining as well as trajectory 

mining, called Severity Encoding Variables (SEVs). 

Additionally, we studied which characteristics make 

representations most suitable for particular clinical analytics 

tasks including trajectory mining. Our evaluation shows that, 

for regression, most data representations performed similarly, 

with SEV achieving a slight (albeit statistically significant) 

advantage. For patients at high risk of diabetes, it 

outperformed the competing representation by (relative) 20%. 

For association mining, SEV achieved the highest performance. 

Its ability to constrain the search space of patterns through 

clinical knowledge was key to its success.  

Keywords:  

Data Science, Electronic Health Records, Data Mining  

Introduction 

The widespread adoption of electronic health records 

(EHRs)[1] enables new kinds of analytics such as explicitly 

modeling population heterogeneity or identifying benefit 

groups for an intervention[2,3]. It is well understood that 

different analytics tasks and techniques operate optimally on 

different types of data[4]. For example, association pattern 

mining requires binary or categorical data[5] and most 

regression models assume that the predictor variables have an 

additive effect[6]. Data, as it exists in the EHR, is not ideal for 

many analytics tasks. 

A data representation is a transformation of data into a format 

amenable to a particular analytic technique. Data 

transformations are not new, e.g., log or rank transformations 

of non-normally distributed variables[7] have been a mainstay 

for decades. The recent success of deep learning in some 

applications[8] has put data representation into the spotlight and 

is, at least in part, attributed to the underlying data 

representation. In this work, we propose a data representation, 

which is specific to the clinical domain and represents data at a 

high level and enriches it with clinical knowledge. 

Specifically, SEV augments the original data with a set of 

ordered or partially ordered binary variables, combining 

information about patients’ state from multiple perspectives: 

therapies, diagnoses, and whether or not the laboratory results 

or vital signs are normal and/or achieve a typical therapeutic 

target. These variables are (at least partially) ordered: the 

variable ‘patient is under control with first-line oral therapy’, 

represents a lower severity than the variable ‘patient is not 

under control despite last-line therapy’. These variables are 

highly interpretable, as they follow clinical reasoning and 

incorporate clinical knowledge.  

To make the discussion concrete, we carry out our study in the 

context of type 2 diabetes (T2D). Diabetes is a common disease 

with severe complications[9], affecting 29.1 million 

Americans. T2D can be prevented or delayed through lifestyle 

modifications and/or pharmacological treatment[10], hence 

identifying patients at high risk is of high importance. From a 

technical perspective, T2D is an ideal evaluation platform, as it 

exhibits common challenges: T2D is heterogeneous; risk 

factors are correlated and not necessarily additive; and the time 

frame between the risk factors and the onset of diabetes can be 

as long as 20 years, which makes missing data inevitable[2,11]. 

We encode diabetes risk factors, hyperlipidemia, hypertension, 

and obesity as SEVs (a set of SEVs for each disease) and 

perform two clinical tasks related to type-II diabetes. The first 

task is to predict the onset of diabetes using a Cox model and 

the second one is to model population heterogeneity in terms of 

the risk of T2D incidence using association pattern mining. We 

will compare SEV to five other data presentations, including 

the original data. The main objective is to study the 

characteristics of the data representations.  

Related Works 

Data representations transform the data into a new data set. For 

a dimensionality-expanding representation, the new data has 

more features than the original data, while for a dimensionality-

reducing representations, it has fewer. The key concern in 

dimensionality reduction is information loss. Representations 

can also be outcome-specific or outcome-independent. 

Outcome-specific data representations are specific to a 
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particular study end point (outcome) and can potentially limit 

the information loss that is relevant to the outcome, while 

outcome-independent representations do not consider an 

outcome. 

Outcome-specific Representation 

A severity score (SS)[12] quantifies disease burden with respect 

to some outcome of interest. For example, the Framingham 

diabetes score[13] associates disease burden, defined by a 

handful of risk factors, with the risk of developing diabetes (an 

outcome). Severity score is a dimensionality-reducing 

representation, as it summarizes numerous original risk factors 

into a single number, which is proportional to the burden 

conferred by those risk factors on some outcome.  

Outcome-independent Representations 

Outcome-independent representations transform the original 

data into a new set of features, typically with a different 

dimensionality. Many currently existing representations, such 

as principal component analysis (PCA)[14] and nonnegative 

matrix factorization (NMF) [15] have the specific aim of 

reducing the problem dimensionality. PCA is a statistical 

procedure that transforms a set of features into a new (ordered) 

set of orthogonal features (called principal components) in a 

manner such that each subsequent component explains 

maximal amount of residual variance, and NMF factorizes the 

original matrix into two matrices having only non-negative 

values, in a way that each subsequent component captures 

maximal amount of the residual information. Dimensionality 

reduction is achieved by using only the first few components.  

Deep neural networks (DNNs)[8] are computational models 

that are inspired by neural networks in animal brains and have 

recently achieved considerable success. Much of this success is 

attributed to the data representation of these techniques, which 

is known as de-noising autoencoders (DAE). DAEs consist of 

successive layers of transformations, where the outcome of 

each layer is the input to the next. Each layer is thought to 

extract features that are higher-level than those of the previous 

layer. The criterion for the goodness of the transformation is the 

reconstruction error, which is a measure of how well an 

autoencoder can reconstruct the original data from its output.  

Severity Encoding Variables 

Severity Encoding Variables (SEV) is our proposed outcome-

independent representation. The purpose of SEV is to 

summarize the numerous facets of a disease into a single 

hierarchical variable. Nodes at the same level in the hierarchy 

are fully or partially ordered.  

The construction of the hierarchy replicates the clinical 

reasoning steps of determining the severity of a certain disease. 

Reasoning involves a sequence of questions: (i) are lab results 

and vital signs present and normal, (ii) has an intervention been 

initiated, and if it has, how aggressive is it (first-line treatment, 

combination therapy, etc.), and (iii) has a diagnosis been 

recorded. Accordingly, the first split (at the root) produces three 

nodes: patient with missing, normal, and abnormal lab results. 

Next, we reason about medications. Each of the three nodes can 

be split indicating whether treatment has been initiated and how 

aggressive those treatments are. The final question splits the 

nodes based on the presence of diagnoses.  

Figure 1 illustrates the SEV for hyperlipidemia. At the root of 

the hierarchy, we ask whether lab results (LDL, HDL and TG) 

are normal (if they are not missing) and which (if any) are 

abnormal. At the next level, we reason using medications. For 

example, does a patient under control use medications? If 

medications are used, are they first-line medications (statins in 

case of HL), other drugs, or combinations of drugs? On the last 

level, we reason using diagnoses. Naturally, diagnoses are most 

helpful if no other indication of disease exists.  

For analysis, the hierarchy can be cut at any level and the nodes 

at that level are taken as binary variables. For example, cutting 

the hierarchy at the top-most level results in a set of three binary 

variables: ‘patient is under control’, ‘patient is not under 

control’, and ‘laboratory results are missing’. These variables 

are partially ordered: being under control could (but does not 

have to) indicate lower severity than not being under control, 

but ‘lab results are missing’ is not comparable to the other two 

in terms of severity. Cutting the hierarchy at the (say) third level 

yields 10 leaves and incorporates information about medication 

use. One of these leaves would be ‘patient has abnormal LDL 

despite medication’. By changing the level at which the 

hierarchy is cut, we can increase the number of leaves (and 

information content).  

SEV is a framework for representing diseases as hierarchies 

induced by a sequence of clinical decisions; it is not a set 

algorithm for modeling all diseases. Recall that SEV is outcome 

independent; once a SEV is constructed, it can be used for 

multiple study end-points. The diseases that we build SEVs for 

are predictors of the outcome and the construction of the SEV 

can (and possibly should) depend on the disease that we build 

the SEV for. Depending on the disease in question, a different 

ordering of the same clinical questions could yield a more 

clinically meaningful hierarchy, and other diseases may 

incorporate altogether different questions (for example, stage 

and grade of cancer). We have not observed substantial changes 

in predictive performance in terms of the ordering of the 

questions. 

Figure 1:  Sample Severity Encoding Variable Hierarchy for 

Hyperlipidemia. Abbreviations used: Treatment (Tx), 

Diagnosis (Dx), High-density lipoprotein (HDL), Low-density 

lipoprotein (LDL), Triglycerides (TG). 

Table 1. Categorization of the Data Representations. 
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Materials and Methods 

Data, Cohort Construction and Study Design 

Mayo Clinic, located in Rochester, MN, provides primary care 

to a large population. Resources available at Mayo Clinic are 

described elsewhere[16]. After IRB approval, a cohort of 

75,317 patients aged 18 or older on 01/01/2005 with research 

consent was constructed. The cohort was followed from the 

baseline of 01/01/2005 until the end of 2015. To determine 

patients’ baseline status, we retrospectively collected diagnoses 

of obesity, hyperlipidemia, hypertension, and prediabetes; 

laboratory test results for lipid panels and fasting plasma 

glucose (FPG); vital signs (blood pressure, and body mass 

index [BMI]); demographic information (age, gender); and 

medications for hypertension and hyperlipidemia. From the 

cohort, we excluded patients with preexisting diabetes at or 

before baseline (11,897 patients) and suspicion of diabetes (3 

patients with fasting plasma glucose > 125 ml/dL and 2 patients 

taking anti-diabetic drugs), resulting in a final cohort of 63,415 

patients.  

Comparative Representation 

Severity Scores (SS): A severity score is computed for each 

diabetes risk factor (obesity, hypertension, hyperlipidemia, pre-

diabetes) quantifying the risk factor’s contribution to diabetes. 

While all features could be combined into a single severity 

score (analogously to the Framingham score), we compute a 

severity score for each risk factor, combining only the features 

that are related to the specific risk factor. Modeling the risk 

factors separately allows us to retain the relationships among 

them.  

For each risk factor, the corresponding SS is the linear 

prediction from a Cox model, whose independent variables are 

the data elements that describe the risk factor in question and 

the dependent variable is diabetes outcome. Missing blood 

pressure measurements were imputed using mean imputation 

and a bias-correcting indicator variable signaling whether 

imputation was performed for each patient was added.  

Principal Component Analysis (PCA): In this study, logistic 

principal component analysis (PCA)[14] is applied to the risk 

factors, resulting in a single set of principal components. We 

kept the first 9 principal components because additional 

components are unable to explain significant amounts of 

variation. PCA is thus a dimensionality-reducing, outcome-

independent representation. 

Deep autoencoder (DAE): For this study, we used two 

configurations, tuned via cross-validation. Both used the 

hyperbolic tangent activation function, had two hidden layers 

with 20 nodes on the first layer and had 9 and 34 nodes on the 

second layer, respectively. The first configuration (DAE-9) has 

the lowest reconstruction error among configurations that 

reduce the dimensionality of the problem, while the 34-node 

configuration (DAE-34) has the lowest reconstruction error 

among all configurations. DAE-9 is a dimensionality-reducing 

representation, while DAE-34 is a dimensionality-expanding 

representation. 

Severity Encoding Variables (SEV): A severity encoding was 

constructed for each of the four risk factors of diabetes 

independently. The hierarchy was cut at the leaf level, making 

it dimensionality-expanding (there are more nodes in the 

hierarchy than original features).  

The Two Tasks 

Regression Analysis: The objective is to measure the impact of 

the data representations on the predictive performance of 

estimating patients’ 8-year risk of T2D. Risk factors (lab 

results, vital signs, diagnoses (ICD-9 billing code rolled up into 

categories), and prescriptions rolled up into NDF-RT 

pharmaceutical subclasses) are determined at baseline. We use 

this information transforming into the five new representations. 

The sixth representation is RAW, the original (untransformed) 

data. Six Cox proportional hazard models are constructed using 

age, gender and each of the six data representations as 

independent variables. Backwards elimination is applied.  

Association Pattern Analysis: The central concept in 

association pattern mining is an item, which is a binary variable 

such as ‘presence of hyperlipidemia diagnosis’ or ‘LDL ≥ 130 

mg/dL’. Items are combined into conjunctive sets, called 

itemsets (e.g. ‘LDL ≥ 130 mg/dL AND diagnosis of 

hyperlipidemia’). The association of an itemset with the 

outcome is measured through confidence, which is the fraction 

of patients presenting with the outcome among patients who 

present with all conditions in the itemset (fraction of patients 

who developed diabetes among those with LDL ≥ 130 mg/dL 

and diagnosis of hyperlipidemia in our example). Association 

pattern mining systematically enumerates all itemsets and 

computes their confidence. In the Classification Based on the 

Association (CBA) framework[17], the risk of diabetes for a 

patient is the confidence of the highest-confidence rule that 

applies to that patient. 

Continuous variables (age, severity scores, scores from PCA 

and DAE) are categorized into deciles (with backwards 

elimination discarding superfluous categories) and laboratory 

results and vital signs are dichotomized using the American 

Diabetes Association[18] cutoffs. Of interest are the number of 

patterns and their predictive performance. A data representation 

that can achieve higher predictive performance with a lower 

number of rules is preferable.  

Results 

Regression Analysis 

Figure 2 (a) shows the concordance of the various data 

representations as box plots. The top, middle, and bottom line 

in each box correspond to the upper quartile, median, and the 

lower quartiles of the concordances estimated from the 1,000 

bootstrap replications, respectively. The representations are 

ordered left to right by the number of features they produce.   

While all performance differences are statistically significant, 

some are not substantial. Our population consists of relatively 

healthy patients, hence all methods achieved high 

discrimination. A more clinically meaningful question is to 

accurately estimate diabetes in risk patients who are at 

relatively high risk and may actually benefit from an 

intervention. To this end, we consider patients with 

Framingham score of at least 20 and in Figure 2 (b), we present 

the predictive performance of the Cox model on the 6 data 

representations on these 2,493 patients.  

Association Analysis 

Association rule mining can discover an exponentially large 

number of patterns, many of which can be coincidental. The 

parameter that controls the number of patterns is Minimum 

Support in Cases (minsupC), the number of cases (patients who 

developed diabetes) to whom the pattern applies. Figure 3 
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displays the concordance and number of patterns discovered as 

a function of minsupC.  

Discussion 

As the paradigm for clinical studies continues to shift toward 

precision medicine, the range of tasks that clinical data analysis 

is used for will broaden. Since these newer tasks may operate 

optimally with different data representations, understanding 

existing and developing new data representations will become 

increasingly important. In this manuscript, we proposed a new 

data representation, Severity Encoding Variables, which 

represents diseases at a high level and is enriched with clinical 

knowledge. We compared SEV to five other existing data 

representations using two clinical tasks.  

Assessing the Risk of Incident Diabetes through 

Regression 

The key concern in regression is information loss. The two 

dimensionality expanding methods, SEV and DAE-34, 

achieved the highest performance, as they can extract more 

information (e.g. SEV encodes some interactions and Deep 

Autoencoders can encode non-linearities). While the 

performance difference between these two methods in the entire 

population was minimal (although statistically significant), 

when we focused on the subpopulation with very high 

Framingham score (20 or higher), the performance gap widened 

substantially and SEV outperformed DAE by 20%. Given their 

high risk of developing diabetes, this is precisely the group of 

patients for which we need to estimate the risk accurately so 

that we can effectively target preventive measures to the 

patients most in need.  

Mechanistically, SEV’s performance advantage stems 

primarily from interactions. It can distinguish between patients 

who have similar lab results at baseline but are in very different 

states of severity: e.g. patients who are not yet pharmaceutically 

treated are very different from those who are already 

undergoing combination therapy at baseline. Despite having 

similar (abnormal) lab results, the latter patients are at a 

disproportionately higher risk and interaction among the 

various facets of the disease are required to model this 

correctly. Second, SEV can handle missing data without 

imputation, identifying that the presence of the diagnosis code 

is more important in patients who have no available lab results 

than in patients where the lab results already suggest the 

presence of the disease.  

While interactions among various facets of a disease partly 

explain how SEV achieves high performance, selecting the 

right interactions is important. Some classification methods, 

such as decision trees or association rules, are capable of 

automatically discovering interactions, however, as our 

experiment with association rules demonstrates, finding the 

right combination of interactions is non-trivial.  

Dimensionality-reducing data representations did not perform 

well. Dimensionality reduction can reduce noise and can also 

lead to information loss. Given that our problem is “tall”, the 

number of patients far exceeds the number of variables, 

dimensionality reduction led to information loss. Among the 

dimensionality-reducing methods, SS takes the diabetes 

outcome into account, and hence managed to preserve most of 

the outcome-related information, achieving a reasonable 

performance with the smallest number of features. PCA and 

DAE-9 are outcome-independent, and have suffered greater 

outcome-related information loss than SS despite having more 

features. 

Modeling Patient Population Heterogeneity through 

Association Pattern Mining 

On this task, SEV performed substantially (and statistically 

significantly) better than others. The association mining 

algorithm itself performs dimensionality expansion by forming 

combinations of the features the data representation provides. 

To find high-risk patients, we typically focus on patterns that 

occur in small patient groups, which can yield less reliable risk 

estimates and higher predisposition to overfitting (finding 

patterns that happen to randomly coincide with diabetes). 

Different data representations offer different mechanisms to 

reduce overfitting. The severity scores reduce the number of 

items an itemset can have. For example, for SS, there are only 

5 axes (demographics, obesity, hypertension, hyperlipidemia 

and prediabetes), each of which is categorized into multiple 

bins. Since a patient cannot fall into two different bins along the 

same axis, the maximal number of conditions in a pattern is 5, 

which seriously limits the number of patterns. Some patterns 

have as many as 11 conditions in the RAW representation. 

SEV, the data representation that achieved the highest 

performance on association pattern mining, applies a different 

mechanism. SEV uses the same dichotomization as RAW, but 

SEV combined these dichotomized variables into predefined 

“sub-patterns”. For instance, the SEV item ‘lipids under 

 

Figure 2: (a) Performance comparison of data 

representations for the regression task. (b) Comparison of 

concordance on subpopulation with Framingham score ≥ 20.

 

 

Figure 3: (a) Comparison of the predictive performance of the 

association patterns discovered using the various data 

representations as a function of the minimum support in cases 

(minsupC) (b) The number of association patterns discovered 

using the various data representations. (minsupC=5) 

(a)

(b)

(a)

(b)
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control’ is a combination of three RAW items: LDL is normal 

AND HDL is normal AND TG is normal. These higher-level 

items constrain the space of possible patterns (based on clinical 

knowledge) and thus reduce the tendency for overfitting.  

Generalizability 

We tested the data representations with a regression model and 

association pattern mining to highlight certain characteristics of 

the SEV representation. We believe that these results generalize 

to other classification methods, as well. First, the SEV 

representation offers a high-level clinical description of the 

diseases enhancing clinical interpretability of the models. 

Second, SEV can improve predictive performance by 

automatically handling missing lab results and by incorporating 

clinically meaningful high-order interactions. Third, as we have 

mentioned earlier, some methods have the ability to discover 

interactions, and discovering high-order interaction is non-

trivial. Currently, there are no classification methods that can 

do all three well. 

Limitations 

Unlike the data-driven representations, the construction of the 

SEV requires clinical expertise. Most of the effort is spent on 

classifying diagnoses into categories and determining 

pharmaceutical subclasses for drugs. This effort is not specific 

to SEVs; even the RAW representation had access to these 

higher-level categorizations. The effort that is specific to SEV 

is determining whether lab results and vital signs are normal 

and whether a drug is first-line or last-line medication. This 

information is often readily available from practice guidelines, 

such as the American Diabetes Association guidelines for 

diabetes. The effort to include this information is small, but 

non-negligible. However, SEV is outcome-independent, thus 

once a hierarchy for a risk factor or disease is defined, it can be 

used for numerous outcomes without the need to change it. 

Conclusions 

For both regression and association pattern mining, SEV 

provides the highest performance, substantially higher than the 

other data representations in a high-risk subpopulation, where 

accurate risk assessment is particularly important to 

appropriately target preventive measures. Besides having the 

highest performance, SEV produces clinically interpretable 

models and can also handle missing values. 
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