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Abstract. Accurate predictions of protein structure properties, e.g. sec-
ondary structure and solvent accessibility, are essential in analyzing the
structure and function of a protein. PSSM (Position-Specific Scoring
Matrix) features are widely used in the structure property prediction.
However, some proteins may have low-quality PSSM features due to in-
sufficient homologous sequences, leading to limited prediction accuracy.
To address this limitation, we propose an enhancing scheme for PSSM
features. We introduce the “Bagging MSA” method to calculate PSSM
features used to train our model, and adopt a convolutional network
to capture local context features and bidirectional-LSTM for long-term
dependencies, and integrate them under an unsupervised framework.
Structure property prediction models are then built upon such enhanced
PSSM features for more accurate predictions. Empirical evaluation of
CB513, CASP11, and CASP12 datasets indicate that our unsupervised
enhancing scheme indeed generates more informative PSSM features for
structure property prediction.

Keywords: Deep learning- Unsupervised learning - Enhancing PSSM -
Protein secondary structure prediction.

1 Introduction

The function of a protein is closely related to its structure, which is largely deter-
mined by the amino-acid sequence. However, predicting one protein’s structure
based on its amino-acid sequence alone remains an open and challenging prob-
lem. An alternative approach is to firstly predict structure properties, includ-
ing secondary structure, solvent accessibility, and backbone dihedral angles [1].
Those predictions are combined eventually to help the final prediction of protein
structure.

PSSM (Position-Specific Scoring Matrix) features [3], which reflect per-residue
evolution patterns in the sequence profile, are commonly used in the structure
property prediction [4,5]. The quality of PSSM features is basically determined
by the underlying multiple sequence alignments (MSA) [6]. MSA requires search-
ing the query amino-acid sequence through a large-scale sequence database,
e.g. UniRef [20] and UniClust [21]. The MSA quality of the protein can be
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evaluated by counting the number of homologous proteins, or the non-redundant
sequence homologs(Meff [2]) retrieved from the database. However, for those pro-
teins with a limited number of high-quality homologous sequences, the prediction
quality is often limited due to less informative PSSM features [7]. One possible
solution is to develop more efficient and accurate MSA search algorithm, such
as SABERTOOTH |[8], hhblits [9], jackhmmer [10], and HBLAST [11]. These
algorithms have achieved certain performance improvement by speeding up the
searching process, as well as find more accurate homologous protein sequences
in the database. However, if the database did not contain enough homologous
protein sequences for the target protein, it is still inaccessible to obtain sufficient
quantity or high quality of the MSA, yet the corresponding high-quality PSSM
features.

In this paper, we propose an unsupervised deep learning method to enhance
the low-quality PSSM features of proteins. To be specific, during the training of
our model, we randomly sample the MSA of each protein in a certain proportion
in each learning iteration, which we called "Bagging MSA”. Then, we use the
"Weak PSSMs” calculated by these bags and the ”Original PSSM” calculated
by all MSA to train our network. In this way, our network can learn how to
generate high-quality PSSM from a protein that has low-quality PSSM features.

The most commonly predicted one-dimensional structural property of a pro-
tein is the secondary structure. Therefore, in order to evaluate our method on
different prediction networks, we use two widely used deep learning techniques in
the protein secondary prediction area, which are CNN and bi-LSTM models [28,
35,29]. The knowledge of the secondary structure of proteins and the network
of validation of our method are described in section 2 and section 3.

The technical contributions of this paper are summarized as: 1) Our method
is the first attempt to enhance low quality PSSMs of proteins. According to the
experimental results, our method significantly improve the secondary structure
prediction task of proteins with weak PSSM. 2) In the unsupervised module,
our method calculate PSSM features by randomly sampling 10% to 20% MSA
in each training iteration as the input data, and use the original PSSM features
as unsupervised labels. This approach not only increases the diversity of the
data, but also make the network more flexible to learn different PSSM quality
differences so as to give full play to unsupervised learning. 3) Our method is
generalizable since it is capable for any prediction model with PSSM as the
input other than just secondary protein prediction task. 4) The unsupervised
part of our method is independent, so the output could be used as the input
directly for the inference phase of any prediction network, which is more flexible
and efficient.

2 Related work

2.1 Position-Specific Scoring Matrix

MSA A multiple sequence alignment (MSA) is a sequence alignment of mul-
tiple homologous protein sequences for the target protein[12]. See Fig. 1 for an
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example of MSA. MSA is an important step in comparative analyses and prop-
erty predicting of biological sequences, since a lot of information e.g. evolution
and co-evolution clusters, are displayed on the MSA and can be mapped to the
target sequence of choice or on the protein structure [13]. Almost all existing ap-
proaches to studying proteins utilize MSAs indirectly, that is, they convert MSAs
into a position-specific scoring matrix (PSSM) that represents the distribution
of amino acid types on each column [14].
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Fig. 1. An example of MSA.

PSSMs calculation PSSM scores are generally expressed as positive or neg-
ative integers. A positive score indicates that the frequency of substitutions in
a given amino acid sequence is higher than expected, while a negative score
indicates that the frequency of substitutions is lower than expected [15, 16].

We extract the PSSM features of size n x 21 based on Eq.(1) and Eq.(2),
where, n is the protein sequence length, 21 is the sum of twenty known amino
acids appeared in the genetic code and one unknown amino acid marker. Fre-
quency is the count of occurrences of residue j (j = 1,2,3, ..., 21) in column
i (i = 1,2,3, ..., n), 20 represents the known amino acids. A simple procedure
called pseudo-counts assigns minimal scores to residues which do not appear at
a certain position of the alignment according to the following equation(1), where
we set the Pseudocount equal to 1. N is the number of sequences in the multiple
alignments. The Background frequency in Eq.(2) is the frequency of each residue
appearing in the entire MSA of the protein.

Frequency + Pseudocount
N + 20(Pseudocount)

(1)

SCOT€4 5 =

PSSM, ; = log(score/Background frequency) (2)

2.2 Scoring criteria for PSSM

Count score The number of sequence homologs is recorded as the Count score.
As we mentioned before, PSSM is a matrix calculated from the MSA, and the
quality of the MSA directly determines the quality of the PSSM. We can use
the number of homologous proteins of the MSA to evaluate the quality of the
PSSM, which is represented as Count score. The larger Count score leads to
more reliable PSSM. Thus, the Count score is one important criteria to evaluate
the quality of the PSSM features.
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Meff score We introduce the Meff score as the number of non-redundant se-
quence homologs. As in [7], homologous sequence in MSA of proteins have some
redundancy, so we use Meff score as another criteria for PSSM to demonstrates
the superiority and stability of our model under various evaluation standards.

The calculation formula of Meff score is shown in Eq.(3). where both ¢ and
J go over all the sequence homologs, S; ; is a binary number which describes
the similarity of two proteins. We use the hamming distance to compute the
similarity of two sequence homologs[17]: S; ; is 1 if the normalized hamming
distance is less than 0.3; otherwise S; ; is set to 0.

Meff = Z Z:Si,j (3)

2.3 Protein secondary structure prediction

The sequence space of proteins is vast, with perhaps 20 residues at each posi-
tion, and evolution has been sampling it over billions of years. One of the most
important sub-problems in protein studies is the secondary structure prediction.
Protein secondary structure refers to the local conformation of the polypeptide
backbone of proteins. There are two regular SS states: alpha-helix (H) and beta-
strand (E), and one irregular SS type: coil region (C) [18]. The other way is a
DSSP algorithm [19] to classify SS into 8 fine-grained states. In particular, the
algorithm assigns 3 types for helix (G, H and I), 2 types for strand (E and B),
and 3 types for coil (T, S and L). Overall, many computational methods have
been developed to predict both 3-state secondary structure and a few to pre-
dict 8-state secondary structure. Meanwhile, since a chain of 8-state secondary
structures contains more precise structural information for a variety of applica-
tions [25,37], the focus of secondary structure prediction has been shifted from
3-state secondary structure(Q3) prediction to the prediction of 8-state secondary
structures(Q8). Because the Q8 problem is much more complicated than the Q3
problem, deep learning methods would be more suitable for addressing the Q8
problem.

3 Method

3.1 Framework overview

Our method consists of two stages: enhancing PSSM and secondary structure
prediction. The workflow of the inference phase is shown in Fig. 2. We input the
low-quality PSSM into the trained unsupervised model with the protein sequence
features to generate enhanced PSSM features. Then the enhanced PSSM features
with sequence features are concatenated as the input of the inference phase
for the prediction network. Finally, the results of the enhanced PSSM and the
original PSSM on the prediction model are compared for evaluation.
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3.2 Unsupervised Learning to enhance PSSM

The architecture of our unsupervised learning method is shown in Fig. 3, which
mainly contains four parts: Bagging MSA module, Local contexts feature en-
coding module, Long-distance interdependencies feature encoding module and
Generation module. For each amino acid in a protein sequence, its input fea-
tures are concatenated by its sequence features and PSSM features, which form
a 2l (I=21) dimensional vector. We denote the size of the entire input features
as N x 2[, and the size of the output from unsupervised learning network is
N x [, where N is the length of the protein sequence. The details regarding input
features are explained in the experiments section.

Sequence Sequence
Features Features
Low-quali l . Enhanced o
PS%M ty ——> UnsltldPB;Vllsed — » PSSM Pr!?rdlclt(lﬂn
Features 0ce Features as

Fig. 2. Framework Overview.

Bagging MSA The main purpose of our enhancing PSSM module is to generate
higher-quality PSSM features from low-quality PSSM features calculated from
MSA with fewer rows or lower quality. Here we introduce the concept of 'Bagging
MSA’: As shown in Fig. 3, we randomly sample a small part of MSA for a protein
and repeat this operation in each training iteration and for each protein. We
bring in a hyper-parameter R to determine the proportion of selected homologous
proteins in MSA randomly per training iteration, e.g. when R = [10%, 20%)], a
number greater than 10% and less than 20% would be randomly selected for
each batch, and the homologous proteins in MSA would be randomly sampled
according to this proportion. In this way, we are able to get many MSA bags,
and each MSA bag would calculate a so-called "'Weak PSSM’. We used the weak
PSSM calculated by these bags as a part of the input unsupervised data, and the
original PSSM calculated by the complete MSA as the unsupervised labels. This
module is ideal for unsupervised learning due to the size of the PSSM matrix
is always the same for the same protein, even though the MSA size of each bag
and label is different.

Local contexts feature encoding module We introduce a fully convolutional
architecture as the local contexts feature encoding module. Recently, CNN has
been successfully used in the seq2seq model [23] and machine translation [24], as
well as applied in several protein studies, which achieved remarkable successes
[25,26]. This one-dimensional convolution operation is usually used to process
sequence data, such as emotional analysis and sequence structure prediction [27,
28], so CNN would be a good fit for our prediction task.
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In our method, the local contexts feature encoding module exploits the One-
dimensional convolution to extract the local hidden patterns and features of
adjacent amino-acid residues from the input matrix. This module contains three
1-d convolutional layers with the ReLLU activation function, and the window size
is equal to three for each layer, as shown in Appendix A.1.

Local Context Features
MSA Features Encoding Module Local Features

2ndlayer  3rd layer

: ! Enhanced |
; ! » ' . PSSMs |
H \ / | i Features !
min| : ;
Nxl i Fully :
- - ES g Comnected [End :
Sequence [T ! - Network T
s (LTI HE oo |
X | . ' 2 Nxl |
@ / [ oo == B
_ — [
oo ;w@ﬁg | t[ ‘\ Generation Module
Nxl : —
' T = R
— T .
Original PSSM Features : : 1st 2nd ! :
(unsupervised label) | BLSTM BLSTM

[ T -t Longdistance
Long-Distance Interdependencies Features

Features Encoding Module
Fig.3. Unsupervised learning model. 1) Bagging MSA Module has two out-
puts:” Original PSSM” calculated by all MSA are used as the unsupervised labels;
”Weak PSSM” calculated via the bags of MSA are fed into the two encoding networks.
2) The outputs of the two encoding networks are local features and long-distance fea-
tures respectively. 3) The output of the generation module is the “Enhanced PSSM”,
which is used to calculate the loss from the ” Original PSSM” to adjust the networks.

Long-distance interdependencies feature encoding module As we men-
tioned before, CNNs have the ability to capture local relationships of spatial or
temporal structures, but we can not capture sufficient long-range sequence in-
formation by increasing the window size and network depth infinitely. However,
long-distance interdependencies [29] of amino-acid residues are also critical for
amino acid sequence information. Inspired by the success of some methods which
use a combination of multiple neural networks, for example, coupling residual
two-dimensional bidirectional long short-term memory with convolutional neural
networks [30], ACLSTM[31] and CRRNNs [32], our method not only uses con-
volutional neural network with a few layers but also another network to catch
Long-distance interdependencies feature.

RNN-based model has achieved remarkable results in sequence modeling;
however, the gradient vector may grow or degrade exponentially over a long se-
quence during the training process. Thus LSTM neural networks are designed to
avoid this problem by introducing the gate structures, which is good at capturing
the long-range relations (from the first atom to the last one).

In our method, the long-distance interdependencies feature encoding module
includes two stacked bidirectional LSTM neural networks. As shown in Appendix
A.1, the input data are fed into the feature encoding model by its original order
as well as the reverse order, and then the two outputs are concatenated together
as the final features representation.
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Generation module Our method has one fully connected hidden layer in the
generation module. Moreover, in order to get the complete information of protein
sequence, as shown in Fig. 3, we directly concatenate the outputs of the previous
two modules and feed them into the fully connected(FC) layer with the ReLU
activation function to generate the enhanced PSSMs. We use the MSE loss[22]
to adjust our unsupervised network, as shown in Eq.4.

Lossunsup = MSE(PSSMEnhancedaPSSMFull) (4)

3.3 Prediction network

Since our unsupervised learning method is an independent enhancing PSSM
network, we are able to use any deep learning network for the prediction module
to verify the generalization of our method. In this study, we use two protein
secondary structure prediction networks to evaluate our method: CNN-based
network and LSTM-based network, which are two widely used deep learning
prediction networks. For CNN-based method, we use five CNN layers [28], and
fix the window size to 11 since the average length of an alpha-helix is around
eleven residues [33] and that of a beta-strand is around six [34]. For LSTM-based
method, we use two stacked bidirectional LSTM neural networks [35] and a fully
connected(FC) layer.

The input data for the prediction network is the same as the input for the
unsupervised learning model, which is the concatenation of sequence information
and PSSM features calculated by the complete MSA of the protein. The protein
secondary structure is used as the label. Based on the validation results, we select
the best model as the secondary structure predictor, then feed the enhanced
PSSM features generated by our unsupervised network and the original PSSM
into the predictor respectively. Last, the prediction performances of the two
PSSM features are compared to evaluate the effectiveness of our enhanced PSSM
model.

4 Experiments

4.1 Experiments set up

Dataset We use four publicly available datasets: CullPDB [36] of 5926 pro-
teins, CB513 [37] of 513 proteins, CASP11 of 85 proteins, and CASP12 of 40
proteins. CASP11 and CASP12 datasets are downloaded from the official CASP
website [38]. 53 duplicated proteins observed in the CullPDB are removed and
591 proteins are randomly sampled for validation, then the remaining proteins
are used for training. The other three datasets are used as the test dataset. We
generate the position specific scoring matrix (PSSM) by searching the Uniref50
[40] database. And the labels used for the prediction network are 8-state protein
secondary structures which are generated by DSSP [19, 44].
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Input features The input features for the encoding networks of our method are
described in [37]. We extract the MSA from Uniref50 databases using Jackhm-
mer [10], and set the parameters refer to their guide [41], details are listed in
Appendix A.3. We randomly sample 10% to 20%(R = [10%, 20%]) of the MSA
for each protein within each learning iteration(Bagging MSA), and then we calcu-
late PSSM using Eq.(1) and Eq.(2). We transform those PSSMs by the Sigmoid
function 1/(1+exp(-x)) where x is a PSSM entry to map each PSSM value in
between 0 and 1. As shown in Fig. 3, the input features of the two encoding
modules is a N x 2] matrix, where N is the length of the input sequence and 2[
is the dimension of the concatenated vectors. In our method, the sequence fea-
ture vectors are sparse one-hot vectors of 21 elements(/=21) since there might
be some unknown amino acids in a protein sequence. Therefore, there are 42
input features in total for each residue, 21 from PSSM features and the other 21
from sequence feature.

For the prediction part, there are 42 input features for each residue too, 21
of them are from PSSM features and the others are from sequence feature. We
compare the testing results of the enhanced input features with the original input
features to evaluate the effectiveness of our unsupervised model.

Neural network structure and learning Hyper-parameters The frame-
work of our unsupervised learning method is very flexible in the network struc-
ture selection.

In the long-distance interdependencies feature encoding module, we can set
different hidden layers and hidden dimensions (with different layers and layer
hidden sizes). Moreover, different types of network can be chosen in addition to
the bi-LSTM network, such as LSTM [42]. Due to the space limitation of this
paper, two stacked bi-LSTM with 512 hidden units are used for all experiments.
Then, we use 1d-CNN of 3 hidden layers, and 100 neurons for each layer in the
local contexts feature encoding module. The window size at each layer is set to
3.

For optimization, we use multi-step LR (learning rate) descent with [30,100,200]
for epoch indices. The multiplicative factor of learning rate decay is 0.1. We use
Adam [43] as the optimizer of our method. The initial learning rate for all train-
ing models is 0.0001.

For the protein secondary structure prediction task, we have two kinds of
networks. For CNN network, we use five 1-dim CNN layers with window size
11, and neurons size 100 for each layer. For LSTM network, we use two stacked
bi-LSTM with 512 hidden units and one fully connected(FC) layer.

Evaluation metric For the unsupervised learning, we calculate the RMSE
of the Enhanced PSSM and the Original PSSM in the input feature as the
evaluation matrix. Q8 accuracy is the criterion of the prediction module.
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4.2 Results

Relationship between PSSM quality and performance As we mentioned
before, we use two methods to score the quality of the protein PSSM, higher
score represents better quality. Fig. 4 and Fig. 5 show the relationship between
the quality of PSSM and the corresponding performance on the prediction net-
works on CB513 dataset. Fig. 4 shows the average accuracy obtained by using
Count score as the evaluation standard on the prediction network of CNN and
LSTM respectively, and Fig. 5 for the Meff score. We can find that proteins with
high-quality PSSM performs better than proteins with low-quality PSSM both
CNN-based and LSTM-based prediction network, as well as under all evalua-
tions including Count score or Meff score. Table 1 and table 2 show the data
distribution within the ranges Count and Meff Scores. Thus, our method aims
at improving the prediction performance for those proteins with original low-
quality PSSM by enhancing their PSSM features. See the gray-scale images in
Appendix A.2, which show the difference between "before” and ”after” PSSM
enhancement.
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Table 1. Number of proteins in certain Count Score ranges.

[range[(0,20]](20,40]](40,60]](60,80][(80,120]](120,150][(150,200][(200,300][(300,500]] (500,700][(700,900] [ (900,1000]|
[num| 2 | 16 [ 18 | 19 [ 20 | 11 [ 23 | 27 [ 45 | 26 [ 26 | 211 |

Table 2. Number of proteins in certain Meff Score ranges.

[range](0,15][(15,25]](25,35][ (35,45 (45,55][ (55,80] [ (80,120]] (120, 150] | (150,200][ (200,400]] (400,600]] (600,800][ (800, 1000]|
[num| 12 [ 23 | 18 [ 9 | 16 [ 18 | 19 | 15 | 23 [ 68 | 8 [ 8 [ 114 |

Enhancement on low-quality PSSM protein Our method is used to en-
hance the performance of proteins with low-quality PSSM in secondary structure
prediction task. However, while improving the low-quality PSSM, noise might
have been added to the high-quality PSSM, which would end up with a lower ac-
curacy score. Therefore, we need to find a standard to determine the definition of
low-quality proteins for our method, which would be the thresholds of the Count
score and the Meff score. As shown in Fig. 6, our method increase or decrease
the accuracy of prediction tasks under certain ranges. Greater than 0 means that
the average accuracy of our method has improved under the threshold, while less
than 0 means that it has decreased. Based on the accuracy results, we are able
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Fig. 6. Our method has achieved significant improvement in all prediction tasks (CNN-
based and LSTM-based) when the Count Score is less than 60 (a, b), and the Meff Score
is less than 35 (c, d). These figures are the results on CB513 dataset.
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to find a consistent trend for both CNN-based and LSTM-based models: our
method shows significant superiority for proteins with a Count score less than
60 and a Meff score less than 35.

In addition, in order to verify the threshold we selected is suitable for other
datasets, we also report the results of caspll and caspl2, which are shown in
table 3. The performances of extensive experiments demonstrate that our method
has a significant effect on enhancing low-quality PSSM for different datasets.

Table 3. Comparison results (Q8 accuracy) of our Enhanced PSSM vs. Original PSSM.
Enhancement experiments are conducted for low-quality proteins (Count score <= 60
Meff score <= 35) obtained from CB513, CASP11, and CASP12 datasets. Prediction
experiments are conducted on CNN-based model and LSTM-based model.

Prediction model| Score range |Datasets|Original PSSM|Enhanced PSSM|Protein num

CB513 59.106% 61.093% 36

Count <= 60|CASP11 64.196% 67.781% 12

CASP12 53.300% 56.519% 3

CNN-based CB513 | 55.973% 56.717% 53
Meff <= 35 |CASP11 62.846% 65.732% 17

CASP12 52.353% 54.462% 7

CB513 60.982% 63.041% 36

Count <= 60|CASP11 64.037% 64.990% 12

CASP12 54.335% 55.865% 3

LSTM-based CB513 | 56.920% 57.831% 53
Meff <= 35 |[CASP11 63.216% 63.504% 17

CASP12 51.493% 53.921% 7

5 Conclusion

We propose an innovative Bagging MSA model to enhance low-quality PSSM
features of proteins, which would help promote their performance in secondary
structure prediction task. We employ an unsupervised learning network to en-
hance the PSSM features, and two conventional deep learning prediction models
as the protein secondary structure prediction networks to prove the effectiveness
of our method on various datasets. Our method is the first attempt to enhance
PSSM features in the field of protein research. Moreover, the generalization of
our Bagging MSA makes it suitable for numerous PSSM related protein predic-
tion tasks. PSSM features are essential for studying proteins, our method pioneer
another way to address the prediction limitation for low-quality proteins.
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A Appendix

A.1 Encoding networks

As shown in Fig. 7 and Fig. 8, we use 1d-CNN of 3 hidden layers, and 100 neurons
for each layer in the local contexts feature encoding module. The window size at
each layer is set to 3. And for long-distance module, two stacked bi-LSTM with
512 hidden units are used for all experiments.

-O-0-Q-Q- O,
Iﬁi‘;‘lﬁi’* O O 2nd layer
'"O“” 1st layer

El H-H D Taput

Fig. 7. Local contexts feature encoding module includes three layers of 1d-CNN and
the top layer(3rd layer) is the output layer.

Fig. 8. Long-distance interdependencies feature encoding module includes two stacked
BLSTM neural networks.
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A.2 Gray-scale images of PSSM

As shown in Fig. 9, which is a set of gray-scale images of the original pssm(a) and
enhanced pssm(b) of a protein from c¢b513 dataset. Where, y-axis is the length N
of the protein sequence, the sample protein contains 26 residues(N=26), x-axis is
1, 20 plus an unknown amino acids marker(l=21). Lighter colors indicate larger
values, while darker colors indicate smaller values. See https://www.rcsb.org for
the structure information of the protein(604M) in the example.

0 10 20

@

Fig. 9. Gray-scale images of the PSSMs. (a) Original PSSM of 604M protein; (b)
Enhanced PSSM of 604M protein.

A.3 Jackhmmer options for extracting MSA

In the per-target output, report target profiles with an E-value <=1.0; In the
per-domain output, for target profiles that have already satisfied the per-profile
reporting threshold, report individual domains with a conditional E-value of
<=1.0; Use a conditional E-value of <=0.03 as the per-domain inclusion thresh-
old, in targets that have already satisfied the overall per-target inclusion thresh-
old; Obtain residue alignment probabilities from the built-in substitution matrix
named BLOSUMG62.

A.4 Infrastructure and software

Our model was implemented through Pytorch package. And our models was
trained in a self-hosted 16-GPU cluster platform with Intel i7 6700K @ 4.00
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GHz CPU, 64 Gigabytes RAM and four Nvidia GTX 1080Ti GPUs on each
workstation.
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