
CodNN – Robust Neural Networks
From Coded Classification

Netanel Raviv?, Siddharth Jain†, Pulakesh Upadhyaya‡, Jehoshua Bruck†, and Anxiao (Andrew) Jiang‡
?Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis 63130, MO, USA

†Department of Electrical Engineering, California Institute of Technology, Pasadena 91125, CA, USA
‡Department of Computer Science and Engineering, Texas A&M University, College Station 77843, TX, USA

Abstract—Deep Neural Networks (DNNs) are a revolutionary
force in the ongoing information revolution, and yet their intrinsic
properties remain a mystery. In particular, it is widely known
that DNNs are highly sensitive to noise, whether adversarial
or random. This poses a fundamental challenge for hardware
implementations of DNNs, and for their deployment in critical
applications such as autonomous driving.

In this paper we construct robust DNNs via error correcting
codes. By our approach, either the data or internal layers of
the DNN are coded with error correcting codes, and successful
computation under noise is guaranteed. Since DNNs can be seen
as a layered concatenation of classification tasks, our research
begins with the core task of classifying noisy coded inputs, and
progresses towards robust DNNs.

We focus on binary data and linear codes. Our main result is
that the prevalent parity code can guarantee robustness for a large
family of DNNs, which includes the recently popularized binarized
neural networks. Further, we show that the coded classification
problem has a deep connection to Fourier analysis of Boolean
functions.

In contrast to existing solutions in the literature, our results do
not rely on altering the training process of the DNN, and provide
mathematically rigorous guarantees rather than experimental
evidence.

I. INTRODUCTION

Deep Neural Networks (DNNs) have become a dominating
force in Artificial Intelligence (AI), bringing revolutions in
science and technology. A massive amount of academic and
industrial research is being devoted to implementing DNNs in
hardware [4]. Hardware-implemented DNNs are appearing in
phones, sensors, healthcare devices, and more, which will rev-
olutionize every sector of society [10], and make AI systems
increasingly energy-efficient and ubiquitous.

In parallel, DNNs are known to be highly susceptible to
adversarial interventions. In a recent line of works which
followed [16], it was shown that by adding a small (and often
indistinguishable to humans) amount of noise to the inputs of a
DNN, one can cause it to reach nonsensical conclusions. More
recently, it was shown [15] that in some DNN architectures
one can attain similar effects by changing as little as one or
two entries of the input. This reveals an orthogonal concern
of a similar nature from the adversarial machine learning
perspective: performance degradation due to malicious attacks.

There exists a rich body of research which studies how
to make DNNs robust to noise. This includes noise that is
injected into the neurons/synapses, or into the inputs. Even

though computation under noise has been studied since the
1950’s [12], solutions have been almost exclusively heuristic.

To combat adversarial attacks to the inputs, much focus was
given on adjusting the training process to produce more robust
DNNs, e.g., by adjusting the regularization expression [3],
or the loss function [7]. These approaches usually involve
intractable optimization problems, and succeed insofar as the
underlying optimization succeeds.

Combating noise in neurons/synapses has also enjoyed a
recent surge of interest [17], which builds upon the previous
wave of interest in DNNs in the early 1990’s [14]. Most of
this line of research focuses on replication methods (called
augmentation), retraining, and providing statistical frameworks
for testing fault tolerance of DNNs (e.g., training a DNN to
remember a coded version of all possible outputs [6]). It is
also worth mentioning that to a certain degree, DNNs tend to
present some natural fault-tolerance without any intervention.
This phenomenon is conjectured to be connected to over-
provisioning [1], i.e., the fact that in most cases one uses
more neurons than necessary, but rigorous guarantees remain
elusive.

In this paper we propose a fundamentally new approach
for handling noise in DNNs. In this approach, the inputs to
neurons are coded by using an error correcting code, and
the neurons are modified accordingly, so that correct output
is guaranteed as long as the noise level is below a certain
threshold. Clearly, the encoding function must be simpler
than conducting the computation itself, and should apply
universally to a large family of neurons; we also aim for an
efficient end-to-end design that does not require decoding.

Our approach is depicted in Fig. 1 for the famous case-
study of stop-sign classification [2]. In this case-study, an
autonomous vehicle uses a DNN to classify a stop sign as such,
exposing the passenger to the perils of misclassification due to
noise (e.g., a sticker). In our approach we envision addition of
redundancy to the actual physical object (Fig. 1a), which aids
the DNN in classification under noise (Fig. 1b). To facilitate
this vision, the neurons inside the network must be revised
accordingly, e.g., by adding weighted synapses (Fig. 1c and
Fig. 1d). Alternatively, the inputs to some neurons might come
from other neurons inside the network, rather than from the
physical world; this case better encapsulates hardware failures,
and redundancy is computed by additional components inside
the DNN (Fig. 1e).

(a) (b)

x1

x2

x3

τ (x)

1

1

−1
τ

(c)

x1

x2

x3

r

τ (x)
τ ′

1

1

−1

1

(d)

τ1

τ2

τ3

⊕

τ4(y)
τ ′4

1

1

−1
1

(e)

Fig. 1: (a) a stop sign with added redundancy; (b) the added redundancy guarantees correct classification under noise, e.g., a
sticker; (c) an uncoded neuron; (d) a coded neuron with one extra bit of redundancy, guaranteed to compute τ(x) correctly,
even if any synapse is erased (see Example 2); (e) added redundancy inside the DNN–the coded neuron τ ′4 computes τ4(y)
even if any of its incoming synapses is erased, where y is the output of the neurons τ1, τ2, and τ3 in the previous layer.

Preliminaries are discussed in Section II, where a tight
connection to the `1-metric is revealed. Simple but inefficient
solutions, that rely on replication or Fourier analysis, are
discussed in Section III. Finally, the main result of this paper
is given in Section IV, where it is shown that the well-known
parity code can guarantee successful classification under noise,
and applications to a large family of DNNs are discussed.

II. PRELIMINARIES

A DNN is a layered and directed acyclic graph, in which
the first layer is called the input layer. Each edge (or synapse)
corresponds to a real number called weight, and nodes in
intermediate layers (also called hidden layers) are called neu-
rons. Each neuron acts as computation unit, that applies some
activation function on its inputs, weighted by the respective
synapses. The result of the computation in the last layer are
the outputs of the DNN.

Traditionally, the activation function is sign(xw> − θ),
where x is a vector of inputs, w is a vector of weights, θ
is a constant called bias, and

sign(x) =

{
1 if x ≥ 0

−1 if x < 0
.

However, contemporary DNNs often employ continuous ap-
proximations of sign(·), known as sigmoid functions (such
as logistic(x) = 1

1+exp(−x) or tanh(x)) or piecewise linear al-
ternatives (such as ReLU(x) = max{0, x}) in order to enable
analytic learning algorithms (such as backpropagation). In our
work, in order to establish rigorous and discrete guarantees,

we focus on sign(·). Further, we focus on binary ±1 inputs,
which correspond to the binary field F2 by identifying 0 as 1
and 1 as −1, and exclusive or as product.

At the computational level, faults in DNN hardware appear
as bit-errors, bit-erasures or analog noise, which can be
permanent or transient. In this work we focus on bit-errors
and bit-erasures, that are formally defined shortly. We denote
scalars by lowercase letters a, b, . . ., vectors by lowercase
boldface letters a,b, . . ., and use the same letter to refer
to a vector and its entries (e.g., a = (a1, a2, . . .)). We
use di(·, ·), ‖·‖i, and Bi(z, r) to denote the `i-distance, `i-
norm, and `i-ball cantered at z with radius r, respectively,
for i ∈ {0, 1, 2, . . . ,∞}. We use dH(·, ·) to denote Hamming
distance, and let 1m be a vector of m ones.

A. Framework and problem definition

For a given neuron τ : Fn2 → F2, where τ(x) = sign(x ·
w> − θ) for some w ∈ Rn and θ ∈ R, a triple (E,v, µ) is
called a solution, where E : Fn2 → Fm2 , v ∈ Rm, and µ ∈ R.
The respective coded neuron is τ ′(E(x)) = sign(E(x)v> −
µ). For nonnegative integers t and s, the coded neuron τ ′ is
robust against t erasures and s errors ((t, s)-robust, for short)
if for every disjoint t-subset T ⊆ [m], and s-subset S ⊆ [m],
we have that

sign(x ·w> − θ) =

sign

 ∑
j∈[m]\(T ∪S)

E(x)jvj −
∑
j∈S

E(x)jvj − µ

 (1)

for every x ∈ Fn2 .
Namely, when computing over data encoded by E, correct

output for every x ∈ Fn2 is guaranteed, even if at most t of the
inputs to τ ′ are omitted (erasures), and at most s are negated
(errors). Further, for a nonnegative integer r we say that τ ′

is r-robust if it is (t, s)-robust for every nonnegative t and s
such that t+ 2s ≤ r.

For v ∈ Rm and µ ∈ R, let H(v, µ) = {y ∈ Rm|yv> =
µ}. For a given solution (E,v, µ), we say that the minimum
distance of the respective coded neuron is

d = d(E,v, µ) = d1(E(Fn2),H(v, µ))
= min

x∈Fn2
d1(E(x),H(v, µ)).

The choice of the `1-metric will be made clear in the sequel.
The figure of merit by which we measure a given solution is
its relative distance d/m.

Example 1. For a given neuron τ , and an integer m, let

E(x) =

{
1m if τ(x) = 1

−1m if τ(x) = −1
.

It is readily verified that the solution (E,1m, 0) is (m − 1)-
robust.

Since layers in DNNs normally contain multiple neurons,
the solution in Example 1 is useless for constructing robust
DNNs. Instead, one would like to have joint coding E for a
large family of neurons.

Problem Definition: For a given set of neurons {τi(x) =
sign(xw>i − θi)}`i=1 find a joint coding function E
and {vi, µi}`i=1 which maximize dmin/m, where dmin =
mini∈[`] d(E,vi, µi).

Furthermore, we restrict our attention to functions E which
encode binary linear codes, due to their prevalence in hardware
and ease of analysis. Since we use the {±1}-representation
of F2, every entry of E(x) is a multilinear monomial in the
entries of x.

Example 2. Fig. 1c depicts the uncoded neuron τ(x) =
sign(x1 + x2 − x3), and Fig. 1d depicts its coded ver-
sion τ ′(x) = sign(x1 + x2 − x3 + r), where r = x1x2x3.
Table I shows two examples of robustness to any 1-erasure.

(x1, x2, x3, r) Erasure τ ′(noisy E(x)) = τ(x)

x1 sign(0− 1− 1− 1) = −1
x2 sign(1− 0− 1− 1) = −1
x3 sign(1− 1− 0− 1) = −1

(1,−1, 1,−1)

r sign(1− 1− 1− 0) = −1
x1 sign(−0 + 1 + 1 + 1) = 1
x2 sign(−1 + 0 + 1 + 1) = 1
x3 sign(−1 + 1 + 0 + 1) = 1

(−1, 1,−1, 1)

r sign(−1 + 1 + 1 + 0) = 1

TABLE I: Two examples of correct computation of τ(·) (Fig-
ure 1c) by τ ′(E(·)) (Figure 1d). This holds for the remaining
six inputs as well.

B. Robustness and the `1-metric

In this section we justify the above definitions, and in
particular, the use of the `1-metric to obtain robustness. First,
notice that errors and erasures while evaluating τ ′ can be
seen as changes in E(x). For example, let v = (v1, v2, v3)
and E(x) = (y1, y2, y3), and then an erasure at entry 1 is
equivalent to evaluating τ ′ at the point (0, y2, y3). Similarly, an
error in entry 2 is equivalent to evaluating τ ′ at (y1,−y2, y3).

As such, both errors and erasures can be seen as evaluation
of the same coded neuron τ ′ on a data point which is shifted
along axis-parallel lines. Therefore, the encoded points must
be far away from H(v, µ) in `1-distance. More precisely, since
errors and erasures do not cause any point to shift outside
the closed hypercube [−1, 1]m, it is only necessary to have
large `1-distance from H′ = H′(v, µ) = H(v, µ) ∩ [−1, 1]m.

First, we provide the formula for the `1-distance of a point
from a hyperplane.

Lemma 1. [8, Sec. 5] For every z ∈ Rm we have that
d1(z,H) = |z·v>−µ|

‖v‖∞ .

Second, we provide a necessary and sufficient condition for
the robustness of a coded neuron τ ′(E(x)) = sign(E(x)v>−
µ). We denote the positive points of τ by F+, and the negative
points by F−.

Theorem 1. For a positive integer r and a neuron τ(x) =
sign(xw> − θ), a coded neuron τ ′(x) = sign(E(x)v> − µ)
is r-robust if and only if

sign(xw> − θ) = sign(E(x)v> − µ) for every x ∈ Fn2 ,
r ≤ d1(E(F+),H′), and

r < d1(E(F−),H′). (2)

Proof. Assume that the conditions in (2) hold. To show that τ ′

is r-robust we must show that (1) holds for every x ∈ Fn2 and
every mutually disjoint S and T such that |T | + 2|S| ≤ r.
Assuming for contradiction that τ ′ is not r-robust, there exists
some x ∈ Fn2 and corresponding sets S and T such that E(x)
is misclassified under erasures in T and errors in S. Since any
set of errors or erasures keeps E(x) inside [−1, 1]m, it follows
that this misclassification of E(x) corresponds to moving it
along an axis-parallel path P of length |P | = |T | + 2|S|,
which crosses H′.

If x ∈ F+, then to attain misclassification we must
have |P | > d1(E(x),H′). However, this implies that r ≥
|T | + 2|S| = |P | > d1(E(x),H′) ≥ r, a contradiction.
If x ∈ F−, then to attain misclassification we must have |P | ≥
d1(E(x),H′). However, this implies that r ≥ |T | + 2|S| =
|P | ≥ d1(E(x),H′) > r, another contradiction.

Conversely, assume that τ ′ is r-robust. Since r ≥ 0, it fol-
lows that τ ′ is in particular (0, 0)-robust, and hence according
to (1) if follows that sign(xw> − θ) = sign(E(x)v> − µ)
for every x ∈ Fn2 . Assume for contradiction that r >
d1(E(F+),H′), which implies that there exists x ∈ F+ such
that r > d1(E(x),H′), and let Bx , B1(E(x), r)∩ [−1, 1]m.
This readily implies that some vertex y of Bx lies on the

opposite side of H. It can be proved (full proof will be given
in future versions of this paper) that y is an integer point, and
that all such points correspond to erasures in some set T and
errors in some set S such that |T |+ 2|S| ≤ r. Therefore, the
existence of y contradicts the r-robustness of τ ′. The proof
that r < d1(E(F−),H′) is similar.

We conclude this section by showing that redundancy is nec-
essary for any nontrivial robustness. Since any non-constant
neuron must have a positive point x and a negative point y
such that dH(x,y) = 1, and since any hyperplane must cross
the convex hull of x and y, the following is immediate.

Lemma 2. Unless τ(x) = sign(xw> − θ) is constant, the
solution (E,v, µ) = (Id,w, θ) is 0-robust.

Further, by denoting δ = d1(Fn2 ,H(w, θ)), we have that the
relative distance of the solution (Id,w, θ) is δ/n. However,
computing δ for a given neuron τ is in general NP-complete,
by a reduction to PARTITION [9].

III. A FEW ELEMENTARY SOLUTIONS

A. Robustness by replication

For a vector v, let v(`) be the result of concatenating v with
itself ` times, and for E : Fn2 → Fm2 let E(`) : Fn2 → F`m2 be
the function E(`)(x) = E(x)(`).

Lemma 3. Let (E,v, µ) be a solution with minimum
distance d. Then, for every positive integer `, the solu-
tion (E(`),v(`), `µ) has distance `d and identical relative
distance d/m.

Proof. According to Lemma 1, and since ‖v(`)‖∞ = ‖v‖∞,
we have that

d1
(
E(`)(Fn2),H(v(`), `µ)

)
=

minx∈Fn2 |E(`)(x)v
>
(`) − `µ|

‖v‖∞
,

and since E(`)(x)v
>
(`) = ` ·E(x)v>, it follows that this equals

` ·
minx∈Fn2 |E(x)v> − µ|

‖v‖∞
= `d,

and thus the relative distance is `d/`m = d/m.

Therefore, by applying the `-replication code E(x) = x(`),
one can obtain robustness but not increase the relative distance.
Moreover, since computing the aforementioned δ is NP-hard,
explicit robustness guarantees are hard to come by.

B. Robustness from the Fourier spectrum

Recall that every function f : Fn2 → R (and in particular,
every neuron τ) can be written as a linear combination f(x) =∑
S⊆[n] f̂(S)χS(x), where χS(x) ,

∏
s∈S xs and f̂(S) =

ExχS(x)f(x) for every S ⊆ [n]. The vector f̂ , (f̂(S))S⊆[n]
is called the Fourier spectrum of f , and if f is Boolean
then ‖f̂‖2 = 1. We denote by f̂∅ the vector f̂ with its ∅-
entry omitted, i.e., f̂∅ , (f̂(S))S⊆[n],S6=∅. We refer to the
following solution as the Fourier solution.

Lemma 4. For a neuron τ , the coded neuron τ ′(E(x)) ,
sign(

∑
S⊆[n] τ̂(S)χS(x)) has minimum distance ‖τ̂∅‖−1∞ .

Proof. Notice that τ ′ is defined by the encoding func-
tion E : Fn2 → F2n−1

2 such that E(x) = (χS(x))S⊆[n],S6=∅,
known as the punctured Hadamard encoder. In addition,
the respective halfspace is H = H(τ̂∅,−τ̂(∅)) , {y ∈
F2n−1
2 |

∑
S6=∅ yS τ̂(S) + τ̂(∅) = 0}, where the coordinates

of R2n−1 are indexed by all nonempty subsets of [n]. To find
the minimum distance of the Fourier solution, we compute

d1(E(Fn2),H) =
minx∈Fn2 |τ̂∅ · E(x) + τ̂(∅)|

‖τ̂∅‖∞

=
minx∈Fn2 |

∑
S⊆[n] τ̂(S)χS(x)|
‖τ̂∅‖∞

= ‖τ̂∅‖−1∞ ,

where the last equality follows since τ(x) =∑
S⊆[n] τ̂(S)χS(x) ∈ {±1}.

The relative distance of this solution is ‖τ̂∅‖−1∞ /(2n − 1),
and notice that unlike replication (Subsection III-A), it does
not depend on the particular way in which τ is given. However,
this solution involves exponentially many redundant bits, and
is therefore impractical.

IV. ROBUSTNESS FROM THE PARITY CODE

The discussion in this section applies to DNNs that employ
binary neurons, i.e., neurons in which w ∈ Fn2 . This family
of DNNs includes, as a strict subset, the recently popularized
binarized neural networks [5]. Later on, we generalize the
solution to all neurons, and show its superiority over replica-
tion in cases where ‖w‖1 is bounded. Specifically, we show
that the parity code attains relative distance 2/(n+ 1), which
outperforms replication.

We denote

U , {τ : Fn2 → F2|τ(x) = sign(xw> − θ) and w ∈ Fn2},

and since xw> ∈ {−n,−n + 2, . . . , n} for every x and w
in Fn2 , it follows that for every τ ∈ U one can round the
respective θ to the nearest value1 in {−n−1,−n+1, . . . , n+1}
without altering τ . Hence, we assume without loss of gener-
ality that all given θ’s are in {−n − 1,−n + 1, . . . , n + 1}.
With this choice of θ, any function f ∈ U has δ = 1, since

δ = d1(Fn2 ,H(w, θ)) =
minx∈Fn2 |xw

> − θ|
‖w‖∞

= min
x∈Fn2

|xw> − θ| = 1

by Lemma 1. Thus, replication achieves relative distance 1/n
(e.g., 2-replication achieves 1-robustness with m = 2n).

We also employ the following notations from Boolean
algebra. For x,w ∈ Rn let x ⊕ w denote their pointwise
product, which amounts to Boolean sum if both x and w are
in Fn2 . Further, for x ∈ Fn2 we let wH(x) be the number

1More precisely, if θ ∈ (−n+2t,−n+2t+2] for an integer 0 ≤ t ≤ n,
then θ is replaced by −n+2t+1. If θ ≤ −n it is replaced by −n− 1, and
if θ > n it is replaced by n+ 1.

of (−1)-entries in x, known as Hamming weight. The next
two lemmas, whose proofs will appear in future version
of this paper, demonstrate that functions in U depend only
on wH(x⊕w).

Lemma 5. For every x and w in Fn2 we have xw> = n −
2wH(x⊕w).

Lemma 6. For every τ ∈ U and every x ∈ Fn2 we have

τ(x) =

{
1 wH(x⊕w) ≤ n−θ−1

2

−1 wH(x⊕w) ≥ n−θ+1
2

.

In this section we let m = n+1 and define E : Fn2 → Fn+1
2

as the parity encoder E(x) = (x1, . . . , xn, χ[n](x)). Then, we
let θ′ , n−θ−1

2 , and define the parity solution (E,v, µ), where

v = (w1, . . . , wn, (−1)θ
′
χ[n](w)), and

µ = θ.

Lemma 7. The relative distance of the parity solution
is 2/(n+ 1).

Proof. We show that d1(E(Fn2),H) = 2, where H = H(v, θ).
Since ‖v‖∞ = 1, Lemma 1 implies that

d1(E(Fn2),H) = min
x∈Fn2

|E(x) · v> − θ|,

and hence it suffices to show that |E(x)v> − θ| ≥ 2 for
every x ∈ Fn2 and that the coded neuron always correctly
computes τ . Since χ[n](w) · χ[n](x) = χ[n](w ⊕ x) =
(−1)wH(w⊕x), Lemma 5 implies that

E(x)v> − θ = xw> + (−1)θ
′
χ[n](w) · χ[n](x)− θ (3)

= n− 2wH(x⊕w) + (−1)θ
′+wH(x⊕w) − θ,

and we distinguish between the next four cases.
Case 1: If wH(x⊕w) ≤ n−θ−1

2 − 1, then

(3) ≥ n− (n− θ − 1) + 2 + (−1)θ
′+wH(w⊕x) − θ

= 3 + (−1)θ
′+wH(w⊕x) ≥ 2.

Case 2: If wH(x⊕w) = n−θ−1
2 , then

(3) = n− (n− θ − 1) + (−1)θ
′−n−θ−1

2 − θ
= 1 + (−1)0 = 2.

Case 3: If wH(x⊕w) = n−θ+1
2 , then

(3) = n− (n− θ + 1) + (−1)θ
′+n−θ+1

2 − θ
= −1 + (−1)n−θ = −2,

where the last equality follows since n−θ is always odd.
Case 4: If wH(x⊕w) ≥ n−θ+1

2 + 1, then

(3) ≤ n− (n− θ + 1)− 2 + (−1)θ
′+wH(x⊕w) − θ

= −3 + (−1)θ
′+wH(x⊕w) ≤ −2.

Now, it follows from Lemma 6 and from the first two cases
that sign(E(x)v>−θ) = 1 whenever τ(x) = 1. Similarly, the

latter two cases imply that sign(E(x)v> − θ) = −1 when-
ever τ(x) = −1. Therefore, the coded neuron τ ′(E(x)) =
sign(E(x)v> − θ) correctly computes τ on all inputs with
minimum distance d = 2, and the claim follows.

By using the parity solution, one can attain 1-robustness,
i.e., robustness against any single (adversarial) erasure, by
adding only one bit of redundancy. In contrast, to attain 1-
robustness by using replication (Subsection III-A), one should
add n bits of redundancy. Moreover, it is readily verified that
due to Lemma 2, the suggested solution is optimal in terms
of the length m = n+ 1 among all 1-robust solutions.

Since the parity function E is universal to all binary neu-
rons, every DNN which comprises of binary neurons (and in
particular, binarized DNNs) can be made robust to adversarial
tampering in its input. Furthermore, to employ this technique
for error inside the DNN, one should add a single parity gate
in every layer (see Fig. 1e). If one wishes to construct DNNs
by only using neurons, a classic result by Muroga [11] shows
how to implement the parity function by using neurons.

A. Generalized parity for all neurons
The following generalizes the parity code, and requires

integer weights. Since every neurons has a representation
with only integer weights [13, Exercise. 5.1], it applies to
all neurons. However, superiority to replication in terms of
relative distance is guaranteed only if ‖w‖1 < 2n

δ − 1. The
proof will appear in future versions of this paper.

Theorem 2. The relative distance of the solution (Ew,v, θ)
is 2/(‖w‖1 + 1), where

v = (1w, (−1)θ
′
χ[‖w‖1](1w)),

1w = (sign(w1), . . . , sign(w1)︸ ︷︷ ︸
|w1| times

, . . . , sign(wn), . . . , sign(wn)︸ ︷︷ ︸
|wn| times

),

and

Ew(x) =

x1, . . . , x1︸ ︷︷ ︸
|w1| times

, . . . , xn, . . . , xn︸ ︷︷ ︸
|wn| times

,

n∏
i=1

xwi mod 2
i

 .

V. DISCUSSION AND FUTURE RESEARCH

In this paper we studied a novel approach for combating
noise in DNNs with error correcting codes, established basic
framework, and presented several solutions. This work can
be seen as an extension of the recently popularized coded
computation topic, which concerns computation over coded
data in distributed environments, into the realm of neural
computation. A plethora of questions remain widely open:

1) Extend the above framework to other activation func-
tions, and to sigmoid functions in particular.

2) Develop solutions with relative distance greater
than 2/(n+ 1) for binarized neurons.

3) Find other families of neurons for which robustness can
be guaranteed.

4) Extend Lemma 2 to other parameter regimes, i.e.,
establish fundamental trade-offs between the parame-
ters n,m, and d.

REFERENCES

[1] M. El-Mhamdi and R. Guerraoui, “When Neurons Fail,”
IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2017.

[2] Eykholt et al., “Robust physical-world attacks on deep
learning visual classification,” IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 1625–1634,
2018.

[3] I. Goodfellow, J. Shlens and C. Szegedy, “Explaining and
Harnessing Adversarial Examples,” International Confer-
ence on Learning Representations (ICLR), 2015.

[4] K. Guo, S. Han, S. Yao, Y. Wang, Y. Xie and H. Yang,
“Software-hardware Codesign for Efficient Neural Net-
work Acceleration”, IEEE Micro, vol. 37, no. 2, pp. 18–
25, 2017.

[5] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv and
Y. Bengio, “Binarized Neural Networks,” Proc. Neural
Information Processing Systems (NIPS), pp. 4107–4115,
2016

[6] H. Ito and T. Yagi, “Fault Tolerant Design using Error
Correcting Code for Multilayer Neural Networks,” IEEE
International Workshop on Defect and Fault Tolerance
in VLSI Systems, pp. 177–184, 1994.

[7] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu, “Towards Deep Learning Models Resistant
to Adversarial Attacks,” International Conference on
Learning Representations (ICLR), 2018.

[8] E. Melachrinoudis, “An analytical solution to the mini-
mum Lp-norm of a hyperplane,” Journal of Mathematical
Analysis and Applications, vol. 211, no. 1, pp. 172–189,
1997.

[9] S. Mertens, “The easiest hard problem: Number partition-
ing,” Computational Complexity and Statistical Physics,
vol. 125, no. 2, pp. 125–139, 2006.

[10] M. Mohammadi, A. Al-Fuqaha, S. Sorour and
M. Guizani, “Deep Learning for IoT Big Data and
Streaming Analytics: A Survey,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 4, pp. 2923–2960,
2018.

[11] S. Muroga, “The Principle of Majority Decision Logical
Elements and the Complexity of their Circuits,” IFIP
Congress, 1959.

[12] J. von-Neumann, “Probabilistic Logics and the Synthesis
of Reliable Organisms from Unreliable Components,”
Automata Studies, vol. 34, pp. 43–98, 1956.

[13] R. O’Donnell. Analysis of Boolean functions. Cambridge
University Press, 2014.

[14] D. S. Phatak and I. Koren, “Complete and Partial Fault
Tolerance of Feedforward Neural Nets,” IEEE Transac-
tions on Neural Networks, vol. 6, no. 2, pp. 446–456,
1995.

[15] A. Shamir, I. Safran, E. Ronen, and O. Dunkelman, “A
simple explanation for the existence of adversarial exam-
ples with small hamming distance,” arXiv:1901.10861,
2019.

[16] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Er-
han, I. Goodfellow and R. Fergus, “Intriguing Properties
of Neural Networks,” arXiv:1312.6199, 2013.

[17] C. Torres-Huitzil and B. Girau, “Fault and Error Tol-
erance in Neural Networks: A Review,” IEEE Access,
vol. 5, pp. 17322–17341, 2017.

	Introduction
	Preliminaries
	Framework and problem definition
	Robustness and the l1-metric

	A Few Elementary Solutions
	Robustness by replication
	Robustness from the Fourier spectrum

	Robustness from the Parity Code
	Generalized parity for all neurons

	Discussion and Future Research

