
Functional Error Correction for
Reliable Neural Networks

Kunping Huang
CSE Department

Texas A&M University
College Station, TX 77843

kun150kun@tamu.edu

Paul H. Siegel
ECE Department

University of California, San Diego
La Jolla, CA 92093
psiegel@ucsd.edu

Anxiao (Andrew) Jiang
CSE Department

Texas A&M University
College Station, TX 77843

ajiang@cse.tamu.edu

Abstract—When deep neural networks (DNNs) are imple-
mented in hardware, their weights need to be stored in memory
devices. As noise accumulates in the stored weights, the DNN’s
performance will degrade. This paper studies how to use error
correcting codes (ECCs) to protect the weights. Different from
classic error correction in data storage, the optimization objective
is to optimize the DNN’s performance after error correction,
instead of minimizing the Uncorrectable Bit Error Rate in the
protected bits. That is, by seeing the DNN as a function of
its input, the error correction scheme is function-oriented. A
main challenge is that a DNN often has millions to hundreds
of millions of weights, causing a large redundancy overhead for
ECCs, and the relationship between the weights and its DNN’s
performance can be highly complex. To address the challenge, we
propose a Selective Protection (SP) scheme, which chooses only
a subset of important bits for ECC protection. To find such bits
and achieve an optimized tradeoff between ECC’s redundancy
and DNN’s performance, we present an algorithm based on
deep reinforcement learning. Experimental results verify that
compared to the natural baseline scheme, the proposed algorithm
achieves substantially better performance for the functional error
correction task.

I. INTRODUCTION

Deep learning has become a boosting force for AI with
many applications. When a neural network is implemented in
hardware, its weights need to be stored in memory devices.
Noise in such devices will accumulate over time, degrading
the neural network’s performance [1], [4], [11], [15], [33]. It
is important to protect neural networks using error correction
schemes. In this work, we study how to use error correcting
codes (ECCs) to protect the weights of neural networks.

The protection of neural networks has a different opti-
mization objective from classic error correction in data stor-
age systems. In classic error correction, the objective is to
minimize the Uncorrectable Bit Error Rate (UBER) in the
protected bits. For neural networks, however, the objective is
to optimize its performance (e.g., classification accuracy). That
is, by seeing the neural network as a function of its input, the
error correction scheme is function-oriented.

Several challenges exist for the protection of neural net-
works. First of all, a deep neural network (DNN) often has
many weights. For example, DNNs in computer vision often
have millions to hundreds of millions of weights [13]. This
can cause a very large redundancy overhead for ECCs. So it
is important to design schemes that can reduce redundancy,
and achieve an optimized redundancy-performance tradeoff.

Secondly, the relationship between a neural network’s
weights and its performance is highly complex. The current
understanding on the relationship is very limited, and is an
active topic of research in many areas [10], [18]. Therefore, it
is challenging to design efficient algorithms that can identify
weights that are most important for preserving the performance
of neural networks.

In this paper, we propose a Selective Protection (SP)
scheme, which chooses only a subset of important bits for
ECC protection. Furthermore, for different layers of edges,
the sets of protected bits for their weights are different. To
optimize the scheme, we present an algorithm based on deep
reinforcement learning (DRL). The key of the algorithm is to
learn the complex relation between which bits to protect and
the network’s corresponding performance. (Note that the DRL
algorithm can be run before the neural network is implemented
in hardware devices. So the DRL algorithm itself is noiseless
because it is run in a noiseless environment such as a high-
end computer; but the neural network, after implemented in
hardware such as edge devices, will become increasingly noisy
over time in the harsher environments.)

Our algorithm can be evaluated based on the redundancy-
performance tradeoff as follows. Let ktotal denote the total
number of bits used to represent the neural network’s weights.
Let kpro denote the number of bits we protect with ECCs.
Let the ECCs be (n, k) linear codes, where n denotes the
codeword length and k denotes the number of information
bits. Then the number of parity-check bits is n−k

k · kpro. We
normalize it by ktotal, and call it redundancy r, namely,

r =
kpro(n− k)

ktotalk
. (1)

As for the performance of the neural network, for classification
tasks (which this work focuses on), it usually refers to the
classification accuracy, namely, the probability that the inputs
are classified correctly.

We compare the performance of our algorithm to a natural
baseline scheme, where all layers of the neural network receive
the same level of protection from ECCs. Experimental re-
sults verify that our proposed algorithm achieves substantially
better performance. For example, when the neural network
is ResNet-18 and its weights are represented by bits using
the IEEE-754 standard (i.e., the single-precision floating-point

format used in most hardware systems), and when the Bit
Error Rate (BER) is 1% and BCH codes are used, the baseline
scheme’s classification accuracy drops very quickly once its re-
dundancy r is below the threshold 0.0453. In comparison, our
algorithm can decrease the corresponding threshold to 0.0388,
which represents a reduction of 14.3% in the redundancy
requirement. If the ECC approaches the Shannon capacity, this
reduction can be further enlarged to 25.7%.

Fig. 1. A neural network with four node layers (an input layer, two hidden
layers and an output layer) and three edge layers. Here W1,W2,W3 are the
set of weights in each edge layer.

The topic explored in this paper is related to several research
areas. They include robustness of neural networks against
noise, where researchers study the effect of noise on the
performance of neural networks [2], [3], [5], [7], [8], [16],
[22], [24], [25], [26], [29], [30], [32]. In [25], Qin et al. studied
random bit errors for weights stored as bits, and developed an
ECC with one parity bit to improve the network’s performance
and robustness. In [30], Upadhyaya et al. studied random noise
for weights stored as analog numbers, and developed analog
ECCs to correct the analog noise. Note that different from
the above works, this paper proposes the Selective Protection
scheme for the first time, which protects different sets of bits
for different layers. Such a prioritized and non-uniform error
correction scheme can further optimize performance. The spirit
of this method has also been explored for a different topic [17],
where system resources are allocated non-uniformly to noisy
weak classifiers in a boosting classifier (e.g., AdaBoost) based
on their varied importance.

In the area of model compression, a lot of works have
focused on how to reduce the size of a neural network without
affecting its performance [10], [12], [23], [31]. They use
various techniques to either prune or quantize the weights
in neural networks, including deep reinforcement learning
techniques [12], [31], and the simplified networks need to be
retrained. Note that in our work, we search for important bits
and protect them, without the need to modify the weights or
retrain the network.

In the area of reliability of computational circuits, re-
searchers have studied the use of ECCs to ensure the cor-
rectness of circuits [6], [9], [28]. In comparison, our work
focuses on the redundancy-performance tradeoff, where the
neural network’s performance does not have to be the same
before and after ECC protection.

The rest of the paper is organized as follows. In Section II,
we introduce the SP scheme, and present its deep reinforce-
ment learning algorithm. In Section III, we evaluate the SP
scheme by experiments, which verify that the scheme can
substantially improve the redundancy-performance tradeoff for
neural networks. The results also show a very interesting dis-
covery that, depending on how weights are represented as bits,
the bits that are most important to protect are not necessarily
Most Significant Bits (MSBs) in the data representation. We
present a detailed analysis for this interesting phenomenon. In
Section IV, we present concluding remarks.

II. SELECTIVE PROTECTION SCHEME BY DEEP
REINFORCEMENT LEARNING

In this section, we present the Selective Protection (SP)
scheme for functional error correction. It protects the most
important bits in weights by ECC in order to achieve an
optimized redundancy-performance tradeoff. We first intro-
duce weight representation for neural networks, and define
the Selective Protection scheme. We then present a deep
reinforcement learning (DRL) algorithm for the SP scheme.

A. Weight Representation in Neural Networks

Neural networks have been used widely in deep learning. An
example of a neural network is shown in Figure 1, which has
four node layers and three edge layers between them. There
are different ways to represent weights in neural networks
as bits. We introduce two important weight representations
(both will be used in experiments): 1) the IEEE-754 Standard
Floating-Point Representation: IEEE-754 is an international
standard very widely used in hardware. We adopt its 32-bit
version. Given a weight w ∈ R, let B32

w = (b0, b1, · · · , b31)
be its binary representation: w = (−1)(b0)2×2(b1b2···b8)2−127×
(1.b9b10 · · · b31)2. Here b0 is the sign bit, b1b2 · · · b8 are the
exponent bits, and b9b10 · · · b31 are the fraction bits. 2) the
Fixed-Point Representation: in this representation, the weights
in a range [−c, c] are linearly quantized and represented as
bits. (Such a representation has been used in neural networks
before, including [31].) Consider its m-bit version. Let s =
c/(2m−1−1) be a scaling factor. Given a weight w ∈ [−c, c],
let Dm

w = (b0, b1, · · · , bm−1) be its binary representation:
w = (−1)(b0)2 × (b1b2 · · · bm−1)2 × s.

B. Selective Protection Scheme

We now present the Selective Protection (SP) scheme, which
selects important bits and protects them from errors with
ECCs. Consider a neural network with N edge layers. For
i = 1, 2, · · · , N , let Li denote the ith edge layer, and let Wi

denote the set of weights in Li. Assume that every weight is
represented by m bits. The SP scheme will select a bit-mask
vector

Mi = (µi,0, µi,1, · · · , µi,m−1) ∈ {0, 1}m

for each edge layer Li. For each weight w =
(b0, b1, · · · , bm−1) ∈ Wi, its jth bit bj will be protected by
ECC if µi,j = 1. Naturally, we let µi,j = 1 for the layer Li if

its bits in the jth position are critical for the neural network’s
performance.

The neural network has ktotal = m
∑N

i=1 |Wi| bits in
total. The number of bits protected by ECCs is kpro =∑N

i=1 |Wi|
∑m−1

j=0 µi,j . When the ECCs are (n, k) linear
codes, by Equation (1), the redundancy of the SP scheme is

r(M1,M2, · · · ,MN) =
(n− k)

∑N
i=1 |Wi|

∑m−1
j=0 µi,j

km
∑N

i=1 |Wi|

Let P(M1,M2, · · · ,MN) denote the performance of the
neural network (e.g. classification accuracy). Let r̄ be a
target redundancy. The optimization objective of the SP
scheme is to maximize P(M1,M2, · · · ,MN) given that
r(M1,M2, · · · ,MN) ≤ r̄.

C. Deep Reinforcement Learning for Selective Protection

We now present a deep reinforcement learning algorithm
for the SP scheme. We assume that the bits suffer from errors
of a Binary Symmetric Channel (BSC) with Bit Error Rate
(BER) p, and a suitable (n, k) linear ECC is used that can
correct errors of BER p with a probability that approaches 1.
Therefore, after error correction, only the bits not protected
by ECC will have errors. Note that for a neural network, its
performance is a highly complex function of its weights. The
DRL algorithm will learn this complex function, and choose
the important bits to protect accordingly.

In the following, we first present the essential components
of the DRL algorithm: its state space, action space, reward
function, and policy of agents. We then present the overall
learning process of the DRL algorithm. We focus on Con-
volutional Neural Networks (CNNs), a very important and
widely used family of DNNs. A CNN usually has two types of
layers: convolutional layers and fully-connected layers. Note
that a fully-connected layer can be seen as a special case of
a convolutional layer, where its convolutional kernel has the
same size as its input feature map. And the DRL algorithm can
be easily extended if other types of layers are also considered.

1) State Space: For i = 1, 2, · · · , N , let ciin (resp., ciout) be
the number of input (resp., output) channels for the ith layer Li

(i.e., the number of input or output feature maps). Let sikernel
be its kernel size (i.e. the size of its filter for the convolution
operation). Let sistride be its stride for convolution. Let sifeat
be the size of its input feature map (i.e., each input feature map
is a two-dimentional array of size sifeat × sifeat). Let ai ∈ A
be the most recent action taken by the agent for Li, where A
denotes the action space, whose details will be introduced later.
Let αi = (ciin, c

i
out, s

i
kernel, s

i
stride, s

i
feat, |Wi|, ai) denote a

state vector associated with Li. Then, the global state θ is
defined as θ = (α1, α2, · · · , αN). To simplify the learning
process, each layer Li will use a local state πi defined as:
πi = (ciin, c

i
out, s

i
kernel, s

i
stride, s

i
feat, |Wi|, ai−1). When i =

1, the parameter ai−1 = a0 can be a constant. Note that in πi,
only the action of its previous layer ai−1 is used, instead of
the actions of all its previous layers a1, a2, · · · , ai−1.

2) Action Space: We now present the space of actions for
the DRL algorithm. For i = 1, 2, · · · , N , the action of the ith
layer Li is to choose a value ai ∈ {0, 1}m for its bit-mask
vector Mi = (µi,0, µi,1, · · · , µi,m−1). The overall action is
the sequence of actions (a1, a2, · · · , aN). Note that in each
iteration of the DRL algorithm, the actions a1, a2, · · · , aN are
chosen sequentially. When the layer Li takes the action ai, it
chooses the value of ai (i.e., sets its bit-mask vector Mi) based
on its local state πi and the reward function (to be introduced).

Let the above method be called the BitMask method. For
comparison, we also study its simplified version: the TopBits
method, where each layer always chooses the first few bits of
its weights for ECC protection, although the number of bits
chosen by different layers can still be different. Intuitively,
TopBits is an excellent strategy because the MSBs of weights
are usually considered more important than LSBs. However,
our research will show the surprising result that it is not always
the case.

3) Reward Function: We now present the reward function
for the DRL algorithm. After each iteration of the DRL algo-
rithm (where the N layers take their actions (a1, a2, · · · , aN)
and set their bit-mask vectors (M1,M2, · · · ,MN) accord-
ingly), random bit errors of BER p are added to all bits
in the N layers (but note that some of them are chosen to
be protected by ECCs), and then the performance P (e.g.,
classification accuracy) of the neural network is measured.
The reward function is a linear combination of the current
performance P and redundancy r (or more specifically, how
far r deviates from the target redundancy r̄). Interested readers
can find details of the reward function in our full paper [14].

4) Policy of Agents and the Learning Process: In the DRL
algorithm, every layer Li has an agent Ai that takes the
action ai based on the local state πi and an estimated reward
function R̂. How the agent Ai chooses the action ai based on
the available information is called its policy. In this part, we
present the policy of the N agents A1, A2, · · · , AN .

We build four deep neural networks: an Actor Network, a
Target Actor Network, a Critic Network, and a Target Critic
Network. The four networks are illustrated in Figure 2. They
are all Multilayer Perceptron (MLP) neural networks of four
node layers, where the two hidden layers have size 400 and
300, respectively. Additional information on their architectures
is as follows:

• Actor Network and Target Actor Network: For both net-
works, the input is the local state πi, and the output is
the action ai. The two networks have similar functions,
but update their weights with different algorithms during
training.

• Critic Network and Target Critic Network: For both
networks, the input consists of the local state πi and
the action ai, and the output is an estimated value for
the summation of the current and the future rewards in
the same iteration (where future rewards are discounted
in certain ways). Specifically, let γ be a discount factor.
Then for t = 1, 2, · · · , N , the output of the two networks
is the value of the following Q function: Q(πt, at) =

Fig. 2. The four neural networks used in the DRL algorithm: the Actor
Network (top left), the Target Actor Network (bottom left), the Critic Network
(top right) and the Target Critic Network (bottom right).

∑N
i=t γ

i−tR̂(πi, ai) where R̂(πi, ai) is an estimation of
the real reward of this iteration. As before, the two
networks also have similar functions, but update their
weights differently during training.

The DRL algorithm keeps using the Actor Network to gen-
erate actions. In each iteration, the N agents A1, A2, · · · , AN

generate the actions a1, a2, · · · , aN sequentially. That is, for
i = 1, 2, · · · , N , the Actor Network takes πi as input, and
outputs the action ai. (Note that the Actor Network outputs
real numbers, and we round them to the nearest integers
to get the action ai.) After an iteration, the N local states
(π1, π2, · · · , πN), the N actions (a1, a2, · · · , aN) and the
overall reward R of the iteration are stored in a buffer. The
buffer has a fixed size. When new data come in, if the buffer
is full, the oldest data will be removed. Therefore, the buffer
always stores the most recent results.

After each iteration, a number of samples will be randomly
chosen from the buffer to train the four networks. Each
sample has the form of (πi, ai, πi+1, R). The four networks
update their weights as follows, using the idea of the DDPG
algorithm [21]:

• Step 1: train the Critic Network. As shown in Figure 2,
the Critic Network takes πi and ai as input, and outputs
a value Q(πi, ai). We also concatenate the Target Ac-
tor Network and the Target Critic Network (as shown
in Figure 2), and use πi+1 as input to generate the
output Qtarget(πi+1, a

target
i+1). The loss function of the

Critic Network is then set as Lcritic = (Q(πi, ai) −
γQtarget(πi+1, a

target
i+1)− (R−B))2, where the baseline

B is defined as an exponential moving average of all
previous rewards in order to reduce the variance of
gradient estimation. A small number of samples are used
as a mini-batch, and their total loss is used to update the
weights of the Critic Network via backpropagation.

• Step 2: train the Actor Network. We concatenate the
Actor Network and the Critic Network (as shown in
Figure 2), and use πi to generate the output Q(πi, ai).
The loss function is then set as Lactor = −Q(πi, ai).
Then the total loss of a mini-batch of such samples is

used to update the weights of the Actor Network via
backpropagation (with the weights of the Critic Network
frozen).

• Step 3: train the Target Actor Network. Let δ be a small
number, such as δ = 0.01. Let wtarget

actor be a weight of the
current Target Actor Network, and let wactor be the cor-
responding weight of the updated Actor Network. We up-
date wtarget

actor as: wtarget
actor ← wtarget

actor +δ(wactor−wtarget
actor).

We update all weights of the Target Actor Network in the
same way.

• Step 4: train the Target Critic Network. We update its
weights in the same way as we did with the Target Actor
Network, except that here we consider the Target Critic
Network and the Critic Network.

In summary, the Critic Network learns to predict the future
rewards given the current state and the action to be taken.
The Actor Network learns to take the best action based
on the future rewards predicted by the Critic Network. The
Target Critic Network (respectively, the Target Actor Network)
follows the learning of the Critic Network (respectively, the
Actor Network), except that it updates its weights at a slower
pace, which is a conservative method that helps the DRL
algorithm converge. The DRL algorithm ends when the four
networks’ performance converges or when a preset number of
training steps is reached.

III. EXPERIMENTAL EVALUATION AND ANALYSIS

In this section, we present experimental evaluation of the
Selected Protection scheme. We focus on two important deep
neural networks in computer vision: ResNet-18 [13] and
VGG16 [27]. (Both are widely used CNNs. ResNet-18 has 26
edge layers and 11.69 million weights. VGG16 has 16 edge
layers and 138 million weights.) We consider two well-known
datasets for image classification: the CIFAR-10 dataset [19]
and the MNIST dataset [20]. We use two important data
representation schemes for the weights: the IEEE-754 floating-
point representation, and the fixed-point representation. We
explore two types of error correcting codes: an ideal ECC
that reaches the Shannon capacity, and a practical finite-length
BCH code. (When the BSC has BER p, the ideal ECC have
a code rate of 1 − H(p), matching the channel’s capacity.
We use the code to protect all the selected important bits,
and assume that decoding always succeeds. The practical
finite-length BCH code is chosen as a (8191, 6722) BCH
code when the IEEE-754 floating-point representation is used,
which can correct 115 errors, and as a (8191, 6787) BCH
code when the fixed-point representation is used, which can
correct 110 errors. When p = 0.01, a practical BER for storage
systems, both codes can decode with sufficiently small failure
probabilities, thus causing minimal degradation for the neural
network’s performance.) We study the performance of two
methods for the SP scheme – the BitMask method and the
TopBits method – and compare them to a baseline method,
which simplifies TopBits by protecting the same number of bits
for all layers. Given a solution of the SP scheme, we generate
random errors 100 times for all the weights, and evaluate

the neural network’s average performance (i.e. classification
accuracy). The performance was found to be stable over
different experiments.

The experimental results for the redundancy-performance
tradeoff are shown in Figure 3 and Figure 4. Both are for BER
p = 0.01. The figures show that once the redundancy drops
below a certain threshold, the performance drops sharply. It
can be seen clearly that, overall, both the BitMask method
and the TopBits method significantly outperform the baseline
method. It can also be seen that when the IEEE-754 represen-
tation is used, the BitMask method outperforms the TopBits
method substantially overall. (When the fixed-point represen-
tation is used, the two become more comparable, with TopBits
sometimes outperforming.) It is a very interesting observation
because the TopBits method always chooses the first few bits
of each weight, which are usually considered more significant
than the remaining bits. It implies that the BitMask method
can find less significant bits (LSBs) that are more important
than MSBs for a DNN’s overall performance. (Some typical
examples of the bits selected by BitMask are illustrated in
Fig. 5.) In the following, we analyze this surprising result.

Fig. 3. The redundancy-performance tradeoff for the SP scheme when ideal
ECC is used. Here “baseline”, “TopBits” and “BitMask” denote the baseline
algorithm (where all layers protect the same set of bits), the TopBits method
and the BitMask method, respectively. (a) The neural network is ResNet-
18, the dataset is CIFAR-10, and the data representation scheme is IEEE-
754. (b) The neural network is VGG16, the dataset is MNIST, and the data
representation scheme is IEEE-754. (c) The neural network is ResNet-18, the
dataset is CIFAR-10, and the data representation scheme is fixed-point. (d) The
neural network is VGG16, the dataset is MNIST, and the data representation
scheme is fixed-point.

We discover that two major factors determine the impor-
tance of bits. First, 0-to-1 errors and 1-to-0 errors have an
asymmetric impact on the DNN’s performance. For example,
consider a 0-to-1 error that changes an exponent bit bi from
0 to 1 in the IEEE-754 representation. It will change the
weight w to w0−to−1 = 22

8−i × w. Instead, with a 1-to-0
error that changes bi from 1 to 0, the weight w will change
to w1−to−0 = 2−28−i × w. Since each neuron takes a linear
combination of its incoming values before passing it to an

Fig. 4. The redundancy-performance tradeoff for the SP scheme when BCH
codes are used. (a) The neural network is ResNet-18, the dataset is CIFAR-10,
and the data representation scheme is IEEE-754. (b) The neural network is
VGG16, the dataset is MNIST, and the data representation scheme is IEEE-
754. (c) The neural network is ResNet-18, the dataset is CIFAR-10, and the
data representation scheme is fixed-point. (d) The neural network is VGG16,
the dataset is MNIST, and the data representation scheme is fixed-point.

Fig. 5. Typical examples of the bit-mask vector in some edge layers, with
the IEEE-754 floating-point representation and the BitMask method. Here the
neural network is ResNet-18, the dataset is CIFAR-10 and the ECC is the ideal
ECC. The positions of the selected bits for ECC protection correspond to the
1’s in the bit-mask vector (of the blue color). Notice that among the exponent
bits, some less significant bits are selected instead of more significant bits.

activation function, the absolute value of the weight plays an
important role in the function of the neuron. It is easy to see
that 0-to-1 errors can change weights much more significantly,
leading to a higher impact on DNN’s performance.

The second factor is that for large subsets of the weights,
their bits in the same bit position of the IEEE-754 representa-
tion can have a highly imbalanced probability distribution. The
bits in some positions are much more likely to be 1s, while in
some other positions, the bits are more likely 0s. The overall
importance of bits is affected by both factors substantially. For
a more detailed analysis, please refer to our full paper [14].

IV. CONCLUSIONS

The redundancy-performance tradeoff for noisy neural net-
works can be improved significantly by protecting bits non-
uniformly with ECCs. Two methods based on DRL, BitMask
and TopBits, are presented to optimize such a tradeoff.

ACKNOWLEDGMENT: This work was supported in part
by NSF Grant CCF-1718886.

REFERENCES

[1] Y. Cassuto, S. Kvatinsky and E. Yaakobi, “Write Sneak-Path Constraints
Avoiding Disturbs in Memristor Crossbar Arrays,” in Proc. IEEE Inter-
national Symposium on Information Theory (ISIT), 2016.

[2] S. Cavalieri and O. Mirabella, “A Novel Learning Algorithm which
Improves the Partial Fault Tolerance of Multilayer Neural Networks,”
in IEEE Transactions on Neural Networks, vol. 12, no. 1, pp. 91-106,
1999.

[3] P. Chandra and Y. Singh, “Fault Tolerance of Feedforward Artificial
Neural Networks – A Framework of Study,” in Proceedings of the IEEE
International Joint Conference on Neural Networks, vol. 1, pp. 489-494,
2003.

[4] Y. M. Chee, H. M. Kiah, A. Vardy, V. K. Vu and E. Yaakobi, “Coding
for Racetrack Memories,” in IEEE Transactions on Information Theory,
vol. 64, no. 11, pp. 7094-7112, 2018.

[5] C. T. Chiu, K. Mehrotra, K. M.Chilukuri and S. Rankat, “Training Tech-
niques to Obtain Fault-tolerant Neural Networks,” in IEEE International
Symposium on Fault-Tolerant Computing, pp. 360-369, 1994.

[6] V. Choudhary, E. Ledezma, R. Ayyanar and R. M. Button, “Fault Tolerant
Circuit Topology and Control Method for Input-series and Output-
parallel Modular DC-DC Converters,” in IEEE Transactions on Power
Electronics, vol. 23, no. 1, pp. 402-411, 2008.

[7] F. M. Dias and A. Antunes, “Fault Tolerance Improvement through Ar-
chitecture Change in Artificial Neural Networks,” in Proc. International
Symposium on Intelligence Computation and Applications, pp. 248-257,
2008.

[8] M. El-Mhamdi, R. Guerraoui and S. Rouault, “On the Robustness of a
Neural Network,” in Proc. IEEE 36th Symposium on Reliable Distributed
Systems(SRDS), pp. 84-93, 2017.

[9] A. Gal and M. Szegedy, “Fault Tolerant Circuits and Probabilistically
Checkable Proofs,” in Proc. 10th Annual IEEE Conference on Structure
in Complexity Theory, pp. 65-73, 1995.

[10] S. Han, H. Mao and W. Dally, “Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding,” arXiv preprint arXiv:1510.00149, 2015.

[11] A. Hareedy and R. Calderbank, “Asymmetric LOCO Codes: Constrained
Codes for Flash Memories,” in Proc. Annual Allerton Conference on Com-
munication, Control and Computing (Allerton), pp. 124-131, Monticello,
IL, 2019.

[12] Y. He and S. Han, “ADC: Automated Deep Compression and Acceler-
ation with Reinforcement Learning,” CoRR, abs/1802.03494, 2018.

[13] K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for Image
Recognition,” CoRR, abs/1512.03385, 2015.

[14] K. Huang, P. H. Siegel and A. Jiang, “Functional Error Correction
for Reliable Neural Networks,” available online at http :
//faculty.cse.tamu.edu/ajiang/Publications/FunctionEC.pdf .

[15] K. A. S. Immink, K. Cai and Jos H. Weber, “Dynamic Threshold
Detection Based on Pearson Distance Detection,” in IEEE Transactions
on Communications, vol. 66, no. 7, pp. 2958-2965, 2018.

[16] H. Ito and T. Yagi, “Fault Tolerant Design using Error Correcting Code
for Multilayer Neural Networks,” in Proc. IEEE International Workshop
on Defect and Fault Tolerance in VLSI Systems, pp. 177-184, 1994.

[17] Y. Kim, Y. Cassuto and L. R. Varshney, “Boosting Classifiers with Noisy
Inference,” available at https : //arxiv.org/pdf/1909.04766.pdf ,
2019.

[18] J. Kirkpatrick, R. Pascanu, N. C. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
D. Hassabis, C. Clopath, D. Kumaran and R. Hadsell, “Overcoming
Catastrophic Forgetting in Neural Networks,” CoRR, abs/1612.00796,
2016.

[19] A. Krizhevsky, G. Hinton, et al., “Learning Multiple Layers of Fea-
tures from Tiny Images,” Technical report, available online at https:
//www.cs.toronto.edu/k̃riz/learning-features-2009-TR.pdf, 2009.

[20] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based Learning
Applied to Document Recognition,” in Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, Nov. 1998.

[21] T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver and
D. Wierstra, “Continuous Control with Deep Reinforcement Learning,”
arXiv preprint at arXiv:1509.02971, 2015.

[22] Y. Liu, L. Wei, B. Luo and Q. Xu, “Fault Injection Attack on Deep Neu-
ral Network,” in Proc. IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pp. 131-138, Nov. 2017.

[23] J. Luo, J. Wu, and W. Lin, “Thinet: A Filter Level Pruning Method
for Deep Neural Network Compression,” in Proc. IEEE International
Conference on Computer Vision, pp. 5058-5066, 2017.

[24] V. Piuri, “Analysis of Fault Tolerance in Artificial Neural Networks,” in
Journal of Parallel and Distributed Computing, vol. 61, no. 1, pp. 18-48,
2001.

[25] M. Qin, C. Sun and D. Vucinic, “Robustness of Neural Networks Against
Storage Media Errors,” CoRR, abs/1709.06173, 2017.

[26] A. S. Rakin, Z. He and D. Fan, “Bit-Flip Attack: Crushing Neural Net-
work with Progressive Bit Search,” arXiv e-prints at arXiv:1903.12269,
March 2019.

[27] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-scale Image Recognition,” arXiv preprint at arXiv:1409.1556,
2014.

[28] C. E. Stroud, “Reliability of Majority Voting Based VLSI Fault-tolerant
Circuits,” in IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 2, no. 4, pp. 516-521, Dec. 1994.

[29] C. Torres-Huitzil and B. Girau, “Fault and Error Tolerance in Neural
Networks: A Review,” in IEEE Access, vol. 5, pp. 17322-17341, 2017.

[30] P. Upadhyaya, X. Yu, J. Mink, J. Cordero, P. Parmar and A. Jiang,
“Error Correction for Noisy Neural Networks,” Information Theory and
Its Applications (ITA) Workshop, Feb. 2019.

[31] K. Wang, Z. Liu, Y. Lin, J. Lin and S. Han, “HAQ: Hardware-aware
Automated Quantization,” CoRR, abs/1811.08886, 2018.

[32] N. Wei, S. Yang and S. Tong, “A Modified Learning Algorithm for
Improving the Fault Tolerance of BP Networks,” in Proc. International
Conference on Neural Networks (ICNN), vol. 1, pp. 247-252, 1996.

[33] Y. Yehezkeally and M. Schwartz, “Limited-magnitude Error-correcting
Gray Codes for Rank Modulation,” in IEEE Transactions on Information
Theory, vol. 63, no. 9, pp. 5774-5792, 2017.

