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Abstract— This paper presents a complete mathematical
model of an array of three oscillating water column (OWC)
wave energy converters (WECs) and the design of a direct
generator torque control strategy using a sliding mode
control (SMC) to maximize the output power of doubly-fed
induction generators (DFIGs) attached to bi-radial turbines
that are driven by the oscillating motion of the air inside the
OWC tubes. The performance of the proposed control
strategy is evaluated in irregular waves scenarios and
different angles of arrival of the wave front.
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I INTRODUCTION

CEAN waves are a promising untapped
renewable resource because, in comparison to other
renewable resources, ocean waves are dense in

power, relatively easy to predict, and have a low
variability [1]. These waves are typically found on the
western coasts of continents, and engineers are interested
in harvesting energy from these waves by deploying large
farms of wave energy converters off the coastline, similar
to wind turbine farms [2].

Most of the work in the field of wave energy conversion
has been done for different types of single wave energy
converters (WECs) [3-6], e.g. floating point absorbers (PAs)
and oscillating water columns (OWCs). Some research has
been done on the dynamic behavior of arrays of
uncontrolled WECs arranged in specific configurations
and the resulting changes in the wave field and absorbed
power have been described. Analyses by various
researchers have shown that an array configuration with
WECs does not necessarily result in the multiplication of
the energy of a single device by the total number of devices
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[7]. Furthermore, researchers in the field have suggested
that wave energy farms could be used to reduce and
equalize output fluctuations for a smooth supply of the
power grid [8]. Further advantages consist in reduced
costs for moorings, grid connections, and maintenance [9].

Our paper presents a hydrodynamic model of three
OWCs fully developed from scratch by our research group
and its collaborators. Namely, a model that takes into
account the frequency dependency of the converters, the
hydrodynamic interaction between the three WECs, the
effects of the nonlinear dynamical behavior of air inside
the chamber of vertical tail tube of the OWC WEC, the
dynamics of bi-radial turbine-generators attached to the
upper end of the OWC WECs, and the electrical dynamic
effects of synchronous DFIGs which transform the
mechanical energy delivered by the turbines into electrical
energy. In order to design the control algorithm, we cast
the 3-OWC WEC array dynamics into a nonlinear state
space model of order 21 and then design simple sliding
to force the error between the
synchronous rotational speed of the DFIG and the
rotational speed of the turbine to slide toward zero, in
order to achieve rotational speed tracking.

The proposed control strategy is evaluated in irregular
waves scenarios and for different angles of arrival of the
wave front by means of tests run in the
MATLAB/SIMULINK environment. The simulated results
provide a validation of the ability of the proposed sliding
mode control algorithm to increase the power output of
each OWC WEC device.

surfaces desired

1L HYDRODYNAMIC MODEL OF WEC ARRAY

Using the model presented in [10] in conjunction with
the work from [11], a floating OWC device can be
considered as a two-body system, a buoy and an
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imaginary rigid piston, which represents the internal free
surface and allows for the application of oscillating body
theory. The piston drives a highly efficient bi-radial
turbine, which operates while air is being compressed
upwards through the device during a positive heave
direction, and back downwards through the turbine
during a negative heave direction. In the case of large seas
that would damage the turbine, the model closes a stop
valve to stop any air flow.

As stated before, we consider three OWC devices in an
equilateral triangular array with each buoy moored
independently. The mooring configuration is illustrated in
Fig. 1, with each device having three mooring cables at an
angle S with the sea surface.

Fig. 1. (a) Triangular WEC array, (b) Side view, (c) Top view

For this model, small wave amplitudes and body
motions are assumed, thus allowing linear water wave
theory for the derivation of linear hydrodynamic
interactions. The OWC device is assumed to oscillate only
in the heave direction, z. If each buoy (b) and piston (p) are
assumed to only move in the heave direction z, then

T
Z=[Zb Zp] .

We simplify the number of forces acting on each buoy
and piston to the hydrostatic buoyancy force, the
hydrodynamic interaction force, the excitation force, the
radiation damping force, the mooring force, and the
induced generator force. The generic equation of motion
for a single-body system can be stated as

mi=F"+F° +F +F +F" +F" (1)

In [11], a time domain approach was used to derive the
dynamic equations for a single WEC and is expanded
upon in [12] to a 3 buoy array with three identical WECs.
Each buoy and piston will thus be denoted as bi and p. This
model also assumes a constant water depth d and a
clearance to the sea floor hi.

A. Description of Forces

As stated above, the OWC WEC is restricted to oscillate
in the heave (z) direction only. An extensive analysis of
each of the 6 forces is found in [12], and assuming linear
water wave theory, these forces are summarized below.

The hydrostatic buoyancy force is described by:

F'=-p, gs,z, )

b:

Fp" =-p,8S, z, 3)

where p, is the sea water density, g is the acceleration of
gravity, and S is the cross-sectional area.

The control input is the force resulting from the pressure
in the air chamber. This is a function of the displaced
volume of the OWC and the mass flow rate through the
turbine and can be manipulated by the generator torque.
The buoy and the piston forces are described by

F'=p,pS, @)
E'=-p,pS, ©)

where pa is the atmospheric pressure, and p , the
dimensionless relative pressure, is described by
*_ p i p at

: (6)
P,

The hydrodynamic interaction force F' incorporates the
added mass due to movements of all the bodies in water.
The concept of added mass considers additional forces if
an underwater body is accelerating or decelerating or if it
is surrounded by an unsteady flow. For the ith buoy in this
OWC heaving system, the hydrodynamic interaction force
is described by

F' = -(i(A;;/ ARVER )j )

j=1

F,' = —[Z\:(Afh Z, + A:p,ép, )j 8)
j=1

where 4 is the added mass of body i influenced by the

motion of body j at infinite frequency, and N is equal to 3
for a 3 WEC array.

The local excitation force F* is the force induced by the
waves and is obtained as a superposition of n wave-
frequency components. This force is described by

F =3, (0.60)dcos(0rg) O
F; = Zn:l“p’ (@,,0,) A4, cos(mt+4,) (10)

where T (0.,0) is the hydrodynamic excitation

coefficients at the radian per second wave frequency ®,,

A, is the amplitude of the wave, and ¢, is the phase of

each component which is a random variable governed by
a uniform distribution over [0,27) radians.

The radiation damping force F* includes the
interactions with the motions of other bodies. The forces of
body j on body i can be obtained with the knowledge of

the frequency dependent hydrodynamic radiation

damping coefficients B (®) . We obtain the impulse
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response function (IRF) of the radiation by applying the

inverse Fourier transform to By (w), i.e.

K,(1)= 2 [ B, (@)cos(an)da. (1)
==,

The convolution integral over the IRF and the body motion

leads to the radiation force F", taking into account all the
past and present events.

F' =-[ K, (t-0)z (7)dr (12)

All distinct IRFs converge to zero if the time is large
enough, wherefore the kernel K(#) can be approximated

with a sum of complex exponentials, as applied in [16], i.e.

Nv

Bt

K,0)=Y a,e" (13)

k=1
where N is the number of exponential functions and this
order of approximation varies for different body
combinations i, j, and @, and f, are the complex Prony

coefficients, which will be determined with the Prony
method. Substituting (13) into the convolution integral
(12), yields

N”
Ff==[Ya, e (t)dr
. (14)

t
0

N
Byt By (=0) .
= —Zame I e z (r)dr
k=1

Taking the derivative of (14) with respect to time gives

N

‘R Bt Byst ~Byat

F, :—Z( ez (ndr+a, e Zj(l‘)) (15)
k=1 N

F

ik

N,

F;I'R = _Z (ﬂng,/Rk + a;,',kZ. -)9 (16)
k=1

where the different F',k € {1--- N} will be introduced as

a separate state vector f :I:FR o F" :' to write the

ij.l ii.N,
change rate of the radiation force in a linear state space
representation, namely,

fljk = diag(ﬂ%l ﬂyw, ) . fijk + [aij,l ...a%N” ]T . Z‘j 17)

F' =ones(N,)- f". (18)

The term diag(-) denotes a square diagonal matrix with the
arguments as elements on its main diagonal, yielding the

dynamic matrix A;f . The term ones(-) denotes a vector with

ones of length of the argument resulting in the output

vector cf . The input vector b/,f consists of the Prony

coefficients « This state

amplitude ” space

representation has the velocity of the influencing body z,

as input, the single decaying exponential approximations

as elements of f as states and the superposition of those

vector entries as output E./.R . The order of the state space

depends on the order of the applied Prony method to
achieve the best fit to the IRF. To calculate the radiation
force on a body i we need to take all the bodies

jeib.b,,b,p,p,, p,} into account, i.e.
Fr=YF'=c [ (19)
j j

In the notation of the buoy and piston for the array of N =
3 devices this force can be stated as a sum of the individual
forces between each body and is defined as,

N Y,
R =Y+ ) =Dl i el 7)o
J= =

N N,
R R R R R R R
Fp, - Z (Fp,b, + Fpip/) - z (Cp,b, fp,b, + Cp,plfp,p, ) (21)
j=1 j=1

where c is a vector of ones of length N, and fis a single
decaying exponential approximation.

For the mooring force F " itis assumed that the whole
system movement is linear and variations in the mean
surface value are ignored. All mooring lines are attached
at the intersection from the free surface with the buoy at
the angle § which is assumed to be constant, due to the
higher length of the cables compared to the body
movement. The mooring forces are described by

EY =-3Ksin’(B)z, (22)
FY =0 (23)

where K is the spring coefficient of the cable, and f# is the

angle the mooring line is attached to the free surface.

B.  Biradial Turbine
In the work of [11], the air turbine chosen for the OWC
WEC is a biradial turbine. The dynamics of the air in the
chamber of this turbine are described by

y-1

*

. s ; 4 . .

p=——@+ ———({@ +) " m, (24)
I/c p atl/c

where V. (z bsZ p) is the air volume in cylindrical chamber

of WEC, p,, is the atmospheric air density. Furthermore,

m,=(1-P_)p, d? ®Q is the turbine mass flow rate,

p,, = P, max( p +1, l)w is the reference air density,
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c, ) ) i z, ) [ z, l
y =——=1.4 is the specific heat ratio of air, ' '
c, z, 2, .
L . . : P ,
D= — is the dimensionless air flow coefficient, Z, Zp, .
P8, Xpos = z s Xy = B X pes = | Pa 2% = Q, (33)
* P, P *
PuP . o ‘ ps Q,
Y= S is the dimensionless pressure head, z Z'p
Py p)
p inQ dt .
P1 . . . . —Zp . _sz _
n, = ——— is the turbine efficiency,
d’ oY . .
Pins If we let the control input be described as
d, diameter of turbine rotor, £ power delivered by u=I7T T T P P P ] (34)
gl g2 g3 hssv,1 hssv,2 hssv,3

turbine and P,

hssv

is the position of the stop valve, open for
the equations of motion can now be expressed in a state

B =0 andclosed for B, =1. .
hssv S5V space representation as
The power of the turbine is defined as s
_ b, _ -
P=TQ=p ndo¥Q’ (25) i : X,
b,
X X
where Q is the speed of the turbine. Therefore, : z, ’
T, = p,ind oY, (26) S .
X, b X,
The generator-turbine dynamical equation for this model % z, ¥
can be described by b N "
JQ+BQ=T -T, 27) X, z, X,
')'C7 'b, xvel (1)
where | is the generator-turbine rotor moment of inertia, B % 5 % (2)
is the coefficient of viscous friction, T: is the turbine torque, A b ™
and Ty is the generator torque. X = X _|Z |_ X, )
Substituting (26) into (27), the rotational dynamics become, X, _ x,(4)
: 5 2 z, "
JQ+ BQ = pinﬂzdt DOYQ —T:g (28) )-C” ; xvd(s)
C. State Space Model iz 5 Z x,(6)
The state space model was developed in the work of [12]. X, p S
Substituting equations (2), (3), (4), (5), (7), (8), (9), (10), (20), X P, £,
14 D5
(21), (22), and (23), into equation (1), and using equations ' Pz »
(24) and (28) leads to the equations of motion of the system s . fl’v’
i,i=1,2,3 %, 1.”3 f,
. o) (35)
. * E M I R X7 . : fz,z
m,Z, = —pwng’Zb’ +pmSp’pi +Fb‘ +Fb, +Fb, +Fb‘ (29) ; Q, /
L"18 L 3 |
m: =-pgS,z, +p,S,p+F, +F +F'  (30) L Q, |
. -1
. 4 Mo .. T,
p= DT (D, <2, where [f,, f,, f,.] isequalto
0 Zb, _Zp, pat P; r ,-1 -
-7 ’71t, B
18x1 (31) ( ] ('xIJ + 1) -+ (xls + l)(x7 - xm ))
Let us introduce the state vector x € R . This vector (h,+x -x) p,S,
will consist of the vertical positions x  and velocities x _ ; ]

" b A T e 4D+, 41, - x,) | 36)
of all buoys and pistons, the dimensionless pressures x, (h,+x,-x) p,S, " " £
and the rotational kinetic energies x,, . This state vector . 71

. ' ( m, s - )
can be described as (s D7+ Crg + D0, —x,)
T _(ho + X, _xa) parSp’ |
x= I:xpos ‘xvel 'xpres xkin] (32)

where m, ; = f(x,,u,;) and
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o

1
7(:01'"[ (x16)2 dzsnt, O\, —u)

1
fia | = 7(/01';«2 (x17)2 dtsnt,q)i\yi —u,) (37
ft’3 1 2,5
7 (lom3 (x4)°d, un DY, —uy)
together with
Y, = f(x,,),P, = f(‘Pi),nti =f(¥,),ie{l,2,3}) and
finally
r » » » » » -1
M b, Ablbz Ablhl Abl », Ab, 7 Ab‘ », B . ]
A’:”l sz A: b, AZ 12 AZV: A: Py sz
. A:b, A:b; M’« A: 2 A’:’z A: Py F;rs
X, = . . . . .
N Ap b AP b, Ap b Mp Ap P. Ap Py FPI
A5 AT, AT, A M A F,
b, b, b, P P Paps
© w© o o © F
_Amh, AF,J’Q Amb} Am. AP;P: Mp; u &
Al N
(38)

with M =m, +A;,n €{b,b,,b,,p,p,, P},

-p.8S, »,S,
-p.8S,, p,S,
-p.8S,, r,S,
F= diag(xm) . + diag(xpm ) xlw) .
-p.8S, -r,S,
-p,8S,, -r,S,,
L —P.8S,, =75,
F’ F¢

[ 3Ksin’ Pz, W 1
3Ksinz(ﬂ)zhz 1
3Ksinz(,3)zh3 e

- +C °F
0 1
0 1
e
D —— —
F'A/ FR

and

Z”: [, (o )Acos(ot+¢)

k=1

ZF“ (w,)A cos(wt+¢,)

k=1

ZH: I (o)Acos(wt+4)

k=1

DT (@) Acos(wt+¢)

DT (@) Acos(@t+4,)

> T ()4.cos(wt+4,)

L k=1 .

(39

R R R R R
b, Cb, b be by bp, Cb. P b,p,
R R R R R R
¢, b, Cbzbl cbzb‘ b,p, Cbl P <, P
c R R R R c R
CR _ b.b, bb, b.b, b,p, b.p, b,p. (40)
- R R R R R
cp‘b. Cmbz P Cﬂ,b‘ PP, PPy
R R R R R R
szb, szb X pD, CP 2 Pyps
R R R R R R
_cpsb. psb, cﬂ.b, pipy psp, Cﬂ ps
[ /R R R R R R ]
/S I VA AR A
R R R R R R
/T R A A
R R R R R R
R /S A A S S
E = R R R R R R (4 1)
fl’\’ﬂ fl’,”: fp,b; fp,h. fﬂ.pg fﬂ.m
R R R R R R
fl’ b, ‘fpzbz fﬁlbg fpm fm P, pr P
R R R R R R
_fm fmhg fm'& f,, 7 fmz fmx _

The Schur product of the matrices responsible for the
radiation force F" are denoted by o . As previously

discussed, every entry of F" is a state vector itself. The

dynamics of the entries follow (17) and denote the time
derivative of every entry. This yields the matrix form of the
dynamics of this subsystem, namely,

T
vel
T
vel
T
“ R R R Ry xm
Fo=4°F +B° "| 42)
vel
T
vel
T
_'xvel -
where
R R R R R R
A A A A A A
h] b‘ b‘ IJ2 h‘ b3 h] i bl Py h‘ Py
R R R R R R
141]2})l 14Iu2/'72 Ah b, ‘4/'72 Py 14/)2 Py 14/)2 Py
R R R R R R
A A A A A A
R hxh‘ bzhz hsh3 ]J:p‘ ]J‘pz }73 Py
é = R R R R R R > (43)
A A A A A A
b, psb, 2L b, PP PPy
R R R R R R
A A A A A A
2] b, 28 PPy PP, Pyps
R R R R R R
A A A A A A
b, b, by PPy pip; PP
and



{FIRST_AUTHOR_SURNAME] et al.: {PAPER_TITLE}

S
=
>
=
>
=
S
=
S
=
S
=

bb, bb, bb, bp, bp, b,p,

S
>
S
=
S
5 S
S
=
S
>
S
>

b, b,b, b,b b,p, b,p, b,p,

S
>
S
>
S
xS
S
=
S
=
S
=

R b, bb, byb, b,p, b,p, b,p,

2 bRI b"‘r b’; O
pb, pb, pyby b, pp, PPy
R R R R R R
bplb, prlA bpzb, bpzp, bﬂ;pl bp;p,
' b b b BB

pib, pib, piby PP, PP, PPy

I1I. GENERATOR MODEL

To convert the mechanical power into electrical power,
we need to attach a generator to the air turbine. In this
work we use a doubly fed induction generator DFIG,
which is described by the following equations [13]:

. Lm .
i, = —qur (45)
L
lds = L_m(lms - ldr ) (46)
v, ~ T,
s 7
3p( Lii
Tg = _2P| ol = _kgiq)‘ (48)
4 L
3p(Li
kg _ 2P| Dl (49)
4 L
3Qri (i —i
o 2L (L) o
' 2L,
di
v,=ri, +o| L —-AQLi (51)
dt B

Vv = ’Ciqr +oL,

di Li
~+AQ | oLi, +—= (52)

" dt L
AQ =Q -Q (53)
2
o=1-—" (54)
LL

where L is the stator inductance, L is the rotor

inductance, L is the mutual inductance, Q_is the

synchronous speed, Q) is the generator rotor speed, 7 is

the rotor resistance, im is the stator magnetizing current, p

is the number of poles, . is the stator resistance, iqé is the
g-axis stator current, iq,- is the g-axis rotor current, i _ is
the d-axis stator current, i, is the d-axis rotor current, v,

is the g-axis stator voltage, v, is the d-axis rotor voltage,

and v _ is the g-axis rotor voltage.
o

IV. CONTROLLER DESIGN

Control of the generator electromagnetic torque, Tg ,

implies g-axis rotor current control (see (50)). Substituting
(50) into (28), yields
dQ B ,d’ DY
e O WP il Q' +—=i (55)
da J J J !
The turbine torque is defined by

T =pndd¥Q’ . (56)

J J

Q=-aQ+bi, +bi,. (57)

B K, T

Let a=—, b=—, and i, = ——, then (55) becomes
k
I4

Our goal here is to control the g-axis rotor current i in

such a way as to force the turbine speed to track the
synchronous speed of the DFIG.

A.Sliding Mode Control (SMC)

SMC is a robust control method that can handle sudden
and large changes to system dynamics. It has many
applications including DC/DC and AC/DC power
converters, AC and DC motors and generators, aircraft
and missile guidance and control, and robotic control.
SMC essentially uses discontinuous feedback control laws
to force the system state to reach and remain on a specified
surface. It requires the proper design of a sliding variable,
o(t), and once o(t) =0, it defines the sliding surface.

There is a two-step procedure for SMC design. The first
step includes designing a switching function so that the
system motion on the sliding surface satisfies the design
requirements. The second step includes the selection of a
control law which forces the system trajectory to the
sliding surface and remains there [18].

To design our SMC law, we begin by defining an error
signal equal to the difference between the actual rotational
speed of the turbine/generator Q(#) and the desired

rotational speed of the turbine/generator Q (1), that is to

say, e(t) = Q(t) - Q,(¢) . Then the acceleration error is given

by
é(t) = Q1) - Q, ()

. (58)
= —ae(t) —aQ, (1) +b[i, () +i, ()] -, )
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Our goal is to drive the error dynamics to zero at least
asymptotically in a short period of time. To do so, we select
a simple sliding surface described by

o(t) = se(t), (59)
where s is a design parameter. Once on the sliding surface,
o(t)=0 and

6 (1) = sé(t)
= —s[ae(t) + aQ, () - b[i (D +i, (O] + O, ()] (©0)
=0
Let 7; =T, then
5
(0 =200 o Gy
g
and
5
li,, (0] < max {pmm];ﬂ o (t)} . 62)
From [11],
¥ =k, (63)

Define the function &(¢,e) as

£(t, ¢) = max {p"""fliﬂ o (t)}

g

8/3 ~2
— d5 max{k‘!‘pinﬂlq) Q }
k

g

(64)

Assuming we can control the g-axis rotor current and we

only know the bounds of i _(7), let

C(te)=(B+Ete)|sh|)sgn(a(), B>0 (65
and
sbi, (1) = sae(t) + saQ (1) + st (t)—-<¢(t,e) (66)

or
. a a 1. 1
i,()=—e®)+—Q,()+—-Q,t)-—((t,e) (67)
b b b sb
where &(t,e) is such that |iﬁq (t)| <E&(t,e).

B. Stability of Sliding Mode Controlled System
Let the Lyapunov function be given by

V() =0.50()". (68)
Then
V(1) = o()o (1) (69)
and
& (1) = sbi,, (1) - Bsgn(c (1) - £(1,€) |sb| sgn(o (1))
= sbi, (1)~ (t,€) - 70
But,
sbi, (6) < |sb||i,, (0] <|sb| £(t.e). 71)
Thus,
o ()6 (1) = o(1) [ sbi,, (1) - £ (1,0)]
(72)

<|sb||o(t)| E(tie) - (DS (te)

Now,
a(t){(t,e) = Bo(t)sgn(o(t))+]|sb | o(t)sgn (o (1)) E(2,e)
=Blo@®)|+]|sbllo()]|S(t,e)

Hence,

V(t)=o(t)6(t) <—B|o(t)|<0,Ya(t) %0, (73)
which says that the error system is asymptotically stable
and thus the generator angular velocity follows the desired
angular velocity at least asymptotically.

V. PERFORMANCE EVALUATION

The control law ix(t) is implemented for an array of 3
Marmok buoy's that have a separation of 40 m using
MATLAB/SIMULINK. The parameters of this model are
found in the appendix. The simulation starts from a rest
position, namely all the initial conditions are equal to zero,
except for the rotational speed of the turbine which is set
to 950 rpm, as the turbines cannot start from rest. The
experiment starts at f = 50 s which is when the system
reaches a steady state, and ends after 5 minutes have
passed. Only the results of buoy 1 in the WEC system is
presented to discuss the results without overcrowding the
graphs with too much information. The WEC system is
subjected to incident waves which are irregular in nature.

In the work of [11] and [12], a physical generator was
not attached to the bi-radial turbine of the OWC WEC
model. However, an optimal theoretical torque control
(here called ideal) that maximizes mechanical power was
developed and is described by

T, =-0.00010°", (74)

We shall refer to this control as the ideal control law.

Figure 2 depicts the 3 buoy array configuration with a
range of wave incidence angles, §, between -60 degrees
and +60 degrees. During the design of the SMC controller,
Owas set to 60 degrees.

;?y

0

= Ay

Fig. 2. Range of wave incidence angle.

-

A. Buoy Motion and System Forces

The motion of buoy 1 can be seen in Fig. 3. When the buoy
is around its local minimum in its oscillation and the wave
is rising, a high excitation occurs and the buoy's movement
is amplified, as seen around ¢ =170 s. On the other hand, if
the buoy is around its local maximum and the wave is
falling, a destructive interference happens, which is seen
around f =210 s. The forces involved in the simulation are
depicted in Fig. 4. The restoring force is the largest force
and the control force is the one induced by the generator.
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Fig. 3. Buoy 1 motion in irregular waves.
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Fig. 4. Forces on buoy 1.

B. Ideal Control Law Performance

We first apply the ideal control law (74). Fig. 5 shows the
rotational speed of the turbine for buoy 1, where we can
see the speed ranges in value from 750 to 2250 rpm. The
average rotational speed is 1316 rpm. Fig. 6 shows the
generated power for buoy 1. The average power generated
using (74) for buoy 1 was 2.46 kW. One of the methods to
evaluate performance is to determine the efficiency of the
generator in converting the available turbine mechanical
power into electrical power. The average efficiency of the
generator for the ideal control law is 84.65%.

2500 T T T
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| 1316 [rpm]

2
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o
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Fig. 5. Buoy 1 rotational speed using ideal control law.
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Fig. 6. Buoy 1 generated power using ideal control law.

C. Proposed Sliding Mode Control Performance

Following the work of [20], the parameters for the DFIG
are listed on table 1

TABLE 1
DFIG PARAMETERS
p=2 Ln=7413H
Rs=0.0181Q L=0.13H
R,=0.0334 Q L=016H
B=0.01 N-m-s J=3.06 kg-m?

Although the SMC controller developed in this paper is
different that the SMC controller developed in the work of
[16], the parameters were first chosen based off the work
of [16] to achieve initial results. It is important to also note
that #,_ = 0. Thus, the SMC controller parameter S was set
to 30 and the parameter s was set to 0.1. Also using the
work of [17] as a guide, the parameter of i was set to 170

mH. Using rotational speed of the
uncontrolled system as a starting point, the desired
rotational speed Q4 was set to 1200 rpm.

While in the sliding mode, the state variables will

exhibit oscillations around the switching surface. In an

the average

ideal system, these oscillations would approach infinity
and the system would slide perfectly along the sliding
surface. However, due to imperfections such as delay,
these oscillations are of a finite nature and produce
chattering, where the system zigzags back and forth along
the sliding surface [14]. In the real world, chattering can
cause severe damage to mechanical systems. For example,
if a doubly-fed induction generator experiences chattering,
it can cause the coils in the generator to overheat [18].
Another example is mechanical flaps on aircraft wings
cannot move up and down with a high frequency without
breaking into pieces.

One possible solution to smooth out chattering is to
replace the discontinuous function sgn(c(t)) with a more
practical implementation. This can be realized using the
approximation,

o) (1+a|o()])
+lo@) |(1+alo@)])
where o is a design parameter which can be selected to
control (limit) the hard switching that is causing the
extreme chattering.

Using this implementation for sgn(c(f)) results in a
smoother control function, however it cannot provide

sgn(o (1)) = aeR" (75)

finite-time convergence of the sliding variable to zero in
the presence of external disturbances. This means that the
attenuation of chattering does cause a small loss in
robustness and accuracy, however this seems a reasonable
trade off in order to avoid complete destruction of a
mechanical system. In conclusion, the control law ix(t) now
has three design parameters, s, £, and a. Figs. 7 and 8 show
the simulation results of the control signal as well as the
achieved rotational speed when using the modified sign
function with a = 50. Fig. 9 shows the instantaneous
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generated power after applying our sliding mode control
signal. The average generated power is 6.24 kW, which is
slightly lower than that obtained when the ideal optimal
control [12] is applied (6.46 kW). This is may be due to the
fact that the design parameters have not yet been tuned to
maximize generator efficiency.

Although the power generated by the OWC WEC with
the generator mounted on the turbine using the proposed
sliding mode controller is slightly less than that generated
by the OWC WEC using the ideal controller, the average
efficiency of the former is higher than that of the latter,
namely, 91.97% versus 84.65%.

Buoy 1 Control Signal with Design Parameter ex = 50

)
-
— 15
=
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=
“ons
i
Q5 L i L L
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Fig. 7. g-axis rotor control current
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Fig. 8. Buoy 1 rotational speed
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Fig. 9. Buoy 1 instantaneous generated power

Figure 10 depicts the generator output power of buoy 1 for
varying wave incidence angles over the course of 5
minutes using the tuned SMC. We can see that the
generated power of buoy 1 decreases only slightly when it
is in the shadow of buoy 3.

Buoy 1 Generator Power for Varying Wave Incident Angles

60
200

150 0

-20
100 40

Time [s] 80 60 & (deg)

Fig. 10. Buoy 1 tuned SMC generator power at varying wave
incidence angles

VI. CONCLUSION

The SMC controller was successfully validated and
compared to an ideal theoretical controller. The results
showed that our controller increased the output power of
the generator of each WEC by about 100W. The design
parameters of each controller were further tuned for
different wave incidence angles, in order to optimize the
power output of each WEC for every wave excitation.

APPENDIX

Model Parameters

po=1025 kg/m?
pu=1.2041 kg/m?
y=14
d=5m
s=2m
s=10s
Sp=19.635 m?
Sp=6.2458 m?
K'=80000 N/m
B =60 degrees
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