
  

Abstract— This paper presents a complete mathematical 
model of an array of three oscillating water column (OWC) 
wave energy converters (WECs) and the design of a direct 
generator torque control strategy using a sliding mode 
control (SMC) to maximize the output power of doubly-fed 
induction generators (DFIGs) attached to bi-radial turbines 
that are driven by the oscillating motion of the air inside the 
OWC tubes. The performance of the proposed control 
strategy is evaluated in irregular waves scenarios and 
different angles of arrival of the wave front. 
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I. INTRODUCTION 

CEAN waves are a promising untapped 
renewable resource because, in comparison to other 
renewable resources, ocean waves are dense in 

power, relatively easy to predict, and have a low 
variability [1]. These waves are typically found on the 
western coasts of continents, and engineers are interested 
in harvesting energy from these waves by deploying large 
farms of wave energy converters off the coastline, similar 
to wind turbine farms [2]. 

Most of the work in the field of wave energy conversion 
has been done for different types of single wave energy 
converters (WECs) [3-6], e.g. floating point absorbers (PAs) 
and oscillating water columns (OWCs). Some research has 
been done on the dynamic behavior of arrays of 
uncontrolled WECs arranged in specific configurations 
and the resulting changes in the wave field and absorbed 
power have been described. Analyses by various 
researchers have shown that an array configuration with 
WECs does not necessarily result in the multiplication of 
the energy of a single device by the total number of devices 
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[7]. Furthermore, researchers in the field have suggested 
that wave energy farms could be used to reduce and 
equalize output fluctuations for a smooth supply of the 
power grid [8]. Further advantages consist in reduced 
costs for moorings, grid connections, and maintenance [9]. 

Our paper presents a hydrodynamic model of three 
OWCs fully developed from scratch by our research group 
and its collaborators. Namely, a model that takes into 
account the frequency dependency of the converters, the 
hydrodynamic interaction between the three WECs, the 
effects of the nonlinear dynamical behavior of air inside 
the chamber of vertical tail tube of the OWC WEC, the 
dynamics of bi-radial turbine-generators attached to the 
upper end of the OWC WECs, and the electrical dynamic 
effects of synchronous DFIGs which transform the 
mechanical energy delivered by the turbines into electrical 
energy. In order to design the control algorithm, we cast 
the 3-OWC WEC array dynamics into a nonlinear state 
space model of order 21 and then design simple sliding 
surfaces to force the error between the desired 
synchronous rotational speed of the DFIG and the 
rotational speed of the turbine to slide toward zero, in 
order to achieve rotational speed tracking. 

The proposed control strategy is evaluated in irregular 
waves scenarios and for different angles of arrival of the 
wave front by means of tests run in the 
MATLAB/SIMULINK environment. The simulated results 
provide a validation of the ability of the proposed sliding 
mode control algorithm to increase the power output of 
each OWC WEC device. 

II. HYDRODYNAMIC MODEL OF WEC ARRAY 

Using the model presented in [10] in conjunction with 
the work from [11], a floating OWC device can be 
considered as a two-body system, a buoy and an 
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imaginary rigid piston, which represents the internal free 
surface and allows for the application of oscillating body 
theory. The piston drives a highly efficient bi-radial 
turbine, which operates while air is being compressed 
upwards through the device during a positive heave 
direction, and back downwards through the turbine 
during a negative heave direction. In the case of large seas 
that would damage the turbine, the model closes a stop 
valve to stop any air flow. 

As stated before, we consider three OWC devices in an 
equilateral triangular array with each buoy moored 
independently. The mooring configuration is illustrated in 
Fig. 1, with each device having three mooring cables at an 
angle β  with the sea surface. 

 
Fig. 1.  (a) Triangular WEC array, (b) Side view, (c) Top view 
 
For this model, small wave amplitudes and body 

motions are assumed, thus allowing linear water wave 
theory for the derivation of linear hydrodynamic 
interactions. The OWC device is assumed to oscillate only 
in the heave direction, z. If each buoy (b) and piston (p) are 
assumed to only move in the heave direction z, then 

[ ]Tb pz z z= . 

We simplify the number of forces acting on each buoy 
and piston to the hydrostatic buoyancy force, the 
hydrodynamic interaction force, the excitation force, the 
radiation damping force, the mooring force, and the 
induced generator force. The generic equation of motion 
for a single-body system can be stated as 

H G E R MImz F F F + F F F= + + + +   (1) 

In [11], a time domain approach was used to derive the 
dynamic equations for a single WEC and is expanded 
upon in [12] to a 3 buoy array with three identical WECs. 
Each buoy and piston will thus be denoted as bi and pi. This 
model also assumes a constant water depth d and a 
clearance to the sea floor hi. 

A. Description of Forces 
As stated above, the OWC WEC is restricted to oscillate 

in the heave (z) direction only. An extensive analysis of 
each of the 6 forces is found in [12], and assuming linear 
water wave theory, these forces are summarized below. 

The hydrostatic buoyancy force is described by: 

i i i

H

b w b bF gS zρ= −   (2) 

i i i

H

p w p pF gS zρ= −   (3) 

where ρw  is the sea water density, g is the acceleration of 
gravity, and S is the cross-sectional area. 

The control input is the force resulting from the pressure 
in the air chamber. This is a function of the displaced 
volume of the OWC and the mass flow rate through the 
turbine and can be manipulated by the generator torque. 
The buoy and the piston forces are described by 

i i

G

b at i pF p p S∗=   (4) 

i i

G

p at i pF p p S∗= −   (5) 

where pat is the atmospheric pressure, and ip
∗ , the 

dimensionless relative pressure, is described by 

i at
i

at

p p
p

p
∗ −
=   (6) 

The hydrodynamic interaction force IF  incorporates the 
added mass due to movements of all the bodies in water. 
The concept of added mass considers additional forces if 
an underwater body is accelerating or decelerating or if it 
is surrounded by an unsteady flow. For the ith buoy in this 
OWC heaving system, the hydrodynamic interaction force 
is described by 

( )
1

i i j j i j j

N
I

b b b b b p p
j

F A z A z∞ ∞

=

= − +
 
 
 
∑     (7) 

( )
1

i i j j i j j

N
I

p p b b p p p
j

F A z A z∞ ∞

=

= − +
 
 
 
∑     (8) 

where ijA
∞  is the added mass of body i influenced by the 

motion of body j at infinite frequency, and N is equal to 3 
for a 3 WEC array. 

The local excitation force EF  is the force induced by the 
waves and is obtained as a superposition of n wave-
frequency components. This force is described by 

( ) ( )
1

, cos
i i

n
E

b b k k k k k
k

F A tω θ ω φ
=

= Γ +∑   (9) 

( ) ( )
1

, cos
i i

n
E

p p k k k k k
k

F A tω θ ω φ
=

= Γ +∑   (10) 

where ( , )
i k k
ω θΓ  is the hydrodynamic excitation 

coefficients at the radian per second wave frequency kω , 

kA  is the amplitude of the wave, and kφ  is the phase of 

each component which is a random variable governed by 
a uniform distribution over [0, 2 )π  radians. 

The radiation damping force RF  includes the 
interactions with the motions of other bodies. The forces of 
body j on body i can be obtained with the knowledge of 
the frequency dependent hydrodynamic radiation 
damping coefficients ( )ijB ω . We obtain the impulse 
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response function (IRF) of the radiation by applying the 
inverse Fourier transform to ( )ijB ω , i.e. 

0

2
( ) ( ) ( ) .ij ijK t B cos t dω ω ω

π

∞

= ∫   (11) 

The convolution integral over the IRF and the body motion 

leads to the radiation force RF , taking into account all the 
past and present events. 

0
( ) ( )

tR

ij ij jF K t z dτ τ τ= − −∫    (12) 

All distinct IRFs converge to zero if the time is large 
enough, wherefore the kernel ( )K t  can be approximated 
with a sum of complex exponentials, as applied in [16], i.e. 

,

,
1

( )
ij

ij k

N
t

ij ij k
k

K t eβα
=

= ∑ ,  (13) 

where ijN  is the number of exponential functions and this 

order of approximation varies for different body 
combinations i, j, and kα   and kβ  are the complex Prony 

coefficients, which will be determined with the Prony 
method. Substituting (13) into the convolution integral 
(12), yields 

,

, ,

( )

,0
1

( )

, 0
1

( )

( )

ij

ij k

ij

ij k ij k

N
t tR

ij ij k j
k

N
tt

ij k j
k

F e z d

e e z d

β τ

β β τ

α τ τ

α τ τ

−

=

−

=

= −

= −

∑∫

∑ ∫





.  (14) 

Taking the derivative of (14) with respect to time gives 

, , ,

,

, , ,
1

( ) ( )( )
ij

ij k ij k ij k

R
ij k

N
t t tR

ij ij k ij k j ij k j
k

F

F e z d e e z tβ β ββ α τ τ α −

=

= − +∑

 



 (15) 

1
, , ,( ),

ijN
R R

i i i
k

ij j k j k j k jF F zβ α
=

= − +∑

   (16) 

where the different , {1 }R

ij ijF k N∈   will be introduced as 

a separate state vector ,1 , ij

T
R RR

ij ij ij Nf F F=     to write the 

change rate of the radiation force in a linear state space 
representation, namely, 

,1 , ,1 ,

( )

diag( ) [ ]
ij ij

R R T
ij ij

R R T

ij ij ij N ij ij ij N j

A b

f f zβ β α α= ⋅ + ⋅


 

 

 (17) 

( )ones .
R
ij

R R

ij ij ij

c

F N f= ⋅


 (18) 

The term diag(⋅) denotes a square diagonal matrix with the 
arguments as elements on its main diagonal, yielding the 
dynamic matrix R

ijA . The term ones(⋅) denotes a vector with 

ones of length of the argument resulting in the output 

vector R

ijc . The input vector R

ijb  consists of the Prony 

amplitude coefficients ,ij kα . This state space 

representation has the velocity of the influencing body jz  

as input, the single decaying exponential approximations 
as elements of ijf  as states and the superposition of those 

vector entries as output R
ijF . The order of the state space 

depends on the order of the applied Prony method to 
achieve the best fit to the IRF. To calculate the radiation 
force on a body i we need to take all the bodies 

1 2 3 1 2 3{ , , , , , }j b b b p p p∈  into account, i.e. 

j j

R R R R
i ij ij ijF F c f= = ⋅∑ ∑ . (19) 

In the notation of the buoy and piston for the array of N = 
3 devices this force can be stated as a sum of the individual 
forces between each body and is defined as, 

1 1

( ) ( )b

i i j i j i j i j i j i j

NN

j j

R R R R R R R
b b b b p b b b b b p b pF F F c f c f

= =

= + = +∑ ∑  (20) 

1 1

( ) ( )b

i i j i j i j i j i j i j

NN

j j

R R R R R R R
p p b p p p b p b p p p pF F F c f c f

= =

= + = +∑ ∑  (21) 

where c is a vector of ones of length ijN  and f is a single 

decaying exponential approximation. 

For the mooring force MF , it is assumed that the whole 
system movement is linear and variations in the mean 
surface value are ignored. All mooring lines are attached 
at the intersection from the free surface with the buoy at 
the angle β which is assumed to be constant, due to the 
higher length of the cables compared to the body 
movement. The mooring forces are described by 

23 sin ( )
i

M
b biF K zβ= −  (22) 

0
i

M
pF =  (23) 

where K is the spring coefficient of the cable, and β  is the 
angle the mooring line is attached to the free surface. 

B. Biradial Turbine 
In the work of [11], the air turbine chosen for the OWC 
WEC is a biradial turbine. The dynamics of the air in the 
chamber of this turbine are described by 

* * *

1

( 1) ( 1)c t
c at c

p p V p m
V V

γ

γγ γ

ρ

−

= − + − +

   (24) 

where ( , )c b pV z z  is the air volume in cylindrical chamber 

of WEC, atρ  is the atmospheric air density. Furthermore, 
3(1 )t hssv in tm P dρ= − ΦΩ  is the turbine mass flow rate, 

* 1/( 1,1)in atmax p
γρ ρ= +  is the reference air density, 
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1.4p

v

c

c
γ = ≅  is the specific heat ratio of air, 

3
t

in t

m

dρ
Φ =

Ω



 is the dimensionless air flow coefficient, 

*

2 2
at

in t

p p

dρ
Ψ =

Ω
 is the dimensionless pressure head, 

5
t

t
in t

P

d
η

ρ
=

ΦΨ
 is the turbine efficiency, 

td  diameter of turbine rotor, tP  power delivered by 

turbine and hssvP  is the position of the stop valve, open for 

0hssvP =  and closed for 1hssvP = . 

The power of the turbine is defined as 
5 3

t t in t tP T dρ η= Ω = ΦΨΩ  (25) 

where Ω  is the speed of the turbine. Therefore, 
5 2 .t in t tT dρ η= ΦΨΩ  (26) 

The generator-turbine dynamical equation for this model 
can be described by 

t gJ B T TΩ + Ω = − , (27) 

where J is the generator-turbine rotor moment of inertia, B 
is the coefficient of viscous friction, Tt is the turbine torque, 
and Tg is the generator torque. 
Substituting (26) into (27), the rotational dynamics become, 

5 2
in t t gJ B d Tρ ηΩ + Ω = ΦΨΩ −  (28) 

C. State Space Model 
The state space model was developed in the work of [12]. 
Substituting equations (2), (3), (4), (5), (7), (8), (9), (10), (20), 
(21), (22), and (23), into equation (1), and using equations 
(24) and (28) leads to the equations of motion of the system 
, 1, 2, 3i i =   

 
*

ii i i ii ii i

M
b b w b b at p

E I R
bi b b bm z gS z p S p FF F Fρ= − + + + ++  (29) 

*

i i i i i i i iw at
E I R

p p p p p p pp im z F FgS z p p FSρ= − + + + +  (30) 
1

,* * *

0

( 1) ( 1)( )
i i

i i i

t i
i b p

b p at p

m
p p p z z

h z z S

γ

γγ

ρ

−
−

= + + + −
+ −

 
  
 



    

(31) 

Let us introduce the state vector 18 1xx∈ . This vector 
will consist of the vertical positions posx  and velocities velx  

of all buoys and pistons, the dimensionless pressures presx  

and the rotational kinetic energies kinx . This state vector 

can be described as 
T

pos vel pres kinx x x x x =    (32) 
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z
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z

z

z
p

z
x x p x

z
p

z

z

=

Ω

= = = Ω
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  
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  

   













 (33) 

If we let the control input be described as 

[ ],1 ,2 ,3 ,1 ,2 ,3g g g hssv hssv hssvT T T P P P=u  (34) 

the equations of motion can now be expressed in a state 
space representation as 
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where [ ],1 ,2 ,3

T

p p pf f f  is equal to 
1
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(36) 

where 15 3, ( , )i it i f x um + +=  and 
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together with 

12( ), ( ), ( ), {1, 2, 3})
ii i i i t if x f f iη+Ψ = Φ = Ψ = Ψ ∈  and 

finally 
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with 1 2 3 1 2 3, { , , , , , }n n nnM m A n b b b p p p∞= + ∈ , 
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and 
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The Schur product of the matrices responsible for the 

radiation force RF  are denoted by  . As previously 

discussed, every entry of RF  is a state vector itself. The 
dynamics of the entries follow (17) and denote the time 
derivative of every entry. This yields the matrix form of the 
dynamics of this subsystem, namely, 
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where 
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and 
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III. GENERATOR MODEL 

To convert the mechanical power into electrical power, 
we need to attach a generator to the air turbine. In this 
work we use a doubly fed induction generator DFIG, 
which is described by the following equations [13]: 
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s s∆Ω = Ω −Ω  (53) 

2

1 m

s r

L

L L
σ = −  (54) 

where sL  is the stator inductance, rL  is the rotor 

inductance, mL  is the mutual inductance, sΩ  is the 

synchronous speed, Ω  is the generator rotor speed, rr  is 

the rotor resistance, msi  is the stator magnetizing current, p 

is the  number of poles, sr  is the stator resistance, qsi  is the 

q-axis stator current, qri  is the q-axis rotor current, dsi  is 

the d-axis stator current, dri  is the d-axis rotor current, qsv  

is the q-axis stator voltage, drv  is the d-axis rotor voltage, 

and qrv  is the q-axis rotor voltage. 

IV. CONTROLLER DESIGN 

Control of the generator electromagnetic torque, gT , 

implies q-axis rotor current control (see (50)). Substituting 
(50) into (28), yields 

5
2 gin t

qr

kdd B
i

dt J J J

ρ η ΦΨΩ
= − Ω + Ω +  (55) 

The turbine torque is defined by 
5 2

t in tT dρ η≡ ΦΨΩ . (56) 

Let 
B

a
J

= , gkb
J

= , and t
eq

g

T
i

k
= , then (55) becomes 

eq qra bi bi= − Ω + +Ω . (57) 

Our goal here is to control the q-axis rotor current qri  in 

such a way as to force the turbine speed to track the 
synchronous speed of the DFIG. 

A. Sliding Mode Control (SMC) 
SMC is a robust control method that can handle sudden 

and large changes to system dynamics. It has many 
applications including DC/DC and AC/DC power 
converters, AC and DC motors and generators, aircraft 
and missile guidance and control, and robotic control. 
SMC essentially uses discontinuous feedback control laws 
to force the system state to reach and remain on a specified 
surface. It requires the proper design of a sliding variable, 

( )tσ , and once ( ) 0tσ = , it defines the sliding surface. 
There is a two-step procedure for SMC design. The first 

step includes designing a switching function so that the 
system motion on the sliding surface satisfies the design 
requirements. The second step includes the selection of a 
control law which forces the system trajectory to the 
sliding surface and remains there [18]. 

To design our SMC law, we begin by defining an error 
signal equal to the difference between the actual rotational 
speed of the turbine/generator ( )tΩ  and the desired 

rotational speed of the turbine/generator ( )
d
tΩ , that is to 

say, ( ) ( ) ( )de t t t= Ω − Ω . Then the acceleration error is given 

by 
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Our goal is to drive the error dynamics to zero at least 
asymptotically in a short period of time. To do so, we select 
a simple sliding surface described by 

( ) ( )t se tσ = ,  (59) 
where s is a design parameter. Once on the sliding surface, 

( ) 0tσ =  and 
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Let g tT T= , then 
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From [11], 
5/3kΨΨ = Φ  (63) 

Define the function ( , )t eξ  as 
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Assuming we can control the q-axis rotor current and we 
only know the bounds of ( )eqi t , let 

( ) ( )( , ) ( , ) sgn ( ) , 0t e t e sb tζ β ξ σ β≡ + >  (65) 

and 
( ) ( ) ( ) ( ) ( , )qr d dsbi t sae t sa t s t t eζ= + Ω + Ω −  (66) 

or 
1 1
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a a
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b b b sb
ζ= + Ω + Ω −  (67) 

where ( , )t eξ  is such that ( ) ( , )eqi t t eξ≤ . 

B. Stability of Sliding Mode Controlled System 
Let the Lyapunov function be given by 
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But, 
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Thus, 
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Now, 
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Hence, 
( ) ( ) ( ) | ( ) | 0, ( ) 0V t t t t tσ σ β σ σ= ≤ − < ∀ ≠

 , (73) 
which says that the error system is asymptotically stable 
and thus the generator angular velocity follows the desired 
angular velocity at least asymptotically. 

V. PERFORMANCE EVALUATION 

The control law iqr(t) is implemented for an array of 3 
Marmok buoy's that have a separation of 40 m using 
MATLAB/SIMULINK. The parameters of this model are 
found in the appendix. The simulation starts from a rest 
position, namely all the initial conditions are equal to zero, 
except for the rotational speed of the turbine which is set 
to 950 rpm, as the turbines cannot start from rest. The 
experiment starts at t = 50 s which is when the system 
reaches a steady state, and ends after 5 minutes have 
passed. Only the results of buoy 1 in the WEC system is 
presented to discuss the results without overcrowding the 
graphs with too much information. The WEC system is 
subjected to incident waves which are irregular in nature. 

In the work of [11] and [12], a physical generator was 
not attached to the bi-radial turbine of the OWC WEC 
model. However, an optimal theoretical torque control 
(here called ideal) that maximizes mechanical power was 
developed and is described by 

2.60.0001gT = − Ω , (74) 

We shall refer to this control as the ideal control law. 
Figure 2 depicts the 3 buoy array configuration with a 

range of wave incidence angles, θ, between -60 degrees 
and +60 degrees. During the design of the SMC controller, 
θ was set to 60 degrees. 

 
Fig. 2. Range of wave incidence angle. 

 

A. Buoy Motion and System Forces 
The motion of buoy 1 can be seen in Fig. 3. When the buoy 
is around its local minimum in its oscillation and the wave 
is rising, a high excitation occurs and the buoy's movement 
is amplified, as seen around t = 170 s. On the other hand, if 
the buoy is around its local maximum and the wave is 
falling, a destructive interference happens, which is seen 
around t = 210 s. The forces involved in the simulation are 
depicted in Fig. 4. The restoring force is the largest force 
and the control force is the one induced by the generator. 
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Fig. 3. Buoy 1 motion in irregular waves. 

 
 

 
Fig. 4. Forces on buoy 1. 

B. Ideal Control Law Performance 
We first apply the ideal control law (74). Fig. 5 shows the 
rotational speed of the turbine for buoy 1, where we can 
see the speed ranges in value from 750 to 2250 rpm. The 
average rotational speed is 1316 rpm. Fig. 6 shows the 
generated power for buoy 1. The average power generated 
using (74) for buoy 1 was 2.46 kW. One of the methods to 
evaluate performance is to determine the efficiency of the 
generator in converting the available turbine mechanical 
power into electrical power. The average efficiency of the 
generator for the ideal control law is 84.65%. 
 

 

 
Fig. 5. Buoy 1 rotational speed using ideal control law. 

 

 
Fig. 6. Buoy 1 generated power using ideal control law. 

C. Proposed Sliding Mode Control Performance 
Following the work of [20], the parameters for the DFIG 
are listed on table 1 
 

TABLE 1 
DFIG PARAMETERS 

p = 2 Lm = 7.413 H 
Rs = 0.0181 Ω Ls = 0.13 H 
Rr = 0.0334 Ω Lr = 0.16 H 

B = 0.01 N-m-s J = 3.06 kg-m2 
 

Although the SMC controller developed in this paper is 
different that the SMC controller developed in the work of 
[16], the parameters were first chosen based off the work 
of [16] to achieve initial results. It is important to also note 
that 0ru = . Thus, the SMC controller parameter β was set 

to 30 and the parameter s was set to 0.1. Also using the 
work of [17] as a guide, the parameter of msi  was set to 170 

mH. Using the average rotational speed of the 
uncontrolled system as a starting point, the desired 
rotational speed Ωd was set to 1200 rpm. 

While in the sliding mode, the state variables will 
exhibit oscillations around the switching surface. In an 
ideal system, these oscillations would approach infinity 
and the system would slide perfectly along the sliding 
surface. However, due to imperfections such as delay, 
these oscillations are of a finite nature and produce 
chattering, where the system zigzags back and forth along 
the sliding surface [14]. In the real world, chattering can 
cause severe damage to mechanical systems. For example, 
if a doubly-fed induction generator experiences chattering, 
it can cause the coils in the generator to overheat [18]. 
Another example is mechanical flaps on aircraft wings 
cannot move up and down with a high frequency without 
breaking into pieces. 

One possible solution to smooth out chattering is to 
replace the discontinuous function sgn(σ(t)) with a more 
practical implementation. This can be realized using the 
approximation, 

( )
( )

( ) 1 | ( ) |
sgn( ( )) ,

1 | ( ) | 1 | ( ) |

t t
t

t t

σ α σ
σ α

σ α σ
++

≅ ∈
+ +

  (75) 

where α is a design parameter which can be selected to 
control (limit) the hard switching that is causing the 
extreme chattering. 
Using this implementation for sgn(σ(t)) results in a 
smoother control function, however it cannot provide 
finite-time convergence of the sliding variable to zero in 
the presence of external disturbances. This means that the 
attenuation of chattering does cause a small loss in 
robustness and accuracy, however this seems a reasonable 
trade off in order to avoid complete destruction of a 
mechanical system. In conclusion, the control law iqr(t) now 
has three design parameters, s, β, and α. Figs. 7 and 8 show 
the simulation results of the control signal as well as the 
achieved rotational speed when using the modified sign 
function with α = 50. Fig. 9 shows the instantaneous 
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generated power after applying our sliding mode control 
signal. The average generated power is 6.24 kW, which is 
slightly lower than that obtained when the ideal optimal 
control [12] is applied (6.46 kW). This is may be due to the 
fact that the design parameters have not yet been tuned to 
maximize generator efficiency. 

Although the power generated by the OWC WEC with 
the generator mounted on the turbine using the proposed 
sliding mode controller is slightly less than that generated 
by the OWC WEC using the ideal controller, the average 
efficiency of the former is higher than that of the latter, 
namely, 91.97% versus 84.65%. 

 
 

 
Fig. 7. q-axis rotor control current 

 
 

 
Fig. 8. Buoy 1 rotational speed 

 
 

 
Fig. 9. Buoy 1 instantaneous generated power 

 
 
Figure 10 depicts the generator output power of buoy 1 for 
varying wave incidence angles over the course of 5 
minutes using the tuned SMC. We can see that the 
generated power of buoy 1 decreases only slightly when it 
is in the shadow of buoy 3. 
 

 
Fig. 10. Buoy 1 tuned SMC generator power at varying wave 
incidence angles 

VI. CONCLUSION 

The SMC controller was successfully validated and 
compared to an ideal theoretical controller. The results 
showed that our controller increased the output power of 
the generator of each WEC by about 100W. The design 
parameters of each controller were further tuned for 
different wave incidence angles, in order to optimize the 
power output of each WEC for every wave excitation. 

APPENDIX 
Model Parameters 
ρw = 1025 kg/m3 
ρat = 1.2041 kg/m3 

γ = 1.4 
d = .5 m 
Hs = 2 m 
Ts = 10 s 

Sb = 19.635 m2 
Sp = 6.2458 m2 
K = 80000 N/m 
β = 60 degrees 
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