
Model-Free Mean-Field Reinforcement Learning:
Mean-Field MDP and Mean-Field Q-Learning

René Carmona† Mathieu Laurière† Zongjun Tan†

Abstract

We develop a general reinforcement learning
framework for mean field control (MFC) prob-
lems. Such problems arise for instance as the
limit of collaborative multi-agent control prob-
lems when the number of agents is very large.
The asymptotic problem can be phrased as
the optimal control of a non-linear dynamics.
This can also be viewed as a Markov deci-
sion process (MDP) but the key difference
with the usual RL setup is that the dynam-
ics and the reward now depend on the state’s
probability distribution itself. Alternatively,
it can be recast as a MDP on the Wasserstein
space of measures. In this work, we introduce
generic model-free algorithms based on the
state-action value function at the mean field
level and we prove convergence for a prototyp-
ical Q-learning method. We then implement
an actor-critic method and report numerical
results on two archetypal problems: a finite
space model motivated by a cyber security
application and a continuous space model mo-
tivated by an application to swarm motion.

1 Introduction

Typical reinforcement learning (RL) applications in-
volve the search for a procedure to learn by trial and
error the optimal behavior so as to maximize a reward.
While similar in spirit to optimal control applications, a
key difference is that in the latter, the model is assumed
to be known to the controller. This is in contrast with
RL for which the environment has to be explored, and
the reward cannot be predicted with certainty. Still,
the RL paradigm has generated numerous theoretical

†Department of Operations Research and Financial Engi-
neering, Princeton University

developments and found plenty practical applications.
As a matter of fact, bidirectional links with the optimal
control literature have been unveiled as common tools
lie at the heart of many studies. Mean field control
(MFC), also called optimal control of McKean-Vlasov
(MKV) dynamics, is an extension of stochastic con-
trol which has recently attracted a surge of interest (see
e.g. [5, 11, 12]). From a theoretical standpoint, the main
peculiarity of this type of problems is that the transition
and reward functions not only involve the state and the
action of the controller, but also the distribution of the
state (and possibly of the control). Practically speaking,
these problems appear as the asymptotic limits for the
control of a large number of collaborative agents. They
can also be introduced as single agent problems whose
evolution and costs depend upon the distribution of her
state (and potentially of her control). Such problems
have found a wide range of applications in distributed
robotics, energy, drone fleet management, risk manage-
ment, finance, etc. Although they are bona fide control
problems for which a dynamic programming principle
can be formulated, they generally lead to Bellman equa-
tions on the infinite dimensional space of measures,
which are extremely difficult to solve ([6, 32, 35]). Fig-
ure 1 contains a schematic diagram of the relationships
between optimal control (i.e., planning with a model)
and how the paradigms of MFC and RL are combined
in mean-field reinforcement learning (MFRL).

OC
N→∞ /MKV

��

learning
// RL

N→∞ /MKV

��

MFC learning
// MFRL

Figure 1: Relationships between optimal control (OC),
mean-field control (MFC), reinforcement learning (RL) and
mean-field reinforcement learning (MFRL). Horizontal ar-
rows: extension in the direction of model-free learning. Ver-
tical arrows: generalization by letting the number of agents
grow to infinity or by controlling a MKV dynamics.

ar
X

iv
:1

91
0.

12
80

2v
1

 [m
at

h.
O

C
]

28
 O

ct
 2

01
9

MFQ-Learning 2

Main contributions. Our first contribution is con-
ceptual and consists in introducing a general framework
of MFC problems in discrete time, with infinite horizon,
discount and common noise. We argue that this setup,
which has not been covered in the classical literature on
MFC problems, is particularly relevant to develop a the-
ory of reinforcement learning for mean field problems.
We then rephrase the problem as a Markov decision
process (MDP) on the space of measures. This point of
view leads to the introduction of a state value function
and a state-action value function as well as their asso-
ciated Bellman equations on the Wasserstein space of
measures. Our second contribution is to propose two
model-free methods to learn an approximation of the
state-action value function by trial and error. The first
method relies on a discretization of the simplex and
a tabular version of Q-learning, for which we prove a
convergence result. The second method is based on an
actor-critic method (Deep Deterministic Policy Gradi-
ent). Last, our third contribution is to implement the
latter method and assess its convergence numerically.
Numerical tests are conducted on two prototypical ex-
amples drawn from the mean-field literature: a finite
state model motivated by a cyber security application
and a continuous state and action model motivated by
an application to swarm motion.

2 Mean Field Control

In this section, we keep the discussion at an informal
level in order to encompass both finite and continuous
state spaces. Specific methods and examples for each
setting are presented in Sections 3 and 4.

Definition of the problem. We denote by S
and A respectively the state space and the action
space. Typically, we have in mind the finite space
case where both are finite sets, say S = {1, . . . , |S|}
and A = {1, . . . , |A|}, or the continuous case, where
S = Rd and A = Rk. A generic discrete time, infinite
horizon, discounted mean field control (MFC) prob-
lem (or control of McKean-Vlasov dynamics) takes the
following form: Maximize over the control process (or
policy) π the reward functional

J(µ0, π) = E

[+∞∑
t=0

γtf(xπ,µ0
t , µπ,µ0

t , πt)
]

(1)

where the state process has initial distribution µ0 and
dynamics

P
(
xπ,µ0
t+1 ∈ · |x

π,µ0
t , µπ,µ0

t , πt, ε
0
t

)
= pxπ,µ0

t ,µ
π,µ0
t ,πt,ε0t

(·).
(2)

Here p : S × P(S) × A × S × E0 → R encodes the
transition. The mean-field nature of the model stems
from the presence of µπ,µ0

t = L(xπ,µ0
t |ε0) ∈ P(S), which

is the law of xπ,µ0
t conditioned on the realization of ε0

up to time t− 1, where (ε0t)t≥0 is a stochastic process
taking values in a set E0. For simplicity we assume
that the ε0t are i.i.d. They play the role of a so-called
common noise affecting the state transitions. Although
the presence of this noise is not necessary for the model
to be meaningful and we postpone the rigorous mathe-
matical framework to future work, we believe that its
presence is important for applications. Motivations and
examples for this type of noise are provided in the se-
quel. Randomness in the rewards as well as interactions
through the control’s distribution could also be handled,
but for the sake of simplicity of the presentation we
limit ourselves to a reward f which is a deterministic
function of (x, µ, a) ∈ S ×P(S)×A and to the interac-
tion through the conditional distribution of the state
only.
Remark 1. Note that J depends on µ0. Although this
dependence is usually omitted in the MFC literature, it
is important to remember that the solution of the MFC
problem changes if we let this initial distribution vary.

In the finite case, the above dynamics take the following
form, where we identify P(S) with the |S|-simplex de-
noted by S: for every (x, µ, a, s, e0) ∈ S×S×A×S×E0,
px,µ,a,e0(x′) corresponds to

P
(
xπ,µ0
t+1 = x′ | (xπ,µ0

t , µπ,µ0
t , πt, ε

0
t) = (x, µ, a, e0)

)
.

Such an evolution can be interpreted in terms of a
transition rate matrix, and the common noise can for
instance affect the coefficients of this matrix. In the
continuous case, (2) can come from a continuous time
model, for example a stochastic differential equation
of the McKean Vlasov type (MKV SDE) via an Euler
scheme [8], in which case:

xπ,µ0
t+1 = xπ,µ0

t + b(xπ,µ0
t , µπ,µ0

t , πt) + εt+1 + ε0t+1, (3)

where the random variables εt, ε0t , t ≥ 1 are independent
(e.g. with Gaussian distributions) and are interpreted as
sources of noise. This type of setting has been studied
in [16] with a linear dynamics and a quadratic cost.

R. Carmona, M. Laurière, Z. Tan 3

When there is no ambiguity from the context, we will
drop the superscripts π and µ0. Intuitively, (1) is
the limiting problem, as N grows to infinity, of the
following control problem for N agents: Maximize over
(π1, . . . , πN) the social average reward

JN (µ0, π
1, . . . , πN) = 1

N

N∑
i=1

E

[+∞∑
t=0

γtf(xit, µ̄Nt , πit)
]
,

where µ̄Nt =
∑N
j=1 δxjt

/N is the empirical distribution,
xi0 are i.i.d. with distribution µ0 and the dynamics are
P
(
xit+1 ∈ · |xit, µ̄Nt , πit, ε0t

)
= pxit,µ̄Nt ,πit,ε0t (·). Note that

the same ε0t appears in the transitions of all (xit)i=1,...,N .
In other words, the system is affected by two sources
of noise: one perturbs each state xi independently, and
one affects all the agents. The first noise is idiosyncratic
to each agent whereas the second one is common to the
whole population. This latter type of noise is impor-
tant in many applications, see e.g. [13, 2] for models of
systemic risk or energy management in the context of
mean field games. Since, in this N -agent problem, the
goal is to maximize JN , the problem can be interpreted
e.g. as a large collaborative game (i.e. a Pareto opti-
mum, rather than a Nash equilibrium as in mean field
games), or as the problem of a central planner trying
to find the best way to control a large group of robots.

Reformulation as an MDP on the Wasserstein
space of measures. We reformulate the MFC prob-
lem (1) as the optimal control of a Markov decision
process in which the state space is the space of mea-
sures, in the spirit of e.g. [23]. We restrict our attention
to controls which are stationary feedback functions of
(L(xt), xt), namely processes π for which there exists
a (deterministic) function a : P(S)× S → A such that
for all t

πt = a
(
L(xπ,µ0

t), xπ,µ0
t

)
.

In this situation, a typical agent takes her decision at
each time step based on only two pieces of information:
her current state and the distribution of the population’s
states. For such a and π, we will write J(a) instead
of J(π). We denote by A the set of such functions a
and it will sometimes be convenient to view them as
functions from P(S) to the set Ã = {ã : S → A}. The
initial MFC problem (1) can be recast as an optimal
control problem on the distribution flow, namely,

J(µ0, a) = E(ε0t)t≥0

+∞∑
t=0

γtf̃
(
µµ0,a
t , a(µµ0,a

t)
)

(4)

under the constraint: µµ0,a
t = L(xµ0,a

t |ε0), where xµ0,a

solves (2). Here f̃ : P(S)× Ã→ R is defined by

f̃(µ, ã) = Ex∼µ[f(x, µ, ã(x))],

and the evolution of the distribution is given by

µµ0,a
t+1 = Φa(µµ0,a

t ,·),ε0t (µµ0,a
t) (5)

where Φ : Ã×E0×P(S)→ P(S), (ã, e0, µ) 7→ Φã,e0(µ′),
formalizing the transition (2) in our new set of nota-
tions. Note that Φ depends (possibly in a non-linear
way) on the distribution at time t, in accordance with
the idea of MKV dynamics. If Φ is constant with re-
spect to the common noise, then the evolution of the
distribution is deterministic and the expectation sym-
bol in (4) is superfluous. To alleviate the presentation,
we sometimes omit the dependence on ε0 (since it is
now the only source of randomness) and see Φ as a
stochastic map from Ã× P(S) to P(S).

We are facing an MDP over the space P(S) of probabil-
ity measures on the underlying state S. Note that P(S)
is always continuous and infinite dimensional unless S
is finite. If S is finite, the distribution µt can be viewed
as a vector in R|S| whose dynamics can be written as

µµ0,a
t+1 = Pµ

µ0,a
t ,a(µµ0,a

t),ε0tµµ0,a
t , (6)

where Pµ
µ0,a
t ,a(µµ0,a

t),ε0t ∈ R|S|×|S| is the transition ma-
trix of the distribution, which can be interpreted in
terms of the transition rate matrix of a typical player.

Dynamic programming. Let V be the value func-
tion associated to the above problem (4), defined by:
for µ ∈ P(S),

V (µ) = sup
a∈A

E
+∞∑
t=0

γtf̃
(
µµ,at , a(µµ,at)

)
(7)

under the constraint: (µµ,at)t≥0 solves (5) with initial
condition µ. One can check, at least formally, that a
dynamic programming principle holds in the sense that
V solves the following Bellman equation:

V (µ) = sup
a∈A

{
f̃(µ, a(µ)) + γEV

(
Φa(µ)(µ)

)}
= sup

ã∈Ã

{
f̃(µ, ã) + γEV

(
Φã(µ)

)}
,

(8)

where the expectation is over the randomness of Φ,
which stems from the common noise.

MFQ-Learning 4

Moreover, under suitable conditions, we expect a verifi-
cation theorem to hold, namely, any function satisfying
the above Bellman equation (8) coincides with the value
function of the MFC problem: V (µ0) = supa∈A J(µ0, a)
for any initial distribution µ0, and the optimal control
is given by the maximizer in (8). The value function
and its connection to the so-called Master equation and
to the mean-field PDE system has been a very active
research direction in recent years, see e.g. [5, 11, 12].

3 Mean-Field Q-Learning

We now turn our attention to the question of learning
the solution of the MFC problem in a model-free setting,
i.e., assuming the model is unknown but one has access
to a simulator which can provide samples of trajectories
and rewards.

State-action value function. From now on, we
see the distribution as the state in P(S) and the action
taken by the central planner given this distribution
as an element of Ã. We then introduce the following
state-action value function Q : P(S)× Ã→ R defined,
for every (µ, ã) ∈ P(S)× Ã by

Q(µ, ã) = f̃(µ, ã) + γEmax
ã′∈Ã

Q
(
Φã(µ), ã′

)
, (9)

where we recall that we dropped ε0 from the notation in
the expectation and in Φ. Under suitable conditions, V
and Q are well defined and V (µ) = supãQ(µ, ã). Note
that finding one maximizer ãµ ∈ Ã for each µ ∈ P(S)
amounts to find a maximizer in A for (7).

In the rest of this section, we propose two model-free
algorithms relying on this state-action value function.
We first focus on the case where S and A are finite and
we explain later on how to adapt these techniques to
the case of continuous spaces.

First method: Tabular MFQ-learning with pro-
jection. Note that even when S is finite, µ ∈ P(S)
is an element of the |S|-simplex S, which is a continuous
space, and hence a tabular version of Q-learning can not
be applied directly. One possible workaround is to first
replace S by a finite subset Š and then project µt on
Š at each time step t, thus letting the mean-field term
take only a finite number of values. We can then ap-
proximate the function Q by a function Q̌ : Š× Ã→ R,
which can be represented by a matrix (or a “table”) in

R|Š|×|A||S| (since Ã is the set of functions from S to A).
We introduce the following “projected MFC problem”:
Maximize over ǎ ∈ Ǎ = {ǎ : Š× S → A}

J̌(µ0, ǎ) = E
+∞∑
t=0

γtf̃
(
µ̌µ0,ǎ
t , ǎ(µ̌µ0,ǎ

t)
)

(10)

under the constraint: µ̌µ0,ǎ
t+1 = Φ̌ǎ(µ̌µ0,ǎ

t),ε0t (µ̌µ0,ǎ
t), where

Φ̌ : Ã × ×E0Š → Š, (ã, e0, µ̌) 7→ ProjŠ
(

Φã,e0(µ̌)
)
.

This problem is still an optimal control problem of some
sequence of distributions, except that at each time step
the distribution is pushed forward by Φ̌ã = ProjŠ ◦ Φã
(instead of Φã) when using control ã. In this case, a
straightforward adaptation of the tabular Q-learning
algorithm leads to Algorithm 1. Note that, even in the
absence of common noise, this algorithm is possibly
stochastic since at each episode, the order in which the
state-action pairs are picked is potentially random. In
practice, the order could be fixed in advance or stem
from a sampled trajectory.

Algorithm 1: Mean-Field Q-learning (MFQ)
Data: A number of episodes Nepi; a sequence of

learning rates (αt)t=0,...,Nepi−1.
Result: An approximation of Q on Š× Ã.
begin

Initialize table Q̌0 ≡ 0 ∈ R|Š|×|A||S|

for episode t = 0, 1, . . . Nepi − 1 do
Set Q̌t+1 ← Q̌t

for (µ̌, ã) ∈ Š× Ã do
Execute action ã, observe µ̌′ = Φ̌ã(µ̌) and
reward f̃ = f̃(µ̌, ã)
Replace Q̌t+1(µ̌, ã) by

(1− αt(µ̌, ã))Q̌t(µ̌, ã)

+ αt(µ̌, ã)
(
f̃ + γmax

ã′∈Ã
Q̌t(µ̌′, ã′)

)

return Q̌Nepi

For this elementary algorithm, as a proof of concept
we provide a convergence result for the approximation
of the Q-function of the original MFC problem by the
table returned at the end of Algorithm 1. To this end,
in order to keep the paper at a reasonable length, we
will make the following simplifying assumptions.

R. Carmona, M. Laurière, Z. Tan 5

We endow the simplex S seen as a subset of R|S| with
the Euclidean distance denoted by dS.

(A1) Regularity of the data: f̃ is bounded and
Lipschitz continuous with respect to (µ, ã) with
constant Lf̃ and Φ is Lipschitz continuous with
respect to µ with constant LΦ, uniformly in ã in
expectation over the randomness of the common
noise, namely: for every ã ∈ Ã, µ1, µ2 ∈ S,

Ee0
[
dS

(
Φã,e

0
(µ1),Φã,e

0
(µ2)

)]
≤ LΦdS(µ1, µ2).

(A2) Regularity of the value function: V is Lip-
schitz continuous wrt µ with constant LV .

(A3) Simplex discretization: There exists εS > 0
s.t.: ∀µ ∈ S,∃µ̌ ∈ Š s.t. dS(µ, µ̌) ≤ εS .

(A4) Covering time: There exists a finite Tcov such
that with probability 1/2 (over the randomness
of the common noise and of Algorithm 1) the
following holds: For every starting point in Š×Ã,
every element of Š× Ã has been visited before
time Tcov during the execution of Algorithm 1.

(A5) Learning rates: There exists κ ∈ (1/2, 1) such
that for every (µ̌, ã) ∈ Š× Ã, αt(µ̌, ã) = 1/

(
1 +

n(µ̌, ã, t)
)κ for each t ≥ 0, where n(µ̌, ã, t) is the

number of times up to t that the pair (µ̌, ã) has
been visited in Algorithm 1.

The regularity of V in (A2) can typically be ensured
through suitable conditions on the data of the prob-
lem, as e.g. in [17, 9, 12], while to obtain (A3), one
can consider an εS-net as in [24]. Assumption (A4)
holds for instance either by using exploring starts (if the
learner can query an oracle which simulates transitions
from any (µ, ã)), or by following a long enough sam-
pled trajectory (provided some form of irreducibility or
ergodicity of the dynamics, ensuring full exploration).
Note that the boundedness of the running reward f̃
from Assumption (A1) together with the fact that
γ ∈ (0, 1) ensures the existence of a finite upper bound
V̌max for the value function of the projected MFC prob-
lem. We denote by β = (1 − γ)/2 the horizon of the
MDP corresponding to the projected MFC problem,
and for δ ∈ (0, 1), we let Tcov(δ) = dTcov log2(1/(2δ))e.
Theorem 2. Let δ ∈ (0, 1) and ε > 0. Under Assump-
tions (A1)–(A5), if the number of episodes Nepi is of

order

Ω


 (Tcov(δ))1+3κV̌ 2

max ln
(
|Š| |A||S|V̌max/(2δβε)

)
β2ε2


1
κ

+
(

(Tcov(δ))
β

ln
(
V̌max
ε

)) 1
1−κ
 ,

(11)

then with probability 1− δ, for all (µ, ã) ∈ S× Ã,

|Q̌Nepi(ProjŠ(µ), ã)−Q(µ, ã)| ≤ ε′,

where ε′ = ε+
[
γ(2−γ)

1−γ LV (1 + LΦ) + Lf̃

]
εS .

Note that ε can be chosen as small as desired provided
Nepi is large enough. The second term in the error ε′
is proportional to εS , which is somehow unavoidable in
general due to the projection on Š. However, this error
vanishes as εS → 0, i.e., as Š is better and better an
approximation of S.

The proof is deferred to Section C of the appendix. It
relies on the following three steps: (1) Since Nepi is
large enough, then Q̌Nepi ≈ Q̌ on Š× Ã; (2) Q̌ ≈ Q on
Š× Ã; (3) For every (µ, ã) ∈ S× Ã, Q(ProjŠ(µ), ã) ≈
Q(µ, ã). The first step relies on standard Q-learning
convergence results [19], while the two other steps stem
from the regularity assumptions and the approximation
of S by Š.

Let us now derive a consequence in terms of the control
function. We will use the following additional assump-
tion on the gap between the values of the best and
second-best actions, which is rather standard in approx-
imation algorithms based on tabular Q-functions [20, 4].

(B) Action gap: There exists KA > 0 such that:
For every µ̌ ∈ Š and ã ∈ Ã\ arg maxQ(µ̌, ·),
maxÃQ(µ̌, ·)−Q(µ̌, ã) ≥ KA.

For τ > 0 and x ∈ Rn, we use the notation

softmaxτ (x) = (eτx1 , . . . , eτxn)/
∑
j

eτxj ,

and

argmaxe(x) = (1i∈arg max(x))i=1,...,n/| arg max(x)|.

MFQ-Learning 6

Corollary 3. In the setting of Theorem 2, if in addition
Assumption (B) holds, then for every µ̌ ∈ Š,

‖softmaxτ
(
Q̌Nepi(µ̌, ·)

)
− argmaxe (Q(µ̌, ·)) ‖2

≤ τε′ + 2|Ã|e−τKA ,

where Q̌Nepi is the table returned by Algorithm 1 and ε′
is the error term appearing in Theorem 2.

The proof is deferred to Section C of the appendix. The
argmaxe in the second term is here in case there are
several optimal controls. The softmax regularizes the
best action predicted by the estimation Q̌Nepi of the
function Q.

Second method: DDPG for MFC. Although the
elementary structure of the above method allows us to
analyze it, one drawback is that it requires the compu-
tation of a projection on a discretization of the simplex
at each time step, which can be quite cumbersome and
computationally costly when the number of states in
S is large. For this reason, we propose a different RL
method based on an approximation of the Q-function by
neural networks which can deal with inputs and outputs
in continuous spaces. Still in the case of finite S and
A, since the state of distributions P(S) and the set of
actions AS are finite dimensional, we can try to approx-
imate the Q-function by a neural network taking inputs
in R|S|×|A||S| and outputting a real number. For the
learning procedure, we employ the Deep Deterministic
Policy Gradient (DDPG) proposed in [33]. It relies on
two neural networks, one for the Q-function (the critic)
and one for the policy (the actor). The heart of the
algorithm consists in updating alternatively the critic
by minimizing an empirical square error and the actor
by making one step of gradient descent. To improve
exploration, a Gaussian noise is added to the action
prescribed by the actor, and for more stability, target
networks are also added. The algorithm is summarized
in the appendix (see Algorithm 2).

Adaptation to continuous spaces. When the un-
derlying state space S is continuous, the distribution
µt is an element of the infinite-dimensional space P(S).
In order to develop a reinforcement learning method,
we thus need some kind of finite-dimensional approxi-
mation. Motivated by applications to physical models
such as swarm of robots or drones in which the under-
lying space S is in low dimension (typically S ⊂ Rd

with d = 1, 2 or 3), we propose to represent µt by a
histogram of its values at a finite number of points. In
other words, we consider a finite number Np of points
in S and let Mt ∈ RNp be a vector which approximates
µt. Similarly, an action a ∈ Ã can be approximated by
its values on the Np points chosen in S and can hence
be represented by a vector in RNp . The problem then
reduces to the finite-state case discussed above.

4 Numerical Examples

General setup. We present numerical results ob-
tained using the second method introduced above. We
assumed that the central planner has access to an oracle
which can simulate the evolution of Mt as discussed at
the end of the previous section. In the numerical im-
plementation, we provided the learning algorithm with
a black-box which computes transitions of Mt. This
oracle has been implemented using a finite-difference
scheme for Kolmorov-Fokker-Planck equations, in line
with recent research on numerical methods for mean
field games [1]. The actor and critic networks have
been implemented using a feedforward fully connected
architecture with 2 hidden layers of width less than
300 neurons. We used random initial states at each
episode, and the noise used on the action is a Gaussian
noise with mean 0 and variance 0.02. We used Adam
optimizer with initial learning rate 0.0001 and mini-
batches of size 16. For the sake of clarity and in order
to benchmark the aforementioned method, we provide
illustrations on examples without common noise but
analogous results can also be obtained in the presence
of a common noise.

Example 1: Cyber security model. For a first
testbed, we start with a finite state problem. We revisit
the cyber security example introduced in [28], but here
from the point of view of a central planner (such as a
large company or a state) trying to protect its comput-
ers against the attacks of a hacker. The situation can
hence be phrased as a mean field control problem.

In this model, the population consists of a large group
of computers which can be either defended (D) or un-
defended (U) and either infected (I) or susceptible (S)
of infection. The set S has hence four elements corre-
sponding to the four possible combinations: DI, DS, UI,
US. The action set is A = {0, 1}, where 0 is interpreted
as the fact that the central planner is satisfied with the

R. Carmona, M. Laurière, Z. Tan 7

current level of protection (D or U) of the computer
under consideration, whereas 1 means that she wants
to change this level of protection. In the latter case,
the update occurs at a (fixed) rate λ > 0. At each of
the four states, all the computers are indistinguishable
and hence the central planner only chooses one action
per state and applies it to all the computers at that
state. When infected, each computer may recover at
rate qDrec or qUrec depending on whether it is defended
or not. On the other hand, a computer may be in-
fected either directly by a hacker, at rate vHqDinf (resp.
vHq

U
inf) if it is defended (resp. undefended), or by unde-

fended infected computers, at rate βUUµ({UI}) (resp.
βUDµ({UI})) if it is undefended (resp. defended), or by
defended infected computers, at rate βDUµ({DI}) (resp.
βDDµ({DI})) if it is undefended (resp. defended).

The transition matrix from (6) is given by

Pµ,a =


. . . Pµ,aDS→DI λa 0
qDrec . . . 0 λa
λa 0 . . . Pµ,aUS→UI
0 λa qUrec . . .


where

Pµ,aDS→DI = vHq
D
inf + βDDµ({DI}) + βUDµ({UI}),

Pµ,aUS→UI = vHq
U
inf + βUUµ({UI}) + βDUµ({DI}),

and all the instances of . . . should be replaced by the
negative of the sum of the entries of the row in which
. . . appears on the diagonal. At each time step, the
central planner pays a protection cost kD > 0 for each
defended computer, and a penalty kI > 0 for each
infected computer. The total reward at time t is hence
f̃t = − [kDµt({DI,DS}) + kIµt({DI,UI})].

Although the underlying state space S is finite, in-
stead of using MFQ (see Algorithm 1), we use the sec-
ond method introduced above based on DDPG. In the
present case, this approach has the advantage to avoid
discretizing P(S) since we instead deal directly with
the distribution as a vector in dimension 4. The DDPG
method learns a control, that we then apply to the three
reference cases studied in [11, Section 7.2.3] (for the sake
of brevity, we do not reproduce here the values of the
parameters). The resulting distribution’s evolution are
shown in Figure 2. We can see that we recover the same
evolution for the three initial distributions considered,
namely (0.25, 0.25, 0.25, 0.25), (1, 0, 0, 0) and (0, 0, 0, 1).
In particular, at T = 10, we obtain in all three simu-
lations the distribution µ10 = (0.0, 0.0, 0.4376, 0.5624),

which is close to the values found in [11, Section 7.2] for
the stationary distribution, namely (0.0, 0.0, 0.44, 0.56).

Example 2: Swarm motion. We then turn our at-
tention to a model in continuous space. More precisely,
let us consider a model of swarm motion with aversion
to crowded regions introduced in [3] (in the context of
mean field games). Since here we simply want to provide
a proof of principle for our method, we take (as in the
aforementioned work) the interval [0, 1] with periodic
boundary condition (i.e. the unit torus) as the state
space S. The dynamics of a typical agent is driven by (3)
with b(x, µ, a) = a. In other words, the central planner
chooses the velocity of each agent. The instantaneous
reward (appearing in (1)) of a typical agent at location
x and using action a while the population’s state is
µ, is defined as f(x, µ, a) = − 1

2 |a|
2 + ϕ(x)− ln(µ(x)).

Here, the first term penalizes a large velocity (it can be
interpreted as a kind of cost proportional to the kinetic
energy of the agent), ϕ encodes a preference for certain
positions in space, and the last term models crowd aver-
sion since it penalizes the fact of being at a location
where the density of agents is high. By choosing

ϕ(x) = −2π2 [− sin(2πx) + | cos(2πx)|2
]

+ 2 sin(2πx),

we obtain a model for which, when εt have Gaus-
sian distribution and ε0 ≡ 0, the MFC admits an
explicit ergodic solution that we can use as a bench-
mark. Indeed, in this case the optimal ergodic control
is given by ã(x) = 2π cos(2πx) and the ergodic distribu-
tion of the corresponding MKV dynamics has density
µ(x) = e2 sin(2πx)/

∫
e2 sin(2πx′)dx′.

To implement the second RL method described above,
we discretize [0, 1] with a mesh of Np points and use
a finite difference scheme to simulate the evolution
of the dynamics. The DDPG method uses this as a
black-box and, for a given action ã ∈ RNp , can only
access the resulting new distribution and the associated
reward. Figure 3 presents results obtained using this
method after 3000 episodes. The system has been
trained on initial distributions which are Gaussian with
random mean and random variance. As illustrated in
the figures, the system has learnt how to drive this type
of initial distributions towards the analytical stationary
distribution and then how to use an approximation
of the stationary optimal control in order to keep the
system in the stationary regime.

MFQ-Learning 8

(a) Test 1 (b) Test 2 (c) Test 3

Figure 2: Cyber security example: Evolution of the distribution when applying the control learnt by DDPG.

(a) µt at several t (b) µt at several t

(c) Evolution of µt (d) Evolution of µt

(e) Control learnt (f) Control learnt

Figure 3: Swarm motion: Evolution of the distribution
and control learnt for two different initial distributions.

5 Conclusion and future research

In this work, we explored the central role played by
MKV dynamics in multi-agent RL. We developed a
framework and model-free methods to learn mean field
optimal control. As a proof of principle, we established
a rate of convergence for a Q-learning method and
our numerical tests assess empirical convergence of an
actor-critic method on examples from the literature.
An important feature of our model is the presence of
common noise, whose impact had to be controlled.

Our results can be extended in several directions. The
analysis and the numerical implementations could be
applied to other mean-field problems such as mean
field games or mean field control problems with several
populations, with important applications to multi-agent
sweeping and tracking. The proof of convergence of the
actor-critic method is also postponed for future work.
Last, it would be interesting to investigate other types
of simulators, such as Monte-Carlo simulators based on
samples of a finite population.

Related work. Our work is at the intersection of RL
and MFC. The latter has recently attracted a lot of at-
tention, particularly since the introduction of mean field
games (MFG) by Lasry and Lions [2006a, 2006b, 2007]
and by Caines, Huang and Malhamé [2006, 2007].
MFGs correspond to the asymptotic limit of Nash equi-
libria for games with mean field interactions. They
are defined through a fixed point procedure and hence,
differ both conceptually and numerically, from MFC
problems which correspond to social optima, see e.g.
[11] for details. Most works on learning in the pres-
ence of mean field interactions have focused on MFGs,
see e.g. [40, 10] for “learning” (or rather solving)
MFGs based on the full knowledge of the model, and
[27, 38, 39, 24, 34, 18, 37, 21] for RL based methods.

R. Carmona, M. Laurière, Z. Tan 9

In contrast, our work focuses on MFC problems. Along
these lines, we have studied policy gradient methods
for MFC in [16]. However, this work was restricted to
linear-quadratic models. While completing the present
work, we became aware of the very recent work [36],
which studies MFC with policy gradient methods too.
However, their work is restricted to finite state and ac-
tion spaces whereas we also consider continuous spaces.
Furthermore, we provide a rate of convergence (see
Theorem 2). We also stress that although some tools
are common, our work differs significantly from [24, 18]
because the latter works deal with a mean field game.
Their learning procedure is embedded in a fixed point
on the distribution and, for this reason, the Q-learning
step is only needed to solve a classical control problem
and not a mean field one. Here, the key novelty is that
our learning methods are designed for MDPs on the
space of measures. Last, we would also like to mention
that the first two authors have recently proposed ma-
chine learning methods for solving mean field control
problems and mean field games, see [14, 15]. These
methods are based on the knowledge of the model,
since one relies on it to compute gradients of the cost
functional and implement a stochastic gradient descent.
The present work can be viewed as an extension of these
methods, where one tries to be free from the model and
learn the solution by trial and error.

Acknowledgements

M.L. is grateful to Matthieu Geist and Julien Pérolat
for helpful discussions on the DDPG algorithm.

References
[1] Achdou, Y. and Capuzzo-Dolcetta, I. (2010). Mean

field games: numerical methods. SIAM J. Numer. Anal.,
48(3):1136–1162.

[2] Alasseur, C., Ben Tahar, I., and Matoussi, A. (2017).
An extended mean field game for storage in smart grids.
arXiv preprint arXiv:1710.08991.

[3] Almulla, N., Ferreira, R., and Gomes, D. (2017). Two
numerical approaches to stationary mean-field games.
Dyn. Games Appl., 7(4):657–682.

[4] Bellemare, M. G., Ostrovski, G., Guez, A., Thomas,
P. S., and Munos, R. (2016). Increasing the action gap:
New operators for reinforcement learning. In Thirtieth
AAAI Conference on Artificial Intelligence.

[5] Bensoussan, A., Frehse, J., and Yam, S. C. P. (2013).
Mean field games and mean field type control theory.
Springer Briefs in Mathematics. Springer, New York.

[6] Bensoussan, A., Frehse, J., and Yam, S. C. P. (2015).
The master equation in mean field theory. J. Math. Pures
Appl. (9), 103(6):1441–1474.

[7] Bertsekas, D. P. (2012). Dynamic programming and op-
timal control. Vol. II. Approximate dynamic programming.
Athena Scientific, Belmont, MA, fourth edition.

[8] Bossy, M. and Talay, D. (1997). A stochastic particle
method for the McKean-Vlasov and the Burgers equation.
Math. Comp., 66(217):157–192.

[9] Cardaliaguet, P., Delarue, F., Lasry, J.-M., and Lions,
P.-L. (2019). The master equation and the convergence
problem in mean field games, volume 201 of Annals of
Mathematics Studies. Princeton University Press, Prince-
ton, NJ.

[10] Cardaliaguet, P. and Hadikhanloo, S. (2017). Learning
in mean field games: the fictitious play. ESAIM: Control,
Optimisation and Calculus of Variations, 23(2):569–591.

[11] Carmona, R. and Delarue, F. (2018a). Probabilistic
theory of mean field games with applications. I, volume 83
of Probability Theory and Stochastic Modelling. Springer,
Cham. Mean field FBSDEs, control, and games.

[12] Carmona, R. and Delarue, F. (2018b). Probabilistic
theory of mean field games with applications. II, volume 84
of Probability Theory and Stochastic Modelling. Springer,
Cham. Mean field games with common noise and master
equations.

[13] Carmona, R., Fouque, J.-P., and Sun, L.-H. (2015).
Mean field games and systemic risk. Commun. Math.
Sci., 13(4):911–933.

[14] Carmona, R. and Laurière, M. (2019a). Convergence
analysis of machine learning algorithms for the numerical
solution of mean field control and games: I - the ergodic
case. arXiv preprint arXiv:1907.05980.

[15] Carmona, R. and Laurière, M. (2019b). Convergence
analysis of machine learning algorithms for the numerical
solution of mean field control and games: II - the finite
horizon case. arXiv preprint arXiv:1908.01613.

[16] Carmona, R., Laurière, M., and Tan, Z. (2019).
Linear-quadratic mean-field reinforcement learning: Con-
vergence of policy gradient methods. arXiv preprint
arXiv:1910.04295.

[17] Chassagneux, J.-F., Crisan, D., and Delarue, F.
(2014). A probabilistic approach to classical solutions
of the master equation for large population equilibria.
arXiv:1411.3009.

[18] Elie, R., Pérolat, J., Laurière, M., Geist, M., and
Pietquin, O. (2019). Approximate fictitious play for mean
field games. arXiv preprint arXiv:1907.02633.

[19] Even-Dar, E. and Mansour, Y. (2003). Learning rates
for Q-learning. J. Mach. Learn. Res., 5:1–25.

[20] Farahmand, A.-m. (2011). Action-gap phenomenon in
reinforcement learning. In Advances in Neural Informa-
tion Processing Systems, pages 172–180.

MFQ-Learning 10

[21] Fu, Z., Yang, Z., Chen, Y., and Wang, Z. (2019). Actor-
critic provably finds nash equilibria of linear-quadratic
mean-field games. arXiv preprint arXiv:1910.07498.

[22] Gao, B. and Pavel, L. (2017). On the properties of the
softmax function with application in game theory and
reinforcement learning. arXiv preprint arXiv:1704.00805.

[23] Gast, N., Gaujal, B., and Le Boudec, J.-Y. (2012).
Mean field for markov decision processes: from discrete
to continuous optimization. IEEE Transactions on Auto-
matic Control, 57(9):2266–2280.

[24] Guo, X., Hu, A., Xu, R., and Zhang, J. (2019). Learning
mean-field games. arXiv preprint arXiv:1901.09585.

[25] Huang, M., Caines, P. E., and Malhamé, R. P.
(2007). Large-population cost-coupled LQG problems
with nonuniform agents: individual-mass behavior and
decentralized ε-Nash equilibria. IEEE Trans. Automat.
Control, 52(9):1560–1571.

[26] Huang, M., Malhamé, R. P., and Caines, P. E. (2006).
Large population stochastic dynamic games: closed-loop
McKean-Vlasov systems and the Nash certainty equiva-
lence principle. Commun. Inf. Syst., 6(3):221–251.

[27] Iyer, K., Johari, R., and Sundararajan, M. (2014).
Mean field equilibria of dynamic auctions with learning.
Management Science, 60(12):2949–2970.

[28] Kolokoltsov, V. N. and Bensoussan, A. (2016). Mean-
field-game model for botnet defense in cyber-security.
Appl. Math. Optim., 74(3):669–692.

[29] Lasry, J.-M. and Lions, P.-L. (2006a). Jeux à champ
moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci.
Paris, 343(9):619–625.

[30] Lasry, J.-M. and Lions, P.-L. (2006b). Jeux à champ
moyen. II. Horizon fini et contrôle optimal. C. R. Math.
Acad. Sci. Paris, 343(10):679–684.

[31] Lasry, J.-M. and Lions, P.-L. (2007). Mean field games.
Jpn. J. Math., 2(1):229–260.

[32] Laurière, M. and Pironneau, O. (2016). Dynamic pro-
gramming for mean-field type control. J. Optim. Theory
Appl., 169(3):902–924.

[33] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N.,
Erez, T., Tassa, Y., Silver, D., and Wierstra, D. (2016).
Continuous control with deep reinforcement learning. In
Proceedings of the International Conference on Learning
Representations (ICLR 2016).

[34] Mguni, D., Jennings, J., and de Cote, E. M. (2018). De-
centralised learning in systems with many, many strategic
agents. In Thirty-Second AAAI Conference on Artificial
Intelligence.

[35] Pham, H. and Wei, X. (2017). Dynamic programming
for optimal control of stochastic McKean-Vlasov dynam-
ics. SIAM J. Control Optim., 55(2):1069–1101.

[36] Subramanian, J. and Mahajan, A. (2019). Reinforce-
ment learning in stationary mean-field games. In Pro-
ceedings. 18th International Conference on Autonomous
Agents and Multiagent Systems.

[37] Tiwari, N., Ghosh, A., and Aggarwal, V. (2019). Rein-
forcement learning for mean field game. arXiv preprint
arXiv:1905.13357.

[38] Yang, J., Ye, X., Trivedi, R., Xu, H., and Zha, H.
(2018a). Deep mean field games for learning optimal
behavior policy of large populations. In International
Conference on Learning Representations.

[39] Yang, Y., Luo, R., Li, M., Zhou, M., Zhang, W., and
Wang, J. (2018b). Mean field multi-agent reinforcement
learning. In International Conference on Machine Learn-
ing, pages 5567–5576.

[40] Yin, H., Mehta, P. G., Meyn, S. P., and Shanbhag, U. V.
(2013). Learning in mean-field games. IEEE Transactions
on Automatic Control, 59(3):629–644.

A Derivation of Bellman equation

Although the derivation of the Bellman equation (7) is
rather standard, see e.g. [7], we include it for the sake of
completeness.

To alleviate the presentation, we assume that the running
reward f is bounded by a constant Cf and we focus on sta-
tionary controls. To avoid measurability issues, we assume
that the set E0 is countable. More general settings could be
considered at the expense of technicalities which are beyond
the scope of the present work. We rewrite the value function
as

V (µ) = lim
n→+∞

sup
a∈A

E
n∑
t=0

γtf̃(µt, a(µt)),

which leads us to introduce the following dynamic program-
ming operators defined, for a bounded function v and a ∈ A,
by

(Tav)(µ) = f̃(µ, a(µ)) + γEv(Φa(µ)(µ)),
(T v)(µ) = sup

a∈A
{Tav} .

The above expression for V then rewrites

V (µ) = lim
n→+∞

(T n0)(µ),

where (T n0) represents the result of T composed n times
and applied to the function which is identically 0 on P(S).
Thanks to the bound on f , one can check that for every
µ ∈ P(S) and every integer n,

V (µ)− γn

1− γ Cf ≤ (T n0)(µ) ≤ V (µ) + γn

1− γ Cf ,

Applying T to the above relation yields

(T V)(µ)− γn+1

1− γ Cf ≤ (T n+10)(µ) ≤ (T V)(µ) + γn+1

1− γ Cf .

R. Carmona, M. Laurière, Z. Tan 11

By taking n→ +∞, we deduce

(T V)(µ) = lim
n→+∞

(T n+10)(µ) = V (µ),

which is the desired relation. One can also check that the
solution to (7) is unique. Similarly, denoting J̃(a)(µ) =
J(µ, a), we have for any a ∈ A and µ ∈ P(S), J̃(a) is the
only fixed point of Ta.

In addition, let us consider an stationary control a∗ which
is optimal in the sense that, for any µ0 ∈ P(S), it achieves
the supremum over a ∈ A in (4), i.e., J̃(a∗) = V . Then,
using the Bellman equations for V and J̃(a∗), we have

(T V)(µ0) = V (µ0)
= J̃(a∗)(µ0)
= (Ta∗ J̃(a∗))(µ0)
= (Ta∗V)(µ0).

Conversely, assume a is such that for every µ0,

(T V)(µ0) = (TaV)(µ0).

Then, since (T V)(µ0) = V (µ0), we obtain that V (µ0) =
(TaV)(µ0). By uniqueness of the fixed point of Ta, we have
that V = J̃(a) and hence a is optimal.

B Link with MDPs arising in Mean
Field Games

Here, we clarify the difference between the Mean Field
MDPs studied in the present work and the ones arising
in the context of finite state Mean Field Games [38, 24].
Although both problems involve the term “mean field”, we
argue that in a MFG, the MDP is a rather standard one.

In [38], the authors make the following point (at the begin-
ning of their Section 4): given the evolution of the population
(i.e., the mean-field term), an infinitesimal player solves a
(standard) optimal control problem, to which corresponds a
(standard) MDP. In other words, the population’s distribu-
tion appears as a given parameter in the MDP and not as
the state over which the optimization is performed, as in our
case. To emphasize, in our notation, the difference between
their setting and ours, let us consider the evolution (6) for
a finite state space S = {1, 2, . . . , |S|}. As in [38], let us
assume that the players control directly their transition
probabilities. In other words, the action space is the set
of probability distributions on S, and all the players in a
state x ∈ S control the probability with which they will go
to each other state x′ ∈ S. In this case, each element of A
can be identified with a vector of length |S| representing a
probability distribution on S, and each element of ã ∈ Ã can
be identified with a matrix P ã such that P ãx′,x = ã(x)(x′).
In [38], the initial distribution µ0 is fixed (hence we omit
to denote explicitly the dependence on µ0), and there is no

common noise. In this case, one can look for feedback con-
trols which are functions of time and x only. Then the MFC
problem (4) rewrites: Find ã = (ãt)t≥0, at ∈ A maximizing

J(ã) =
+∞∑
t=0

γtEx∼µã
t

[
f
(
x, µã

t , ãt(x)
)]

=
+∞∑
t=0

γt
∑
x∈S

µã
t (x)f

(
x, µã

t , ãt(x)
)
,

under the constraint: µã
0 = µ0 and for t ≥ 0,

µã
t+1 = P ãtµã

t , (12)

where P · is as defined above. The corresponding MFG,
analogous to the one studied in [38], can be formulated as
follows: Find a sequence of distributions m = (mt)t≥0 and
a sequence of controls ã = (ãt), ãt ∈ A such that: (1) ã
maximizes

JMFG(ã; m) =
+∞∑
t=0

γt
∑
x∈S

µã,m
t (x)f

(
x,mt, ãt(x)

)
,

under the constraint: µã,m
0 = µ0 and for t ≥ 0,

µã,m
t+1 = P ãtµã,m

t , (13)

and (2) for every t ≥ 0, mt = µã,m
0 . Step (1) above

corresponds to the problem faced by a typical agent, when
the evolution of the population is given by m. The dynam-
ics (13) can be viewed as an MDP on the space of measures,
but the evolution is purely linear, in the sense that at time
t, the state of the MDP, namely µã,m

t , is not involved in the
transition matrix, namely P ãt . In contrast, the dynamics (6)
is in general non-linear.

In [24], the authors build the MDP upon the same insight in
a different way. To stress the difference with our notion of
MDP, let us go back to the MFC problem (1) and consider
again a finite state space S and no common noise. The
corresponding MFG would be: Find a flow of distributions
m = (mt)t≥0 and a policy π such that: (1) π maximizes

JMFG(π; m) = E

[
+∞∑
t=0

γtf(xπ,mt ,mt, πt)

]

where the state process x has initial distribution µ0 and
dynamics

P
(
xπ,mt+1 = x′ |xπ,mt ,mt, πt

)
= pxπ,m

t
,mt,πt

(x′),

and (2) For every t ≥ 0, mt is the distribution of xπ,mt . As
mentioned above, in the optimization problem of a typical
player, the flow of distributions m appears as a given param-
eter. The corresponding MDP is hence parameterized by

MFQ-Learning 12

this m but evolves in the finite state space S. Furthermore,
in [24], although they consider interactions through the con-
trol’s distributions (omitted here to alleviate the notations),
the authors focus on a stationary Nash equilibrium. In
other words, they look for a solution of the following type
of problems: Find m ∈ P(S) and π = (πt)t≥0 such that,
letting m∞ = (m,m, . . .), we have: (1) π maximizes

JMFG(π; m∞) = E

[
+∞∑
t=0

γtf(xπ,mt ,m, πt)

]
where the state process has initial distribution m and dy-
namics

P
(
xπ,m

∞

t+1 = x′ |xπ,m
∞

t ,m, πt, ε
0
t

)
= p

x
π,m∞
t

,m,πt,ε
0
t
(x′),

and (2) For every t ≥ 0, m is the distribution of xπ,m
∞

t .
In this case, the rewards and dynamics of an infinitesimal
player is parameterized by a single distribution m and the
same remark holds for the corresponding MDP.

C Proof of the convergence results

Proof of Theorem 2. Let us denote by V̌ and Q̌ respectively
the state value function and the state-action value function
of the projected MFC problem. We split the proof into
several steps.

Step 1. If Nepi is large enough, then for every (µ̌, ã) ∈ Š×Ã,

Q̌Nepi(µ̌, ã) ≈ Q̌(µ̌, ã).

This comes from standard convergence results on Q-learning
for finite state-action spaces. More precisely, under Assump-
tions (A1), (A4) and (A5), we can apply Theorem 4 and
Corollary 34 in [19] for asynchronous Q-learning and poly-
nomial learning rates, and we obtain that, with probability
at least 1 − δ, ‖Q̌Nepi − Q̌‖∞ ≤ ε, given that Nepi is of
order (11).

Step 2. For every (µ̌, ã) ∈ Š× Ã,

Q̌(µ̌, ã) ≈ Q(µ̌, ã).

This amounts to say that the projection on Š realized at
each step does not perturb too much the value function. Let
us start by noting that, for every µ̌ ∈ Š and ã ∈ Ã,∣∣Q̌(µ̌, ã)−Q(µ̌, ã)

∣∣
= γ

∣∣∣∣∣E [max
ã′

Q̌(Φ̌ã(µ̌), ã′)−max
ã′

Q(Φã(µ̌), ã′)
] ∣∣∣∣∣

≤ γE
∣∣V̌ (Φ̌ã(µ̌))− V (Φã(µ̌))

∣∣
≤ γE

∣∣V̌ (Φ̌ã(µ̌))− V (Φ̌ã(µ̌))
∣∣

+ γE
∣∣V (Φ̌ã(µ̌))− V (Φã(µ̌))

∣∣
≤ γ‖Q̌−Q‖∞ + γLV E

[
dS
(
Φ̌ã(µ̌),Φã(µ̌)

)]
,

where the last inequality holds by Lipschitz continuity of V ,
see Assumption (A2), and because for every µ̌′ ∈ Š,∣∣V̌ (µ̌′)− V (µ̌′)

∣∣
=
∣∣∣∣sup
ã′
Q̌
(
µ̌′, ã′

)
− sup

ã′
Q
(
µ̌′, ã′

)∣∣∣∣
≤ sup
µ̌′′,ã′

∣∣Q̌ (µ̌′′, ã′)−Q (µ̌′′, ã′)∣∣ = ‖Q̌−Q‖∞.

To conclude, we use Assumptions (A3) and (A1), and we
obtain:

Ee0
[
dS

(
Φ̌ã,e

0
(µ̌),Φã,e

0
(µ)
)]

≤ εS + Ee0
[
dS

(
Φã,e

0
(µ̌),Φã,e

0
(µ)
)]

≤ εS + LΦdS (µ̌, µ)
≤ (1 + LΦ)εS .

Combining the above bounds yields

‖Q̌−Q‖∞ ≤
γ

1− γ LV (1 + LΦ)εS .

Step 3. For every (µ, ã) ∈ S× Ã,

Q(ProjŠ(µ), ã) ≈ Q(µ, ã).

Indeed, for every µ ∈ Š and ã ∈ Ã, letting µ̌ = ProjŠ(µ) to
alleviate the notation, we have

|Q(µ̌, ã)−Q(µ, ã)|
≤
∣∣f̃(µ̌, ã)− f̃(µ, ã)

∣∣+
+ γE

∣∣∣max
ã′

Q(Φã(µ̌), ã′)−max
ã′

Q(Φã(µ), ã′)
∣∣∣

≤ Lf̃dS(µ̌, µ) + γE
∣∣V (Φã(µ̌))− V (Φã(µ))

∣∣
≤
(
Lf̃ + γLV LΦ

)
dS(µ̌, µ)

≤
(
Lf̃ + γLV LΦ

)
εS ,

where we used the Lipschitz continuity of f̃ , V,Φ and the
assumption on Š, see Assumptions (A1), (A2) and (A3).

Proof of Corollary 3. We use Proposition 4 of [22], which
states that softmaxτ is τ -Lipschitz and Lemma 7 [24], which
states that for (xi)i=1,...,n,

‖softmaxτ (x)− argmaxe(x)‖2 ≤ 2ne−τδ,

where δ = max(x) −maxxi<max(x) xi, and δ = ∞ if all xi
are equal. We can apply this latter result to Q(µ̌, ·) thanks
to our Assumption (B) on the action gap, with n = |Ã| and

R. Carmona, M. Laurière, Z. Tan 13

δ = KA. Combining this with the result of Theorem 2, we
have, for every µ̌,

‖softmaxτ Q̌(µ̌, ·)− argmaxeQ(µ̌, ·)‖2
≤ ‖softmaxτ Q̌(µ̌, ·)− softmaxτQ(µ̌, ·)‖2

+ ‖softmaxτQ(µ̌, ·)− argmaxeQ(µ̌, ·)‖2
≤ τ‖Q̌(µ̌, ·)−Q(µ̌, ·)‖`∞(Ã) + 2|Ã|e−τKA

≤ τε′ + 2|Ã|e−τKA .

D Deep Deterministic Policy Gradient
Algorithm

In this section, we recall for the sake of completeness
the Deep Deterministic Policy Gradient (DDPG) proposed
in [33], adapted to our mean field control problem. See
also [18] for how the same algorithm can be used for MFG.
In the latter case, it is used to compute the (approximate)
best response of a single infinitesimal player instead of the
optimal control for the whole population as in MFC prob-
lems.

Algorithm 2: DDPG for MFC
Data: A number of episodes Nepi; a length T for each

episode; a minibatch size Nbatch; a learning
rate τ .

Result: A control a ∈ A.
begin

Randomly initialize critic network QθQ and actor
network πθπ with parameters θQ and θπ
respectively
Randomly initialize target networks Q′

θQ′
and

network π′
θπ′

with θQ′ ← θQ and θπ′ ← θπ

for episode k = 0, 1, . . . Nepi − 1 do
Initialize M0
Initialize replay buffer R
for t = 0, 1, . . . T − 1 do

Select an action at = πθπ (Mt) +Nt ∈ RNp
Execute at, observe reward f̃t and Mt+1
Store transition (Mt, at, f̃t,Mt+1) in R
Sample a random minibatch of Nbatch
transitions (Mi, ai, f̃i,Mi+1) from R

Set yi = f̃i + γQ′
θQ′

(Mi+1, π
′
θπ′

(Mi+1)), for
i = 1 . . . , Nbatch
Update the critic by minimizing the loss:
L(θQ) = 1

Nbatch

∑
i

(yi −QθQ(xi, ai))2

Update the actor policy using the sampled
policy gradient ∇θπJ of

J(θπ) = 1
Nbatch

∑
i

∇aQθQ(Mi, πθπ (Mi))

Update target networks:
θQ
′ ← τθQ + (1− τ)θQ′ and

θπ
′ ← τθπ + (1− τ)θπ′

return πθπ

	1 Introduction
	2 Mean Field Control
	3 Mean-Field Q-Learning
	4 Numerical Examples
	5 Conclusion and future research
	A Derivation of Bellman equation
	B Link with MDPs arising in Mean Field Games
	C Proof of the convergence results
	D Deep Deterministic Policy Gradient Algorithm

