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Summary. This study provides a template for multisite causal mediation analysis using a
comprehensive weighting-based analytic procedure that enhances external and internal validity.
The template incorporates a sample weight to adjust for complex sample and survey designs,
adopts an IPTW weight to adjust for differential treatment assignment probabilities, employs an
estimated nonresponse weight to account for non-random nonresponse, and utilizes a propensity
score-based weighting strategy to flexibly decompose not only the population average but also
the between-site heterogeneity of the total program impact. Because the identification
assumptions are not always warranted, a weighting-based balance checking procedure assesses
the remaining overt bias, while a weighting-based sensitivity analysis further evaluates the
potential bias related to omitted confounding or to propensity score model misspecification. We
derive the asymptotic variance of the estimators for the causal effects that account for the
sampling uncertainty in the estimated weights. The method is applied to a re-analysis of the data
from the National Job Corps Study.
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1. Introduction

Many program evaluations simply report the estimated average treatment effects without
explicitly testing the theories explaining how a program produces its intended effect. One way to
test specific theories about program mechanisms is mediation analysis that, in its simplest form,
decomposes the total program impact into an indirect effect--transmitted through a hypothesized
focal mediator--and a direct effect--attributable to all other possible pathways. Multisite
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randomized trials, in which individuals are randomly assigned to treatment and control groups
within each site, offer unique opportunities for further testing program theories across a wide
range of settings in which a program is implemented. Just as treatment effects may vary across
sites, causal mechanisms may differ across sites due to differences in local contexts, in
participant composition, and in treatment implementation (Weiss et al., 2014). Hence, assessing
between-site variation in the causal mechanisms may generate important information for
understanding heterogeneity in the total program impact, may reveal a need to revisit the
program theory, and may suggest specific site-level modifications of the intervention practice.
However, due to some important constraints of existing analytic tools, analysts have rarely
investigated between-site heterogeneity of mediation mechanisms in multisite program
evaluations.

In a single-site study, the population of individuals residing at the site is naturally the target
of inference. The causal parameter of interest is generally the treatment effect averaged over all
the individuals in this site-specific population. In a multisite study, however, there are two
potential targets of inference: the population of sites and the overall population of individuals
which is the union of all the site-specific subpopulations (Raudenbush and Bloom, 2015;
Raudenbush and Schwartz, working paper). When researchers are primarily interested in how a
program is implemented at the site level and whether the program impact depends on the local
settings, the population of sites clearly becomes the target of inference. In such a case, the
population average treatment effect is defined as the average of the site-specific average effect
over all the sites. Henceforth we call this “the average effect for the population of sites.”
Moreover, the between-site variance of the site-specific average effect indicates the extent to
which the program impact is generalizable across the sites. In contrast, when researchers are
primarily interested in the overall population of individuals served by a particular program, the
population average treatment effect is simply an average over the individuals in the overall
population regardless of their site membership. We call this “the average effect for the
population of individuals”. The average effect for the population of sites and that for the
population of individuals become equivalent only when the size of the site-specific
subpopulation of individuals is the same across all the sites or if the effect does not vary across
sites. In this study, with a primary interest in the between-site heterogeneity of the program
impacts and of the mediation mechanisms, we focus on the population of sites rather than the
overall population of individuals.

The methodological development in this study is motivated by a reanalysis of the multisite
experimental data evaluating Job Corps, the largest federal program designed to promote
economic well-being among disadvantaged youths in the U.S. who are unemployed and not in
school. Intensive education and vocational training are the central elements of the program.
Besides, unlike most other training programs that have been generally found ineffective because
participants tend to “have more trouble in their lives than the programs could correct” (Pouncy,
2000, p.269), Job Corps is unique in its provision of a comprehensive array of support services
including residential living, supervision, behavioral counseling, social skills training, physical
and mental health care, and drug and alcohol treatment. According to a nationwide evaluation of
all the Job Corps centers in the mid-1990s, known as the National Job Corps Study (NJCS), Job
Corps was the only federal program shown to increase earnings of disadvantaged youth; the
program also improved educational attainment and employment and reduced criminal
involvement (Flores and Flores-Lagunes, 2013; Frumento ef al., 2012; Lee, 2009; Schochet et
al., 2006, 2008; Zhang et al., 2009).
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However, no attempt has been made to formally test the Job Corps program theory. The
program is intended to improve disadvantaged youths’ economic well-being not only through
education and training that form conventional human capital (Becker, 1964; Card, 1999) but also
through comprehensive support services for reducing risk exposures and risk behaviors. Given
the comprehensiveness of the program and given that support services tend to be lacking under
the control condition, another interesting theoretical question is whether education and training
obtained through Job Corps generated a greater impact on earnings on average than education
and training obtained under the control condition. Therefore, we ask how much of the Job Corps
impact on earnings is mediated by education and training and whether Job Corps enhanced the
economic returns to education and training for disadvantaged youth.

Moreover, with their primary interest in the population of individuals served by Job Corps,
most researchers have simply ignored the role of individual Job Corps centers in their analyses.
Yet a recent study (Weiss et al., 2017) reported considerable variation in the program impact on
earnings across the sites, with one Job Corps center at each site. This result coincides with
findings from a qualitative process analysis (Johnson ef al., 1999) revealing important
discrepancies between the intended program and the implemented program in service provision
at some centers.

In our reanalysis of the NJCS data, we intend to test the Job Corps program theory that
focuses on education and training without overlooking the role of support services. Moreover,
we will examine how the theory plays out differently at different sites that may explain between-
site heterogeneity in the program impact. Given our interest in generating empirical evidence to
inform Job Corps operation at the site level, the target of inference in this study is the population
of sites rather than the overall population of individuals.

We highlight a number of challenges in such research endeavors:

Potential sampling bias due to differential sampling probabilities. NJCS drew a probability
sample of individuals representative of the overall population of eligible applicants to be
assigned to each of the Job Corps centers. An individual’s probability of being sampled was a
function of baseline characteristics. If the analyst overlooks the differential probabilities of
sample selection, sample estimates of the average program impacts and of their between-site
variance would contain sampling bias.

Potential treatment selection bias due to differential probabilities of treatment assignment.
Rather than assigning all sampled individuals with an equal probability to either the program
group or the control group, NJCS researchers let the probabilities of treatment assignment differ
by personal and site-level characteristics. Ignoring the differential probabilities of treatment
assignment would pose a threat to internal validity and lead to treatment selection bias.

Potential nonresponse bias due to differential probabilities of response. In NJCS, some
sampled youths were lost to attrition or failed to provide information on education and training
or on earnings, while some were not assigned to a specific center prior to random assignment.
We define all of these individuals as nonrespondents. The sample estimates would contain
nonresponse bias if non-random nonresponse changes the representativeness of the sample of
individuals in longitudinal follow-ups or if the remaining sample shows systematic differences
between the program group and the control group.

Potential mediator selection bias due to differential probabilities of mediator value
assignment. Even if a randomized experiment does not suffer from non-random nonresponse,
mediator values are typically generated through a natural process rather than being
experimentally manipulated. As a result, individuals displaying different mediator values tend to
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differ systematically in many other aspects that would confound the causal mediation analysis
and result in mediator selection bias.

Potential bias due to model misspecification. Path analysis and structural equation modeling
(SEM) (Alwin and Hauser, 1975; Baron and Kenny, 1986; Duncan, 1966; Sobel, 1982; Wright,
1934) have been the primary technique for mediation analysis in the past several decades with
recent extensions to multisite data analysis (Bauer et al., 2006; Kenny et al., 2003; Krull and
MacKinnon, 2001). These regression-based methods, however, rely heavily on correct
specifications of both the mediator model and the outcome model (Hong, 2017). Recent
advances in single-site causal mediation analysis (e.g., Imai et al., 2010; Imai et al., 2010; Pearl,
2010; Petersen et al., 2006; Valeri and VanderWeele, 2013; VanderWeele and Vansteelandt,
2009, 2010; van der Laan and Petersen, 2008) have focused on accommodating treatment-by-
mediator interactions within the linear SEM framework; while challenges involving the
functional forms of covariates remain in model specifications.

The first three challenges are common in evaluation studies, and are often addressed via
sampling weights, inverse probability of treatment weights (IPTW), and nonresponse weights,
respectively. We innovatively adapt these weighting adjustments to the context of mediation
analysis by combining them with the ratio-of-mediator-probability weighting (RMPW) strategy.
The latter is for unpacking the causal mechanism and reducing mediator selection bias. RMPW
was initially proposed by Hong (2010, 2015) and others (Bein et al., 2018; Hong et al., 2011,
2015; Hong and Nomi, 2012; Huber, 2014; Lange et al., 2012; Tchetgen Tchetgen and Shpitser,
2012) and was recently extended to multisite studies by Qin and Hong (2017). This strategy,
without invoking functional form assumptions for the outcome model, is particularly flexible for
accommodating treatment-by-mediator interactions and is suitable for discrete and continuous
mediators and outcomes. We assess the remaining overt bias due to possible misspecifications of
propensity score models through a weighting-based balance checking procedure; and we adopt a
novel weighting-based sensitivity analysis strategy for assessing hidden bias with minimal
simplifying assumptions (Hong ef al., 2018, working paper). This series of strategies constitute a
systematic and coherent template for multisite causal mediation analysis. We also address
challenges to estimation and statistical inference when multiple weights are unknown and must
be estimated from sample data.

We organize the paper as follows. Section 2 introduces the NJCS sample and data. Section 3
defines the causal parameters under the counterfactual causal framework. Section 4 clarifies the
identification assumptions and presents our identification strategy. Section 5 outlines our
approaches to estimation, statistical inference, balance checking, and sensitivity analysis. Section
6 reports the analytic results. Section 7 concludes and discusses extensions. In addition, we
provide an R package “MultisiteMediation” (http://cran.r-
project.org/web/packages/MultisiteMediation) that implements the proposed template for
multisite causal mediation analysis.

2. The NJCS Sample and Data

NJCS researchers identified about 80,000 eligible applicants nationwide in the mid-1990s
(Schochet et al., 2001). Through a stratified sampling procedure, more than 15,000 eligible
applicants were randomly selected into a nationally representative research sample and were
assigned at random to either the program group or the control group. Program group members
could enroll in Job Corps soon after random assignment; while control group members were
barred from enrolling in Job Corps for 3 years. Applicants who were initially assigned to the
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same Job Corp center, regardless of their subsequent treatment assignments, constitute the
sample of individuals at the given site. Participants in the study were interviewed at baseline and
at 12, 30, and 48 months after randomization. By design, the probability of selection for each
follow-up survey differed across individuals.

We perform our analysis on the random sample of 14,125 youths who were targeted for the
48-month interview. The mediator, collected at the 30-month follow-up, indicates whether a
youth had obtained an education credential—typically a General Educational Development
(GED) certificate—or a vocational certificate (or both) since the randomization. The outcome is
weekly earnings in the fourth year after randomization. Our sample contains 8,818 respondents
(3,491 control group members and 5,327 program group members) and 5,307 nonrespondents
(2,235 control group members and 3,072 program group members).

3. A Theoretical Model of Multisite Causal Mediation Process

We investigate the following research questions in relation to Job Corps: 1) To what extent
did Job Corps increase earnings through improving educational and vocational attainment? 2) To
what extent did Job Corps increase earnings through other pathways? 3) Did the improvement in
educational and vocational attainment produce a greater increase in earnings under Job Corps
than under the control condition? 4) Were Job Corps centers equally effective in increasing
earnings through improving educational and vocational attainment? 5) Were Job Corps centers
equally effective in increasing earnings through other pathways? 6) Did Job Corps enhance the
economic returns to education and training in some centers but not in others? 7) Did Job Corps
centers that increased earnings through improving educational and vocational attainment also
tend to be successful in increasing earnings through other pathways?

Here we present a theoretical model that summarizes key information characterizing the
multisite causal mediation process. We define the causal parameters under the potential
outcomes framework (Holland, 1986, 1988; Neyman and Iwaszkiewicz, 1935; Rubin, 1978) that
has previously been extended to causal mediation research (Pearl, 2001; Robins and Greenland,
1992). The extension focuses on the intermediate process in which one’s mediator value is a
potential natural response to the treatment assigned; and hence mediator values may naturally
vary among individuals under the same treatment.

3.1. Potential Mediators and Potential Outcomes

Let T;; denote the treatment assignment of individual i at site j. It takes values ¢ = 1 for an
assignment to Job Corps and t = 0 for the control group. Let M;; denote the focal mediator and
Y;; denote the outcome. For individual i at site j, educational and vocational attainment is a
function of the treatment assignment t. Hence, we use M;;(1) to represent the individual’s
potential attainment if assigned to Job Corps and use M;;(0) for the potential attainment if the
same person was assigned to the control group. For each individual, only one of these two
potential mediators is observable after the treatment assignment. Under treatment condition t, the
individual might obtain a credential by the 30-month follow-up (M;;(t) = 1) or might fail to do
SO (Ml](t) = 0)

The individual’s weekly earnings in the fourth year after randomization also depends on the
treatment assignment. The convention is to use ¥;;(1) and Y;;(0) to represent the potential
earnings associated with an assignment to Job Corps and to the control group, respectively.
Alternatively, one may view the potential outcome as a function of both the treatment
assignment and the corresponding potential mediator and denote it with Y;;(t, M;;(t)) for t =
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0,1. When M;;(t) = m, where m = 0,1, the individual’s potential outcome value associated
with treatment t can be written as Y;;(t, m). Again, only one of the two potential outcomes is
observable for each individual given the treatment assignment.

In causal mediation analysis, two additional counterfactual outcomes play indispensable
roles: Y;;(1, M;;(0)) is one’s potential earnings if assigned to Job Corps yet counterfactually
having the same attainment status as he or she would have under the control condition; and
Y;;(0, M;;(1)) is the potential earnings if one was assigned to the control group yet
counterfactually having the same attainment status as he or she would have under Job Corps.
Because M;;(0) is counterfactual for program group members and M;;(1) is counterfactual for
control group members, neither Y;;(1, M;;(0)) nor Y;;(0, M;;(1)) is directly observable for any
individual.

The above potential mediators and potential outcomes are defined under the Stable Unit
Treatment Value Assumption (SUTVA) (Rubin, 1980; Rubin, 1986; Rubin, 1990). In a single
site, SUTVA implies (a) that an individual’s potential mediators are not functions of the
treatment assignments of other individuals, (b) that an individual’s potential outcomes are not
functions of the treatment assignments and the mediator values of other individuals, and (c) that
an individual’s potential mediators and potential outcomes do not depend on which program
agents (e.g., instructors or counselors) one would encounter, which is also known as “treatment
version irrelevance”. This assumption would be violated, for example, in the presence of peer
influence or if program agents were not equally effective (Hong, 2015). In a multisite study,
SUTVA further requires “no interference between sites” (Hong and Raudenbush, 2006; Hudgens
and Halloran, 2008). Because applicants are usually assigned to Job Corps centers relatively
close to their original residences and because Job Corps centers are sparsely located, between-
site interference seems unlikely.

3.2. Individual-Specific Causal Effects

Under SUTVA, for individual i at site j, the intention-to-treat (ITT) effect of the treatment
on the mediator, i.e. the effect of the treatment assignment on the mediator, is defined as
M;;(1) — M;;(0);
the ITT effect of the treatment on the outcome, also known as the total effect, is defined as
Yij (1, M;;(1)) — Yi;(0, My;(0)).
The individual-specific natural indirect effect (NIE) of the treatment on the outcome
transmitted through the mediator (Pearl, 2001) is defined as
Y;;i(1, M;;(1)) — Y;;(1, M;;(0)).
It represents the Job Corps impact on earnings attributable to the program-induced change in the
individual’s attainment from M;;(0) to M;; (1) under Job Corps. This is called “the total indirect
effect” by Robins and Greenland (1992), who distinguished it from the individual-specific “pure
indirect effect” (PIE)
Y;;(0, M;;(1)) — Y;;(0, M;;(0)).
It represents the impact on earnings when the individual’s attainment is changed from M;;(0) to
M;;(1) under the control condition.
The individual-specific natural direct effect of the treatment on the outcome (NDE) is

defined as
Y;j (1, M;;(0)) — Y;;(0, M;;(0)).
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It represents the Job Corps impact on earnings while holding the individual’s attainment at the
level that would be realized under the control condition. The direct effect is nonzero if Job Corps
exerted an impact on earnings without changing an individual’s attainment. Robins and
Greenland (1992) called this “the pure direct effect” in contrast with “the total direct effect,”

Y;j (1, M;; (1)) — Y;; (0, M;; (1)). The latter is the Job Corps impact on earnings while holding
attainment at the level that would be realized under Job Corps.

The individual-specific total treatment effect is the sum of the individual-specific NIE and
NDE. Alternatively, one may decompose the individual-specific total treatment effect into PIE
and the total direct effect.

As Judd and Kenny (1981) pointed out, a treatment may produce its impact not only through
changing the mediator value but also in part by altering the mediational process that produces the
outcome. In other words, the treatment may alter the relationship between the mediator and the
outcome. We have reasoned that obtaining an education or training credential under Job Corps
might bring greater economic returns than obtaining such a credential under the control
condition. Therefore, the individual-specific NIE and PIE may not be equal. The difference
between the two is defined as the natural treatment-by-mediator interaction effect for each
individual (Hong, 2015; Hong et al., 2015), which quantifies the treatment effect on the outcome
transmitted through a change in the mediator-outcome relationship. A nonzero interaction effect
will indicate that the program-induced change in attainment influences earnings differently
between the Job Corps condition and the control condition.

3.3. Site-Specific Causal Effects and Population Parameters

We define the site-specific causal effects by taking expectations of the individual-specific
causal effects over the population of individuals at a given site. The site-specific effects,
represented by f; in general, are listed in the second column in Table 1 in which §;; = j
indicates the site membership of individual i.

As we emphasized earlier, of particular theoretical interest is not only the overall average of
each of these site-specific causal effects but also its possible variation across the sites. NJCS was
a census of all the Job Corps centers that existed at the time of the study, which enables us to
generalize results to the population of sites. Hence, the population parameters include the
population average and the between-site variance of each site-specific effect, respectively
represented by ¥ and g2 in general. As shown in Table 1, the superscripts in 8 ; and y and
subscripts in a2, (T.M), (T.Y), (I), (D), and (T X M), serve as shorthand for the ITT effect on the
mediator, the ITT effect on the outcome, the indirect effects, the direct effects, and the
interaction effect, respectively. We have listed in Table 1 the research questions with regard to
the population average causal effects over all the sites in column 3 and the corresponding
notation in column 4. Column 5 lists the research questions about the between-site variances of
the site-specific effects; and column 6 lists the corresponding notation. Besides, we are also
interested in the covariance between the site-specific NDE and NIE, op gy ;1) =

cov(p ].(D)(O), p ].(I)(l)), indicating whether Job Corps centers that increased earnings through
improving educational and vocational attainment also tend to be successful in increasing

earnings through other pathways.
4. Identification

The causal parameters listed in Table 1 could be easily computed if all the potential
mediators and potential outcomes were observed for the population of eligible applicants at



Table 1. Causal Parameters

Site-Specific Effect

Research Question

Average Effect over
Population of Sites

Research Question

Between-Site
Variance

ITT effect
on the
mediator

ITT effect
on the
outcome

NIE

NDE

PIE

Interaction
effect

BT = E[My;(1) — My(0)IS;; = j]

B = E[ Yy (1,M;(1)) — (0, My (O)ISy; = j]

BO(1) = E[ Yi;(1, My (1)) = Yi;(1, My (0))]S;; = j]

B (0) = E[Y;; (1,M,,(0)) ~ ¥,;(0, My, OIS =]

B (0) = E[ ¥;;(0, My (1)) — Y;;(0, My (0))]S;; = j]

g™ = (1) - P (0)

To what extent did Job Corps
(JC) improve educational and
vocational attainment?

To what extent did JC
increase earnings?

To what extent did JC
increase earnings through
improving educational and
vocational attainment under
the JC condition?

To what extent did JC
increase earnings through
other pathways?

To what extent did JC
increase earnings through
improving educational and
vocational attainment under
the control condition?

Did the improvement in
educational and vocational
attainment produce a greater
increase in earnings under JC
than under the control
condition?

y(T.M) =F [ﬁng.M)]

y(T.Y) =F [ﬁng.Y)]

yO@ = E[B" (1)]

y®(0) = E[” (0)]

y®©) = E[B" (0]

y(TXM) — E[ﬁj(TxM)]

Were JC centers equally
effective in improving
educational and
vocational attainment?

Were JC centers equally
effective in increasing
earnings?

Were JC centers equally
effective in increasing
earnings through
improving educational
and vocational attainment
under the JC condition?

Were JC centers equally
effective in increasing
earnings through other
pathways?

Were JC centers equally
effective in increasing
earnings through
improving educational
and vocational attainment
under the control
condition?

Did JC enhance the
economic returns to
education and training in
some centers but not in
others?

O-TZ,M = var (‘Bj(T.M))

O-Tz,y — var(ﬁj(T.Y))

oty = var (" (1))

Tpoy = var (ﬁjw) (1)

oty = var(B{”(0))

02y = var(ﬂj(TXM))




every site. However, M;;(t) and Y;;(t, M;;(t)) are observed for t = 0, 1 only if individual { at
site j was selected into the sample, was assigned to treatment ¢, and responded to the interviews.
In addition, we never directly observe one’s potential outcome of assignment to treatment ¢
while the mediator would counterfactually take the value associated with the alternative
treatment t" where t # t'. Causal inference relies exclusively on inferring counterfactual
information from the observed information. The inference inevitably invokes one or more
assumptions. Here we clarify the assumptions under which each of the causal parameters can be
identified from the observed information in the NJCS data. These assumptions should not be
taken lightly. Rather, they require close scrutiny on scientific grounds.

41. Identification of the ITT Effects

For the ITT effects of the treatment on the mediator and the outcome, identifying their
averages over the population of sites along with their between-site variances is complicated by
the differential sampling probabilities, treatment assignment probabilities, and nonresponse
probabilities, as discussed in the introduction section. We adjust these differential probabilities
by applying a series of standard weighting strategies under strong ignorability assumptions about
the sampling, treatment assignment, and response mechanisms.

Sampling mechanism. NJCS researchers employed a stratified sampling procedure for
individuals. Sampling probabilities varied across strata defined by date of random assignment,
gender, residential status, and whether one came from an area with a concentration of
nonresidential female students. The probabilities of being included in the follow-up surveys were
further determined by a number of factors including population density in one’s living area and
whether one provided immediate response to the baseline survey. Given this complex
sample/survey design, individuals who were included in the 48-month interview sample and
those who were not are expected to be comparable in composition only if they share the above
mentioned pretreatment characteristics, which we denote with vector Xp. This conclusion also
holds within each site. Because the sampling mechanism is known in this study, it is “ignorable”
in the sense that we can reasonably make the following assumption:

Assumption 1 (Strongly ignorable sampling mechanism). Within levels of the observed
pretreatment covariates Xp, sample selection is independent of all the potential mediators and
potential outcomes at each site.

{Y;; (&, m), Mi;(©)} L Dy;|Xpij = Xp,Sij = J,
fort = 0,1, m € M where M is the support for all possible mediator values, and j = 1,...,]/,
where ] denotes the total number of sites. Here D;; takes value 1 if individual i at site j was
selected into the 48-month interview sample and 0 otherwise. We additionally assume that 0 <
Pr(Dij = 1|XDL-]- =Xp,S;j = j) < 1. That is, each eligible applicant at a site had a nonzero
probability of being selected (or not being selected) into the sample, an assumption that was
guaranteed to hold by the NJCS design. This is also known as the positivity assumption.

Treatment assignment mechanism. NJCS researchers specified an individual’s treatment
assignment probability as a function of applicants’ date of random assignment and residential
status among other factors, though not by site. Hence sampled individuals assigned to the
program group and those assigned to the control group are expected to be comparable in
composition only within each of these predetermined strata, which we denote by X+. We find
that X and X, partially overlap.

Assumption 2 (Strongly ignorable treatment assignment). Within levels of the observed
pretreatment covariates X, the treatment assignment for the sampled individuals is independent
of all the potential mediators and potential outcomes at each site.



10 X. Qin, G. Hong, J. Deutsch and E.Bein

{Y;j(e,m),M;;(O} L T;j|D;j = 1,Xpi; = X1, Si; = J.
Under this assumption, there should be no unmeasured confounding of the treatment-mediator
relationship or the treatment-outcome relationship at any site. It is also assumed that 0 <
Pr(Tij = t|Dl-j =1,Xg5 = X7, 555 = j) < 1. That is, each sampled individual had a nonzero
probability of being assigned to either treatment group at a given site. This assumption is
similarly guaranteed by the NJCS design.

Response mechanism. NJCS researchers did not have control over an individual’s
probability of response. Hence, the respondents in the program group and those in the control
group are no longer comparable in composition even if they share the same pretreatment
characteristics {Xp, U X7}. Because response status is possibly a result of the treatment
assignment, we find evidence that the response mechanism differs between the program group
and the control group. In theory, conditioning on all the pretreatment and posttreatment
covariates predicting one’s response status under a given treatment at a given site, the
respondents and the nonrespondents are expected to be comparable in composition. However,
controlling for posttreatment covariates would inevitably introduce bias in identifying the ITT
effects of the treatment (Rosenbaum, 1984). Hence in practice, adjustment is made only for the
observed pretreatment covariates. We invoke a strong assumption that, among individuals who
share the same observed pretreatment characteristics denoted by Xy, one’s response status is as if
randomized in each treatment group.

Assumption 3 (Strongly ignorable nonresponse). Within levels of the observed
pretreatment covariates Xg, the response status of a sampled individual in a given treatment
group is independent of the potential mediators and potential outcomes associated with the same
treatment at a site.

{Yi;(&,m), M;(©)} L R;j|T;; = t,Dy; = 1, Xpyj = Xg, Sij = J.
Here R;; is equal to 1 if individual i at site j responded and 0 otherwise. This assumption cannot
be empirically verified because the potential attainment and the potential earnings were
unobserved for the nonrespondents. However, as introduced in Section 5, we could use balance
checking and sensitivity analysis to assess the influence of possible violations of the assumption.
We also assume that 0 < Pr(Rl-j = 1|Ti]- =t,D;j = 1,Xg;j = Xg, Sij =j) < 1. That is, each
sampled individual had a nonzero probability of response (or nonresponse) under a given
treatment at a given site. This assumption would be violated if certain individuals would always
respond or would never do so.

Under these three assumptions, we may equalize the sampling probability and the treatment
assignment probability for all the sampled individuals through weighting; by the same logic, the
response probability for all the sampled individuals in each treatment group can be equated
through weighting as well.

Weighting adjustment for sample selection. Because the sampling probability is
predetermined as a function of individual characteristics, certain subpopulations are over-
represented while others are under-represented in the sample. The sample representativeness can
be restored by applying the stabilized sample weight defined as follows for sampled individual i
at site j with pretreatment characteristics Xp,

PT(DU = 1|XDU = XDJSij = ])

(1)

Whij
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The numerator of the sample weight represents the average sampling probability at site j, and the
denominator is the individual’s sampling probability as a function of the individual’s
pretreatment characteristics and his or her site membership.

Weighting adjustment for treatment assignment. Similarly, in the presence of treatment
selection, certain subpopulations will become over-represented while others are under-
represented in a given treatment group. Extending the logic of sample weighting to causal
inference, the analyst may apply a stabilized IPTW (Robins et al., 2000) to sampled individual i
at site j in treatment group t with pretreatment characteristics Xr,
_ PT(TU :tlDij = 1'Sij :])

PT(TL']' = tleij =X, DU = 1'Sij :])
The numerator is the average probability of assigning a sampled individual at site j to treatment
t; the denominator is the individual’s conditional probability of being assigned to treatment ¢
given his or her pretreatment characteristics and site membership, and this probability is pre-
determined by design in NJCS.

Weighting adjustment for nonresponse. To remove the observed pretreatment differences
between the respondents and the nonrespondents in each treatment group, the analyst may apply
a nonresponse weight (see Little and Vartivarian, 2005), which is also stabilized, to sampled
individual i at site j in treatment group t with pretreatment characteristics Xp,

_ Pr(Rij:rITij:tiDij :1'SU:])

PT(RL']' = r|XRij = XRJTij =t, DU = 1'Sij :])
The numerator is the average probability of response status r among sampled individuals at site j
who have been assigned to treatment group t; the denominator is the individual’s probability of
response status r given his or her pretreatment characteristics, treatment assignment, and site
membership. This conditional probability is unknown and must be estimated from the observed
data, an issue that we will discuss in section 5.

Applying the product of Wj,, Wy, and Wy to the respondents, we expect that the
distributions of the observed pretreatment covariates {X, U X U Xz} will be balanced between
the sampled and the non-sampled, between the program group and the control group, and
between the respondents and the nonrespondents in each treatment group. Hence, we obtain the
following identification results.

Theorem 1. Under Assumptions 1, 2, and 3, the site-specific average potential mediator and
potential outcome under treatment t for t = 0,1 can be respectively identified by the sample
average of the observed mediator and the sample average of the observed outcome among the
respondents assigned to treatment group ¢ at site j, weighted by the product of the sample weight,
IPTW weight, and nonresponse weight.

WTij fort = 0, 1. (2)

Whij fort=0,1andr =0,1. (3)

E[My; (£)1Si; = j] = E[WirriiMyj R = 1,Ty; = t,Dy; = 1,5y

il
E[Y;;(t, Mi; () 1Sy = j] = E[Wirryj¥yj IRy = LTy = £, Dy = 1,5} = j

J.

Here Wyrrij = Wp;jWr;jWg;j removes selection bias in identifying the ITT effects. The proof of
Theorem 1 is presented in Appendix A in the supporting web materials.

The weighted mean difference in attainment between the program group and the control
group at each site identifies the site-specific ITT effect of the treatment on the mediator;
similarly, their weighted mean difference in earnings identifies the site-specific ITT effect of the
treatment on the outcome. The population average and the between-site variance of each of these
ITT effects can be identified by following standard results without invoking further assumptions.

-
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4.2. Identification of the Mediation-Related Effects

Identifying the population average and the between-site variance of NDE, NIE, PIE, and the
natural treatment-by-mediator interaction effect is considerably more challenging. This is
because the mediation-related causal effects involve the counterfactual outcomes Y;;(1, M;;(0))
and Y;;(0, M;;(1)) that cannot be directly observed; this is additionally because the mediator
value assignment under each treatment was not experimentally manipulated. We invoke the
following assumption about the strong ignorability of mediator values.

Assumption 4 (Strongly ignorable mediator value assignment). Within levels of the
observed pretreatment covariates denoted by x,,, the mediator value assignment under either
treatment condition for respondents is independent of the potential outcomes at each site.

Yii(em) L {My;(6), My (£} Ry = 1, Ty = t,Dij = 1, Xppij = Xy, Sij = J

for all possible values of t and m where t # t’. Under Assumption 4, M;;(1) and M;;(0) are
both independent of ¥;;(1,m) for respondents in the program group at site j who share the same
covariate values; in parallel, they are also independent of ¥;;(0, m) for respondents in the control
group at the site who share the same covariate values.

Assumption 4 implies that among individuals who share the same observed pretreatment
characteristics denoted by X, the assignment of mediator values is as if randomized within each
treatment condition or across treatment conditions at any site. This is a particularly strong
assumption because it requires not only that there are no remaining pretreatment confounding of
the mediator-outcome relationship but also that no post-treatment confounding of the mediator-
outcome relationship exists. However, this is not entirely implausible. For any Job Corps
applicant at a given site, the probability of educational and vocational attainment may be
influenced not only by the treatment assignment but also by theoretically important individual
characteristics. However, these predictors do not need to determine with certainty whether an
individual would obtain a credential under Job Corps or under the control condition. For
example, a Job Corps student might successfully complete the program if he or she happened to
encounter a highly effective counselor; a student assigned to the control condition might succeed
if an alternative training program was launched at about the same time. These possible random
events would make the random assignment of mediator values conceivable under each treatment
condition. Hence, we additionally assume that 0 < Pr(M;;(t) = m|R;; = 1,T;; = t,D;j =
1, Xuyij = Xy, S;j = j) < 1. That is, each respondent has a nonzero probability of displaying a
given mediator value under the actual treatment condition at a given site. Given the Job Corps
screening procedure, arguably all eligible applicants are expected to have a chance of attainment
in the program; their chance of attainment under the control condition would depend on the
availability of alternative education and training opportunities in the local community.

Weighting adjustment for mediator value selection in treatment effect decomposition. In
NJCS, only the treatment was experimentally randomized. Yet under Assumption 4, the mediator
value assignment could be viewed as if it were randomized for individuals sharing the same
covariate values X,,. Putting aside the issues of sampling/survey design and non-random
nonresponse, the average of Y (t, M(t")) at a site would be identified by a weighted mean of the
observed outcome in treatment group t. For individuals who share the same pretreatment
characteristics, the weight would transform the mediator distribution in treatment group ¢ to
resemble that in treatment group t’. Hong (2010, 2015) and others proved the identification result
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for causal mediation analysis in a single site; Qin and Hong (2017) extended this result to
multisite causal mediation analysis. Here we extend the result to multisite studies involving
complex sample/survey designs and non-random nonresponse by combining the assumptions and
the weighting strategies associated with sampling selection, treatment selection, nonresponse
selection, and mediator value selection.
Theorem 2. Under Assumptions 1~ 4, the site-specific average counterfactual outcome
E [Yi (6 M () IS = j] can be identified by the weighted average of the observed outcome
among the sample respondents assigned to treatment group ¢ at site j, the weight being the
product of the ITT weight and the RMPW weight,
E[Y;;(t, Mi;(£)) 1Sij = j] = E[WirrijWaij Yij | Ry = 1,Ty; =t,D;5 = 1,835 = j]
for t # t', where the RMPW weight is
_ PT'(MU = leMi]' =Xwm RU = 1, Tl] = t’,Di]' = 1lSl'j =])
PT'(Mi]' = mlxMij =Xm RU =1, Tl] =1, DU = 1'Si]' =])
For respondent i at site j who was assigned to treatment group ¢ and displayed mediator
value m, Wy;; is a ratio of two propensity scores each as a function of the individual’s
pretreatment characteristics X,,. The numerator is the individual’s propensity of displaying
mediator value m under the counterfactual treatment t’, while the denominator is the individual’s
propensity of displaying the same mediator value under the assigned treatment t. Applying the
product of Wirr;; and Wy;; to the sample respondents in each treatment group at each site, we

WMij VvmeM. (4)

identify the site-specific average potential outcomes E [Yi j (1, M;; (O)) |Si; = j] and

E [Yij (O, Ml-j(l)) 1S;; = j]. Appendix A presents a proof of Theorem 2.
To simplify the notation, let

Mé\’][ = E[VVITTUMlleU = 1'Tij = t’Dij = 1'Sij :]],
“Zj = E[WITTinileij =1,T; =t,D;; =15 =j],

Here uf} is the weighted average of the observed mediator in treatment group ¢ at site j that
identifies E [M MOINTE j]; u{/j is the weighted average of the observed outcome in treatment
group ¢ at site j that identifies E [Y,-]- (t, M;; (t)) |Si; = j]; and u};-* is the weighted average of the
observed outcome in treatment group t at site j, with additional RMPW weighting, that identifies
E [Yi]- (t, M;; (t’)) |Si = j]. With the site-specific mean of each potential mediator and potential

outcome identified, we are able to identify the site-specific causal effects through the weighted
mean outcome differences at each site. Table 2 summarizes these identification results. The first
column lists the site-specific causal effects defined in terms of the counterfactual quantities as
explicated in Section 3; the second column lists the corresponding observable quantities. These
identification results enable us to equate the average counterfactual quantities with the
observable quantities at each site under the assumptions listed in the third column. We then



14 X. Qin, G. Hong, J. Deutsch and E.Bein

identify correspondingly the population average and the between-site variance of each causal
effect as defined in Section 3.

5. General Analytic Procedure

Based on the above identification results, we develop an analytic procedure and apply it to
the NJCS data. As the identification results indicate, the estimation relies on four weights—
sample weight Wy, ;, IPTW weight Wy, ;, nonresponse weight Wy, ;, and RMPW weight Wy; ;. In
NJCS, the product of the first two weights was given by design (Schochet et al., 2001), and the
nonresponse weight and the RMPW weight need to be estimated. Conceptually, the estimation

Table 2. Identification of the site-specific effects

Site-Specific Effect Identification Result Assumptions
. T.M
ITT effect on the mediator 8 j( ) H11v§ - uf,wj Assumptions 1-3
ITT effect on the outcome ,B}T'Y) ui’ i ug j
NIE (1) M)~ My
(D) Yx Y

NDE £:7°(0 Uii — Uoi )

'flj) ©) 1,]* OY] Assumptions 1-4
PIE B;(0) Hoj — Hoj
Interaction effect 8 ]-(TXM) (w1 —ui;) = (uo; — mj)

involves two major steps: (1) estimation of the nonresponse weight and the RMPW weight by
fitting mixed-effects logistic regressions, and (2) estimation of the site-specific causal effects and
subsequently average and the between-site variance of the causal effects over the population of
sites. To produce valid statistical inferences that incorporate the sampling uncertainty of the
weights in the estimation of the causal parameters, we adopt a solution that extends an m-
estimation procedure for single-site and multisite RMPW analysis (Bein et al., 2018; Qin and
Hong, 2017). This approach estimates the weights and the site-specific causal effects jointly
under a generalized method of moments (GMM) framework.

However, the analytic results cannot be given causal interpretations if the identification
assumptions are violated. We therefore use balance checking to assess if the estimated weights
effectively reduce selection bias associated with the observed covariates. To examine if possible
violations of the identification assumptions due to omitting confounders or due to overlooking
between-site heterogeneity in the selection mechanisms would easily alter the analytic
conclusions, we further conduct a sensitivity analysis.

5.1. Weight estimation

As clarified above, the estimation of the causal parameters depends on the estimates of the
nonresponse weight and the RMPW weight. We selected the pretreatment covariates on
theoretical grounds (see Appendix B in the supporting web materials for a list of the 51
covariates). We categorized all the continuous covariates to reduce the potential risk of
misspecifying the functional form of a model. To preserve the probability sampling and the
randomized experimental design, we create a missing indicator for each covariate with missing
values. Incorporating the missing indicators, as suggested by Rosenbaum and Rubin (1984),
tends to balance not only the observed pretreatment covariates but also the missing patterns. One
alternative approach to dealing with missing data is complete case analysis that deletes all the
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observations with missing values. This approach is suboptimal because, besides reducing
statistical power, it would generally introduce bias except when the missing is completely at
random, a particularly strong assumption that rarely holds in reality. Another approach is
multiple imputation, which requires the assumption of missing at random -- that is, the
probability that a variable is observed can depend only on the values of those other
variables which have been observed (Little & Rubin, 1989). The missing indicator approach
that we have chosen requires a different assumption, namely, that given other observed
covariates, the missing values in a covariate are independent of the key variable of interest; or in
other words, within levels of other observed covariates, the unobserved values in a covariate do
not differ in distribution between those in different categories of the key variable (Groenwold et
al, 2012; Jones, 1996). In estimating the nonresponse weight, response status R is the key
variable of interest; in estimating the RMPW weight, the key variable is an individual’s mediator
value assignment. In these two cases, the missing indicator approach assumes strongly ignorable
nonresponse or strongly ignorable mediator value assignment among those whose covariate
values are missing, conditional on all the observed information.

Nonresponse weight estimation. Following Equation (3), let pg;; = Pr(Rl- i =1|T;; =
t,Dij=1,8;;=j ) denote the average response rate among sampled individuals in treatment
group t at site j. To reflect the differences in response mechanisms between the program group
and the control group, we fit a logistic regression to each treatment group. The between-site
difference in the conditional response rate in each treatment group is captured by a site-specific
random intercept in a mixed-effects model. The model specified below estimates the numerator
of the weight:

log IlfR—;]R'l = Tlge + TI;tj' rI;tj'\'N(O' Ort),
tj

in which g, indicates the average log-odds of response among the sampled individuals assigned
to treatment group t across all the sites; the random intercept, 7y, 4 assumed to be normally
distributed, indicates the deviance of the log-odds of response in each treatment group t at site j
from its overall mean; the variance of rg,; is oj2. To estimate the denominator of the
nonresponse weight, we further control for the observed pretreatment covariates Xg;; in the
mixed-effects logistic regressions.

log PRreij
1 — Preij
in which pge;; = Pr(Ri]- = 1|Xgij = Xg, T;j = t,D;j = 1, ;5 =j); Xrij includes the intercept;
TR, 1s the corresponding vector of coefficients; and 7, is the random intercept with variance
o3,. By fitting each response model through maximum likelihood estimation (MLE) (e.g.
Goldstein, 2011), as shown in Appendix C in the supporting web materials, we estimate the
coefficients in the response models and obtain the Empirical Bayes estimates of the random
intercepts. Based on these estimates, we obtain pg.; and Pgry;; and the nonresponse weights
VT/Rl-j = Prej/Dreij for the respondents and VT/Rl-j = (1 — ﬁRtj)/(l — ﬁRti]-) for the
nonrespondents.

RMPW weight estimation. To obtain the RMPW weight as defined in equation (4), we need
to estimate each respondent’s probability of attaining an education or training credential under
Job Corps and the probability of obtaining such a credential under the control condition. Let
Pueij = Pr(M;; = 1|Xyj = X, Ri; = 1L, T;; = t,D;; = 1,S;; = j) and Pme'ij =
Pr(Ml-j = 1Xyij =Xp,Rij = 1,T;j =t',D;; = 1,5;; = j) denote respondent i’s probabilities

- 2
l = XpijTre + Trejr  Trej~N(0, 0z,
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of attaining a credential at site j if assigned to treatment t and treatment t’, respectively, for t #
t’. We fit the following mediator model to each treatment group, allowing the mediator value
selection mechanisms to differ between Job Corps and the control condition:

Pmtij

log l—l l = Xt + Tuej Tuej~N (0, O,
— Pmtij

in which X;; includes the intercept; 7ty is the corresponding vector of coefficients; and 7y; is

the random intercept with variance og,. Importantly, the denominator of the RMPW weight is
one’s mediator probability under the treatment that he or she was actually assigned to and can be
obtained directly by fitting the mediator model to the corresponding treatment group. The
numerator of the weight, however, is one’s counterfactual probability of having the same
mediator value under the alternative treatment. This is obtained by fitting the second mediator
model to the alternative treatment group and then applying the coefficient estimates and the
empirical Bayes estimate of the random intercept to the focal individual. The estimated RMPW

weight is Wy; j = Pume’ij/Dumeij for respondents in treatment group t at site j who attained a
credential and is W),; = (1 — Dyt ]-) / (1 — Dmei ]-) for respondents in the same group at the
same site who did not.

5.2. Causal Parameter Estimation and Inference

In accordance with the identification results as shown in Equation (5), the sample estimators
for the site-specific average potential mediators and potential outcomes are

M _ NIl 1 WirrijDijRij1(Si; = j)I(Ty = t)My;
S WirrgDiyRigI (S = NI(Ty = £)
v Y WirriiDijRij1(Si; = j)I(Tij = )Yy
Hey = My WirrijDyjRi 1 (Siy = )I(Tyy = t)
R Y01 Wirrsj Wi Dy Ry 1 (S = j)I(Ty; = t)Yy
S WrrrigWaas DygRes 1 (S5 = NI(Ty = 1)

Here W,TTL- i = WpiiWry jWRi j» where Wp,;; and Wr,;; are given by design, and WR 1s estimated
from the sample data; W), also needs to be estimated; I (S ij=]J ) is an indicator for whether
individual i was a member of site j; | (Tl- = t) is an indicator for whether the individual was
assigned to treatment t for t = 0, 1. Under the identification assumptions 1 ~ 4, mean contrasts
between the estimated average potential mediators and potential outcomes at each site
consistently estimate the site-specific causal effects listed in Table 2.

We then obtain method-of-moments (MOM) estimates of the causal parameters that
characterize the distribution of the site-specific effects in a theoretical population of sites (e.g.
Cameron and Trivedi, 2005). For simplicity, we use y as a general form of each population
average causal effect standing for y 7™, y ™) ) (0), @ (1),yD(0), and y ™M and use Bj
as a general form of each site-specific causal effect standing for
B ].(T'M), B ].(T'Y), B ].(D)(O), B ].(I) (D,B ].(I) (0),and B ].(TXM). By definition, the average of each causal
effect over the population of sites, y, is a simple average of the corresponding site-specific effect,
Bj. Hence, the estimate of y is



Multisite Causal Mediation Analysis 17

where [?j, a mean contrast as described above, is a consistent estimate of £3;.

Although a simple average of ﬁ} is consistent for y, a simple average of the squared
deviation of 8 ; from 7 is biased for var (ﬁ j) because this variance estimator contains the
sampling variance of ﬁ ; as well as the sampling variance of . The estimation of var(ﬁ j) 1S
further complicated due to the fact that ﬁ} is obtained on the basis of the estimated nonresponse
weight and the estimated RMPW weight. This is known as the two-step estimation problem in
which nuisance parameters must be estimated in the first step and are then used to obtain
estimates of the parameters of interest in the second step. The nuisance parameters in this case
are the coefficients in the propensity score models for the response and for the mediator.
Moreover, although the site-specific effects are to be estimated with only the observed data at a
given site, the nuisance estimators are estimated with the data pooled from all the sites, which
leads to a nonzero correlation of the sampling errors in the site-specific effect estimates.

Earlier research has extended a two-step estimation procedure (Newey, 1984) to single-site
(Bein et al., 2018) and multisite (Qin and Hong, 2017) RMPW analysis in which the RMPW
weights are estimated. The rationale is to stack the estimating equations from both steps and
solve them simultaneously in the spirit of one-step GMM estimation (Hansen, 1982). The current
study makes a further extension to incorporate the estimated nonresponse weights. Under the
standard regularity conditions, we derive the asymptotic sampling variance matrix for the site-
specific causal effect estimates var(,[? i — B j), and then obtain a consistent estimate of the
standard error for each estimated population average causal effect . The details can be found in
Appendix C. Even though the standard errors can be alternatively estimated through a bootstrap
procedure, the closed-form method is favored because it requires much less computation.

The between-site variance of each site-specific effect var(ﬁj) is a population parameter of
key interest because it quantifies between-site heterogeneity in the causal mechanism. Its
estimation involves subtracting the estimated average within-site sampling variance of the site-
specific effect estimates (i.e. the second component of the following equation) from the
estimated between-site variance of the site-specific effect estimates (i.e. the first component of
the following equation), with adjustment for the between-site sampling covariance of the site-
specific effect estimates (i.e. the third component of the following equation):

J J
1 A 1 R 1 R R
var(8) = =5 ) (B =9)" = ) v B~ B) + 55— ). . @By~ BBy~ By)
j=1 j=1 '

i J'#j

The estimate of the variance covariance matrix of all the site-specific effects can be found in
Appendix C. When a variance estimate is negative, known as a Heywood case, we set the
variance estimate as well as the related covariance estimate to 0.

We adopt a permutation procedure (Fitzmaurice et al., 2007) for hypothesis testing. All
possible permutations of the site memberships are equally likely under the null hypothesis that
the between-site variance is 0. By randomly permuting the site indices while holding the site
sizes fixed, we are able to approximate the null distribution of the test statistic and empirically
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determine the probability of obtaining values greater than the sample test statistic. Appendix C
provides technical details about the estimation and inference.

5.3. Balance Checking

The nonresponse weight and the RMPW weight are estimated and are subjected to potential
model misspecification errors. Major errors in model misspecification can be detected if, within
a treatment group, the estimated nonresponse weight fails to balance the distribution of the
observed covariates between the respondents and the nonrespondents, or if the estimated RMPW
weight fails to balance the distribution of the observed covariates between those who succeeded
in attaining a credential and those who did not. A substantial reduction in the imbalance in each
case would indicate that the estimated weight is effective in reducing selection bias associated
with the observed covariates. If some observed covariates are still imbalanced after weighting,
balance checking results would indicate how much bias might be remaining and in which
direction it might affect the analytic results.

Balance after nonresponse weighting adjustment. Having estimated the nonresponse
weight as defined in Equation (3), we use the standardized bias to quantify the balance in an
observed covariate between the respondents and the nonrespondents in each treatment group
after weighting. The standardized bias is calculated by dividing the weighted mean difference in
each covariate by the standard deviation of the covariate (Harder et al. 2010). By convention, a
covariate is considered to be balanced if the standardized bias is less than 0.25 and preferably
less than 0.10 in magnitude. To evaluate whether the balance is achieved across most or all of the
sites, it is essential to further estimate the between-site standard deviation of the standardized
bias. Under the assumption that the site-specific standardized bias is normally distributed, we
compute the 95% plausible value range of the site-specific standardized bias, which is expected
to be within the range of [—0.25,0.25] if the covariate has acceptable balance at each site.
Because all the observed pretreatment covariates in this study are categorical, we obtain the
results for each treatment group by fitting a weighted mixed-effects logistic model regressing a
binary indicator for each covariate category on the response indicator R. The model includes a
site-specific random intercept and a random slope that are assumed to be bivariate normal.

Balance after RMPW adjustment. We further assess the extent to which the estimated
RMPW weights balance the distribution of the observed covariates between mediator categories
in each treatment group at each site. Regressing a binary indicator for each covariate category on
the mediator M in a weighted mixed-effects logistic model for each treatment group, we obtain
estimates that allow us to calculate the population average and the between-site standard
deviation of the standardized bias.

5.4. Sensitivity Analysis

The analytic procedure described above would generate causally valid results only when the
identification assumptions hold. In the current study, although the sampling mechanism and the
treatment assignment mechanism are ignorable, the assumptions of strongly ignorable
nonresponse and strongly ignorable mediator value assignment are likely untenable. A sensitivity
analysis is necessary for determining whether potential violations of these assumptions due to
omitted confounders would easily alter the causal conclusions. A conclusion is considered to be
sensitive if the inference can be easily reversed by additional adjustment for an omitted
confounder.
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We apply a weighting-based approach to sensitivity analysis that has been extended from
single-site to multisite causal mediation studies (Hong et al., 2018, working paper). This
approach reduces the reliance on functional form assumptions characteristic of most other
existing sensitivity analysis methods. The hidden bias associated with one or more omitted
confounders is summarized by a function of a small number of weighting-based sensitivity
parameters. In a single-site mediation study in which the treatment is randomized, there are two
sensitivity parameters: one is the standard deviation of the discrepancy between a new weight
that adjusts for a confounder and an initial weight that omits the confounder; and the other is the
correlation between the weight discrepancy and the outcome within a treatment group.
Intuitively, the former is associated with the degree to which the omitted confounder predicts the
mediator and the latter is associated with the degree to which it predicts the outcome.

In the current study, we consider potential violations of Assumption 3 (strongly ignorable
nonresponse) and Assumption 4 (strongly ignorable mediator value assignment). The former are
posed by omitted pretreatment or posttreatment confounders of the response-mediator or
response-outcome relationships. Such omissions may bias all the causal parameters of interest.
The latter are posed by possible omissions of pretreatment and posttreatment confounders of the
mediator-outcome relationships. These omissions threaten to bias the population average NDE,
NIE, PIE, and interaction effect, and their between-site variances. Moreover, both assumptions
need to hold within each site; yet the response models and the mediator models have assumed the
same response mechanism and mediation mechanism across all the sites for keeping the models
parsimonious. If the response mechanism or the mediation mechanism associated with an
observed pretreatment confounder in fact varied across the sites for a given treatment group,
omitting the site-specific increment to the coefficient for the confounder in the response model or
the mediator model would introduce bias as well. In addition, the original analysis only adjusted
for pretreatment covariates, because in the presence of treatment-by-mediator interactions,
posttreatment confounders of the mediator-outcome relationship cannot be directly adjusted for
in the mediator model (Avin et al., 2005). Similarly, in the presence of treatment-by-response
interactions, posttreatment confounders of the response-mediator or response-outcome
relationship cannot be directly adjusted for in the response model. We adopt a weighting-based
strategy that offers a solution to sensitivity analysis concerning posttreatment confounders (Hong
et al., 2018, working paper). Appendix D in the supporting web materials provides a list of
weighting-based sensitivity parameters relevant to multisite causal mediation research. For each
type of omission, we assess its potential impact on the causal conclusion with regard to each of
the population parameters of interest.

6. Analytic Results

6.1. Estimated Nonresponse and RMPW Weights

Appendix B compares the distribution of the outcome and of the 51 covariates between the
program group and the control group, between the respondents and the nonrespondents in each
treatment group, and between the two mediator categories among the respondents in each
treatment group. Average pretreatment differences are notable between the columns. All these
covariates are included in the propensity score models for response status and those for the
mediator. The estimated nonresponse weight ranges from 0.57 to 3.95 among the respondents
and from 0.33 to 4.48 among the nonrespondents, both with a mean equal to 1 in each treatment
group. The estimated RMPW weight ranges from 0.13 to 2.53 among the respondents in the
program group and from 0.40 and 6.62 among those in the control group, again with a mean
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equal to 1 in each case. The stabilized ITT weight ranges from 0.40 to 6.30 among the
respondents in the program group and from 0.54 to 5.13 among those in the control group. The
stabilized product of the ITT weight and RMPW weight ranges from 0.11 to 6.74 among the
respondents in the program group and from 0.27 to 8.17 among those in the control group. An
overly large weight may indicate possible violations of the positivity assumption or suggest
computational error and may pose a threat to the stability of the estimation results. Our results do
not flag such a concern.

6.2. Results of Causal Parameter Estimation and Inference

Table 3 presents the results of estimation and inference for the population average and the
between-site standard deviation of the causal effects. These results are generalizable to a
theoretical population of Job Corps centers serving disadvantaged youth, most of whom had not
acquired a labor market-worthy qualification in education and training at the time of application.

Population average ITT effects of Job Corps. The population average ITT effects of Job
Corps on educational and vocational attainment and on earnings are both positive and
statistically significant. Job Corps increased the rate of educational and vocational attainment
from 22% to 40% within 30 months after randomization, and increased weekly earnings by about
$21 (in 1994 dollars) in the fourth year after randomization. The original study estimated an ITT
effect of close to $16 dollars (Schochet et al., 2006). This was estimated in the population of
individuals, while we estimate the average ITT effect in the population of sites. We do not expect
these two parameters to have the same values as we discussed in the second paragraph of the
introduction section. Besides, there were other differences between the analyses. We conducted
an analysis to decompose which differences between our analysis and the original one led to this
difference in estimated impacts (results available upon request). We found that most of the
difference was due to how we classified nonrespondents (those missing a site ID, the mediator,
or the outcome) compared to the original study classification (those missing the outcome).

Population average mediation mechanism. The ITT effect of Job Corps on earnings is
partly transmitted through educational and vocational attainment. The estimated average NIE is
$8.47 (standard error [SE] = 1.61; t = 5.26; p < 0.001). This result suggests that human capital
formation is not the only pathway through which Job Corps generated its impact on earnings.
The estimated average NDE is $12.56 (SE = 5.73; t = 2.19; p = 0.028), accounting for nearly
60% of the ITT effect. According to our earlier reasoning, NDE transmits the Job Corps impact
primarily through a wide array of support services. The estimated difference between NDE and
NIE is not statistically significant, indicating that the support services played a role at least as
important as general education and vocational training in promoting economic well-being among
disadvantaged youths. The estimated natural treatment-by-mediator interaction effect $2.27 (SE
=2.50; t=0.91; p = 0.36) is simply the difference between the estimated NIE and the estimated
PIE, the latter being $6.20 (SE = 1.78; t = 3.48; p = 0.001). The interaction effect is not
statistically significant. Therefore, the economic returns to the program-induced increase in
educational and vocational attainment are indistinguishable between Job Corps and the control
condition.

Between-site variance of the ITT effects. The ITT effect of Job Corps on educational and
vocational attainment did not vary significantly across sites. However, there is considerable
between-site variation in the ITT effect on earnings. Its between-site standard deviation is
estimated to be $29.60 (p < 0.05). Under the assumption that the site-specific ITT effects are
normally distributed, these effects range from -$37 to $79 in 95% of the sites. This result
indicates that even though Job Corps significantly improved earnings on average, not all the
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centers generated positive impacts. An estimated negative correlation (-0.18) between the site-
specific control group mean and the ITT effect (result not tabulated) suggests that Job Corps
tended to have a greater positive impact on earnings in the sites where economic prospects were

particularly dire under the control condition.

Between-site variance of the mediation mechanism. To explain the between-site
heterogeneity in the ITT effect on earnings, we further investigate how the causal mediation
mechanism varied across sites. The estimated between-site standard deviation of NDE is as large
as $29 (p = 0.07), nearly equal to the estimated between-site standard deviation of the ITT effect
on earnings; the estimated site-specific NDE ranges from -$44 to $69 in 95% of the sites. In
contrast, the estimated between-site standard deviation of NIE is only about $5 (p = 0.14). The
estimated between-site standard deviation of PIE and that of the interaction effect are similarly
negligible. According to these results, not only did Job Corps universally improved the rate of
attaining a certificate, the economic benefit of such an improvement was also comparable across
the sites. However, the program impact transmitted through support services appeared to be
uneven across the sites. The site-specific NDE seems to largely coincide with the site-specific
ITT effect on earnings, their correlation being greater than 0.9 (result not tabulated). Therefore,
the between-site variation in the ITT effect on earnings is primarily explained by the
heterogeneity in support services. This result is consistent with a qualitative process analysis
(Johnson et al., 1999) showing that, unlike the provision of education and vocational training
that was strictly regulated by the national and regional Job Corps offices, the quantity and quality

of support services were left largely to the discretion of agents at each local center.

Table 3. Estimated causal parameters using the Job Corps data

Population Average Effect Stagzg‘;vde%le-\szii;fion 9\5/ Oa/fulzlgsrilzlee

Estimate ESfitSS p-Value Estimate  p-Value of Sigc—filz)tzciﬁc

gif:rfiiiteﬁ ;hrfﬂ‘;;%‘ilﬁ;")r (g: (l)fg) 0445  <0.001 0087 0035  [0.015,0357]
g;lzfgu on the outcome (251.60834(; 0.114  <0.001 20603 0035  [-36.992,79.052]
?;E;?ars) (152"753601) 0.068  0.028 28985  0.070  [-44.250,69.372]
?f]lars) (?:2?3) 0.046  <0.001 5407 0135  [-2.129,19.067]
gfnars) (?:;g?) 0.034  0.001 4351 0215  [-2330, 14.726]
igﬁ{iﬁg"“ effect é%g) 0012 0364 11083 0220  [-19.453, 23.993]

Note. 1. For the point estimate of each population average effect, the corresponding standard error is
provided in parentheses. 2. The effect size of each population average effect estimate is calculated by
dividing the point estimate by the standard deviation of the outcome in the control group. 3. The bounds
for the 95% plausible value range of the site-specific effects are 1.96 times the between-site standard
deviation estimate away from the population average effect estimate, under the assumption that the site-

specific effects are normally distributed.

Summary. Our empirical evidence supports the Job Corps program theory and suggests
necessary modifications in program practice. Job Corps distinguishes itself from other training
programs by emphasizing both human capital formation and risk reduction as complementary
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pathways for improving the economic well-being of disadvantaged youths. Our results have
indicated that the latter mechanism is no less if not more important than the former. Although all
Job Corps centers succeeded in increasing educational and vocational attainment which
subsequently led to an increase in average earnings, they were not equally successful in
promoting economic well-being through countering a wide range of risk factors. One implication
seems clear: regularizing the quantity and ensuring the quality of support services is likely the
key to achieving universal effectiveness of Job Corps.

6.3. Results of Balance Checking

As expected, the nonresponse weighting adjustment substantially improved the balance
between respondents and nonrespondents on average in both treatment groups. Before weighting,
the magnitude of the standardized bias averaged over all the sites was greater than 0.25 for one
variable and greater than 0.1 for six other variables in the program group and was greater than
0.25 for two variables and greater than 0.1 for seven other variables in the control group. After
weighting, the average standardized bias becomes less than 0.1 in magnitude for all the variables
in both groups. The 95% plausible value range of the site-specific standardized bias, initially
exceeding the -0.25 and 0.25 thresholds for five variables in the program group and for four
variables in the control group, is kept between these thresholds for all but two variables in the
program group and for all but one variable in the control group. We notice that the nonresponse
weighting increased the plausible value range for some variables due to the increase in
estimation uncertainty. These balance checking results are illustrated in Figures E.1 ~ E.4 in
Appendix E in the supporting web materials.

Figures E.5 ~ E.8 in the same appendix summarize the balance between mediator categories
among the respondents in each treatment group after RMPW weighting. The weighting reduced
the number of variables with an average standardized bias exceeding 0.1 in magnitude from nine
to zero in the program group and from ten to three in the control group. The number of variables
with the plausible value range falling beyond the thresholds of -0.25 and 0.25 is reduced from six
to three in the program group and is, however, increased from eight to ten in the control group.
This is because, in some of the sites, relatively few respondents in the control group successfully
attained a credential. Such noise may reduce the precision in estimating the between-site
variance of the standardized bias.

6.4. Results of Sensitivity Analysis

It is straightforward to assess the sensitivity of the original conclusions to the omission of an
observed pretreatment covariate, because we can directly calculate its sensitivity parameters
based on the observed data. However, to determine if the initial results are sensitive to the
existence of an unmeasured pretreatment confounder, it is important to further reason whether
the confounding impact of the unmeasured covariate would be comparable to that of an observed
pretreatment confounder. For example, characteristics of peer network might influence a Job
Corps applicant’s response status, educational attainment, and job prospect. Even though peer
network was unmeasured in NJCS, we may reason that its confounding impact is comparable to
one of the most important observed pretreatment confounders such as baseline earnings and
thereby obtain a plausible reference value of the bias caused by the omission of peer network.

Take the population average NIE as an example. An omission of the indicator for upper-
middle level baseline earnings would result in a negative bias -$3.39. Our original estimate of the
NIE effect is $8.47, with a 95% confidence interval (CI) [$5.31, $11.63]. With an additional
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adjustment for an unmeasured pretreatment confounder that is assumed to be comparable to
upper-middle level baseline earnings, the new estimate of NIE would become $11.86; the 95%
CI of the adjusted NIE estimate is [$8.70, $15.02]. Here we consider the plausible reference
value of bias associated with the omission to be given rather than estimated, and thus the
additional adjustment does not change the width of the 95% CI. This hypothetical adjustment
would lead to an increase in the magnitude of the NIE estimate without changing the initial
conclusion about the significant positive NIE. For the population average NDE, the omission
would contribute a positive bias of $1.85. With an additional adjustment for this hypothetical
bias, the estimate of NDE would change from $12.56 (95% CI =[$1.33, $23.79]) to $10.71
(95% CI=[-$0.52, $21.94]). The adjusted CI now contains zero. Hence the original conclusion
about the significant positive NDE is potentially sensitive to an unmeasured confounder
comparable to baseline earnings. Among the 51 observed pretreatment covariates, ten of them
each provides a plausible reference value of bias that would lead to a statistically insignificant
NDE once the hypothetical bias is additionally removed. This is also true with five observed
pretreatment covariates when we assess the sensitivity of the population average PIE. In
addition, nine covariates would overturn the statistical significance of the population average
natural treatment-by-mediator interaction effect. Nevertheless, none of the between-site variance
estimates is sensitive to the omission of pretreatment confounders.

In many cases, the analyst might not have enough scientific knowledge to equate the
potential bias of an omitted confounder with that of an observed covariate. Yet other data sources
might supply values of its sensitivity parameters. Applying the bias formula as represented in
Appendix D, the analyst can compute the approximate amount of bias associated with the
omission and then assess the sensitivity of the original conclusion to the omission. In addition to
assessing the amount of bias that each single omitted covariate might contribute, we could also
assess how much bias a set of omitted covariates might introduce jointly.

We further assess the sensitivity of the original conclusions to the omission of the site-
specific increment to the coefficient for each pretreatment confounder that has been adjusted for
in the response model or the mediator model. The population average ITT effect estimate is
insensitive to such an omission. In contrast, with an additional adjustment for the site-specific
increment to the coefficient for some of the covariates, the estimated population average NIE,
NDE, or PIE would become insignificant, while the population average natural treatment-by-
mediator interaction effect, originally tested to be insignificant, would become either
significantly negative or significantly positive. Nevertheless, none of the between-site variance
estimates is sensitive to the omission of the site-specific increment.

The above discussions are focused on the omission of pretreatment confounders. As
explicated in section 5.4, the omission of a posttreatment confounder would also pose threats to
the identification assumptions. Because the NJCS data do not have any measurement of a
potential posttreatment confounder of the response-mediator, response-outcome, or mediator-
outcome relationship, we are unable to assess the potential influence of omitted posttreatment
confounders in this study.

7. Conclusion

This article presents a comprehensive template for multisite causal mediation analysis that
integrates a series of weighting-based strategies. These include using a sample weight to adjust
for complex sample and survey designs, using an IPTW weight to adjust for differential
treatment assignment probabilities, using a nonresponse weight to adjust for non-random
nonresponse, and using RMPW weights to adjust for mediator value selection while unpacking
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the causal mechanisms. Under the identification assumptions clarified in the article, these
weighting strategies promise to enhance the external validity and internal validity of the
conclusions with regard to the population average and the between-site variance of the causal
effects. In addition to decomposing the average ITT effect of the treatment on the outcome into
direct and indirect effects, the template further investigates the heterogeneity in causal
mechanisms across sites that explains the between-site variation in the ITT effect. Weighting-
based balance checking assesses the amount of overt bias associated with the observed
covariates. And finally, a weighting-based sensitivity analysis allows for a flexible assessment of
the causal conclusions in light of possible violations of the identification assumptions due to
hidden bias. The article is accompanied by the “MultisiteMediation” R package for
implementing the entire analytic procedure.

Developed under the framework of potential outcomes, the template presented in this article
provides an important alternative to the existing methods. Multilevel path analysis and SEM
(Bauer et al., 2006) with MLE have difficulties in estimating and testing the between-site
variance of NIE and the natural treatment-by-mediator interaction effect. Consistent estimation
further requires that both the mediator model and the outcome model be correctly specified and
that the mediator, the outcome, and the site-specific effects be normally distributed. In contrast,
with each causal effect identified through a mean contrast between the weighted outcomes, the
proposed MOM strategy invokes no assumptions about the functional form of the outcome
model or about the distributions of the mediator, the outcome, and the site-specific effects. The
issue of possible misspecifications of the functional forms of the response models or of the
mediator models can be evaluated through balance checking and weighting-based sensitivity
analysis. We opt for the MOM estimators also because the MLE of a population average effect is
essentially a precision weighted average of the site-specific effect estimates. As discussed in
Raudenbush and Schwartz (working paper), the MLE will be biased if the precision is correlated
with the site-specific effect, which is likely in a multisite trial in which the sites that are more
effective in implementing the program may attract more applicants. In contrast, the MOM
estimator ensures consistency at some cost of efficiency. In general, efficiency becomes less of a
concern in studies with a larger number of sites. We have also derived an asymptotic standard
error for each population average effect estimate that fully accounts for the sampling variability
in the two-step estimation. The permutation test for variance testing also fills a gap in the
literature on multilevel mediation analysis.

There are important topics remaining. First, we have conceptualized the site-specific causal
effects under SUTVA. This assumption will need to be relaxed if an individual’s potential
mediators and potential outcomes could be affected by other individuals’ treatment assignments,
or if an individual’s potential outcomes could additionally be affected by other individuals’
mediator values (Hong, 2015; Vanderweele ef al., 2013). For example, about half-way into the
NJCS sample intake period, the Job Corps centers nationwide implemented a “zero tolerance”
policy eliminating students involved in drug abuse or violence. The removal of such “problem”
students would presumably improve the institutional environment and would increase allocation
of resources to other students who were not directly targeted by the policy. Hence expelling
“problem” peers from the program might contribute positively to one’s potential earnings. To
test this hypothesis will require a major revision of the conceptual framework and creative
extensions of the current template, which we will explore in future work.

Second, the proposed template is directly applicable to multisite trial data similar to the Job
Corps data, in which all the sites at the time of study were included and at least a moderate
number of individuals were selected into the sample at each site. Unlike NJCS, some multisite
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studies may sample sites first and then sample individuals within the sampled sites. One may
further incorporate a site-level sample weight to adjust for the sample selection of sites. The
sample design has important implications for causal inference. For example, researchers would
not be able to obtain results generalizable to the population of sites if individuals were sampled
from the overall population with a relatively small probability while the number of sites was
relatively large and the site sizes were uneven. This is because sampled observations might
become too sparse or even non-existent in some of the relatively small sites, in which case the
sample of sites would not be representative of the population of sites.

Third, we have adopted the missing-indicator strategy to handle missingness in the
pretreatment covariates while using the inverse probability weighting strategy to account for
nonresponse in the mediator and the outcome. If the true values of the missing cases were highly
variant, the missing-indicator strategy would underestimate the variance and covariance of the
covariates. When the missing-at-random assumption holds, an alternative is to use multiple
imputation to impute the missing values in the covariates as well as in the mediator and the
outcome. A product of the sample weight, IPTW weight, and RMPW weight, i.e. W, W:W,,, will
then be applied to each imputed data set. The final estimation results can be obtained by
combining the estimates from multiple imputed data sets.

Fourth, as acknowledged by Qin and Hong (2017), the MOM estimation procedure may not
be optimal if there are fewer than 20 individuals at each site. Moreover, when site sizes are
relatively small, propensity score models may be overfitted if selection mechanisms vary across
sites. In such cases, there might be a lack of statistical power for detecting between-site
heterogeneity in the causal mediation mechanism.

Fifth, our mediator is a combination of two central elements of the Job Corps program. It
takes value 1 if an individual obtained either an education or a training credential within 30
months after randomization. However, the selection mechanism that led to an education
credential might be different from the mechanism that led to a training credential. Combining
these two distinct types of credentials into one mediator may result in misspecified propensity
score models for the mediator and correspondingly biased estimates of the causal parameters.
This problem can be addressed by viewing vocational training attainment and general education
attainment as two concurrent mediators, a topic that we investigate in a separate study.
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