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Summary. This study provides a template for multisite causal mediation analysis using a 
comprehensive weighting-based analytic procedure that enhances external and internal validity. 
The template incorporates a sample weight to adjust for complex sample and survey designs, 
adopts an IPTW weight to adjust for differential treatment assignment probabilities, employs an 
estimated nonresponse weight to account for non-random nonresponse, and utilizes a propensity 
score-based weighting strategy to flexibly decompose not only the population average but also 
the between-site heterogeneity of the total program impact. Because the identification 
assumptions are not always warranted, a weighting-based balance checking procedure assesses 
the remaining overt bias, while a weighting-based sensitivity analysis further evaluates the 
potential bias related to omitted confounding or to propensity score model misspecification. We 
derive the asymptotic variance of the estimators for the causal effects that account for the 
sampling uncertainty in the estimated weights. The method is applied to a re-analysis of the data 
from the National Job Corps Study.  
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1. Introduction 

Many program evaluations simply report the estimated average treatment effects without 
explicitly testing the theories explaining how a program produces its intended effect. One way to 
test specific theories about program mechanisms is mediation analysis that, in its simplest form, 
decomposes the total program impact into an indirect effect--transmitted through a hypothesized 
focal mediator--and a direct effect--attributable to all other possible pathways. Multisite 
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randomized trials, in which individuals are randomly assigned to treatment and control groups 
within each site, offer unique opportunities for further testing program theories across a wide 
range of settings in which a program is implemented. Just as treatment effects may vary across 
sites, causal mechanisms may differ across sites due to differences in local contexts, in 
participant composition, and in treatment implementation (Weiss et al., 2014). Hence, assessing 
between-site variation in the causal mechanisms may generate important information for 
understanding heterogeneity in the total program impact, may reveal a need to revisit the 
program theory, and may suggest specific site-level modifications of the intervention practice. 
However, due to some important constraints of existing analytic tools, analysts have rarely 
investigated between-site heterogeneity of mediation mechanisms in multisite program 
evaluations. 

In a single-site study, the population of individuals residing at the site is naturally the target 
of inference. The causal parameter of interest is generally the treatment effect averaged over all 
the individuals in this site-specific population. In a multisite study, however, there are two 
potential targets of inference: the population of sites and the overall population of individuals 
which is the union of all the site-specific subpopulations (Raudenbush and Bloom, 2015; 
Raudenbush and Schwartz, working paper). When researchers are primarily interested in how a 
program is implemented at the site level and whether the program impact depends on the local 
settings, the population of sites clearly becomes the target of inference. In such a case, the 
population average treatment effect is defined as the average of the site-specific average effect 
over all the sites. Henceforth we call this “the average effect for the population of sites.” 
Moreover, the between-site variance of the site-specific average effect indicates the extent to 
which the program impact is generalizable across the sites. In contrast, when researchers are 
primarily interested in the overall population of individuals served by a particular program, the 
population average treatment effect is simply an average over the individuals in the overall 
population regardless of their site membership. We call this “the average effect for the 
population of individuals”. The average effect for the population of sites and that for the 
population of individuals become equivalent only when the size of the site-specific 
subpopulation of individuals is the same across all the sites or if the effect does not vary across 
sites. In this study, with a primary interest in the between-site heterogeneity of the program 
impacts and of the mediation mechanisms, we focus on the population of sites rather than the 
overall population of individuals. 

The methodological development in this study is motivated by a reanalysis of the multisite 
experimental data evaluating Job Corps, the largest federal program designed to promote 
economic well-being among disadvantaged youths in the U.S. who are unemployed and not in 
school. Intensive education and vocational training are the central elements of the program. 
Besides, unlike most other training programs that have been generally found ineffective because 
participants tend to “have more trouble in their lives than the programs could correct” (Pouncy, 
2000, p.269), Job Corps is unique in its provision of a comprehensive array of support services 
including residential living, supervision, behavioral counseling, social skills training, physical 
and mental health care, and drug and alcohol treatment. According to a nationwide evaluation of 
all the Job Corps centers in the mid-1990s, known as the National Job Corps Study (NJCS), Job 
Corps was the only federal program shown to increase earnings of disadvantaged youth; the 
program also improved educational attainment and employment and reduced criminal 
involvement (Flores and Flores-Lagunes, 2013; Frumento et al., 2012; Lee, 2009; Schochet et 
al., 2006, 2008; Zhang et al., 2009).  
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However, no attempt has been made to formally test the Job Corps program theory. The 
program is intended to improve disadvantaged youths’ economic well-being not only through 
education and training that form conventional human capital (Becker, 1964; Card, 1999) but also 
through comprehensive support services for reducing risk exposures and risk behaviors. Given 
the comprehensiveness of the program and given that support services tend to be lacking under 
the control condition, another interesting theoretical question is whether education and training 
obtained through Job Corps generated a greater impact on earnings on average than education 
and training obtained under the control condition. Therefore, we ask how much of the Job Corps 
impact on earnings is mediated by education and training and whether Job Corps enhanced the 
economic returns to education and training for disadvantaged youth. 

Moreover, with their primary interest in the population of individuals served by Job Corps, 
most researchers have simply ignored the role of individual Job Corps centers in their analyses. 
Yet a recent study (Weiss et al., 2017) reported considerable variation in the program impact on 
earnings across the sites, with one Job Corps center at each site. This result coincides with 
findings from a qualitative process analysis (Johnson et al., 1999) revealing important 
discrepancies between the intended program and the implemented program in service provision 
at some centers.  

In our reanalysis of the NJCS data, we intend to test the Job Corps program theory that 
focuses on education and training without overlooking the role of support services. Moreover, 
we will examine how the theory plays out differently at different sites that may explain between-
site heterogeneity in the program impact. Given our interest in generating empirical evidence to 
inform Job Corps operation at the site level, the target of inference in this study is the population 
of sites rather than the overall population of individuals.   

We highlight a number of challenges in such research endeavors:  
Potential sampling bias due to differential sampling probabilities. NJCS drew a probability 

sample of individuals representative of the overall population of eligible applicants to be 
assigned to each of the Job Corps centers. An individual’s probability of being sampled was a 
function of baseline characteristics. If the analyst overlooks the differential probabilities of 
sample selection, sample estimates of the average program impacts and of their between-site 
variance would contain sampling bias.  

Potential treatment selection bias due to differential probabilities of treatment assignment. 
Rather than assigning all sampled individuals with an equal probability to either the program 
group or the control group, NJCS researchers let the probabilities of treatment assignment differ 
by personal and site-level characteristics. Ignoring the differential probabilities of treatment 
assignment would pose a threat to internal validity and lead to treatment selection bias. 

Potential nonresponse bias due to differential probabilities of response. In NJCS, some 
sampled youths were lost to attrition or failed to provide information on education and training 
or on earnings, while some were not assigned to a specific center prior to random assignment. 
We define all of these individuals as nonrespondents. The sample estimates would contain 
nonresponse bias if non-random nonresponse changes the representativeness of the sample of 
individuals in longitudinal follow-ups or if the remaining sample shows systematic differences 
between the program group and the control group.  

Potential mediator selection bias due to differential probabilities of mediator value 
assignment. Even if a randomized experiment does not suffer from non-random nonresponse, 
mediator values are typically generated through a natural process rather than being 
experimentally manipulated. As a result, individuals displaying different mediator values tend to 
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differ systematically in many other aspects that would confound the causal mediation analysis 
and result in mediator selection bias.  

Potential bias due to model misspecification. Path analysis and structural equation modeling 
(SEM) (Alwin and Hauser, 1975; Baron and Kenny, 1986; Duncan, 1966; Sobel, 1982; Wright, 
1934) have been the primary technique for mediation analysis in the past several decades with 
recent extensions to multisite data analysis (Bauer et al., 2006; Kenny et al., 2003; Krull and 
MacKinnon, 2001). These regression-based methods, however, rely heavily on correct 
specifications of both the mediator model and the outcome model (Hong, 2017). Recent 
advances in single-site causal mediation analysis (e.g., Imai et al., 2010; Imai et al., 2010; Pearl, 
2010; Petersen et al., 2006; Valeri and VanderWeele, 2013; VanderWeele and Vansteelandt, 
2009, 2010; van der Laan and Petersen, 2008) have focused on accommodating treatment-by-
mediator interactions within the linear SEM framework; while challenges involving the 
functional forms of covariates remain in model specifications.  

The first three challenges are common in evaluation studies, and are often addressed via 
sampling weights, inverse probability of treatment weights (IPTW), and nonresponse weights, 
respectively. We innovatively adapt these weighting adjustments to the context of mediation 
analysis by combining them with the ratio-of-mediator-probability weighting (RMPW) strategy. 
The latter is for unpacking the causal mechanism and reducing mediator selection bias. RMPW 
was initially proposed by Hong (2010, 2015) and others (Bein et al., 2018; Hong et al., 2011, 
2015; Hong and Nomi, 2012; Huber, 2014; Lange et al., 2012; Tchetgen Tchetgen and Shpitser, 
2012) and was recently extended to multisite studies by Qin and Hong (2017). This strategy, 
without invoking functional form assumptions for the outcome model, is particularly flexible for 
accommodating treatment-by-mediator interactions and is suitable for discrete and continuous 
mediators and outcomes. We assess the remaining overt bias due to possible misspecifications of 
propensity score models through a weighting-based balance checking procedure; and we adopt a 
novel weighting-based sensitivity analysis strategy for assessing hidden bias with minimal 
simplifying assumptions (Hong et al., 2018, working paper). This series of strategies constitute a 
systematic and coherent template for multisite causal mediation analysis. We also address 
challenges to estimation and statistical inference when multiple weights are unknown and must 
be estimated from sample data.  

We organize the paper as follows. Section 2 introduces the NJCS sample and data. Section 3 
defines the causal parameters under the counterfactual causal framework. Section 4 clarifies the 
identification assumptions and presents our identification strategy. Section 5 outlines our 
approaches to estimation, statistical inference, balance checking, and sensitivity analysis. Section 
6 reports the analytic results. Section 7 concludes and discusses extensions. In addition, we 
provide an R package “MultisiteMediation” (http://cran.r-
project.org/web/packages/MultisiteMediation) that implements the proposed template for 
multisite causal mediation analysis. 

2. The NJCS Sample and Data 

NJCS researchers identified about 80,000 eligible applicants nationwide in the mid-1990s 
(Schochet et al., 2001). Through a stratified sampling procedure, more than 15,000 eligible 
applicants were randomly selected into a nationally representative research sample and were 
assigned at random to either the program group or the control group. Program group members 
could enroll in Job Corps soon after random assignment; while control group members were 
barred from enrolling in Job Corps for 3 years. Applicants who were initially assigned to the 
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same Job Corp center, regardless of their subsequent treatment assignments, constitute the 
sample of individuals at the given site. Participants in the study were interviewed at baseline and 
at 12, 30, and 48 months after randomization. By design, the probability of selection for each 
follow-up survey differed across individuals. 

We perform our analysis on the random sample of 14,125 youths who were targeted for the 
48-month interview. The mediator, collected at the 30-month follow-up, indicates whether a 
youth had obtained an education credential—typically a General Educational Development 
(GED) certificate—or a vocational certificate (or both) since the randomization. The outcome is 
weekly earnings in the fourth year after randomization. Our sample contains 8,818 respondents 
(3,491 control group members and 5,327 program group members) and 5,307 nonrespondents 
(2,235 control group members and 3,072 program group members).  

3. A Theoretical Model of Multisite Causal Mediation Process 

We investigate the following research questions in relation to Job Corps: 1) To what extent 
did Job Corps increase earnings through improving educational and vocational attainment? 2) To 
what extent did Job Corps increase earnings through other pathways? 3) Did the improvement in 
educational and vocational attainment produce a greater increase in earnings under Job Corps 
than under the control condition? 4) Were Job Corps centers equally effective in increasing 
earnings through improving educational and vocational attainment? 5) Were Job Corps centers 
equally effective in increasing earnings through other pathways? 6) Did Job Corps enhance the 
economic returns to education and training in some centers but not in others? 7) Did Job Corps 
centers that increased earnings through improving educational and vocational attainment also 
tend to be successful in increasing earnings through other pathways?  

Here we present a theoretical model that summarizes key information characterizing the 
multisite causal mediation process. We define the causal parameters under the potential 
outcomes framework (Holland, 1986, 1988; Neyman and Iwaszkiewicz, 1935; Rubin, 1978) that 
has previously been extended to causal mediation research (Pearl, 2001; Robins and Greenland, 
1992). The extension focuses on the intermediate process in which one’s mediator value is a 
potential natural response to the treatment assigned; and hence mediator values may naturally 
vary among individuals under the same treatment. 

3.1. Potential Mediators and Potential Outcomes 

Let 𝑇𝑇𝑖𝑖𝑖𝑖 denote the treatment assignment of individual 𝑖𝑖 at site 𝑗𝑗. It takes values 𝑡𝑡 = 1 for an 
assignment to Job Corps and 𝑡𝑡 = 0 for the control group. Let 𝑀𝑀𝑖𝑖𝑖𝑖 denote the focal mediator and 
𝑌𝑌𝑖𝑖𝑖𝑖 denote the outcome. For individual 𝑖𝑖 at site 𝑗𝑗, educational and vocational attainment is a 
function of the treatment assignment 𝑡𝑡. Hence, we use 𝑀𝑀𝑖𝑖𝑖𝑖(1) to represent the individual’s 
potential attainment if assigned to Job Corps and use 𝑀𝑀𝑖𝑖𝑖𝑖(0) for the potential attainment if the 
same person was assigned to the control group. For each individual, only one of these two 
potential mediators is observable after the treatment assignment. Under treatment condition 𝑡𝑡, the 
individual might obtain a credential by the 30-month follow-up (𝑀𝑀𝑖𝑖𝑖𝑖(𝑡𝑡) = 1) or might fail to do 
so (𝑀𝑀𝑖𝑖𝑖𝑖(𝑡𝑡) = 0). 

The individual’s weekly earnings in the fourth year after randomization also depends on the 
treatment assignment. The convention is to use 𝑌𝑌𝑖𝑖𝑖𝑖(1) and 𝑌𝑌𝑖𝑖𝑖𝑖(0) to represent the potential 
earnings associated with an assignment to Job Corps and to the control group, respectively. 
Alternatively, one may view the potential outcome as a function of both the treatment 
assignment and the corresponding potential mediator and denote it with 𝑌𝑌𝑖𝑖𝑖𝑖(𝑡𝑡,𝑀𝑀𝑖𝑖𝑖𝑖(𝑡𝑡)) for 𝑡𝑡 =
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0, 1. When 𝑀𝑀𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑚𝑚, where 𝑚𝑚 = 0,1, the individual’s potential outcome value associated 
with treatment 𝑡𝑡 can be written as 𝑌𝑌𝑖𝑖𝑖𝑖(𝑡𝑡,𝑚𝑚). Again, only one of the two potential outcomes is 
observable for each individual given the treatment assignment.  

In causal mediation analysis, two additional counterfactual outcomes play indispensable 
roles: 𝑌𝑌𝑖𝑖𝑖𝑖(1,𝑀𝑀𝑖𝑖𝑖𝑖(0)) is one’s potential earnings if assigned to Job Corps yet counterfactually 
having the same attainment status as he or she would have under the control condition; and 
𝑌𝑌𝑖𝑖𝑖𝑖(0,𝑀𝑀𝑖𝑖𝑖𝑖(1)) is the potential earnings if one was assigned to the control group yet 
counterfactually having the same attainment status as he or she would have under Job Corps. 
Because 𝑀𝑀𝑖𝑖𝑖𝑖(0) is counterfactual for program group members and 𝑀𝑀𝑖𝑖𝑖𝑖(1) is counterfactual for 
control group members, neither 𝑌𝑌𝑖𝑖𝑖𝑖(1,𝑀𝑀𝑖𝑖𝑖𝑖(0)) nor 𝑌𝑌𝑖𝑖𝑖𝑖(0,𝑀𝑀𝑖𝑖𝑖𝑖(1)) is directly observable for any 
individual. 

The above potential mediators and potential outcomes are defined under the Stable Unit 
Treatment Value Assumption (SUTVA) (Rubin, 1980; Rubin, 1986; Rubin, 1990). In a single 
site, SUTVA implies (a) that an individual’s potential mediators are not functions of the 
treatment assignments of other individuals, (b) that an individual’s potential outcomes are not 
functions of the treatment assignments and the mediator values of other individuals, and (c) that 
an individual’s potential mediators and potential outcomes do not depend on which program 
agents (e.g., instructors or counselors) one would encounter, which is also known as “treatment 
version irrelevance”. This assumption would be violated, for example, in the presence of peer 
influence or if program agents were not equally effective (Hong, 2015). In a multisite study, 
SUTVA further requires “no interference between sites” (Hong and Raudenbush, 2006; Hudgens 
and Halloran, 2008). Because applicants are usually assigned to Job Corps centers relatively 
close to their original residences and because Job Corps centers are sparsely located, between-
site interference seems unlikely. 

3.2. Individual-Specific Causal Effects 
Under SUTVA, for individual 𝑖𝑖 at site 𝑗𝑗, the intention-to-treat (ITT) effect of the treatment 

on the mediator, i.e. the effect of the treatment assignment on the mediator, is defined as  
𝑀𝑀𝑖𝑖𝑖𝑖(1) −𝑀𝑀𝑖𝑖𝑖𝑖(0); 

the ITT effect of the treatment on the outcome, also known as the total effect, is defined as  
𝑌𝑌𝑖𝑖𝑖𝑖 (1,𝑀𝑀𝑖𝑖𝑖𝑖(1))  −  𝑌𝑌𝑖𝑖𝑖𝑖(0,𝑀𝑀𝑖𝑖𝑖𝑖(0)). 

The individual-specific natural indirect effect (NIE) of the treatment on the outcome 
transmitted through the mediator (Pearl, 2001) is defined as  

𝑌𝑌𝑖𝑖𝑖𝑖(1,𝑀𝑀𝑖𝑖𝑖𝑖(1)) −  𝑌𝑌𝑖𝑖𝑖𝑖(1,𝑀𝑀𝑖𝑖𝑖𝑖(0)).  
It represents the Job Corps impact on earnings attributable to the program-induced change in the 
individual’s attainment from 𝑀𝑀𝑖𝑖𝑖𝑖(0) to 𝑀𝑀𝑖𝑖𝑖𝑖  (1) under Job Corps. This is called “the total indirect 
effect” by Robins and Greenland (1992), who distinguished it from the individual-specific “pure 
indirect effect” (PIE) 

𝑌𝑌𝑖𝑖𝑖𝑖(0,𝑀𝑀𝑖𝑖𝑖𝑖(1)) −  𝑌𝑌𝑖𝑖𝑖𝑖(0,𝑀𝑀𝑖𝑖𝑖𝑖(0)).  
It represents the impact on earnings when the individual’s attainment is changed from 𝑀𝑀𝑖𝑖𝑖𝑖(0) to 
𝑀𝑀𝑖𝑖𝑖𝑖(1) under the control condition.  

The individual-specific natural direct effect of the treatment on the outcome (NDE) is 
defined as 

𝑌𝑌𝑖𝑖𝑖𝑖 (1,𝑀𝑀𝑖𝑖𝑖𝑖(0))  −  𝑌𝑌𝑖𝑖𝑖𝑖(0,𝑀𝑀𝑖𝑖𝑖𝑖(0)).  
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It represents the Job Corps impact on earnings while holding the individual’s attainment at the 
level that would be realized under the control condition. The direct effect is nonzero if Job Corps 
exerted an impact on earnings without changing an individual’s attainment. Robins and 
Greenland (1992) called this  “the pure direct effect” in contrast with “the total direct effect,” 
𝑌𝑌𝑖𝑖𝑖𝑖  (1,𝑀𝑀𝑖𝑖𝑖𝑖 (1))  −  𝑌𝑌𝑖𝑖𝑖𝑖 (0,𝑀𝑀𝑖𝑖𝑖𝑖  (1)). The latter is the Job Corps impact on earnings while holding 
attainment at the level that would be realized under Job Corps.  

The individual-specific total treatment effect is the sum of the individual-specific NIE and 
NDE. Alternatively, one may decompose the individual-specific total treatment effect into PIE 
and the total direct effect. 

As Judd and Kenny (1981) pointed out, a treatment may produce its impact not only through 
changing the mediator value but also in part by altering the mediational process that produces the 
outcome. In other words, the treatment may alter the relationship between the mediator and the 
outcome. We have reasoned that obtaining an education or training credential under Job Corps 
might bring greater economic returns than obtaining such a credential under the control 
condition. Therefore, the individual-specific NIE and PIE may not be equal. The difference 
between the two is defined as the natural treatment-by-mediator interaction effect for each 
individual (Hong, 2015; Hong et al., 2015), which quantifies the treatment effect on the outcome 
transmitted through a change in the mediator-outcome relationship. A nonzero interaction effect 
will indicate that the program-induced change in attainment influences earnings differently 
between the Job Corps condition and the control condition. 

3.3. Site-Specific Causal Effects and Population Parameters 
We define the site-specific causal effects by taking expectations of the individual-specific 

causal effects over the population of individuals at a given site. The site-specific effects, 
represented by 𝛽𝛽𝑗𝑗 in general, are listed in the second column in Table 1 in which 𝑆𝑆𝑖𝑖𝑖𝑖  =  𝑗𝑗 
indicates the site membership of individual 𝑖𝑖. 

As we emphasized earlier, of particular theoretical interest is not only the overall average of 
each of these site-specific causal effects but also its possible variation across the sites. NJCS was 
a census of all the Job Corps centers that existed at the time of the study, which enables us to 
generalize results to the population of sites. Hence, the population parameters include the 
population average and the between-site variance of each site-specific effect, respectively 
represented by 𝛾𝛾 and 𝜎𝜎2 in general. As shown in Table 1, the superscripts in 𝛽𝛽𝑗𝑗 and  𝛾𝛾 and 
subscripts in 𝜎𝜎2, (T.M), (T.Y), (I), (D), and (𝑇𝑇 × 𝑀𝑀), serve as shorthand for the ITT effect on the 
mediator, the ITT effect on the outcome, the indirect effects, the direct effects, and the 
interaction effect, respectively. We have listed in Table 1 the research questions with regard to 
the population average causal effects over all the sites in column 3 and the corresponding 
notation in column 4. Column 5 lists the research questions about the between-site variances of 
the site-specific effects; and column 6 lists the corresponding notation. Besides, we are also 
interested in the covariance between the site-specific NDE and NIE, 𝜎𝜎𝐷𝐷(0),𝐼𝐼(1) =
cov(𝛽𝛽𝑗𝑗

(𝐷𝐷)(0),𝛽𝛽𝑗𝑗
(𝐼𝐼)(1)), indicating whether Job Corps centers that increased earnings through 

improving educational and vocational attainment also tend to be successful in increasing 
earnings through other pathways. 

4. Identification  

The causal parameters listed in Table 1 could be easily computed if all the potential 
mediators and potential outcomes were observed for the population of eligible applicants at   
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Table 1. Causal Parameters  

 Site-Specific Effect Research Question   Average Effect over 
Population of Sites 

Research Question  Between-Site 
Variance 

ITT effect 
on the 
mediator 

𝛽𝛽𝑗𝑗
(𝑇𝑇.𝑀𝑀) = 𝐸𝐸�𝑀𝑀𝑖𝑖𝑖𝑖(1) −𝑀𝑀𝑖𝑖𝑖𝑖(0)|𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗� To what extent did Job Corps 

(JC) improve educational and 
vocational attainment? 

𝛾𝛾(𝑇𝑇.𝑀𝑀) = 𝐸𝐸[𝛽𝛽𝑗𝑗
(𝑇𝑇.𝑀𝑀)] Were JC centers equally 

effective in improving 
educational and 
vocational attainment? 

𝜎𝜎𝑇𝑇.𝑀𝑀
2 = 𝑣𝑣𝑣𝑣𝑣𝑣�𝛽𝛽𝑗𝑗

(𝑇𝑇.𝑀𝑀)� 

ITT effect 
on the 
outcome 

𝛽𝛽𝑗𝑗
(𝑇𝑇.𝑌𝑌) = 𝐸𝐸� 𝑌𝑌𝑖𝑖𝑖𝑖  (1,𝑀𝑀𝑖𝑖𝑖𝑖(1))  −  𝑌𝑌𝑖𝑖𝑖𝑖(0,𝑀𝑀𝑖𝑖𝑖𝑖(0))|𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗� To what extent did JC 

increase earnings? 
𝛾𝛾(𝑇𝑇.𝑌𝑌) = 𝐸𝐸�𝛽𝛽𝑗𝑗

(𝑇𝑇.𝑌𝑌)� Were JC centers equally 
effective in increasing 
earnings? 

𝜎𝜎𝑇𝑇.𝑌𝑌
2 = 𝑣𝑣𝑣𝑣𝑣𝑣�𝛽𝛽𝑗𝑗

(𝑇𝑇.𝑌𝑌)� 

NIE 𝛽𝛽𝑗𝑗
(𝐼𝐼)(1) = 𝐸𝐸� 𝑌𝑌𝑖𝑖𝑖𝑖(1,𝑀𝑀𝑖𝑖𝑖𝑖(1)) −  𝑌𝑌𝑖𝑖𝑖𝑖(1,𝑀𝑀𝑖𝑖𝑖𝑖(0))|𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗� To what extent did JC 

increase earnings through 
improving educational and 
vocational attainment under 
the JC condition? 

𝛾𝛾(𝐼𝐼)(1) = 𝐸𝐸�𝛽𝛽𝑗𝑗
(𝐼𝐼)(1)� Were JC centers equally 

effective in increasing 
earnings through 
improving educational 
and vocational attainment 
under the JC condition? 

𝜎𝜎𝐼𝐼(1)
2 = 𝑣𝑣𝑣𝑣𝑣𝑣�𝛽𝛽𝑗𝑗

(𝐼𝐼)(1)� 

NDE 𝛽𝛽𝑗𝑗
(𝐷𝐷)(0) = 𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖  (1,𝑀𝑀𝑖𝑖𝑖𝑖(0))  −  𝑌𝑌𝑖𝑖𝑖𝑖(0,𝑀𝑀𝑖𝑖𝑖𝑖(0))|𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗� To what extent did JC 

increase earnings through 
other pathways? 

𝛾𝛾(𝐷𝐷)(0) = 𝐸𝐸�𝛽𝛽𝑗𝑗
(𝐷𝐷)(0)� Were JC centers equally 

effective in increasing 
earnings through other 
pathways? 

𝜎𝜎𝐷𝐷(0)
2 = 𝑣𝑣𝑣𝑣𝑣𝑣�𝛽𝛽𝑗𝑗

(𝐷𝐷)(0)� 

PIE 𝛽𝛽𝑗𝑗
(𝐼𝐼)(0) = 𝐸𝐸� 𝑌𝑌𝑖𝑖𝑖𝑖(0,𝑀𝑀𝑖𝑖𝑖𝑖(1)) −  𝑌𝑌𝑖𝑖𝑖𝑖(0,𝑀𝑀𝑖𝑖𝑖𝑖(0))|𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗� To what extent did JC 

increase earnings through 
improving educational and 
vocational attainment under 
the control condition? 

𝛾𝛾(𝐼𝐼)(0) = 𝐸𝐸�𝛽𝛽𝑗𝑗
(𝐼𝐼)(0)� Were JC centers equally 

effective in increasing 
earnings through 
improving educational 
and vocational attainment 
under the control 
condition? 

𝜎𝜎𝐼𝐼(0)
2 = 𝑣𝑣𝑣𝑣𝑣𝑣�𝛽𝛽𝑗𝑗

(𝐼𝐼)(0)� 

Interaction 
effect 

𝛽𝛽𝑗𝑗
(𝑇𝑇×𝑀𝑀) = 𝛽𝛽𝑗𝑗

(𝐼𝐼)(1) − 𝛽𝛽𝑗𝑗
(𝐼𝐼)(0) Did the improvement in 

educational and vocational 
attainment produce a greater 
increase in earnings under JC 
than under the control 
condition? 

𝛾𝛾(𝑇𝑇×𝑀𝑀) = 𝐸𝐸�𝛽𝛽𝑗𝑗
(𝑇𝑇×𝑀𝑀)� Did JC enhance the 

economic returns to 
education and training in 
some centers but not in 
others? 

𝜎𝜎𝑇𝑇×𝑀𝑀
2 = 𝑣𝑣𝑣𝑣𝑣𝑣�𝛽𝛽𝑗𝑗

(𝑇𝑇×𝑀𝑀)� 
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every site. However, 𝑀𝑀𝑖𝑖𝑖𝑖(𝑡𝑡) and 𝑌𝑌𝑖𝑖𝑖𝑖(𝑡𝑡,𝑀𝑀𝑖𝑖𝑖𝑖(𝑡𝑡)) are observed for 𝑡𝑡 = 0, 1 only if individual 𝑖𝑖 at 
site 𝑗𝑗 was selected into the sample, was assigned to treatment 𝑡𝑡, and responded to the interviews. 
In addition, we never directly observe one’s potential outcome of assignment to treatment 𝑡𝑡 
while the mediator would counterfactually take the value associated with the alternative 
treatment 𝑡𝑡′ where 𝑡𝑡 ≠ 𝑡𝑡′. Causal inference relies exclusively on inferring counterfactual 
information from the observed information. The inference inevitably invokes one or more 
assumptions. Here we clarify the assumptions under which each of the causal parameters can be 
identified from the observed information in the NJCS data. These assumptions should not be 
taken lightly. Rather, they require close scrutiny on scientific grounds. 

4.1. Identification of the ITT Effects 
For the ITT effects of the treatment on the mediator and the outcome, identifying their 

averages over the population of sites along with their between-site variances is complicated by 
the differential sampling probabilities, treatment assignment probabilities, and nonresponse 
probabilities, as discussed in the introduction section. We adjust these differential probabilities 
by applying a series of standard weighting strategies under strong ignorability assumptions about 
the sampling, treatment assignment, and response mechanisms. 

Sampling mechanism. NJCS researchers employed a stratified sampling procedure for 
individuals. Sampling probabilities varied across strata defined by date of random assignment, 
gender, residential status, and whether one came from an area with a concentration of 
nonresidential female students. The probabilities of being included in the follow-up surveys were 
further determined by a number of factors including population density in one’s living area and 
whether one provided immediate response to the baseline survey. Given this complex 
sample/survey design, individuals who were included in the 48-month interview sample and 
those who were not are expected to be comparable in composition only if they share the above 
mentioned pretreatment characteristics, which we denote with vector 𝐗𝐗𝐷𝐷. This conclusion also 
holds within each site. Because the sampling mechanism is known in this study, it is “ignorable” 
in the sense that we can reasonably make the following assumption:  

Assumption 1 (Strongly ignorable sampling mechanism). Within levels of the observed 
pretreatment covariates 𝐱𝐱𝐷𝐷, sample selection is independent of all the potential mediators and 
potential outcomes at each site.  

{𝑌𝑌𝑖𝑖𝑖𝑖(𝑡𝑡,𝑚𝑚),𝑀𝑀𝑖𝑖𝑖𝑖(𝑡𝑡)} ⫫ 𝐷𝐷𝑖𝑖𝑖𝑖|𝐗𝐗𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐱𝐱𝐷𝐷 ,𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗, 
for 𝑡𝑡 =  0, 1, 𝑚𝑚 ∈ ℳ where ℳ is the support for all possible mediator values, and 𝑗𝑗 =  1, … , 𝐽𝐽, 
where 𝐽𝐽 denotes the total number of sites. Here 𝐷𝐷𝑖𝑖𝑖𝑖 takes value 1 if individual 𝑖𝑖 at site 𝑗𝑗 was 
selected into the 48-month interview sample and 0 otherwise. We additionally assume that 0 <
𝑃𝑃𝑃𝑃�𝐷𝐷𝑖𝑖𝑖𝑖 = 1�𝐗𝐗𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐱𝐱𝐷𝐷 , 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗� < 1. That is, each eligible applicant at a site had a nonzero 
probability of being selected (or not being selected) into the sample, an assumption that was 
guaranteed to hold by the NJCS design. This is also known as the positivity assumption. 

Treatment assignment mechanism. NJCS researchers specified an individual’s treatment 
assignment probability as a function of applicants’ date of random assignment and residential 
status among other factors, though not by site. Hence sampled individuals assigned to the 
program group and those assigned to the control group are expected to be comparable in 
composition only within each of these predetermined strata, which we denote by 𝐗𝐗𝑇𝑇. We find 
that 𝐗𝐗𝑇𝑇 and 𝐗𝐗𝐷𝐷 partially overlap. 

Assumption 2 (Strongly ignorable treatment assignment). Within levels of the observed 
pretreatment covariates 𝐱𝐱𝑇𝑇, the treatment assignment for the sampled individuals is independent 
of all the potential mediators and potential outcomes at each site.  
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� 𝑌𝑌𝑖𝑖𝑖𝑖(𝑡𝑡,𝑚𝑚),𝑀𝑀𝑖𝑖𝑖𝑖(𝑡𝑡)� ⫫ 𝑇𝑇𝑖𝑖𝑖𝑖|𝐷𝐷𝑖𝑖𝑖𝑖 = 1,𝐗𝐗𝑇𝑇𝑇𝑇𝑇𝑇  =  𝐱𝐱𝑇𝑇 , 𝑆𝑆𝑖𝑖𝑗𝑗  =  𝑗𝑗. 
Under this assumption, there should be no unmeasured confounding of the treatment-mediator 
relationship or the treatment-outcome relationship at any site. It is also assumed that 0 <
𝑃𝑃𝑃𝑃�𝑇𝑇𝑖𝑖𝑖𝑖  =  𝑡𝑡�𝐷𝐷𝑖𝑖𝑖𝑖 = 1,𝐗𝐗𝑇𝑇𝑇𝑇𝑇𝑇  =  𝐱𝐱𝑇𝑇 , 𝑆𝑆𝑖𝑖𝑖𝑖  =  𝑗𝑗� < 1. That is, each sampled individual had a nonzero 
probability of being assigned to either treatment group at a given site. This assumption is 
similarly guaranteed by the NJCS design. 

Response mechanism. NJCS researchers did not have control over an individual’s 
probability of response. Hence, the respondents in the program group and those in the control 
group are no longer comparable in composition even if they share the same pretreatment 
characteristics {𝐗𝐗𝐷𝐷 ∪ 𝐗𝐗𝑇𝑇}. Because response status is possibly a result of the treatment 
assignment, we find evidence that the response mechanism differs between the program group 
and the control group. In theory, conditioning on all the pretreatment and posttreatment 
covariates predicting one’s response status under a given treatment at a given site, the 
respondents and the nonrespondents are expected to be comparable in composition. However, 
controlling for posttreatment covariates would inevitably introduce bias in identifying the ITT 
effects of the treatment (Rosenbaum, 1984). Hence in practice, adjustment is made only for the 
observed pretreatment covariates. We invoke a strong assumption that, among individuals who 
share the same observed pretreatment characteristics denoted by 𝐗𝐗𝑅𝑅, one’s response status is as if 
randomized in each treatment group. 

Assumption 3 (Strongly ignorable nonresponse). Within levels of the observed 
pretreatment covariates 𝐱𝐱𝑅𝑅, the response status of a sampled individual in a given treatment 
group is independent of the potential mediators and potential outcomes associated with the same 
treatment at a site. 

�𝑌𝑌𝑖𝑖𝑖𝑖(𝑡𝑡,𝑚𝑚),𝑀𝑀𝑖𝑖𝑖𝑖(𝑡𝑡)�  ⫫ 𝑅𝑅𝑖𝑖𝑖𝑖|𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡,𝐷𝐷𝑖𝑖𝑖𝑖 = 1,𝐗𝐗𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐱𝐱𝑅𝑅 ,𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗. 
Here 𝑅𝑅𝑖𝑖𝑖𝑖 is equal to 1 if individual 𝑖𝑖 at site 𝑗𝑗 responded and 0 otherwise. This assumption cannot 
be empirically verified because the potential attainment and the potential earnings were 
unobserved for the nonrespondents. However, as introduced in Section 5, we could use balance 
checking and sensitivity analysis to assess the influence of possible violations of the assumption. 
We also assume that 0 < 𝑃𝑃𝑃𝑃�𝑅𝑅𝑖𝑖𝑖𝑖 = 1�𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡,𝐷𝐷𝑖𝑖𝑖𝑖 = 1,𝐗𝐗𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐱𝐱𝑅𝑅 , 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗� < 1. That is, each 
sampled individual had a nonzero probability of response (or nonresponse) under a given 
treatment at a given site. This assumption would be violated if certain individuals would always 
respond or would never do so. 

Under these three assumptions, we may equalize the sampling probability and the treatment 
assignment probability for all the sampled individuals through weighting; by the same logic, the 
response probability for all the sampled individuals in each treatment group can be equated 
through weighting as well. 

Weighting adjustment for sample selection. Because the sampling probability is 
predetermined as a function of individual characteristics, certain subpopulations are over-
represented while others are under-represented in the sample. The sample representativeness can 
be restored by applying the stabilized sample weight defined as follows for sampled individual 𝑖𝑖 
at site 𝑗𝑗 with pretreatment characteristics 𝐱𝐱𝐷𝐷, 

𝑊𝑊𝐷𝐷𝐷𝐷𝐷𝐷 =
𝑃𝑃𝑃𝑃�𝐷𝐷𝑖𝑖𝑖𝑖 = 1| 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗�

𝑃𝑃𝑃𝑃�𝐷𝐷𝑖𝑖𝑖𝑖 = 1|𝐗𝐗𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐱𝐱𝐷𝐷 ,𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗�
.                                               (1) 
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The numerator of the sample weight represents the average sampling probability at site j, and the 
denominator is the individual’s sampling probability as a function of the individual’s 
pretreatment characteristics and his or her site membership. 

Weighting adjustment for treatment assignment. Similarly, in the presence of treatment 
selection, certain subpopulations will become over-represented while others are under-
represented in a given treatment group. Extending the logic of sample weighting to causal 
inference, the analyst may apply a stabilized IPTW (Robins et al., 2000) to sampled individual 𝑖𝑖 
at site 𝑗𝑗 in treatment group 𝑡𝑡 with pretreatment characteristics 𝐱𝐱𝑇𝑇, 

𝑊𝑊𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑃𝑃𝑃𝑃�𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡| 𝐷𝐷𝑖𝑖𝑖𝑖 = 1, 𝑆𝑆𝑖𝑖𝑗𝑗 = 𝑗𝑗�

𝑃𝑃𝑃𝑃�𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡|𝐗𝐗𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐱𝐱𝑇𝑇 ,𝐷𝐷𝑖𝑖𝑖𝑖 = 1, 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗�
 for 𝑡𝑡 = 0, 1.                             (2) 

The numerator is the average probability of assigning a sampled individual at site j to treatment 
𝑡𝑡; the denominator is the individual’s conditional probability of being assigned to treatment 𝑡𝑡 
given his or her pretreatment characteristics and site membership, and this probability is pre-
determined by design in NJCS.  

Weighting adjustment for nonresponse. To remove the observed pretreatment differences 
between the respondents and the nonrespondents in each treatment group, the analyst may apply 
a nonresponse weight (see Little and Vartivarian, 2005), which is also stabilized, to sampled 
individual 𝑖𝑖 at site 𝑗𝑗 in treatment group 𝑡𝑡 with pretreatment characteristics 𝐱𝐱𝑅𝑅, 

𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑃𝑃𝑃𝑃�𝑅𝑅𝑖𝑖𝑖𝑖 = 𝑟𝑟|𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡,𝐷𝐷𝑖𝑖𝑖𝑖 = 1, 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗�

𝑃𝑃𝑃𝑃�𝑅𝑅𝑖𝑖𝑖𝑖 = 𝑟𝑟|𝐗𝐗𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐱𝐱𝑅𝑅 ,𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡,𝐷𝐷𝑖𝑖𝑖𝑖 = 1, 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗�
 for 𝑡𝑡 = 0, 1 and 𝑟𝑟 = 0, 1.       (3) 

The numerator is the average probability of response status 𝑟𝑟 among sampled individuals at site j 
who have been assigned to treatment group 𝑡𝑡; the denominator is the individual’s probability of 
response status 𝑟𝑟 given his or her pretreatment characteristics, treatment assignment, and site 
membership. This conditional probability is unknown and must be estimated from the observed 
data, an issue that we will discuss in section 5.  

Applying the product of 𝑊𝑊𝐷𝐷, 𝑊𝑊𝑇𝑇, and 𝑊𝑊𝑅𝑅 to the respondents, we expect that the 
distributions of the observed pretreatment covariates {𝐗𝐗𝐷𝐷 ∪ 𝑿𝑿𝑇𝑇 ∪ 𝑿𝑿𝑅𝑅} will be balanced between 
the sampled and the non-sampled, between the program group and the control group, and 
between the respondents and the nonrespondents in each treatment group. Hence, we obtain the 
following identification results. 

Theorem 1. Under Assumptions 1, 2, and 3, the site-specific average potential mediator and 
potential outcome under treatment 𝑡𝑡 for 𝑡𝑡 = 0,1 can be respectively identified by the sample 
average of the observed mediator and the sample average of the observed outcome among the 
respondents assigned to treatment group t at site j, weighted by the product of the sample weight, 
IPTW weight, and nonresponse weight.  

 
𝐸𝐸�𝑀𝑀𝑖𝑖𝑖𝑖  (𝑡𝑡) |𝑆𝑆𝑖𝑖𝑖𝑖  =  𝑗𝑗� = 𝐸𝐸�𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑀𝑀𝑖𝑖𝑖𝑖  |𝑅𝑅𝑖𝑖𝑖𝑖 = 1,𝑇𝑇𝑖𝑖𝑖𝑖  = 𝑡𝑡,𝐷𝐷𝑖𝑖𝑖𝑖 = 1, 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗�, 

𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖(𝑡𝑡,𝑀𝑀𝑖𝑖𝑖𝑖  (𝑡𝑡)) |𝑆𝑆𝑖𝑖𝑖𝑖  =  𝑗𝑗� = 𝐸𝐸�𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑌𝑌𝑖𝑖𝑖𝑖  |𝑅𝑅𝑖𝑖𝑖𝑖 = 1,𝑇𝑇𝑖𝑖𝑖𝑖  = 𝑡𝑡,𝐷𝐷𝑖𝑖𝑖𝑖 = 1, 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗�. 
 
Here 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑊𝑊𝐷𝐷𝐷𝐷𝐷𝐷𝑊𝑊𝑇𝑇𝑇𝑇𝑇𝑇𝑊𝑊𝑅𝑅𝑅𝑅𝑅𝑅 removes selection bias in identifying the ITT effects. The proof of 
Theorem 1 is presented in Appendix A in the supporting web materials.  

The weighted mean difference in attainment between the program group and the control 
group at each site identifies the site-specific ITT effect of the treatment on the mediator; 
similarly, their weighted mean difference in earnings identifies the site-specific ITT effect of the 
treatment on the outcome. The population average and the between-site variance of each of these 
ITT effects can be identified by following standard results without invoking further assumptions. 
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4.2. Identification of the Mediation-Related Effects 
Identifying the population average and the between-site variance of NDE, NIE, PIE, and the 

natural treatment-by-mediator interaction effect is considerably more challenging. This is 
because the mediation-related causal effects involve the counterfactual outcomes 𝑌𝑌𝑖𝑖𝑖𝑖(1,𝑀𝑀𝑖𝑖𝑖𝑖(0)) 
and 𝑌𝑌𝑖𝑖𝑖𝑖(0,𝑀𝑀𝑖𝑖𝑖𝑖(1)) that cannot be directly observed; this is additionally because the mediator 
value assignment under each treatment was not experimentally manipulated. We invoke the 
following assumption about the strong ignorability of mediator values. 

Assumption 4 (Strongly ignorable mediator value assignment). Within levels of the 
observed pretreatment covariates denoted by 𝐱𝐱𝑀𝑀, the mediator value assignment under either 
treatment condition for respondents is independent of the potential outcomes at each site.   

 
𝑌𝑌𝑖𝑖𝑖𝑖(𝑡𝑡,𝑚𝑚) ⫫ {𝑀𝑀𝑖𝑖𝑖𝑖(𝑡𝑡),𝑀𝑀𝑖𝑖𝑖𝑖(𝑡𝑡′)}|𝑅𝑅𝑖𝑖𝑖𝑖 = 1,𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡,𝐷𝐷𝑖𝑖𝑖𝑖 = 1,𝐗𝐗𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐱𝐱𝑀𝑀, 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗, 

 
for all possible values of 𝑡𝑡 and 𝑚𝑚 where 𝑡𝑡 ≠ 𝑡𝑡′. Under Assumption 4, 𝑀𝑀𝑖𝑖𝑖𝑖(1) and 𝑀𝑀𝑖𝑖𝑖𝑖(0) are 
both independent of 𝑌𝑌𝑖𝑖𝑖𝑖(1,𝑚𝑚) for respondents in the program group at site j who share the same 
covariate values; in parallel, they are also independent of 𝑌𝑌𝑖𝑖𝑖𝑖(0,𝑚𝑚) for respondents in the control 
group at the site who share the same covariate values. 

Assumption 4 implies that among individuals who share the same observed pretreatment 
characteristics denoted by 𝐗𝐗𝑀𝑀, the assignment of mediator values is as if randomized within each 
treatment condition or across treatment conditions at any site. This is a particularly strong 
assumption because it requires not only that there are no remaining pretreatment confounding of 
the mediator-outcome relationship but also that no post-treatment confounding of the mediator-
outcome relationship exists. However, this is not entirely implausible. For any Job Corps 
applicant at a given site, the probability of educational and vocational attainment may be 
influenced not only by the treatment assignment but also by theoretically important individual 
characteristics. However, these predictors do not need to determine with certainty whether an 
individual would obtain a credential under Job Corps or under the control condition. For 
example, a Job Corps student might successfully complete the program if he or she happened to 
encounter a highly effective counselor; a student assigned to the control condition might succeed 
if an alternative training program was launched at about the same time. These possible random 
events would make the random assignment of mediator values conceivable under each treatment 
condition. Hence, we additionally assume that 0 < 𝑃𝑃𝑃𝑃(𝑀𝑀𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑚𝑚|𝑅𝑅𝑖𝑖𝑖𝑖 = 1,𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡,𝐷𝐷𝑖𝑖𝑖𝑖 =
1,𝐗𝐗𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐱𝐱𝑀𝑀, 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗) < 1. That is, each respondent has a nonzero probability of displaying a 
given mediator value under the actual treatment condition at a given site. Given the Job Corps 
screening procedure, arguably all eligible applicants are expected to have a chance of attainment 
in the program; their chance of attainment under the control condition would depend on the 
availability of alternative education and training opportunities in the local community.  

Weighting adjustment for mediator value selection in treatment effect decomposition. In 
NJCS, only the treatment was experimentally randomized. Yet under Assumption 4, the mediator 
value assignment could be viewed as if it were randomized for individuals sharing the same 
covariate values 𝐱𝐱𝑀𝑀. Putting aside the issues of sampling/survey design and non-random 
nonresponse, the average of 𝑌𝑌(𝑡𝑡,𝑀𝑀(𝑡𝑡′)) at a site would be identified by a weighted mean of the 
observed outcome in treatment group 𝑡𝑡. For individuals who share the same pretreatment 
characteristics, the weight would transform the mediator distribution in treatment group 𝑡𝑡 to 
resemble that in treatment group 𝑡𝑡′. Hong (2010, 2015) and others proved the identification result 
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for causal mediation analysis in a single site; Qin and Hong (2017) extended this result to 
multisite causal mediation analysis. Here we extend the result to multisite studies involving 
complex sample/survey designs and non-random nonresponse by combining the assumptions and 
the weighting strategies associated with sampling selection, treatment selection, nonresponse 
selection, and mediator value selection. 

Theorem 2. Under Assumptions 1~ 4, the site-specific average counterfactual outcome 
𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖(𝑡𝑡,𝑀𝑀𝑖𝑖𝑖𝑖(𝑡𝑡′)) |𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗� can be identified by the weighted average of the observed outcome 
among the sample respondents assigned to treatment group t at site j, the weight being the 
product of the ITT weight and the RMPW weight, 

𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖(𝑡𝑡,𝑀𝑀𝑖𝑖𝑖𝑖(𝑡𝑡′)) |𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗� = 𝐸𝐸�𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀 𝑌𝑌𝑖𝑖𝑖𝑖 | 𝑅𝑅𝑖𝑖𝑖𝑖 = 1,𝑇𝑇𝑖𝑖𝑖𝑖  = 𝑡𝑡,𝐷𝐷𝑖𝑖𝑖𝑖 = 1, 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗� 
for 𝑡𝑡 ≠ 𝑡𝑡′, where the RMPW weight is 

𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑃𝑃𝑃𝑃�𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑚𝑚|𝐗𝐗𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐱𝐱𝑀𝑀,𝑅𝑅𝑖𝑖𝑖𝑖 = 1,𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡′,𝐷𝐷𝑖𝑖𝑖𝑖 = 1, 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗�
𝑃𝑃𝑃𝑃�𝑀𝑀𝑖𝑖𝑖𝑖 = 𝑚𝑚|𝐗𝐗𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐱𝐱𝑀𝑀,𝑅𝑅𝑖𝑖𝑖𝑖 = 1,𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡,𝐷𝐷𝑖𝑖𝑖𝑖 = 1, 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗�

  ∀ 𝑚𝑚 ∈ ℳ.       (4) 

For respondent 𝑖𝑖 at site 𝑗𝑗 who was assigned to treatment group 𝑡𝑡 and displayed mediator 
value 𝑚𝑚, 𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀 is a ratio of two propensity scores each as a function of the individual’s 
pretreatment characteristics 𝐱𝐱𝑀𝑀. The numerator is the individual’s propensity of displaying 
mediator value 𝑚𝑚 under the counterfactual treatment 𝑡𝑡′, while the denominator is the individual’s 
propensity of displaying the same mediator value under the assigned treatment 𝑡𝑡. Applying the 
product of 𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 and 𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀 to the sample respondents in each treatment group at each site, we 
identify the site-specific average potential outcomes 𝐸𝐸 �𝑌𝑌𝑖𝑖𝑖𝑖 �1,𝑀𝑀𝑖𝑖𝑖𝑖(0)� |𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗� and 

𝐸𝐸 �𝑌𝑌𝑖𝑖𝑖𝑖 �0,𝑀𝑀𝑖𝑖𝑖𝑖(1)� |𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗�. Appendix A presents a proof of Theorem 2.  
To simplify the notation, let  

𝜇𝜇𝑡𝑡𝑡𝑡𝑀𝑀 = 𝐸𝐸�𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑀𝑀𝑖𝑖𝑖𝑖|𝑅𝑅𝑖𝑖𝑖𝑖 = 1,𝑇𝑇𝑖𝑖𝑖𝑖  = 𝑡𝑡,𝐷𝐷𝑖𝑖𝑖𝑖 = 1, 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗�, 

𝜇𝜇𝑡𝑡𝑡𝑡𝑌𝑌 = 𝐸𝐸�𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑌𝑌𝑖𝑖𝑖𝑖|𝑅𝑅𝑖𝑖𝑖𝑖 = 1,𝑇𝑇𝑖𝑖𝑖𝑖  = 𝑡𝑡,𝐷𝐷𝑖𝑖𝑖𝑖 = 1, 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗�, 

𝜇𝜇𝑡𝑡𝑡𝑡𝑌𝑌∗ = 𝐸𝐸�𝑊𝑊𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀𝑌𝑌𝑖𝑖𝑖𝑖|𝑅𝑅𝑖𝑖𝑖𝑖 = 1,𝑇𝑇𝑖𝑖𝑖𝑖  = 𝑡𝑡,𝐷𝐷𝑖𝑖𝑖𝑖 = 1, 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗�.                           (5) 

Here 𝝁𝝁𝒕𝒕𝒕𝒕𝑴𝑴 is the weighted average of the observed mediator in treatment group t at site j that 
identifies 𝑬𝑬�𝑴𝑴𝒊𝒊𝒊𝒊(𝒕𝒕)|𝑺𝑺𝒊𝒊𝒊𝒊 = 𝒋𝒋�; 𝝁𝝁𝒕𝒕𝒕𝒕𝒀𝒀  is the weighted average of the observed outcome in treatment 
group t at site j that identifies 𝑬𝑬 �𝒀𝒀𝒊𝒊𝒊𝒊 �𝒕𝒕,𝑴𝑴𝒊𝒊𝒊𝒊(𝒕𝒕)� |𝑺𝑺𝒊𝒊𝒊𝒊 = 𝒋𝒋�; and 𝝁𝝁𝒕𝒕𝒕𝒕𝒀𝒀∗ is the weighted average of the 
observed outcome in treatment group 𝒕𝒕 at site j, with additional RMPW weighting, that identifies 
𝑬𝑬 �𝒀𝒀𝒊𝒊𝒊𝒊 �𝒕𝒕,𝑴𝑴𝒊𝒊𝒊𝒊(𝒕𝒕′)� |𝑺𝑺𝒊𝒊𝒊𝒊 = 𝒋𝒋�. With the site-specific mean of each potential mediator and potential 
outcome identified, we are able to identify the site-specific causal effects through the weighted 
mean outcome differences at each site. Table 2 summarizes these identification results. The first 
column lists the site-specific causal effects defined in terms of the counterfactual quantities as 
explicated in Section 3; the second column lists the corresponding observable quantities. These 
identification results enable us to equate the average counterfactual quantities with the 
observable quantities at each site under the assumptions listed in the third column. We then 
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identify correspondingly the population average and the between-site variance of each causal 
effect as defined in Section 3. 

5. General Analytic Procedure 

Based on the above identification results, we develop an analytic procedure and apply it to 
the NJCS data. As the identification results indicate, the estimation relies on four weights—
sample weight 𝑊𝑊𝐷𝐷𝐷𝐷𝐷𝐷, IPTW weight 𝑊𝑊𝑇𝑇𝑇𝑇𝑇𝑇, nonresponse weight 𝑊𝑊𝑅𝑅𝑖𝑖𝑖𝑖, and RMPW weight 𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀. In 
NJCS, the product of the first two weights was given by design (Schochet et al., 2001), and the 
nonresponse weight and the RMPW weight need to be estimated. Conceptually, the estimation  

Table 2. Identification of the site-specific effects 
Site-Specific Effect Identification Result Assumptions 
ITT effect on the mediator 𝛽𝛽𝑗𝑗

(𝑇𝑇.𝑀𝑀) 𝜇𝜇1𝑗𝑗𝑀𝑀 − 𝜇𝜇0𝑗𝑗𝑀𝑀  Assumptions 1-3 
 ITT effect on the outcome 𝛽𝛽𝑗𝑗

(𝑇𝑇.𝑌𝑌)  𝜇𝜇1𝑗𝑗𝑌𝑌 − 𝜇𝜇0𝑗𝑗𝑌𝑌  

NIE 𝛽𝛽𝑗𝑗
(𝐼𝐼)(1) 𝜇𝜇1𝑗𝑗𝑌𝑌 − 𝜇𝜇1𝑗𝑗𝑌𝑌∗ 

Assumptions 1-4 
NDE 𝛽𝛽𝑗𝑗

(𝐷𝐷)(0) 𝜇𝜇1𝑗𝑗𝑌𝑌∗ − 𝜇𝜇0𝑗𝑗𝑌𝑌  

PIE 𝛽𝛽𝑗𝑗
(𝐼𝐼)(0) 𝜇𝜇0𝑗𝑗𝑌𝑌∗ − 𝜇𝜇0𝑗𝑗𝑌𝑌  

Interaction effect 𝛽𝛽𝑗𝑗
(𝑇𝑇×𝑀𝑀) �𝜇𝜇1𝑗𝑗𝑌𝑌 − 𝜇𝜇1𝑗𝑗𝑌𝑌∗� − �𝜇𝜇0𝑗𝑗𝑌𝑌∗ − 𝜇𝜇0𝑗𝑗𝑌𝑌 � 

 
involves two major steps: (1) estimation of the nonresponse weight and the RMPW weight by 
fitting mixed-effects logistic regressions, and (2) estimation of the site-specific causal effects and 
subsequently average and the between-site variance of the causal effects over the population of 
sites. To produce valid statistical inferences that incorporate the sampling uncertainty of the 
weights in the estimation of the causal parameters, we adopt a solution that extends an m-
estimation procedure for single-site and multisite RMPW analysis (Bein et al., 2018; Qin and 
Hong, 2017). This approach estimates the weights and the site-specific causal effects jointly 
under a generalized method of moments (GMM) framework.  

However, the analytic results cannot be given causal interpretations if the identification 
assumptions are violated. We therefore use balance checking to assess if the estimated weights 
effectively reduce selection bias associated with the observed covariates. To examine if possible 
violations of the identification assumptions due to omitting confounders or due to overlooking 
between-site heterogeneity in the selection mechanisms would easily alter the analytic 
conclusions, we further conduct a sensitivity analysis.  

5.1. Weight estimation 
As clarified above, the estimation of the causal parameters depends on the estimates of the 

nonresponse weight and the RMPW weight. We selected the pretreatment covariates on 
theoretical grounds (see Appendix B in the supporting web materials for a list of the 51 
covariates). We categorized all the continuous covariates to reduce the potential risk of 
misspecifying the functional form of a model. To preserve the probability sampling and the 
randomized experimental design, we create a missing indicator for each covariate with missing 
values. Incorporating the missing indicators, as suggested by Rosenbaum and Rubin (1984), 
tends to balance not only the observed pretreatment covariates but also the missing patterns. One 
alternative approach to dealing with missing data is complete case analysis that deletes all the 
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observations with missing values. This approach is suboptimal because, besides reducing 
statistical power, it would generally introduce bias except when the missing is completely at 
random, a particularly strong assumption that rarely holds in reality. Another approach is 
multiple imputation, which requires the assumption of missing at random -- that is, the 
probability that a variable is observed can depend only on the values of those other 
variables which have been observed (Little & Rubin, 1989). The missing indicator approach 
that we have chosen requires a different assumption, namely, that given other observed 
covariates, the missing values in a covariate are independent of the key variable of interest; or in 
other words, within levels of other observed covariates, the unobserved values in a covariate do 
not differ in distribution between those in different categories of the key variable (Groenwold et 
al, 2012; Jones, 1996). In estimating the nonresponse weight, response status 𝑅𝑅 is the key 
variable of interest; in estimating the RMPW weight, the key variable is an individual’s mediator 
value assignment. In these two cases, the missing indicator approach assumes strongly ignorable 
nonresponse or strongly ignorable mediator value assignment among those whose covariate 
values are missing, conditional on all the observed information.   

Nonresponse weight estimation. Following Equation (3), let 𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑃𝑃𝑃𝑃�𝑅𝑅𝑖𝑖𝑖𝑖 = 1|𝑇𝑇𝑖𝑖𝑖𝑖 =
𝑡𝑡,𝐷𝐷𝑖𝑖𝑖𝑖 = 1, 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗� denote the average response rate among sampled individuals in treatment 
group 𝑡𝑡 at site 𝑗𝑗. To reflect the differences in response mechanisms between the program group 
and the control group, we fit a logistic regression to each treatment group. The between-site 
difference in the conditional response rate in each treatment group is captured by a site-specific 
random intercept in a mixed-effects model. The model specified below estimates the numerator 
of the weight:  

log �
𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅

1 − 𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅
� = 𝜋𝜋𝑅𝑅𝑅𝑅∗ + 𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅∗ ,       𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅∗ ~𝑁𝑁(0,𝜎𝜎𝑅𝑅𝑅𝑅∗2), 

in which 𝜋𝜋𝑅𝑅𝑅𝑅∗  indicates the average log-odds of response among the sampled individuals assigned 
to treatment group 𝑡𝑡 across all the sites; the random intercept, 𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅∗ , assumed to be normally 
distributed, indicates the deviance of the log-odds of response in each treatment group 𝑡𝑡 at site 𝑗𝑗 
from its overall mean; the variance of 𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅∗  is 𝜎𝜎𝑅𝑅𝑅𝑅∗2. To estimate the denominator of the 
nonresponse weight, we further control for the observed pretreatment covariates 𝑿𝑿𝑅𝑅𝑅𝑅𝑅𝑅 in the 
mixed-effects logistic regressions. 

log �
𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

1 − 𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
� = 𝑿𝑿𝑅𝑅𝑅𝑅𝑅𝑅′ 𝝅𝝅𝑅𝑅𝑅𝑅 + 𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅,    𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅~𝑁𝑁(0,𝜎𝜎𝑅𝑅𝑅𝑅2 ), 

in which 𝑝𝑝𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑃𝑃𝑃𝑃�𝑅𝑅𝑖𝑖𝑖𝑖 = 1|𝐗𝐗𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐱𝐱𝑅𝑅 ,𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡,𝐷𝐷𝑖𝑖𝑖𝑖 = 1, 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗�; 𝑿𝑿𝑅𝑅𝑅𝑅𝑅𝑅 includes the intercept; 
𝝅𝝅𝑅𝑅𝑅𝑅 is the corresponding vector of coefficients; and 𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅 is the random intercept with variance 
𝜎𝜎𝑅𝑅𝑅𝑅2 . By fitting each response model through maximum likelihood estimation (MLE) (e.g. 
Goldstein, 2011), as shown in Appendix C in the supporting web materials, we estimate the 
coefficients in the response models and obtain the Empirical Bayes estimates of the random 
intercepts. Based on these estimates, we obtain 𝑝̂𝑝𝑅𝑅𝑅𝑅𝑅𝑅 and 𝑝̂𝑝𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 and the nonresponse weights 
𝑊𝑊�𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑝̂𝑝𝑅𝑅𝑅𝑅𝑅𝑅 𝑝̂𝑝𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅⁄  for the respondents and 𝑊𝑊�𝑅𝑅𝑅𝑅𝑅𝑅 = �1 − 𝑝̂𝑝𝑅𝑅𝑅𝑅𝑅𝑅� �1 − 𝑝̂𝑝𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅��  for the 
nonrespondents.  

RMPW weight estimation. To obtain the RMPW weight as defined in equation (4), we need 
to estimate each respondent’s probability of attaining an education or training credential under 
Job Corps and the probability of obtaining such a credential under the control condition. Let 
𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑃𝑃𝑃𝑃�𝑀𝑀𝑖𝑖𝑖𝑖 = 1|𝐗𝐗𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐱𝐱𝑀𝑀,𝑅𝑅𝑖𝑖𝑖𝑖 = 1,𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡,𝐷𝐷𝑖𝑖𝑖𝑖 = 1, 𝑆𝑆𝑖𝑖𝑖𝑖  =  𝑗𝑗� and 𝑝𝑝𝑀𝑀𝑡𝑡′𝑖𝑖𝑖𝑖 =
𝑃𝑃𝑃𝑃�𝑀𝑀𝑖𝑖𝑖𝑖 = 1|𝐗𝐗𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐱𝐱𝑀𝑀,𝑅𝑅𝑖𝑖𝑖𝑖 = 1,𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡′,𝐷𝐷𝑖𝑖𝑗𝑗 = 1, 𝑆𝑆𝑖𝑖𝑖𝑖  =  𝑗𝑗� denote respondent 𝑖𝑖’s probabilities 
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of attaining a credential at site j if assigned to treatment 𝑡𝑡 and treatment 𝑡𝑡′, respectively, for 𝑡𝑡 ≠
𝑡𝑡′. We fit the following mediator model to each treatment group, allowing the mediator value 
selection mechanisms to differ between Job Corps and the control condition:  

log �
𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

1 − 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
� = 𝑿𝑿𝑀𝑀𝑀𝑀𝑀𝑀′ 𝝅𝝅𝑀𝑀𝑀𝑀 + 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀 , 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀~𝑁𝑁(0,𝜎𝜎𝑀𝑀𝑀𝑀2 ), 

in which 𝑿𝑿𝑀𝑀𝑀𝑀𝑀𝑀 includes the intercept; 𝝅𝝅𝑀𝑀𝑀𝑀 is the corresponding vector of coefficients; and 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀 is 
the random intercept with variance 𝜎𝜎𝑀𝑀𝑀𝑀2 . Importantly, the denominator of the RMPW weight is 
one’s mediator probability under the treatment that he or she was actually assigned to and can be 
obtained directly by fitting the mediator model to the corresponding treatment group. The 
numerator of the weight, however, is one’s counterfactual probability of having the same 
mediator value under the alternative treatment. This is obtained by fitting the second mediator 
model to the alternative treatment group and then applying the coefficient estimates and the 
empirical Bayes estimate of the random intercept to the focal individual. The estimated RMPW 
weight is 𝑊𝑊�𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑝̂𝑝𝑀𝑀𝑡𝑡′𝑖𝑖𝑖𝑖/𝑝̂𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 for respondents in treatment group 𝑡𝑡 at site j who attained a 
credential and is 𝑊𝑊�𝑀𝑀𝑀𝑀𝑀𝑀 = �1 − 𝑝̂𝑝𝑀𝑀𝑡𝑡′𝑖𝑖𝑖𝑖�/�1 − 𝑝̂𝑝𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀� for respondents in the same group at the 
same site who did not.  

5.2. Causal Parameter Estimation and Inference  
In accordance with the identification results as shown in Equation (5), the sample estimators 

for the site-specific average potential mediators and potential outcomes are  

𝜇̂𝜇𝑡𝑡𝑡𝑡𝑀𝑀 =
∑ 𝑊𝑊�𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝐼𝐼�𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗�𝐼𝐼�𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡�𝑀𝑀𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1

∑ 𝑊𝑊�𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝐼𝐼�𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗�𝐼𝐼�𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡�𝑁𝑁
𝑖𝑖=1

, 

𝜇̂𝜇𝑡𝑡𝑡𝑡𝑌𝑌 =
∑ 𝑊𝑊�𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝐼𝐼�𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗�𝐼𝐼�𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡�𝑌𝑌𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=1

∑ 𝑊𝑊�𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝐼𝐼�𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗�𝐼𝐼�𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡�𝑁𝑁
𝑖𝑖=1

, 

𝜇̂𝜇𝑡𝑡𝑡𝑡𝑌𝑌∗ =
∑ 𝑊𝑊�𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊�𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝐼𝐼�𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗�𝐼𝐼�𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡�𝑌𝑌𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=1

∑ 𝑊𝑊�𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊�𝑀𝑀𝑀𝑀𝑀𝑀𝐷𝐷𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖𝐼𝐼�𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗�𝐼𝐼�𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡�𝑁𝑁
𝑖𝑖=1

. 

Here 𝑊𝑊�𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑊𝑊𝐷𝐷𝐷𝐷𝐷𝐷𝑊𝑊𝑇𝑇𝑇𝑇𝑇𝑇𝑊𝑊�𝑅𝑅𝑅𝑅𝑅𝑅, where 𝑊𝑊𝐷𝐷𝐷𝐷𝐷𝐷 and 𝑊𝑊𝑇𝑇𝑇𝑇𝑇𝑇 are given by design, and 𝑊𝑊�𝑅𝑅 is estimated 
from the sample data; 𝑊𝑊�𝑀𝑀 also needs to be estimated; 𝐼𝐼�𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑗𝑗� is an indicator for whether 
individual 𝑖𝑖 was a member of site 𝑗𝑗; 𝐼𝐼�𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡� is an indicator for whether the individual was 
assigned to treatment 𝑡𝑡 for 𝑡𝑡 = 0, 1. Under the identification assumptions 1 ~ 4, mean contrasts 
between the estimated average potential mediators and potential outcomes at each site 
consistently estimate the site-specific causal effects listed in Table 2. 

We then obtain method-of-moments (MOM) estimates of the causal parameters that 
characterize the distribution of the site-specific effects in a theoretical population of sites (e.g. 
Cameron and Trivedi, 2005). For simplicity, we use 𝛾𝛾 as a general form of each population 
average causal effect standing for 𝛾𝛾(𝑇𝑇.𝑀𝑀), 𝛾𝛾(𝑇𝑇.𝑌𝑌), 𝛾𝛾(𝐷𝐷)(0),𝛾𝛾(𝐼𝐼)(1), 𝛾𝛾(𝐼𝐼)(0), and 𝛾𝛾(𝑇𝑇×𝑀𝑀) and use 𝛽𝛽𝑗𝑗 
as a general form of each site-specific causal effect standing for 
𝛽𝛽𝑗𝑗

(𝑇𝑇.𝑀𝑀),𝛽𝛽𝑗𝑗
(𝑇𝑇.𝑌𝑌),𝛽𝛽𝑗𝑗

(𝐷𝐷)(0),𝛽𝛽𝑗𝑗
(𝐼𝐼)(1),𝛽𝛽𝑗𝑗

(𝐼𝐼)(0), and 𝛽𝛽𝑗𝑗
(𝑇𝑇×𝑀𝑀). By definition, the average of each causal 

effect over the population of sites, 𝛾𝛾, is a simple average of the corresponding site-specific effect, 
𝛽𝛽𝑗𝑗. Hence, the estimate of 𝛾𝛾 is 
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𝛾𝛾� =
1
𝐽𝐽
�𝛽̂𝛽𝑗𝑗

𝐽𝐽

𝑗𝑗=1

, 

where 𝛽̂𝛽𝑗𝑗, a mean contrast as described above, is a consistent estimate of 𝛽𝛽𝑗𝑗.  
Although a simple average of 𝛽̂𝛽𝑗𝑗 is consistent for 𝛾𝛾, a simple average of the squared 

deviation of 𝛽̂𝛽𝑗𝑗 from 𝛾𝛾� is biased for 𝑣𝑣𝑣𝑣𝑣𝑣�𝛽𝛽𝑗𝑗� because this variance estimator contains the 
sampling variance of 𝛽̂𝛽𝑗𝑗 as well as the sampling variance of 𝛾𝛾�. The estimation of 𝑣𝑣𝑣𝑣𝑣𝑣�𝛽𝛽𝑗𝑗� is 
further complicated due to the fact that 𝛽̂𝛽𝑗𝑗 is obtained on the basis of the estimated nonresponse 
weight and the estimated RMPW weight. This is known as the two-step estimation problem in 
which nuisance parameters must be estimated in the first step and are then used to obtain 
estimates of the parameters of interest in the second step. The nuisance parameters in this case 
are the coefficients in the propensity score models for the response and for the mediator. 
Moreover, although the site-specific effects are to be estimated with only the observed data at a 
given site, the nuisance estimators are estimated with the data pooled from all the sites, which 
leads to a nonzero correlation of the sampling errors in the site-specific effect estimates.  

Earlier research has extended a two-step estimation procedure (Newey, 1984) to single-site 
(Bein et al., 2018) and multisite (Qin and Hong, 2017) RMPW analysis in which the RMPW 
weights are estimated. The rationale is to stack the estimating equations from both steps and 
solve them simultaneously in the spirit of one-step GMM estimation (Hansen, 1982). The current 
study makes a further extension to incorporate the estimated nonresponse weights. Under the 
standard regularity conditions, we derive the asymptotic sampling variance matrix for the site-
specific causal effect estimates 𝑣𝑣𝑣𝑣𝑣𝑣�𝛽̂𝛽𝑗𝑗 − 𝛽𝛽𝑗𝑗�, and then obtain a consistent estimate of the 
standard error for each estimated population average causal effect 𝛾𝛾�. The details can be found in 
Appendix C. Even though the standard errors can be alternatively estimated through a bootstrap 
procedure, the closed-form method is favored because it requires much less computation.  

The between-site variance of each site-specific effect 𝑣𝑣𝑣𝑣𝑣𝑣�𝛽𝛽𝑗𝑗� is a population parameter of 
key interest because it quantifies between-site heterogeneity in the causal mechanism. Its 
estimation involves subtracting the estimated average within-site sampling variance of the site-
specific effect estimates (i.e. the second component of the following equation) from the 
estimated between-site variance of the site-specific effect estimates (i.e. the first component of 
the following equation), with adjustment for the between-site sampling covariance of the site-
specific effect estimates (i.e. the third component of the following equation): 

𝑣𝑣𝑣𝑣𝑣𝑣� �𝛽𝛽𝑗𝑗� =
1

𝐽𝐽 − 1
��𝛽̂𝛽𝑗𝑗 − 𝛾𝛾��

2
𝐽𝐽

𝑗𝑗=1

−
1
𝐽𝐽
�𝑣𝑣𝑣𝑣𝑣𝑣� (𝛽̂𝛽𝑗𝑗

𝐽𝐽

𝑗𝑗=1

− 𝛽𝛽𝑗𝑗) +
1

𝐽𝐽(𝐽𝐽 − 1)
�� 𝑐𝑐𝑐𝑐𝑐𝑐� (𝛽̂𝛽𝑗𝑗 − 𝛽𝛽𝑗𝑗, 𝛽̂𝛽𝑗𝑗′ − 𝛽𝛽𝑗𝑗′)

𝑗𝑗′≠𝑗𝑗𝑗𝑗

 

The estimate of the variance covariance matrix of all the site-specific effects can be found in 
Appendix C. When a variance estimate is negative, known as a Heywood case, we set the 
variance estimate as well as the related covariance estimate to 0.  

We adopt a permutation procedure (Fitzmaurice et al., 2007) for hypothesis testing. All 
possible permutations of the site memberships are equally likely under the null hypothesis that 
the between-site variance is 0. By randomly permuting the site indices while holding the site 
sizes fixed, we are able to approximate the null distribution of the test statistic and empirically 
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determine the probability of obtaining values greater than the sample test statistic. Appendix C 
provides technical details about the estimation and inference. 

5.3. Balance Checking 
The nonresponse weight and the RMPW weight are estimated and are subjected to potential 

model misspecification errors. Major errors in model misspecification can be detected if, within 
a treatment group, the estimated nonresponse weight fails to balance the distribution of the 
observed covariates between the respondents and the nonrespondents, or if the estimated RMPW 
weight fails to balance the distribution of the observed covariates between those who succeeded 
in attaining a credential and those who did not. A substantial reduction in the imbalance in each 
case would indicate that the estimated weight is effective in reducing selection bias associated 
with the observed covariates. If some observed covariates are still imbalanced after weighting, 
balance checking results would indicate how much bias might be remaining and in which 
direction it might affect the analytic results.  

Balance after nonresponse weighting adjustment. Having estimated the nonresponse 
weight as defined in Equation (3), we use the standardized bias to quantify the balance in an 
observed covariate between the respondents and the nonrespondents in each treatment group 
after weighting. The standardized bias is calculated by dividing the weighted mean difference in 
each covariate by the standard deviation of the covariate (Harder et al. 2010). By convention, a 
covariate is considered to be balanced if the standardized bias is less than 0.25 and preferably 
less than 0.10 in magnitude. To evaluate whether the balance is achieved across most or all of the 
sites, it is essential to further estimate the between-site standard deviation of the standardized 
bias. Under the assumption that the site-specific standardized bias is normally distributed, we 
compute the 95% plausible value range of the site-specific standardized bias, which is expected 
to be within the range of [−0.25,0.25] if the covariate has acceptable balance at each site. 
Because all the observed pretreatment covariates in this study are categorical, we obtain the 
results for each treatment group by fitting a weighted mixed-effects logistic model regressing a 
binary indicator for each covariate category on the response indicator R. The model includes a 
site-specific random intercept and a random slope that are assumed to be bivariate normal.  

Balance after RMPW adjustment. We further assess the extent to which the estimated 
RMPW weights balance the distribution of the observed covariates between mediator categories 
in each treatment group at each site. Regressing a binary indicator for each covariate category on 
the mediator M in a weighted mixed-effects logistic model for each treatment group, we obtain 
estimates that allow us to calculate the population average and the between-site standard 
deviation of the standardized bias.  

5.4. Sensitivity Analysis 
The analytic procedure described above would generate causally valid results only when the 

identification assumptions hold. In the current study, although the sampling mechanism and the 
treatment assignment mechanism are ignorable, the assumptions of strongly ignorable 
nonresponse and strongly ignorable mediator value assignment are likely untenable. A sensitivity 
analysis is necessary for determining whether potential violations of these assumptions due to 
omitted confounders would easily alter the causal conclusions. A conclusion is considered to be 
sensitive if the inference can be easily reversed by additional adjustment for an omitted 
confounder. 
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We apply a weighting-based approach to sensitivity analysis that has been extended from 
single-site to multisite causal mediation studies (Hong et al., 2018, working paper). This 
approach reduces the reliance on functional form assumptions characteristic of most other 
existing sensitivity analysis methods. The hidden bias associated with one or more omitted 
confounders is summarized by a function of a small number of weighting-based sensitivity 
parameters. In a single-site mediation study in which the treatment is randomized, there are two 
sensitivity parameters: one is the standard deviation of the discrepancy between a new weight 
that adjusts for a confounder and an initial weight that omits the confounder; and the other is the 
correlation between the weight discrepancy and the outcome within a treatment group. 
Intuitively, the former is associated with the degree to which the omitted confounder predicts the 
mediator and the latter is associated with the degree to which it predicts the outcome. 

In the current study, we consider potential violations of Assumption 3 (strongly ignorable 
nonresponse) and Assumption 4 (strongly ignorable mediator value assignment). The former are 
posed by omitted pretreatment or posttreatment confounders of the response-mediator or 
response-outcome relationships. Such omissions may bias all the causal parameters of interest. 
The latter are posed by possible omissions of pretreatment and posttreatment confounders of the 
mediator-outcome relationships. These omissions threaten to bias the population average NDE, 
NIE, PIE, and interaction effect, and their between-site variances. Moreover, both assumptions 
need to hold within each site; yet the response models and the mediator models have assumed the 
same response mechanism and mediation mechanism across all the sites for keeping the models 
parsimonious. If the response mechanism or the mediation mechanism associated with an 
observed pretreatment confounder in fact varied across the sites for a given treatment group, 
omitting the site-specific increment to the coefficient for the confounder in the response model or 
the mediator model would introduce bias as well. In addition, the original analysis only adjusted 
for pretreatment covariates, because in the presence of treatment-by-mediator interactions, 
posttreatment confounders of the mediator-outcome relationship cannot be directly adjusted for 
in the mediator model (Avin et al., 2005). Similarly, in the presence of treatment-by-response 
interactions, posttreatment confounders of the response-mediator or response-outcome 
relationship cannot be directly adjusted for in the response model. We adopt a weighting-based 
strategy that offers a solution to sensitivity analysis concerning posttreatment confounders (Hong 
et al., 2018, working paper). Appendix D in the supporting web materials provides a list of 
weighting-based sensitivity parameters relevant to multisite causal mediation research. For each 
type of omission, we assess its potential impact on the causal conclusion with regard to each of 
the population parameters of interest.  

6. Analytic Results 

6.1. Estimated Nonresponse and RMPW Weights 
Appendix B compares the distribution of the outcome and of the 51 covariates between the 

program group and the control group, between the respondents and the nonrespondents in each 
treatment group, and between the two mediator categories among the respondents in each 
treatment group. Average pretreatment differences are notable between the columns. All these 
covariates are included in the propensity score models for response status and those for the 
mediator. The estimated nonresponse weight ranges from 0.57 to 3.95 among the respondents 
and from 0.33 to 4.48 among the nonrespondents, both with a mean equal to 1 in each treatment 
group. The estimated RMPW weight ranges from 0.13 to 2.53 among the respondents in the 
program group and from 0.40 and 6.62 among those in the control group, again with a mean 
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equal to 1 in each case. The stabilized ITT weight ranges from 0.40 to 6.30 among the 
respondents in the program group and from 0.54 to 5.13 among those in the control group. The 
stabilized product of the ITT weight and RMPW weight ranges from 0.11 to 6.74 among the 
respondents in the program group and from 0.27 to 8.17 among those in the control group. An 
overly large weight may indicate possible violations of the positivity assumption or suggest 
computational error and may pose a threat to the stability of the estimation results. Our results do 
not flag such a concern. 

6.2. Results of Causal Parameter Estimation and Inference 
Table 3 presents the results of estimation and inference for the population average and the 

between-site standard deviation of the causal effects. These results are generalizable to a 
theoretical population of Job Corps centers serving disadvantaged youth, most of whom had not 
acquired a labor market-worthy qualification in education and training at the time of application.  

Population average ITT effects of Job Corps. The population average ITT effects of Job 
Corps on educational and vocational attainment and on earnings are both positive and 
statistically significant. Job Corps increased the rate of educational and vocational attainment 
from 22% to 40% within 30 months after randomization, and increased weekly earnings by about 
$21 (in 1994 dollars) in the fourth year after randomization. The original study estimated an ITT 
effect of close to $16 dollars (Schochet et al., 2006). This was estimated in the population of 
individuals, while we estimate the average ITT effect in the population of sites. We do not expect 
these two parameters to have the same values as we discussed in the second paragraph of the 
introduction section. Besides, there were other differences between the analyses. We conducted 
an analysis to decompose which differences between our analysis and the original one led to this 
difference in estimated impacts (results available upon request). We found that most of the 
difference was due to how we classified nonrespondents (those missing a site ID, the mediator, 
or the outcome) compared to the original study classification (those missing the outcome). 

Population average mediation mechanism. The ITT effect of Job Corps on earnings is 
partly transmitted through educational and vocational attainment. The estimated average NIE is 
$8.47 (standard error [SE] = 1.61; t = 5.26; p < 0.001). This result suggests that human capital 
formation is not the only pathway through which Job Corps generated its impact on earnings. 
The estimated average NDE is $12.56 (SE = 5.73; t = 2.19; p = 0.028), accounting for nearly 
60% of the ITT effect. According to our earlier reasoning, NDE transmits the Job Corps impact 
primarily through a wide array of support services. The estimated difference between NDE and 
NIE is not statistically significant, indicating that the support services played a role at least as 
important as general education and vocational training in promoting economic well-being among 
disadvantaged youths. The estimated natural treatment-by-mediator interaction effect $2.27 (SE 
= 2.50; t = 0.91; p = 0.36) is simply the difference between the estimated NIE and the estimated 
PIE, the latter being $6.20 (SE = 1.78; t = 3.48; p = 0.001). The interaction effect is not 
statistically significant. Therefore, the economic returns to the program-induced increase in 
educational and vocational attainment are indistinguishable between Job Corps and the control 
condition. 

Between-site variance of the ITT effects.  The ITT effect of Job Corps on educational and 
vocational attainment did not vary significantly across sites. However, there is considerable 
between-site variation in the ITT effect on earnings. Its between-site standard deviation is 
estimated to be $29.60 (p < 0.05). Under the assumption that the site-specific ITT effects are 
normally distributed, these effects range from -$37 to $79 in 95% of the sites. This result 
indicates that even though Job Corps significantly improved earnings on average, not all the 
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centers generated positive impacts. An estimated negative correlation (-0.18) between the site-
specific control group mean and the ITT effect (result not tabulated) suggests that Job Corps 
tended to have a greater positive impact on earnings in the sites where economic prospects were 
particularly dire under the control condition. 

Between-site variance of the mediation mechanism. To explain the between-site 
heterogeneity in the ITT effect on earnings, we further investigate how the causal mediation 
mechanism varied across sites. The estimated between-site standard deviation of NDE is as large 
as $29 (p = 0.07), nearly equal to the estimated between-site standard deviation of the ITT effect 
on earnings; the estimated site-specific NDE ranges from -$44 to $69 in 95% of the sites. In 
contrast, the estimated between-site standard deviation of NIE is only about $5 (p = 0.14). The 
estimated between-site standard deviation of PIE and that of the interaction effect are similarly 
negligible. According to these results, not only did Job Corps universally improved the rate of 
attaining a certificate, the economic benefit of such an improvement was also comparable across 
the sites. However, the program impact transmitted through support services appeared to be 
uneven across the sites. The site-specific NDE seems to largely coincide with the site-specific 
ITT effect on earnings, their correlation being greater than 0.9 (result not tabulated). Therefore, 
the between-site variation in the ITT effect on earnings is primarily explained by the 
heterogeneity in support services. This result is consistent with a qualitative process analysis 
(Johnson et al., 1999) showing that, unlike the provision of education and vocational training 
that was strictly regulated by the national and regional Job Corps offices, the quantity and quality 
of support services were left largely to the discretion of agents at each local center. 

Table 3. Estimated causal parameters using the Job Corps data 

  Population Average Effect   Between-Site  
Standard Deviation 

95% Plausible 
Value Range  

of Site-Specific 
Effects   Estimate Effect 

Size p-Value   Estimate p-Value 

ITT effect on the mediator 
(difference in probability) 

0.186 
(0.014) 0.445 <0.001  0.087 0.035 [0.015, 0.357] 

ITT effect on the outcome 
(dollars) 

21.030 
(5.684) 0.114 <0.001  29.603 0.035 [-36.992, 79.052] 

NDE 
(dollars) 

12.561 
(5.730) 0.068 0.028  28.985 0.070 [-44.250, 69.372] 

NIE 
(dollars) 

8.469 
(1.612) 0.046 <0.001  5.407 0.135 [-2.129, 19.067] 

PIE 
(dollars) 

6.198 
(1.781) 0.034 0.001  4.351 0.215 [-2.330, 14.726] 

Interaction effect 
(dollars) 

2.270 
(2.503) 0.012 0.364   11.083 0.220 [-19.453, 23.993] 

Note. 1. For the point estimate of each population average effect, the corresponding standard error is 
provided in parentheses. 2. The effect size of each population average effect estimate is calculated by 
dividing the point estimate by the standard deviation of the outcome in the control group. 3. The bounds 
for the 95% plausible value range of the site-specific effects are 1.96 times the between-site standard 
deviation estimate away from the population average effect estimate, under the assumption that the site-
specific effects are normally distributed. 
 

Summary. Our empirical evidence supports the Job Corps program theory and suggests 
necessary modifications in program practice. Job Corps distinguishes itself from other training 
programs by emphasizing both human capital formation and risk reduction as complementary 
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pathways for improving the economic well-being of disadvantaged youths. Our results have 
indicated that the latter mechanism is no less if not more important than the former. Although all 
Job Corps centers succeeded in increasing educational and vocational attainment which 
subsequently led to an increase in average earnings, they were not equally successful in 
promoting economic well-being through countering a wide range of risk factors. One implication 
seems clear: regularizing the quantity and ensuring the quality of support services is likely the 
key to achieving universal effectiveness of Job Corps. 

6.3. Results of Balance Checking  
As expected, the nonresponse weighting adjustment substantially improved the balance 

between respondents and nonrespondents on average in both treatment groups. Before weighting, 
the magnitude of the standardized bias averaged over all the sites was greater than 0.25 for one 
variable and greater than 0.1 for six other variables in the program group and was greater than 
0.25 for two variables and greater than 0.1 for seven other variables in the control group. After 
weighting, the average standardized bias becomes less than 0.1 in magnitude for all the variables 
in both groups. The 95% plausible value range of the site-specific standardized bias, initially 
exceeding the -0.25 and 0.25 thresholds for five variables in the program group and for four 
variables in the control group, is kept between these thresholds for all but two variables in the 
program group and for all but one variable in the control group. We notice that the nonresponse 
weighting increased the plausible value range for some variables due to the increase in 
estimation uncertainty. These balance checking results are illustrated in Figures E.1 ~ E.4 in 
Appendix E in the supporting web materials. 

Figures E.5 ~ E.8 in the same appendix summarize the balance between mediator categories 
among the respondents in each treatment group after RMPW weighting. The weighting reduced 
the number of variables with an average standardized bias exceeding 0.1 in magnitude from nine 
to zero in the program group and from ten to three in the control group. The number of variables 
with the plausible value range falling beyond the thresholds of -0.25 and 0.25 is reduced from six 
to three in the program group and is, however, increased from eight to ten in the control group. 
This is because, in some of the sites, relatively few respondents in the control group successfully 
attained a credential. Such noise may reduce the precision in estimating the between-site 
variance of the standardized bias. 

6.4. Results of Sensitivity Analysis 
It is straightforward to assess the sensitivity of the original conclusions to the omission of an 

observed pretreatment covariate, because we can directly calculate its sensitivity parameters 
based on the observed data. However, to determine if the initial results are sensitive to the 
existence of an unmeasured pretreatment confounder, it is important to further reason whether 
the confounding impact of the unmeasured covariate would be comparable to that of an observed 
pretreatment confounder. For example, characteristics of peer network might influence a Job 
Corps applicant’s response status, educational attainment, and job prospect. Even though peer 
network was unmeasured in NJCS, we may reason that its confounding impact is comparable to 
one of the most important observed pretreatment confounders such as baseline earnings and 
thereby obtain a plausible reference value of the bias caused by the omission of peer network.  

Take the population average NIE as an example. An omission of the indicator for upper-
middle level baseline earnings would result in a negative bias -$3.39. Our original estimate of the 
NIE effect is $8.47, with a 95% confidence interval (CI) [$5.31, $11.63]. With an additional 
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adjustment for an unmeasured pretreatment confounder that is assumed to be comparable to 
upper-middle level baseline earnings, the new estimate of NIE would become $11.86; the 95% 
CI of the adjusted NIE estimate is [$8.70, $15.02]. Here we consider the plausible reference 
value of bias associated with the omission to be given rather than estimated, and thus the 
additional adjustment does not change the width of the 95% CI. This hypothetical adjustment 
would lead to an increase in the magnitude of the NIE estimate without changing the initial 
conclusion about the significant positive NIE. For the population average NDE, the omission 
would contribute a positive bias of $1.85. With an additional adjustment for this hypothetical 
bias, the estimate of NDE would change from $12.56 (95% CI = [$1.33, $23.79]) to $10.71 
(95% CI = [-$0.52, $21.94]). The adjusted CI now contains zero. Hence the original conclusion 
about the significant positive NDE is potentially sensitive to an unmeasured confounder 
comparable to baseline earnings. Among the 51 observed pretreatment covariates, ten of them 
each provides a plausible reference value of bias that would lead to a statistically insignificant 
NDE once the hypothetical bias is additionally removed. This is also true with five observed 
pretreatment covariates when we assess the sensitivity of the population average PIE. In 
addition, nine covariates would overturn the statistical significance of the population average 
natural treatment-by-mediator interaction effect. Nevertheless, none of the between-site variance 
estimates is sensitive to the omission of pretreatment confounders. 

In many cases, the analyst might not have enough scientific knowledge to equate the 
potential bias of an omitted confounder with that of an observed covariate. Yet other data sources 
might supply values of its sensitivity parameters. Applying the bias formula as represented in 
Appendix D, the analyst can compute the approximate amount of bias associated with the 
omission and then assess the sensitivity of the original conclusion to the omission. In addition to 
assessing the amount of bias that each single omitted covariate might contribute, we could also 
assess how much bias a set of omitted covariates might introduce jointly.  

We further assess the sensitivity of the original conclusions to the omission of the site-
specific increment to the coefficient for each pretreatment confounder that has been adjusted for 
in the response model or the mediator model. The population average ITT effect estimate is 
insensitive to such an omission. In contrast, with an additional adjustment for the site-specific 
increment to the coefficient for some of the covariates, the estimated population average NIE, 
NDE, or PIE would become insignificant, while the population average natural treatment-by-
mediator interaction effect, originally tested to be insignificant, would become either 
significantly negative or significantly positive. Nevertheless, none of the between-site variance 
estimates is sensitive to the omission of the site-specific increment. 

The above discussions are focused on the omission of pretreatment confounders. As 
explicated in section 5.4, the omission of a posttreatment confounder would also pose threats to 
the identification assumptions. Because the NJCS data do not have any measurement of a 
potential posttreatment confounder of the response-mediator, response-outcome, or mediator-
outcome relationship, we are unable to assess the potential influence of omitted posttreatment 
confounders in this study. 

7. Conclusion 

This article presents a comprehensive template for multisite causal mediation analysis that 
integrates a series of weighting-based strategies. These include using a sample weight to adjust 
for complex sample and survey designs, using an IPTW weight to adjust for differential 
treatment assignment probabilities, using a nonresponse weight to adjust for non-random 
nonresponse, and using RMPW weights to adjust for mediator value selection while unpacking 



24         X. Qin, G. Hong, J. Deutsch and E.Bein 

 

 

the causal mechanisms. Under the identification assumptions clarified in the article, these 
weighting strategies promise to enhance the external validity and internal validity of the 
conclusions with regard to the population average and the between-site variance of the causal 
effects. In addition to decomposing the average ITT effect of the treatment on the outcome into 
direct and indirect effects, the template further investigates the heterogeneity in causal 
mechanisms across sites that explains the between-site variation in the ITT effect. Weighting-
based balance checking assesses the amount of overt bias associated with the observed 
covariates. And finally, a weighting-based sensitivity analysis allows for a flexible assessment of 
the causal conclusions in light of possible violations of the identification assumptions due to 
hidden bias. The article is accompanied by the “MultisiteMediation” R package for 
implementing the entire analytic procedure.  

Developed under the framework of potential outcomes, the template presented in this article 
provides an important alternative to the existing methods. Multilevel path analysis and SEM 
(Bauer et al., 2006) with MLE have difficulties in estimating and testing the between-site 
variance of NIE and the natural treatment-by-mediator interaction effect. Consistent estimation 
further requires that both the mediator model and the outcome model be correctly specified and 
that the mediator, the outcome, and the site-specific effects be normally distributed. In contrast, 
with each causal effect identified through a mean contrast between the weighted outcomes, the 
proposed MOM strategy invokes no assumptions about the functional form of the outcome 
model or about the distributions of the mediator, the outcome, and the site-specific effects. The 
issue of possible misspecifications of the functional forms of the response models or of the 
mediator models can be evaluated through balance checking and weighting-based sensitivity 
analysis. We opt for the MOM estimators also because the MLE of a population average effect is 
essentially a precision weighted average of the site-specific effect estimates. As discussed in 
Raudenbush and Schwartz (working paper), the MLE will be biased if the precision is correlated 
with the site-specific effect, which is likely in a multisite trial in which the sites that are more 
effective in implementing the program may attract more applicants. In contrast, the MOM 
estimator ensures consistency at some cost of efficiency. In general, efficiency becomes less of a 
concern in studies with a larger number of sites. We have also derived an asymptotic standard 
error for each population average effect estimate that fully accounts for the sampling variability 
in the two-step estimation. The permutation test for variance testing also fills a gap in the 
literature on multilevel mediation analysis.  

There are important topics remaining. First, we have conceptualized the site-specific causal 
effects under SUTVA. This assumption will need to be relaxed if an individual’s potential 
mediators and potential outcomes could be affected by other individuals’ treatment assignments, 
or if an individual’s potential outcomes could additionally be affected by other individuals’ 
mediator values (Hong, 2015; Vanderweele et al., 2013). For example, about half-way into the 
NJCS sample intake period, the Job Corps centers nationwide implemented a “zero tolerance” 
policy eliminating students involved in drug abuse or violence. The removal of such “problem” 
students would presumably improve the institutional environment and would increase allocation 
of resources to other students who were not directly targeted by the policy. Hence expelling 
“problem” peers from the program might contribute positively to one’s potential earnings. To 
test this hypothesis will require a major revision of the conceptual framework and creative 
extensions of the current template, which we will explore in future work.  

Second, the proposed template is directly applicable to multisite trial data similar to the Job 
Corps data, in which all the sites at the time of study were included and at least a moderate 
number of individuals were selected into the sample at each site. Unlike NJCS, some multisite 
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studies may sample sites first and then sample individuals within the sampled sites. One may 
further incorporate a site-level sample weight to adjust for the sample selection of sites. The 
sample design has important implications for causal inference. For example, researchers would 
not be able to obtain results generalizable to the population of sites if individuals were sampled 
from the overall population with a relatively small probability while the number of sites was 
relatively large and the site sizes were uneven. This is because sampled observations might 
become too sparse or even non-existent in some of the relatively small sites, in which case the 
sample of sites would not be representative of the population of sites.  

Third, we have adopted the missing-indicator strategy to handle missingness in the 
pretreatment covariates while using the inverse probability weighting strategy to account for 
nonresponse in the mediator and the outcome. If the true values of the missing cases were highly 
variant, the missing-indicator strategy would underestimate the variance and covariance of the 
covariates. When the missing-at-random assumption holds, an alternative is to use multiple 
imputation to impute the missing values in the covariates as well as in the mediator and the 
outcome. A product of the sample weight, IPTW weight, and RMPW weight, i.e. 𝑊𝑊𝐷𝐷𝑊𝑊𝑇𝑇𝑊𝑊𝑀𝑀, will 
then be applied to each imputed data set. The final estimation results can be obtained by 
combining the estimates from multiple imputed data sets.  

Fourth, as acknowledged by Qin and Hong (2017), the MOM estimation procedure may not 
be optimal if there are fewer than 20 individuals at each site. Moreover, when site sizes are 
relatively small, propensity score models may be overfitted if selection mechanisms vary across 
sites. In such cases, there might be a lack of statistical power for detecting between-site 
heterogeneity in the causal mediation mechanism. 

Fifth, our mediator is a combination of two central elements of the Job Corps program. It 
takes value 1 if an individual obtained either an education or a training credential within 30 
months after randomization. However, the selection mechanism that led to an education 
credential might be different from the mechanism that led to a training credential. Combining 
these two distinct types of credentials into one mediator may result in misspecified propensity 
score models for the mediator and correspondingly biased estimates of the causal parameters. 
This problem can be addressed by viewing vocational training attainment and general education 
attainment as two concurrent mediators, a topic that we investigate in a separate study.   
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