
A Joint Planning and Learning Framework for Human-Aided Decision-Making

Daoming Lyu1, Fangkai Yang2, Steven Gustafson3, Bo Liu1 ∗
1 Auburn University, Auburn, AL, USA

2 NVIDIA Corporation, Redmond, WA, USA
3 Maana Inc., Bellevue, WA, USA

daoming.lyu@auburn.edu, fangkaiy@nvidia.com, steven.gustafson@gmail.com, boliu@auburn.edu

Abstract

Conventional reinforcement learning (RL) allows an agent to
learn policies via environmental rewards only, with a long
and slow learning curve, especially at the beginning stage.
On the contrary, human learning is usually much faster be-
cause prior and general knowledge and multiple information
resources are utilized. In this paper, we propose a Planner-
Actor-Critic architecture for huMAN-centered planning and
learning (PACMAN), where an agent uses prior, high-level,
deterministic symbolic knowledge to plan for goal-directed
actions. PACMAN integrates Actor-Critic algorithm of RL
to fine-tune its behavior towards both environmental rewards
and human feedback. To the best our knowledge, This is
the first unified framework where knowledge-based planning,
RL, and human teaching jointly contribute to the policy learn-
ing of an agent. Our experiments demonstrate that PACMAN
leads to a significant jump-start at the early stage of learning,
converges rapidly and with small variance, and is robust to
inconsistent, infrequent, and misleading feedback.

Introduction
A longstanding goal of artificial intelligence is to enable the
programming agent to perform tasks intelligently in a com-
plex domain. Recently, reinforcement learning (RL) algo-
rithms, such as DQN, have made a lot of success on train-
ing agent to play Atari games from raw pixel images (Mnih
et al. 2015). However, this approach is criticized for being
“data-hungry” and “time-hungry”, although it can learn fine
granular policies that surpass human experts. Such draw-
backs are heavily related to two phenomena that have not
drawn enough attention before. The first phenomenon is that
conventional RL algorithms can only learn from the reward
signal, thus limiting its capability of utilizing multiple infor-
mation resources. In general, humans can learn from mul-
tiple resources, and supervised learning that can learn from
multiple labels simultaneously in the vector space. On the
contrary, RL algorithms can only learn from scalar reward
signals by interacting with the environment, i.e., one scalar
reward signal per iteration. It would be beneficial to learn
from multiple resources beyond merely environmental re-
wards, such as human feedback. The second phenomenon

∗Correspondence to: Bo Liu<boliu@auburn.edu>.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

involves the initial learning phase. Existing RL algorithms
usually learn from scratch, and thus often lead to an inferior
performance at the initial learning phase (Sutton and Barto
2018), with a very long and slow learning curve. It would
be helpful if a certain amount of prior knowledge can be in-
corporated in advance to help improve the initial learning
dynamics.

There have been some studies, along with the two afore-
mentioned research directions. The first topic leads to
the proposal of “human-centered reinforcement learning”
(HCRL) where an agent learns directly from human feed-
back. These approaches include interpreting human feed-
back as a shaping reward (Knox and Stone 2009), applying
human feedback directly to policy improvement (Thomaz
and Breazeal 2008; Knox and Stone 2010; Griffith et al.
2013), or interpreting human feedback as an estimation of
the advantage function Aπ(s, a) 1 (MacGlashan et al. 2016;
2017). However, all the aforementioned work is limited to
learning human feedback only, without considering the en-
vironmental rewards. The second topic, learning from hu-
man’s prior knowledge, is investigated within a rather lim-
ited scope. To the best of our knowledge, the most rel-
evant research to this topic is learning from demonstra-
tions (LfD) (Argall et al. 2009), where the original pol-
icy search problem is reduced to a supervised distribution
matching problem by matching the expert’s demonstration
trajectory’s distribution. A typical strategy is to apply LfD
first to obtain a good initial policy and then use RL methods
for further policy improvement and refinement. The alter-
native approach, learning from explicitly represented, for-
mal, symbolic knowledge is neglected until recently. Sym-
bolic knowledge is used to capture coarse-granular domain
dynamics and provide general guidance to exploration, lead-
ing to jump-start at the early stage of learning. After that,
RL is used to fine-tune further the performance (Leonetti,
Iocchi, and Stone 2016; Yang et al. 2018; Lyu et al. 2019;
Jiang et al. 2019), which can significantly improve the
sample-efficiency.

In this paper, we argue that prior knowledge, learning
from environmental rewards, and human teaching should

1An advantage function Aπ(s, a) is a state-action value roughly
corresponding to how much better or worse an action a is compared
to the current policy at state s.

ar
X

iv
:1

90
6.

07
26

8v
3

 [c
s.A

I]
 2

4
D

ec
 2

01
9

jointly contribute to obtaining the optimal behavior. By rep-
resenting at a sufficiently abstract level rather than specifi-
cally tailored towards individual problems, symbolic knowl-
edge can be light-weight and concise to be a useful guide-
line for data-driven learning. The agent can further learn do-
main details and uncertainties to refine its behavior simulta-
neously from both environmental rewards and human feed-
back. In this way, the prior knowledge is enriched with ex-
perience and tailored towards individual problem instances.
Based on the motivation above, we propose the Planner–
Actor–Critic architecture for huMAN centered planning and
learning (PACMAN). PACMAN interprets human feedback
as the advantage function estimation similar to COACH
framework but further incorporates prior, symbolic knowl-
edge. The contributions of this paper are summarized as fol-
lows: (i.) The framework of PACMAN features symbolic
planner-actor-critic trio iteration, where planning and RL
mutually benefit each other. In particular, the logical repre-
sentation of action effects is dynamically generated by sam-
pling a stochastic policy learned from actor-critic (AC) algo-
rithm of RL. PACMAN allows the symbolic knowledge and
actor-critic framework to integrate into a unified framework
seamlessly. (ii.) This framework enables joint learning from
both environmental rewards and human feedback, which can
accelerate the learning process of interactive RL as well as
improve the tolerance of misleading feedback from human
users.

To the best of our knowledge, this paper is the first work
that learns simultaneously from human feedback, environ-
mental rewards, and prior symbolic knowledge. While our
framework can be quite generic, we choose to use ASP-
based action language BC (Lee, Lifschitz, and Yang 2013),
answer set solver CLINGO to perform symbolic planning and
conduct our experiments. The evaluation of the framework is
performed on RL benchmark problems such as Four Rooms
and Taxi domains. We consider various scenarios of human
feedback, including the cases of ideal, infrequent, inconsis-
tent, and both infrequent and inconsistent with helpful feed-
back and misleading feedback, and compare our approach
with the state-of-the-art methods. Our experiments indicate
that PACMAN empirically leads to a significant jump-start
at early stages of learning, converges faster and with smaller
variance, and is robust to inconsistent, infrequent cases even
misleading feedback.

Related Work
There is a long history of work that combines symbolic
planning with reinforcement learning (Parr and Russell
1998; Ryan and Pendrith 1998; Ryan 2002; Hogg, Kuter,
and Munoz-Avila 2010; Leonetti, Iocchi, and Patrizi 2012;
Leonetti, Iocchi, and Stone 2016). These approaches were
based on integrating symbolic planning with value iteration
methods, and thus planning and learning cannot be mutu-
ally beneficial to each other. The latest work in this direction
is PEORL framework (Yang et al. 2018) and SDRL (Lyu et
al. 2019), where ASP-based planning was integrated with R-
learning (Schwartz 1993) into planning–learning loop. PAC-
MAN architecture is a new framework of integrating sym-
bolic planning with RL, in particular, integrating planning

with AC algorithm for the first time, and also features bidi-
rectional communication between planning and learning.

Learning from human feedback takes the framework of
reinforcement learning, and incorporate human feedback
into reward structure(Thomaz, Breazeal, and others 2006;
Knox and Stone 2009; 2012), information directly on policy
(Thomaz and Breazeal 2008; Knox and Stone 2010; Griffith
et al. 2013), or advantage function (MacGlashan et al. 2016;
2017). Learning from both human feedback and environ-
mental rewards were investigated (Thomaz, Breazeal, and
others 2006; Knox and Stone 2012; Griffith et al. 2013),
mainly integrating the human feedback to reward or value
function via reward shaping or Q-value shaping. Such meth-
ods do not handle well the samples with missing human
feedback, and in reality, human feedback may be infrequent.

Recent work of COACH (MacGlashan et al. 2016; 2017)
showed that human feedback seems better to formulate as an
estimation of the policy-dependent advantage function, but
it does not consider learning simultaneously from environ-
mental rewards and human feedback. Besides, none of these
work considers the setting where an agent is equipped with
prior knowledge and generates a goal-directed plan that is
further to be fine-tuned by reinforcement learning and a hu-
man user. By integrating human feedback into PACMAN,
our framework allows the integration of logic-based sym-
bolic planning into the data-driven learning process, where
environmental rewards and human feedback can be unified
into advantage function to shape the agent’s behavior in the
context of long-term planning.

Preliminaries
Symbolic Planning Symbolic planning concerns on de-
scribing preconditions and effects of actions using a formal
language and automated plan generation, which has been
used for high-level task planning in a variety of robotic ap-
plications (Hanheide et al. 2015; Khandelwal et al. 2017).
An action description D in the language BC includes two
kinds of symbols, fluent constants that represent the prop-
erties of the world, with the signature denoted as σF (D),
and action constants, with the signature denoted as σA(D).
A fluent atom is an expression of the form f = v, where
f is a fluent constant and v is an element of its domain.
For Boolean domain, denote f = t as f and f = f as
∼f . An action description is a finite set of causal laws that
describe how fluent atoms are related with each other in a
single time step, or how their values are changed from one
step to another, possibly by executing actions. For instance,
A if A1, . . . , Am is a static law that states at a time step, if
A1, . . . , Am holds thenA is true. a causesA0 ifA1, . . . , Am
is a dynamic law, stating that at any time step, ifA1, . . . , Am
holds, by executing action a, A0 holds in the next step.2
An action description captures a dynamic transition system.
Let I and G be states. The triple (I,G,D) is called a plan-
ning problem. (I,G,D) has a plan of length l − 1 iff there
exists a transition path of length l such that I = s1 and

2In BC, causal laws are defined in a more general form. In this
paper, without loss of generality, we assume the above form of
causal laws for defining effects of actions.

G = sl. Throughout the paper, we use Π to denote both
the plan and the transition path by following the plan. Gen-
erating a plan of length l can be achieved by solving the
answer set program PNl(D), consisting of rules translated
from D and appending timestamps from 1 to l, via a trans-
lating function PN. For instance, PNl turns the static law to
i : A ← i : A1, . . . , i : Am, where 1 ≤ i ≤ l and turns the
dynamic law to i + 1 :A ← i : a, i :A1, . . . , i :Am, where
1 ≤ i < l. See (Lee, Lifschitz, and Yang 2013) for details.

Reinforcement Learning and Actor-Critic Method RL
problem is usually defined as a Markov Decision Process
(MDP), which is a tuple of (S,A, P ass′ , r, γ). Specifically, S
and A denotes state space and action space, the transition
kernel P ass′ specifies the probability of transition from state
s ∈ S to state s′ ∈ S by taking action a ∈ A, r(s, a) :
S × A 7→ R is a reward function bounded by rmax, and
0 ≤ γ < 1 is a discount factor. RL concerns learning a
near-optimal policy π(a|s) (maps a state s to an action a)
by executing actions and observing the state transitions and
rewards.

An actor-critic (Peters and Schaal 2008; Bhatnagar et al.
2009; Sutton and Barto 2018) approach is a framework of
RL which has two components: the actor and the critic. Typi-
cally, the actor is a policy function πθ(a|s) parameterized by
θ for action selection, while the critic is a state-value func-
tion Vx(s) parameterized by x to criticize the action made by
the actor. For example, after each action selection, the critic
will evaluate the new state to determine whether things have
gone better or worse than expected by computing TD error
(Sutton and Barto 2018). If the TD error is positive, it sug-
gests that the tendency to select current action a should be
strengthened for the future, whereas if the TD error is nega-
tive, it suggests the tendency should be weakened. This TD
error is actually an unbiased estimation of advantage func-
tion Aπ(s, a) (Schulman et al. 2015).

PACMAN Architecture
In this section, we will present our PACMAN architecture,
which is shown in Figure 1. With the encoded prior knowl-
edge and the policy function (from the actor), the symbolic
planner would generate a plan that contains a sequence of
actions, and send it to RL (actor-critic) to execute. During
the interaction between RL and environment, the estimation
of advantage function can be either from TD error computed
by the critic or the value of human feedback. The detailed
process will be defined formally as follows.

Sample-based Symbolic Planning
We introduce a sample-based planning problem as a tuple
(I,G,D, πθ) where I is the initial state condition, G is a
goal state condition,D is an action description in BC, and πθ
is a stochastic policy function parameterized by θ, i.e., a
mapping S × A 7→ [0, 1]. For D, defines its l-step sampled
action description Dl

π = Ds ∪Dd ∪
⋃l
t=1 P

t
π with respect

to policy π and time stamp 1 ≤ t ≤ l, where
• Ds is a set of causal laws consisting of static laws and

dynamic laws that does not contains action symbols;

Figure 1: Architecture illustration

Figure 2: A possible sample-based planning result for 3-grid do-
main

Algorithm 1 Sample-based Symbolic Planning

Require: a sample based planning problem (I,G,D, πθ)
1: Π⇐ ∅, calculate D0

π , k ⇐ 1
2: while Π = ∅ and k < maxstamp do
3: sample P kπ over p(s, a) ∼ πθ(·|s) for s ∈ S , a ∈ A
4: Dk

π ⇐ Dk−1
π ∪ P kπ

5: Π← CLINGO.solve(I ∪G ∪ T (Dk
π))

6: k ← k + 1
7: end while
8: return Π

• Dd is a set of causal laws obtained by turning each dy-
namic law of the form a causes A0 if A1, . . . , Am, into
rules of the form a causes A0 if A1, . . . , Am, p(s, a)
where p is a newly introduced fluent symbol and
{A1, . . . , Am} ⊆ s, for s ∈ S; and

• P tπ is a set of facts sampled at timestamp t that contains
p(a, s) such that p(s, a) ∈ P tπ ∼ π(·|s, θ) where for s ∈
S , A ∈ A.

Define translation T (Dl
π) as PNl(Ds ∪ Dd) ∪⋃l

t=1{p(s, a, t), for p(s, a) ∈ P tπ} that turns Dl
π into

answer set program. A sample-based plan up to length
l of (I,G,D, πθ) can be calculated from the answer set
of program T (Dl

π) such that I and G are satisfied. The
planning algorithm is shown in Algorithm 1.
Example. Consider 3×1 horizontal gridworld where the
grids are marked as state 1, 2, 3, horizontally. Initially the
agent is located in state 1. The goal is to be located in state
3. The agent can move to left or right. Using action language
BC, moving to the left and moving to the right can be for-

mulated as dynamic laws

moveleft causes Loc = L− 1 if Loc = L.
moveright causes Loc = L+ 1 if Loc = L.

Turning them into sample-based action description leads to

moveleft causes Loc = L− 1 if Loc = L, p(L,moveleft).
moveright causes Loc = L+ 1 if Loc = L, p(L,moveright).

The policy estimator πθ accepts an input state and output
probability distribution on actions moveleft and moveright.
Sampling πθ with input s at time stamp i generates a fact of
the form p(s, a, i) where a ∈ {moveleft,moveright} follow-
ing the probability distribution of πθ(·|s).

At any timestamp, CLINGO solves answer set program
consisting of rules translated from the above causal laws:
loc(L-1,k+1):-moveleft(k),loc(L,k), p(L,moveleft,k).

loc(L+1,k+1):-moveright(k),loc(L,k), p(L,moveright,k).

for time stamp 1, . . . , k, plus a set of facts of the form
p(s,a,i) sampled from πθ where for states s ∈ {1, 2, 3}
and timestamps i ∈ {1, . . . , k}. Note that the planner can
skip time stamps if there is no possible actions to use to
generate plan, based on sampled results. Figure 2 shows a
possible sampling results over 3 timestamps, and a plan of
2 steps is generated to achieve the goal, where time stamp
2 is skipped with no planned actions. Since sample-based
planning calls a policy approximator as an oracle to obtain
probability distribution and samples the distribution to ob-
tain available actions, it can be easily applied to other plan-
ning techniques such as PDDL planning. For instance, the
policy appropriator can be used along with heuristics on re-
laxed planning graph (Helmert 2006).

Planning and Learning Loop
The planning and learning loop for PACMAN, as shown in
Algorithm 2, starts from a random policy (uniform distribu-
tion over action space), and then generate a sample-based
symbolic plan. After that, it follows the plan to explore and
update the policy function πθ, leading to an improved policy,
which is used to generate the next plan.

Algorithm 2 PACMAN

Require: (I,G,D, πθ) and a value function estimator Vx
1: for episode = 0, 1, . . . ,maxepisode do
2: Generate symbolic plan Π from (I,G,D, πθ) by Al-

gorithm 1
3: for 〈si, ai, ri, si+1〉 ∈ Π do
4: Compute TD error as δi = ri + γVxi+1(si+1) −

Vxi+1(si).
5: Update Vx via xi+1 = xi + αδi∇Vxi(si).
6: if human feedback fi is available then
7: Replace TD error δi with human feedback fi.
8: end if
9: Update πθ via θi+1 = θi + βδi∇ log πθ(ai|si).

10: end for
11: end for

For the i-th experience tuple of an episode,
(si, ai, ri, si+1), the TD error is computed as

δi = ri + γVxi+1(si+1) − Vxi+1(si), which is a
stochastic estimation of the advantage function. The
value function Vx is updated using reinforcement learn-
ing approaches, such as TD method (Sutton and Barto
2018): xi+1 = xi + αδi∇Vxi

(si), where α is the learn-
ing rate. The policy function πθ will be updated by
θi+1 = θi + βδi∇ log πθ(ai|si), where β is the learning
rate. If the human feedback signal fi is available, then this
feedback signal will replace the previous computed TD
error and be used to update the policy function; If there is no
human feedback signal available at this iteration, TD error
will be used to update the policy function directly. For this
reason, human feedback here can be interpreted as guiding
exploration towards human preferred state-action pairs.

Experiment
We evaluate our method in two RL-benchmark problems:
Four Rooms (Sutton, Precup, and Singh 1999) and Taxi do-
main (Barto and Mahadevan 2003). For experiments, we
consider the discrete value of (positive or negative) feedback
with the cases of ideal (feedback is always available without
reverting), infrequent (only giving feedback at 50% prob-
ability), inconsistent (randomly reverting feedback at 30%
probability) and infrequent+inconsistent (only giving feed-
back at 50% probability, while randomly reverting feedback
at 30% probability). We compare the performance of PAC-
MAN with 3 methods: TAMER+RL Reward Shaping from
(Knox and Stone 2012), BQL Reward Shaping from (Grif-
fith et al. 2013), and PACMAN without symbolic planner
(AC with Human Feedback) as our ablation analysis. All
plotting curves are averaged over 10 runs, and the shadow
around the curve denotes the variance.

Four Rooms
Four rooms domain is shown in Fig. 3a. In this 10×10 grid,
there are 4 rooms and an agent navigating from the initial
position (5,2) to the goal position (0,9). If the agent can suc-
cessfully achieve the task, it would receive a reward of +5.
And it may obtain a reward of -10 if the agent steps into the
red grids (dangerous area). Each move will cost -1. The hu-
man feedback of Four Rooms domain concerns 2 scenarios:

• Helpful feedback: consider an experienced user that wants
to help the agent to navigate safer and better, such that the
agent can stay away from the dangerous area and reach
the goal position with the shortest path. Therefore, human
feedback can guide the agent to improve its behavior to-
wards the task, as shown in Fig. 3b.

• Misleading feedback: consider an inexperienced user who
doesn’t know there is a dangerous area, but wants the
agent to step into those red grids (Fig. 3c). In this case, hu-
man feedback contradicts with the behavior that the agent
learns from an environmental reward.

The results are shown in Fig. 5 and Fig. 6. Obvi-
ously, PACMAN has a jump-start and quickly converged
with small variance, compared to BQL Reward Shaping,
TAMER+RL Reward Shaping, and AC with Human Feed-
back under four different cases. This is because symbolic

(a) Four rooms domain (b) Helpful feedback (c) Misleading feedback

Figure 3: The snapshot of 2 scenarios on four rooms domain

(a) Taxi domain (b) Helpful feedback (c) Misleading feedback

Figure 4: The snapshot of 2 scenarios on taxi domain

(a) Ideal case (b) Infrequent case (c) Inconsistent case (d) Infrequent+Inconsistent case

Figure 5: Four rooms with helpful feedback: learning curves

(a) Ideal case (b) Infrequent case (c) Inconsistent case (d) Infrequent+Inconsistent case

Figure 6: Four rooms with misleading feedback: learning curves

planning leading to goal-directed behavior biasing explo-
ration. Though the infrequent case, inconsistent case, and
their combination case for both helpful feedback and mis-
leading feedback can lead to more uncertainties, the perfor-
mance of PACMAN remains unaffected, which means more

robust than others. Meticulous readers may find that there is
a large variance in the initial stage of PACMAN, especially
in Fig. 5, Fig. 6, this is due to the reason that the symbolic
planner will first generate a short plan that is reasonably
well, then the symbolic planner will perform exploration

(a) Ideal case (b) Infrequent case (c) Inconsistent case (d) Infrequent+Inconsistent case

Figure 7: Taxi with helpful feedback: learning curves

(a) Ideal case (b) Infrequent case (c) Inconsistent case (d) Infrequent+Inconsistent case

Figure 8: Taxi with misleading feedback: learning curves

by generating longer plans. After doing the exploration, the
symbolic planner will converge to the short plan with the op-
timal solution. But the large variance at the initial phase of
PACMAN can be partially alleviated by setting the maximal
number of actions in a plan to reduce plan space.

Taxi Domain
Taxi domain concerns a 5×5 grid (Fig. 4a) where a taxi
needs to navigate to a passenger, pick up the passenger, then
navigate to the destination and drop off the passenger. Each
move has a reward of -1. Successful drop-off received a re-
ward of +20, while improper pick-up or drop-off would re-
ceive a reward of -10. When formulating the domain sym-
bolically, the precondition of performing picking up a pas-
senger is specified that the taxi has to be located in the same
place as the passenger. We consider human feedback in the
following two scenarios:

• Helpful feedback: consider the rush hour, the passenger
can suggest a path that would guide the taxi to detour
and avoid the slow traffic, which is shown in Fig. 4b. The
agent should learn a more preferred route from human’s
feedback.

• Misleading feedback: consider a passenger who is not fa-
miliar enough with the area and may inaccurately inform
the taxi of his location before approaching the passenger
(Fig. 4c), which is the wrong action and will mislead the
taxi. In this case, the feedback conflicts with symbolic
knowledge specified by PACMAN and the agent should
learn to ignore such feedback.

The results are shown in Fig. 7 and Fig. 8. In the scenarios
of both helpful and misleading feedback, the curve of PAC-
MAN has the smallest variance so that it looks like a straight
line, whereas it actually has the learning process (the zoom-
in curve shown in the figures of the ideal case). But in the

case of Infrequent+Inconsistent, there is a big chattering in
the initial stage of PACMAN, that’s because the symbolic
planner is trying some longer plans to do the exploration.
In the misleading feedback scenario, the learning speed of
the other methods except for PACMAN is quite slow. That’s
because the human feedback will misguide the agent to per-
form the improper action that can result in the penalty, and
the agent needs a long time to correct its behavior via learn-
ing from the environmental reward. But PACMAN keeps un-
affected in this case due to the symbolic knowledge that a
taxi can pick up the passenger only when it moves to the
passenger’s location.

Conclusion
In this paper we propose the PACMAN framework, which
takes into consideration of the prior knowledge, learning
from environmental rewards and human teaching together
and jointly contribute to obtaining the optimal policy. Exper-
iments demonstrate that PACMAN tends to lead to a signif-
icant jump-start at early stages of learning, converge faster
with reduced variance, and perform robustly to inconsistent,
infrequent, and even misleading human feedback. Our fu-
ture work involves investigation of using PACMAN to per-
form decision-making from high-dimensional sensory input
such as pixel images, autonomous driving where the vehicle
can learn human’s preference on comfort and driving behav-
iors, as well as multi-agent systems such as mobile service
robots.

Acknowledgment
This research was supported in part by the National Science
Foundation (NSF) under grants NSF IIS-1910794 and Ama-
zon Research Award.

References
Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robotics and autonomous systems 57(5):469–483.
Barto, A., and Mahadevan, S. 2003. Recent advances in
hierarchical reinforcement learning. Discrete Event Systems
Journal 13:41–77.
Bhatnagar, S.; Sutton, R.; Ghavamzadeh, M.; and Lee,
M. 2009. Natural actor-critic algorithms. Automatica
45(11):2471–2482.
Griffith, S.; Subramanian, K.; Scholz, J.; Isbell, C. L.; and
Thomaz, A. L. 2013. Policy shaping: Integrating human
feedback with reinforcement learning. In Advances in neural
information processing systems, 2625–2633.
Hanheide, M.; Göbelbecker, M.; Horn, G. S.; et al. 2015.
Robot task planning and explanation in open and uncertain
worlds. Artificial Intelligence.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hogg, C.; Kuter, U.; and Munoz-Avila, H. 2010. Learning
methods to generate good plans: Integrating htn learning and
reinforcement learning. In AAAI.
Jiang, Y.; Yang, F.; Zhang, S.; and Stone, P. 2019. Task-
motion planning with reinforcement learning for adaptable
mobile service robots. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), to appear.
Khandelwal, P.; Zhang, S.; Sinapov, J.; Leonetti, M.;
Thomason, J.; Yang, F.; Gori, I.; Svetlik, M.; Khante, P.; and
Lifschitz, V. 2017. Bwibots: A platform for bridging the gap
between ai and human–robot interaction research. The Inter-
national Journal of Robotics Research 36(5-7):635–659.
Knox, W. B., and Stone, P. 2009. Interactively shaping
agents via human reinforcement: The tamer framework. In
Proceedings of the fifth international conference on Knowl-
edge capture, 9–16. ACM.
Knox, W. B., and Stone, P. 2010. Combining manual feed-
back with subsequent mdp reward signals for reinforcement
learning. In Proceedings of the 9th International Conference
on Autonomous Agents and Multiagent Systems: volume 1-
Volume 1, 5–12.
Knox, W. B., and Stone, P. 2012. Reinforcement learning
from simultaneous human and mdp reward. In Proceedings
of the 11th International Conference on Autonomous Agents
and Multiagent Systems-Volume 1, 475–482.
Lee, J.; Lifschitz, V.; and Yang, F. 2013. Action Language
BC: A Preliminary Report. In International Joint Confer-
ence on Artificial Intelligence (IJCAI).
Leonetti, M.; Iocchi, L.; and Patrizi, F. 2012. Automatic
generation and learning of finite-state controllers. In Inter-
national Conference on Artificial Intelligence: Methodology,
Systems, and Applications, 135–144. Springer.
Leonetti, M.; Iocchi, L.; and Stone, P. 2016. A synthesis of
automated planning and reinforcement learning for efficient,
robust decision-making. Artificial Intelligence 241:103–
130.

Lyu, D.; Yang, F.; Liu, B.; and Gustafson, S. 2019. Sdrl:
Interpretable and data-efficient deep reinforcement learn-
ingleveraging symbolic planning. In AAAI.
MacGlashan, J.; Littman, M. L.; Roberts, D. L.; Loftin, R.;
Peng, B.; and Taylor, M. E. 2016. Convergent actor critic by
humans. In International Conference on Intelligent Robots
and Systems.
MacGlashan, J.; K Ho, M.; Loftin, R.; Peng, B.; Wang, G.;
Roberts, D. L.; Taylor, M. E.; and Littman, M. L. 2017.
Interactive learning from policy-dependent human feedback.
In ICML.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529–533.
Parr, R., and Russell, S. J. 1998. Reinforcement learning
with hierarchies of machines. In Advances in neural infor-
mation processing systems, 1043–1049.
Peters, J., and Schaal, S. 2008. Natural actor-critic. Neuro-
computing 71(7):1180–1190.
Ryan, M. R., and Pendrith, M. D. 1998. Rl-tops: An archi-
tecture for modularity and re-use in reinforcement learning.
In In Proceedings of the Fifteenth International Conference
on Machine Learning, 481–487. Morgan Kaufmann.
Ryan, M. R. K. 2002. Using abstract models of be-
haviours to automatically generate reinforcement learning
hierarchies. In In Proceedings of The 19th International
Conference on Machine Learning, 522–529. Morgan Kauf-
mann.
Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; and
Abbeel, P. 2015. High-dimensional continuous control
using generalized advantage estimation. arXiv preprint
arXiv:1506.02438.
Schwartz, A. 1993. A reinforcement learning method for
maximizing undiscounted rewards. In Proc. 10th Interna-
tional Conf. on Machine Learning. Morgan Kaufmann, San
Francisco, CA.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
mdps and semi-mdps: A framework for temporal abstrac-
tion in reinforcement learning. Artificial intelligence 112(1-
2):181–211.
Thomaz, A. L., and Breazeal, C. 2008. Teachable robots:
Understanding human teaching behavior to build more ef-
fective robot learners. Artificial Intelligence 172(6-7):716–
737.
Thomaz, A. L.; Breazeal, C.; et al. 2006. Reinforcement
learning with human teachers: Evidence of feedback and
guidance with implications for learning performance. In
Aaai, volume 6, 1000–1005. Boston, MA.
Yang, F.; Lyu, D.; Liu, B.; and Gustafson, S. 2018. Peorl: In-
tegrating symbolic planning and hierarchical reinforcement
learning for robust decision-making. In International Joint
Conference of Artificial Intelligence (IJCAI).

