
Proceedings of the 2020 Winter Simulation Conference
K.-H. Bae, B. Feng, S. Kim, S. Lazarova-Molnar, Z. Zheng, T. Roeder, and R. Thiesing, eds.

LEARNING RULE-BASED EXPLANATORY MODELS FROM EXPLORATORY
MULTI-SIMULATION FOR DECISION-SUPPORT UNDER UNCERTAINTY

Brodderick Rodriguez
Levent Yilmaz

Department of Computer Science and
Software Engineering

Auburn University
Auburn, AL 36849, USA

ABSTRACT

Exploratory modeling and simulation is an effective strategy when there are substantial contextual uncertainty
and representational ambiguity in problem formulation. However, two significant challenges impede the
use of an ensemble of models in exploratory simulation. The first challenge involves streamlining the
maintenance and synthesis of multiple models from plausible features that are identified from and subject
to the constraints of the research hypothesis. The second challenge is making sense of the data generated
by multi-simulation over a model ensemble. To address both challenges, we introduce a computational
framework that integrates feature-driven variability management with an anticipatory learning classifier
system to generate explanatory rules from multi-simulation data.

1 INTRODUCTION

In simulation modeling, structural uncertainty, or deep uncertainty, manifests itself when model developers
do not know or cannot agree upon the relationship between variables (Walker, Lempert, and Kwakkel 2012;
Kwakkel, Walker, and Haasnoot 2016; Lempert 2003). In principle, this is ambiguity in the arrangement
and composition of underlying structures as well as their perceived influence. Structural uncertainty should
not be confused with parametric uncertainty. Parametric uncertainty arises when modelers can define the
dynamics of a system but are unaware of the parameter values associated with such dynamics (Walker,
Lempert, and Kwakkel 2012). The presence of either type of uncertainty leads to models that vary in utility
due to the number of plausible alternative hypotheses and candidate policies. Due to the potential for bias
and the presence of predispositions, decision-makers are often skeptical of the credibility of a single model
(Kwakkel, Walker, and Marchau 2010).

Exploratory modeling is achievable with sufficient computational power to evaluate numerous scenarios
(Bankes 1993). However, more computation does not necessarily decrease uncertainty (Walker, Lempert,
and Kwakkel 2012; Van Asselt and Rotmans 2002). Also, the use of multiple models increases the
complexity of the methodology and can obscure system mechanics (Davis, O’Mahony, and Pfautz 2019).
Analytical approaches such as sensitivity analysis and scenario planning are not conclusive and scalable
when large number of models are used. Thus, decision-makers are ill-equipped to generalize and explain
the connection between the outcomes and the causal assumptions of models. We observe two primary
inadequacies in current practice: (1) the explanation of outcomes from large model ensembles and (2) the
synthesis and maintenance of alternative model structures that constitute an ensemble. Addressing these
issues can facilitate exploratory modeling methodology to mature further into science.

An analytical tool built for generalization and explanation yields a proper interpretation of large
ensembles. It can provide insight into areas of the ensemble not otherwise explicitly evaluated and give

Rodriguez and Yilmaz

decision-makers a better understanding of how systemic policies and strategies generally behave with
results transposed into sensible chunks (Davis, O’Mahony, and Pfautz 2019). An explainable analysis of a
model can accelerate the exploratory modeling process by supplying intuitive interpretations of experiments.
Furthermore, streamlined maintenance of alternative model structures is advantageous because it allows
decision-makers to ask a broad range of questions with varying levels of abstraction with minimal effort.
Exploratory modeling platforms (Kwakkel 2017) lack mechanisms for causal structure and representation
variability in a way that facilitates the evaluation and explanation of model variations. Therefore, the
responsibility to incorporate alternative features and representations in accord with research hypotheses
falls on modelers to implement them, possibly causing premature convergence to a single model and
inadequate exploration of structural uncertainties. Exploratory modeling methodology needs to be flexible
and should manage structural variability subject to composition constraints (Yilmaz 2020).

In this paper, we aim to make strides toward addressing these limitations and demonstrating how wrapping
exploratory experiments with variability management can efficiently process hypotheses of varying structural
constraints. Additionally, we develop an explainable analytical tool, namely a rule-based machine learning
algorithm, which can generalize and explain model dynamics over both explored and unexplored portions
of the ensemble. Our experiments illustrate how adopting both of these solutions enhance exploratory
modeling methodology and solidify the scientific approach to simulation-based decision-making under
uncertainty.

2 BACKGROUND

The genesis of the proposed Strategy Learning System lies in the limitations of modeling for decision-making
when uncertainty is present. The Strategy Learning System integrates existing methods in decision-making,
uncertainty, exploration, and explanation in the context of modeling and simulation.

2.1 Decision-making Under Uncertainty

According to (Walker, Harremoës, Rotmans, Van Der Sluijs, Van Asselt, Janssen, and Krayer von Krauss
2003), uncertainties can manifest in three locations: in the context of the target system, in its model
representation, and its inputs. Contextual uncertainties arise when decision-makers question the completeness
of the definition of the target system. They attribute to the choice of target system boundaries (Kwakkel,
Walker, and Haasnoot 2016) and the factors that lie inside and outside of the target system. Model
uncertainties question a model’s ability to resemble the mechanisms at play and can emerge from either
the analysis of the target system or the implementation of its surrogate. Input uncertainties question
the external forces, which influence change in the system and categorize them as either controllable or
uncontrollable. Controllable inputs are within the decision-maker’s control and concern the impact of their
actions. Conversely, uncontrollable uncertainties are those not under the control of the decision-maker.
They can, for example, describe the impact force of actions from an adversary. Uncontrollable input
uncertainties are inherently challenging to differentiate, and therefore, it is difficult to anticipate their
influence.

Robustness is a critical pillar in the evaluation of alternative policies (Lempert 2003; Rosenhead, Elton,
and Gupta 1972; Metz, Davidson, Swart, Pan, et al. 2001). A policy is robust if it performs adequately
when compared to alternatives in a large number of hypothetical scenarios (Yilmaz 2020; Lempert, Groves,
Popper, and Bankes 2006; Rosenhead, Elton, and Gupta 1972). Robust policies should minimize expected
cost or regret (Lempert, Groves, Popper, and Bankes 2006; Savage 1972), but they do not necessarily
optimize (Walker, Lempert, and Kwakkel 2012). When presented with multiple alternate policies within
uncertainty, and to avoid vulnerabilities and undesirable outcomes, it is prudent for decision-makers to
select among the policies which demonstrate sufficient robustness (Lempert, Groves, Popper, and Bankes
2006; Lempert, Popper, and Bankes 2002).

Rodriguez and Yilmaz

2.2 Feature-Driven Model Variability

Software Product Line Engineering enables the rapid development of low-cost, high-quality products by
organizing software into reusable artifacts (Kang, Lee, and Donohoe 2002; Pohl and Metzger 2006). The
mission of Software Product Line Engineering is to identify variations and commonalities in a product
suite and then develop reusable components that meet those specifications (Pohl and Metzger 2006).

Well-defined software features facilitate a process known as feature-driven engineering (Kang, Lee,
and Donohoe 2002; Yilmaz 2020; Stahl, Voelter, and Czarnecki 2006). Feature-driven engineering is
an adaptation of the software product line where variations and commonalities between components are
described with a feature model (Stahl, Voelter, and Czarnecki 2006). Through feature composition, a
feature model represents a hierarchical structure that allows software developers to reuse functionality and
reduce implementation complexity. A feature tree is a feature model where features are explicit and defined
as aggregations. Elements in a feature tree express interrelationships that decompose into mandatory,
optional, OR (inclusive disjunction), and XOR (alternative) subfeature constraints (Pohl, Böckle, and van
Der Linden 2005). Early studies in Variable structural modeling for composing discrete-event models at
different abstraction levels include the System-Entity-Structure formalism (Zeigler and Praehofer 1989).

2.3 Exploratory Modeling and Simulation

An essential facet of exploratory modeling is the explanation of large ensembles (Bankes 1993; Bankes,
Walker, and Kwakkel 2013). Explanation, as defined by the Oxford English Dictionary, includes a reason
or justification of an action or belief. In the context of decision-making, an explainable choice in policy is
one that achieves the desired outcome and is logical, transparent, and justified in its social and economic
ramifications (Davis 2003; Metz, Davidson, Swart, Pan, et al. 2001; Doran, Schulz, and Besold 2017;
Dam, Tran, and Ghose 2018).

Exploration generates a substantial amount of data that may obscure essential system mechanics from
decision-makers (Davis, O’Mahony, and Pfautz 2019). This obscurity is caused by the limitations of the
human ability to interpret large amounts of data and evaluate an ensemble of models, especially with time
constraints (Hendler 2006). Decision-makers mitigate with analytical tools such as sensitivity analysis and
scenario planning (Davis 2003; Kwakkel 2017; Lempert 2003). These tools analyze experiment results
and transpose them into interpretable facts, which are used as decision-support artifacts (Davis 2003).

These tools perform adequately when the experiment results sufficiently describe the ensemble; however,
they decrease in utility when experiments run on only a fraction of the hypothesis space. The tools do not
contribute insight into unexplored portions. Deficiencies heighten when exploration of the entire ensemble
is impractical due to time or computational restraints.

3 THE CONCEPTUAL FRAMEWORK OF THE STRATEGY LEARNING SYSTEM

The Strategy Learning System (SLS) is designed to improve the explanation and management of large
ensembles. It is an extension of exploratory modeling methodology and also solidifies a scientific approach
to large ensembles in exploratory modeling for decision-making.

Figure 1 is a diagrammatic representation of the SLS framework and shows its information flow. A
feature tree is the conceptual representation of the target system, and its features are symbolic aggregations
of various levels of delivered functionality. The base model is the computational realization of the target
system. It is not implemented as a single fixed artifact, but instead contains all individual features specified
by decision-makers. The features are cohesive and loosely coupled, so they are easily exchanged and
meet the criteria of the feature tree. The base model’s fundamental functionalities are either in the context
of the target system or are those that contain a negligible amount of uncertainty. The resolution model
is a description of an experiment. It specifies which components from the base model decision-makers
want to incorporate in a set of scenarios to assess the outcome of a hypothesis. The resolution model
is a meta-description of a subset of features from the feature tree where features are identified, but not

Rodriguez and Yilmaz

described. Scenarios are generated only by including both mandatory features and features listed in the
resolution model.

Hypothesis

Explanation

Experiment
ResultsLearned Rules

Plausible ScenariosResolution
Model

Model
Composer

Base Model

Model Ensemble

Feature Tree

Rule Discovery

Exploration

Explanatory
Models

Figure 1: The data-flow architecture of the strategy learning system.

Figure 2 is a feature tree of a theoretical equation F. In this example, F is an aggregate feature composed
of three subsequent mandatory subfeatures f1, f2, and o. f1 has one mandatory subfeature and one optional
subfeature. o is either + or − but not both. f2 is any combination of f2,1, f2,2, and f2,3.

a

mandatory

mandatory

mandatory

optional

mandatory

XOR OR

b c d e g h k m

Figure 2: Feature tree of the example equation F.

This feature tree resemble the equation:

F =

{
f1(·)+ f2(·) if o |=+

f1(·)− f2(·) otherwise

Rodriguez and Yilmaz

where f1 = and
(

f1,1,or(f1,2)
)

and the cardinality of f2 = 23. This example shows that from seven reusable
components F can be configured into 25 unique equations.

The model composer generates plausible scenarios for an experiment. The base model, the feature tree,
and the resolution model serve as inputs. It is a metaprogram that examines the resolution model and feature
tree to identify which portions of the base model source code to include when the composer traverses
the feature tree. Along a walk of the feature tree, the model composer performs feature composition
and compiles the corresponding source code. Once the model composer has generated plausible structural
scenarios, the exploration component samples over the parametric uncertainties. Monte Carlo or Hypercube
Sampling is used to generate values for the parametric uncertainties adequately. This is essential to avoid
an exhaustive search, reduce the computational cost, and maintain an adequate exploration of parametric
uncertainties. A model instance is a single structural scenario with a set of corresponding parametric
values. The exploration component executes the instances. Here a scenario runs multiple times with
different parametric values and is represented by a series of model instances. If the base model contains
stochasticity, then model instance execution can be repeated. The exploration component produces a set
of inputs and outputs for each scenario called the experimentation results.

The analysis of experiment results yields rule discovery. A rule specifies constraints on the input where
a particular outcome is expected. In this framework, rules are generated by a Learning Classifier System.
The Learning Classifier System constructs tentative rules and validates them through reinforcement with
the observed outcome in experimentation results. The rules are then generalized through the application of
subsumption operators. The output of the Learning Classifier System is a set of rules which are transposed
to plain-text. For the example equation F, a hypothetical rule could be:

IF:
< f1,1.a == LOW,

f2,1.d == HIGH,
f2,3.k == LOW,
f2,3.m == LOW >

WHEN:
< F == f1(f1,1)+ f2(f2,1, f2,3) >

THEN:
< outcome → HIGH >

The rules generated by the Learning Classifier System are compiled into an explanatory model. In
this framework, the explanatory model is comprised of the population of rules and its visual heat map
representation. The heat map illustrates which parametric and structural inputs in an experiment lead to
an expected outcome. A color spectrum visualizes the outcome; lighter and warmer colors constitute a
spectrum of desirable results, while cooler and darker colors constitute a spectrum of undesirable outcomes.
The heat map is organized into two axes against which uncertainties are mapped.

4 DESIGN AND IMPLEMENTATION OF THE STRATEGY LEARNING SYSTEM

In this section, we map the Strategy Learning framework to a concrete instantiation. In the implementation,
we utilize: (1) an agent-based Contaminant Plume model as the base model, (2) the Exploratory Modeling
and Analysis Workbench as the exploration component, and (3) an Accuracy-based Learning Classifier
System for the rule discovery mechanism.

Rodriguez and Yilmaz

4.1 Agent-Based Contaminant Plume Model

In recent years, commercial and governmental use of Unmanned Aerial Vehicles (UAVs) has added a wide
range of applications (Canis 2015; Phillips 2008). The Contaminant Plume model (Rodriguez 2019a)
simulates a practical application of UAVs. The model is an extension of a previous model (Madey and
Madey 2013), and is a proxy to demonstrate how a collection of UAVs can cooperate as a UAV Swarm to
perform a task.

The model incorporates an array of both mission controllable and uncontrollable parameters (deemed
model and environmental parameters) as well as structurally distinctive command and control (C2) policies.
The model allows decision-makers to fluctuate both parametric and structural parameters and identify
circumstances that result in a rapid mapping and decontamination of a contaminant. The model is written
in both NetLogo (Kovacina, Palmer, Yang, and Vaidyanathan 2002) and Scala, where the Scala language
implementation is an extension that contains aggregate methods used in the NetLogo implementation. The
benefit of this structure is that we can leverage both Scala’s object-oriented nature and ease of readability
along with NetLogo’s GUI and widespread adoption in Agent-Based Modeling practice.

Figure 3 is a Conceptual Class Diagram that illustrates the state variables for the selected critical
elements of the model. C2 policy’s influence on Swarm collaboration varies. One of these policies is
commissioned at the start of an episode.

UAV

- location: tuple
- heading: float
- velocity: float = 0.5 patches
- detection-time: int
- plume-reading: float
- flockmates: list[UAV]
- nearest-neighbor: UAV
- best-neighbor: UAV
- desired-heading: float
- random-search-time: int
- region: [float, float, float, float]
- symmetric-search-max-region-reading: float
- symmetric-search-region-time: int

Swarm

+ C2 policies

Contaminant Plume

- Plume Spread Radius: float
- Plume Spread Patches: float

Environment

- patches: list[Patch]
- ticks: NetLogo timestamp
- plumes: list[Contaminant Plume]
- swarm: list[UAV]

1
0..5

1

1

1
2..100

Figure 3: The conceptual class diagram for the model entities of the contaminant plume model.

Random Search Policy Random search (Kovacina, Palmer, Yang, and Vaidyanathan 2002) is the
simplest of the three C2 policies. It pertains to a sense-free policy as the collective Swarm intelligence, and
Environmental perception does not influence a UAV’s behavior. Instead, UAVs make decisions independent
of one another and use two random variables that determine how long a UAV will continue on its current
trajectory and its next trajectory.

Flock Search Policy Flock search (Reynolds 1987) is a policy influenced by behavior observed in
flocks of birds, herds of land animals, and schools of fish (Wilensky 1998). In this scenario, flocking
behavior emerges from UAVs using three BOIDS (Wilensky 1998) rules: (1) Separation - an Agent steers
to avoid overcrowding its flockmates; (2) Alignment - an Agent aligns its heading with the average heading
of its flockmates; (3) Cohesion - an Agent changes its trajectory to move towards the average position of
its flockmates. UAVs broadcast their plume reading to their flockmates. If a pair of UAVs are too close,
they use separation to veer in opposite directions. Otherwise, once a UAV receives the plume reading of
its flockmates, it uses both alignment and cohesion if the plume reading of its best neighbor is higher than
its own.

Rodriguez and Yilmaz

Symmetric Search Policy Symmetric search (Kovacina, Palmer, Yang, and Vaidyanathan 2002)
divides the Environment into symmetrical regions and initially assigns a UAV to each region where it
searches for Contaminant Plumes. UAVs search their assigned territory for a random number of ticks, and
after that, it may switch to the region of its best neighbor if the plume reading of its best neighbor is higher
than its own.

On initialization, the Environment is set up, followed by the distribution of Contaminant Plumes and
the deployment of the UAV Swarm. Once NetLogo’s timestep counter and the entity state variables are
reset, the Environment is considered initialized. Next, the Environment creates the Contaminant Plumes,
and they are placed randomly in a central area that makes up one-quarter of the Environment. Finally,
the Swarm is initialized, and the UAVs are dispersed randomly around the Environment. Figure 4 is a
High-level Sequence Diagram depicting the initialization process.

Environment UAV

setup

Swarm

initialize()

Contaminant
Plume

setup
initialize()

setup(policy)
setup

initialize()
go

Loop
search(policy)

update(policy)

Figure 4: The high-level sequence diagram for initializing the contaminant plume model.

Figure 5 shows four distinct instances of the model. The upper left figure demonstrates the appearance
of the Environment and the Contaminant Plumes (red area) before the Swarm is initialized. The remaining
three figures illustrate the model after 2,000 timesteps with the upper right being random search policy,
the lower left being flock search policy, and the bottom right being symmetric search policy.

Figure 5: The screenshots of the simulation of alternative contaminant plume control strategies.

Rodriguez and Yilmaz

4.2 Exploratory Analysis Workbench

The Exploratory Modeling and Analysis Workbench (Kwakkel 2017) is a Python package that supports robust
and multi-objective optimization for exploratory modeling under uncertainty. The workbench accommodates
the generation of computational experiments for base models written in Netlogo and Excel. Experiments
are executed sequentially or in parallel with replications in either a single computer or cluster environment.
A detailed specification for the Exploratory Modeling and Analysis Workbench can be found in (Kwakkel
2020).

The Strategy Learning System uses a light-weight fork (Rodriguez 2019b) of the Exploratory Modeling
and Analysis Workbench. While the Exploratory Modeling and Analysis Workbench is designed for a wide
range of applications, EMA-Lite is intended to be only a mechanism to execute experiments in parallel on a
high-performance computing cluster and obtaining raw experiment results. The Strategy Learning System
interfaces with EMA-Lite and offers a seamless experimental procedure. The model composer generates
structural variants of the base model that are passed to EMA-Lite and samples paramedic uncertainties and
executes the model instances. The raw experimental results are returned to the Strategy Learning System,
which applies the rule discovery and generalization process.

4.3 Accuracy-Based Learning Classifier

The Accuracy-based Learning Classifier System (XCS) (Urbanowicz and Browne 2017; Brownlee 2011;
Lanzi 2000; Wilson 1995; Butz and Wilson 2000; Kovacs 1998) is a Michigan-style classifier which
incorporates both reinforcement learning and evolutionary computing in the form of genetic algorithms to
discern a set of rules that describe an environment or dataset.

It is an online supervised learning algorithm that can operate on both single-step and Markovian multistep
problems with delayed rewards (Urbanowicz and Browne 2017). Recent research into derivatives of XCS
allow for real-valued scenarios (Fredivianus and Geihs 2017). We adopt several ideas from proven methods
to construct XCSR and contrast them with methods found in Wilson’s XCS. For our XCSR implementation
(Rodriguez 2019c) in the SLS framework, we combine the environment and the reinforcement program
to increase cohesion. To this end, classifier predicates are expanded to accept values in the range [0,1].
A classifier predicate is a tuple where Ci[0] and Ci[1] are the lower and upper bounds, respectively. For
example, a predicate of length 6 contains 12 learned parameters. We update the matching procedure as
follows:

matches
′
(cl,σt) =Ci[0]≤ σt,i ≤Ci[1], ∀ i ∈ [1, ...L]. (1)

Predicate attributes initially set to (0, 1) to encourage generalization as this matches any value of σt and
by design replaces the wildcard # found in XCS. Classifier predicates are mutated with a generic operation
to modify the range of accepted values.

In the implementation of the Strategy Learning System, the resolution model contains a list of features
parsed by the model composer. EMA-Lite samples parametric uncertainties and executes the model
insurances. The experiment results from the EMA-Lite are processed by the Strategy Learning System.
Controllable and uncontrollable feature argument values are binned with fuzzy logic to reduce state space
complexity. Additionally, in the Contaminant Plume model, all outcome metrics are time series data. A
time series outcome f is transformed to a scalar with the Area Under the Curve Trapezoidal Rule:

R(σt ,αt)← AUC f (a,b) =
b

∑
t=a+1

(ti− ti−1)×
f (ti)+ f (ti−1)

2
, (2)

where a and b are the lower and upper bounds of the domain of f , respectively. Outcomes are normalized using
min-max normalization. Experiment results consist of tuples of uncontrollable uncertainties, controllable
uncertainties, and R(σt ,αt).

Rodriguez and Yilmaz

To interface XCSR with the Strategy Learning System framework, we implement a generic environment
that feeds in experiment results and assesses action selection. The generic environment further processes
experiment results and splits them into states and actions based on which features are under the control of
the decision-maker and which are not. XCSR ρt+1 is determined by:

ρt+1← R(σt ,αt)−
[

ζ R(σt ,αt)
||αt − α̂t ||2

maxα∈A ||α||2

]
, (3)

where ζ is a discount factor, and A is the set of actions in experimental results. This equation converges
to 1 when the distance between αt and α̂t is minimized and the observed reward is 1. It converges to 0
when the distance between the αt and α̂t is large or the observed reward is low. Multiplying the distance
by R(σt ,αt) proportionally reduces ρt depending upon the desirability of αt .

5 EVALUATION OF THE STRATEGY LEARNING SYSTEM

We use the SLS implementation to perform experiments in two category types. The first type of experiment,
which is illustrated in this paper, aims to validate the theoretical tractability of the SLS framework and
the correctness of its implementation. The second type of experiment is exploratory and provides insight
into the Contaminant Plume model’s mechanics. Each experiment begins with a hypothesis that parallels
a “what if” scenario. The hypothesis explains which base model features are included in the experiment’s
resolution model. The complexity of the resolution model determines hyperparameters for EMA-Lite and
XCSR. More complex resolution models require a larger portion of the ensemble to be explored, and
subsequently, the XCSR requires more iterations to identify accurate rules.

The experiment hyperparameters for EMA-Lite are: (1) The number of model instances to execute
from the heterogeneous ensemble that includes distinct models that vary in terms of their structure and
parameter values; (2) The number of replications for each model instance; (3) The run length of each
instance in time steps. The experiment hyperparameters for XCSR are: (1) Episode length determines
how many instances we present to XCSR; (2) The value of the variable bins determines the granularity of
feature arguments. For example, if the variable bins is set to 3, then feature arguments are converted to
low, medium, or high depending on their value; (3) The maximum number of classifiers in the population;
(4) ζ is the discount factor in reinforcement learning component of the XCSR. Additionally, we predict
how the model will behave and what the expected insight the experiment will yield.

Once the experiment is performed, we discuss and supply the produced explanatory heat maps from both
EMA-Lite exploration results and the XCSR rules learned. For validation experiments, we provide additional
heat maps generated by a Multi-Layer Perceptron clustering algorithm to corroborate the observation rule
sets further. The Multi-Layer Perceptron trained on the exploratory results then extrapolates outcome into
the entire experiment space. A Hierarchical Agglomerative clustering algorithm then builds rules from
the extrapolated data. Validation Experiment was designed as simple as possible to understand both the
exploratory results and the learned rules easily and to confirm that the Strategy Learning System behaves
as anticipated. Due to the non-complexity of this experiment, it was feasible to do an exhaustive search
of the experiment space; however, this experiment aimed to test the capabilities of the Strategy Learning
System merely.

Experiment Hypothesis: How is coverage percentage affected when we vary the Swarm population
and the number of contaminant plumes?
From our hypothesis, we construct the following resolution model.

Validation Experiment 1 Resolution Model

include feature(population)
include feature(number-plumes)
include outcome(coverage-percentage)

Rodriguez and Yilmaz

Table 1: The parameters of the illustrative validation experiment.

EMA Lite XCSR
Model Instances Replications Ticks Episodes Bins Classifiers ζ

30 30 1,000 20,000 5 50 0.5

Table 1 shows the hyperparameter values for the experiment. The number of model instances is low
due to the small number of possible feature combinations. Through preliminary experimentation with the
base model, we determined that 1,000 ticks were significant enough to assess Swarm performance. Setting
bins to five allows us a more granular understanding of the experiment. The episode length, number of
classifiers, and ζ were chosen from prior research results (Kovacs 1998) and a lightweight grid-search.

population

nu
m

be
r-

pl
um

es

(a) EMA Map

population

nu
m

be
r-

pl
um

es

(b) XCSR Map

population

nu
m

be
r-

pl
um

es

(c) MLP with Clustering

Figure 6: The Heat Map representation of the explanatory model.

Figure 6a visualizes the EMA-Lite exploratory results for Validation Experiment 1. The column data
corresponds to values for the population; they increase from left to right. Similarly, the row data corresponds
to the number of contaminant plumes, and they increase from the bottom to the top. In Figure 6a, and all
subsequent heat maps, darker colored cells correspond to less desirable outcomes, while lighter colored
cells correspond to more desirable outcomes. In Figure 6a, cells are gray if model instances that fall in
that region were not explicitly explored. In Figure 6a, we see that higher populations result in higher
outcomes– as predicted. The hot spot is located on the right where populations are high, and the number
of contaminant plumes is relatively low. The dark colors in the lower left region signify that the outcome
is low because both the number of contaminant plumes and the population is low.

Figure 6b is a visualization of the learned rules produced by training XCSR on the exploratory results
for the Validation Experiment. The rules are visually similar to the results in Figure 6a, indicating that
XCSR captured patterns in the exploratory results and generalized them into the portion of the ensemble
not explicitly explored. This generalization can be seen in the top row of Figure 6b, where the desirability
of outcome coincides with the row below it and parallels our prediction.

Notably, Figure 6b demonstrates generalization errors. For example, in the lower right region of Figure
6a, where the population is 0 and 1, and the number of contaminant plumes is 1, we see that the outcome
is undesirable. In Figure 6b, we see that XCSR incorrectly deemed this area significantly more desirable
than the adjacent cells. This is due to the formulation of a reward function that solely evaluates the action
proposed by XCSR. In other words, the closer the proposed action is to the expected action, the higher the
reward. This encourages generalization over uncontrollable features while punishing generalization over
controllable features. We believe this improperly evaluates the XCSR and yields contradictory results.

Rodriguez and Yilmaz

The level of outcome throughout Figure 6b is lower than the outcome in Figure 6a. This is because
multiple rules overlap. The level of outcome assigned to a cell in Figure 6b is based on an accuracy-weighted
average of the expected outcome of all the rules which apply to the region. Thus, if there are two rules
which apply to the same experiment space region, then both their outcomes are used to determine cell color.
When rules contradict each other, it hampers the decision-support artifact. Alternatively, a decision-maker
can analyze the relative colors within the heat map to determine which regions are desirable.

Figure 6c visualizes the rules produced by the Multi-Layer Perceptron clustering algorithm. Figure 6c
compliments both the exploratory results and the XCSR learned rules, and we see the appearance of the
same generalized patterns. Figure 6c visualizes gradual changes in outcome desirability and reveals the
presence of the more precise rules produced by the Multi-Layer Perceptron Clustering algorithm– especially
when compared to the rules produced by XCSR. Precise rules lack generalization and maybe inapt for
decision-support. Instead, we use Figure 6c visualizations as a validatory artifact to confirm the XCSR
rules describe the experiment space.

6 CONCLUSIONS

The genesis of this work is the necessity to address structural uncertainties when modeling real-world systems
for decision-making. Structural uncertainties arise when decision-makers do not entirely understand the
relationship between variables and, in real-world systems, this results in many plausible descriptions of
system mechanics. Exploratory modeling methodology is an effective strategy to address uncertainty. In
an exploratory modeling exercise, a decision-maker iteratively explores hypotheses about the real-world
system to understand better how the system behaves. Nevertheless, contemporary exploratory modeling
tools cannot evaluate alternative causal models rapidly. Such tools excel with parametric uncertainties
but require a modeler to implement alternative causal structures manually. Notably, exploratory modeling
produces large data due to multiple model instance execution, and therefore may obscure fundamental
system mechanics from the decision-maker. This work presents a candidate solution to address both of
these exploratory modeling voids and improves the decision-support exercise.

REFERENCES
Bankes, S. 1993. “Exploratory modeling for policy analysis”. Operations research 41(3):435–449.
Bankes, S., W. E. Walker, and J. H. Kwakkel. 2013. “Exploratory modeling and analysis”. Encyclopedia of operations research

and management science:532–537.
Brownlee, J. 2011. Clever algorithms: nature-inspired programming recipes. Jason Brownlee.
Butz, M. V., and S. W. Wilson. 2000. “An algorithmic description of XCS”. In International Workshop on Learning Classifier

Systems, 253–272. Springer.
Canis, Bill 2015. “Unmanned aircraft systems (UAS): Commercial outlook for a new industry”.
Dam, H. K., T. Tran, and A. Ghose. 2018. “Explainable software analytics”. In Proceedings of the 40th International Conference

on Software Engineering: New Ideas and Emerging Results, 53–56.
Davis, P. K. 2003. “Exploratory analysis and implications for modeling”. RAND-PUBLICATIONS-MR-ALL SERIES-:255–284.
Davis, P. K., A. O’Mahony, and J. Pfautz. 2019. Social-Behavioral Modeling for Complex Systems. John Wiley & Sons.
Doran, D., S. Schulz, and T. R. Besold. 2017. “What does explainable AI really mean? A new conceptualization of perspectives”.

arXiv preprint arXiv:1710.00794.
Fredivianus, N., and K. Geihs. 2017. “Classifier systems with native fuzzy logic control operation”. In Proceedings of the

Genetic and Evolutionary Computation Conference Companion, 1341–1348.
Hendler, J. 2006. “Computers play chess; humans play go”. IEEE Intelligent Systems 21(4):2–3.
Kang, K. C., J. Lee, and P. Donohoe. 2002. “Feature-oriented product line engineering”. IEEE software 19(4):58–65.
Kovacina, M. A., D. Palmer, G. Yang, and R. Vaidyanathan. 2002. “Multi-agent control algorithms for chemical cloud detection

and mapping using unmanned air vehicles”. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
Volume 3, 2782–2788. IEEE.

Kovacs, T. 1998. “XCS classifier system reliably evolves accurate, complete, and minimal representations for Boolean functions”.
In Soft computing in engineering design and manufacturing, 59–68. Springer.

Kwakkel, Jan 2010-2020. “Exploratory Modeling Workbench Read The Docs”. https://emaworkbench.readthedocs.io/.

https://emaworkbench.readthedocs.io/

Rodriguez and Yilmaz

Kwakkel, J. H. 2017. “The Exploratory Modeling Workbench: An open source toolkit for exploratory modeling, scenario
discovery, and (multi-objective) robust decision making”. Environmental Modelling & Software 96:239–250.

Kwakkel, Jan H and Walker, Warren E and Haasnoot, Marjolijn 2016. “Coping with the wickedness of public policy problems:
approaches for decision making under deep uncertainty”.

Kwakkel, J. H., W. E. Walker, and V. A. Marchau. 2010. “Classifying and communicating uncertainties in model-based policy
analysis”. International journal of technology, policy and management 10(4):299–315.

Lanzi, P. L. 2000. Learning classifier systems: from foundations to applications. Springer Science & Business Media.
Lempert, R., S. Popper, and S. Bankes. 2002. “Confronting surprise”. Social Science Computer Review 20(4):420–440.
Lempert, R. J. 2003. Shaping the next one hundred years: new methods for quantitative, long-term policy analysis. Rand

Corporation.
Lempert, R. J., D. G. Groves, S. W. Popper, and S. C. Bankes. 2006. “A general, analytic method for generating robust

strategies and narrative scenarios”. Management science 52(4):514–528.
Madey, A. G., and G. R. Madey. 2013. “Design and evaluation of UAV swarm command and control strategies”. In Proceedings

of the Agent-Directed Simulation Symposium, 1–8.
Metz, B., O. Davidson, R. Swart, J. Pan et al. 2001. Climate change 2001: mitigation: contribution of Working Group III to

the third assessment report of the Intergovernmental Panel on Climate Change, Volume 3. Cambridge University Press.
Phillips, A. N. 2008. “A secure group communication architecture for a swarm of autonomous unmanned aerial vehicles”.

Technical report, Air Force Institute Of Technology.
Pohl, K., G. Böckle, and F. J. van Der Linden. 2005. Software product line engineering: foundations, principles and techniques.

Springer Science & Business Media.
Pohl, K., and A. Metzger. 2006. “Variability management in software product line engineering”. In Proceedings of the 28th

international conference on Software engineering, 1049–1050.
Reynolds, C. W. 1987. “Flocks, herds and schools: A distributed behavioral model”. In Proceedings of the 14th annual

conference on Computer graphics and interactive techniques, 25–34.
Rodriguez, Brodderick 2019a. “Contaminant Plume Model”. https://github.com/brodderickrodriguez/contaminant plume model.
Rodriguez, Brodderick 2019b. “EMA Lite”. https://github.com/brodderickrodriguez/ema lite.
Rodriguez, Brodderick 2019c. “xcsr”. https://github.com/brodderickrodriguez/xcsr.
Rosenhead, J., M. Elton, and S. K. Gupta. 1972. “Robustness and optimality as criteria for strategic decisions”. Journal of the

Operational Research Society 23(4):413–431.
Savage, L. J. 1972. The foundations of statistics. Courier Corporation.
Stahl, T., M. Voelter, and K. Czarnecki. 2006. Model-driven software development: technology, engineering, management. John

Wiley & Sons, Inc.
Urbanowicz, R. J., and W. N. Browne. 2017. Introduction to learning classifier systems. Springer.
Van Asselt, M. B., and J. Rotmans. 2002. “Uncertainty in integrated assessment modelling”. Climatic change 54(1-2):75–105.
Walker, W. E., P. Harremoës, J. Rotmans, J. P. Van Der Sluijs, M. B. Van Asselt, P. Janssen, and M. P. Krayer von Krauss.

2003. “Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support”. Integrated
Assessment 4(1):5–17.

Walker, W. E., R. J. Lempert, and J. H. Kwakkel. 2012. “Deep uncertainty”. Delft University of Technology 1:2.
Uri Wilensky 1998. “Flocking”. http://ccl.northwestern.edu/netlogo/mod-els/Flocking.
Wilson, S. W. 1995. “Classifier fitness based on accuracy”. Evolutionary computation 3(2):149–175.
Yilmaz, L. 2020. “Managing Structural Variability in Agent-Based Models with Feature Coherence Graphs”. International

Journal of Simulation and Process Modelling - in press.
Zeigler, B. P., and H. Praehofer. 1989. “Systems theory challenges in the simulation of variable structure and intelligent

systems”. In International Conference on Computer Aided Systems Theory, 41–51. Springer.

Acknowledgments
Levent Yilmaz’s research is partially funded by the National Science Foundation (NSF) under grant NSF IIS1910794.

AUTHOR BIOGRAPHIES
BRODDERICK RODRIGUEZ is a Graduate Student in the Department of Computer Science and Software Engineering at
Auburn University. His research interests are in Machine Learning and Modeling & Simulation. He received his B.S. and
M.S. degrees in Computer Science and Software Engineering from Auburn University. His email address is bcr@brodderick.com.

LEVENT YILMAZ is Professor of Computer Science and Software Engineering with a courtesy joint appointment at the Depart-
ment of Industrial and Systems Engineering at Auburn University. He holds M.S. and Ph.D. degrees in Computer Science from

https://github.com/brodderickrodriguez/contaminant_plume_model
https://github.com/brodderickrodriguez/ema_lite
https://github.com/brodderickrodriguez/xcsr
http://ccl.northwestern.edu/netlogo/mod- els/Flocking
mailto://bcr@brodderick.com

Rodriguez and Yilmaz

Virginia Tech. His research interests are Theory and Methodology of Modeling & Simulation, Agent-Directed Simulation, and
Complex Adaptive Systems. He is a Fellow of the Society for Modeling and Simulation International (SCS) and is the founding or-
ganizer and General Chair of the Annual Agent-Directed Simulation Symposium series. His email address is yilmaz@auburn.edu.

mailto://yilmaz@auburn.edu

	INTRODUCTION
	BACKGROUND
	Decision-making Under Uncertainty
	Feature-Driven Model Variability
	Exploratory Modeling and Simulation

	THE CONCEPTUAL FRAMEWORK OF THE STRATEGY LEARNING SYSTEM
	DESIGN AND IMPLEMENTATION OF THE STRATEGY LEARNING SYSTEM
	Agent-Based Contaminant Plume Model
	Exploratory Analysis Workbench
	Accuracy-Based Learning Classifier

	EVALUATION OF THE STRATEGY LEARNING SYSTEM
	CONCLUSIONS

