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Abstract
Stochastic optimization algorithms such as
stochastic gradient descent (SGD) update the
model sequentially with cheap per-iteration
costs, making them amenable for large-scale data
analysis. Most of the existing studies focus on
the classification accuracy. However, these can
not be directly applied to the important problems
of maximizing the Area under the ROC curve
(AUC) in imbalanced classification and bipar-
tite ranking. In this paper, we develop a novel
stochastic proximal algorithm for AUC maxi-
mization which is referred to as SPAM. Com-
pared with the previous literature, our algorithm
SPAM applies to a non-smooth penalty function,
and achieves a convergence rate of O( log t

t ) for
strongly convex functions while both space and
per-iteration costs are of one datum.

1. Introduction
Stochastic gradient algorithms (Robbins & Monro, 1951;
Bottou & Cun, 2004; Srebro & Tewari, 2010; Moulines &
Bach, 2011; Duchi et al., 2011) and online learning algo-
rithms (e.g. (Bottou & Cun, 2004; Srebro & Tewari, 2010;
Shalev-Shwartz et al., 2011; Hazan & Kale, 2012; Rakhlin
et al., 2012a; Orabona, 2014)) can update the model se-
quentially with computationally cheap per-iteration costs,
making them amenable for large-scale streaming data anal-
ysis. Most of the existing studies focus on classification
error or prediction accuracy where the empirical objective
function is a summation of losses over individual samples.

However, accuracy is not suitable for important learning
tasks such as imbalanced classification (Elkan, 2001). Area
under the ROC curve (AUC) (Hanley & McNeil, 1982;
Bradley, 1997; Fawcett, 2006) is a widely used metric
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for measuring the performance in these tasks. In partic-
ular, minimization of the rank loss in bipartite ranking is
equivalent to maximizing the AUC criterion (Kotlowski
et al., 2011). There are considerable efforts (Herschtal &
Raskutti, 2004; Rakotomamonjy, 2004; Joachims, 2005;
Zhang et al., 2012) that have been devoted to developing
batch AUC maximization algorithms. These appealing al-
gorithms have a convergence rate ofO

(
min

(
1
ε ,

1√
λε

))
, but

have a high per-iteration cost of O(nd). Here, λ, n, and d
are the regularization parameter, the number of samples,
and the dimension of the data, respectively. Such algo-
rithms train the model on the whole training data which
are not suitable for analyzing massive streaming data that
arrives sequentially.

Recently, there is considerable progress on online learning
algorithms (Zhao et al., 2011; Wang et al., 2012; Kar et al.,
2013) for AUC maximization. Due to the fact that the em-
pirical risk for AUC maximization is a summation of pair-
wise losses over pairs of samples, such algorithms, at time
t, need to pair the currently-received data (xt, yt) with all
previous data {(xi, yi) : i = 1, . . . , t − 1}. As such, one
needs to access all previous examples which leads to ex-
pensive space and per-iteration complexity of O(td) for d-
dimensional data at iteration t. The studies (Zhao et al.,
2011; Kar et al., 2013) introduced the technique of buffer-
ing to alleviate the above hurdle which reduces the per-
iteration space and time complexity toO(Bd).However, to
achieve good generalization performance, the size B needs
to be sufficiently large which is typically of O(

√
T ) if the

size T of the finite training data is known. The work (Gao
et al., 2013) requires to update the covariance matrix of the
training data with the space and per-iteration complexity
O(d2) which is inefficient for high-dimensional data.

The most recent work (Ying et al., 2016) reformulated the
problem of AUC maximization with the least square loss as
a stochastic saddle point problem (SPP). They proposed an
online learning algorithm which conducts stochastic gradi-
ent descent/ascent on both the primal and dual variables.
The convergence of such first-order primal-dual algorithms
for solving stochastic SPPs is at most O( 1√

t
) as argued

in (e.g. Chen et al. (2014)). This is, however, inferior
to the optimal rate of O( 1

t ), up to a logarithmic term, of
SGDs for the accuracy as a performance measure (Rakhlin
et al., 2012a; Shamir & Zhang, 2013). In addition, the work
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(Ying et al., 2016) only considered smooth penalty terms
(i.e., the Frobenius norm).

In this paper, we propose a novel stochastic proximal algo-
rithm for AUC maximization which we refer to as SPAM.
The algorithm SPAM applies to general non-smooth regu-
larization terms. In particular, we show under the assump-
tion of strong convexity that SPAM can achieve a conver-
gence rate of O( log t

t ). The time and space complexities of
our new algorithm are of one datum. To the best of our
knowledge, this is the first stochastic (online) algorithm
for AUC maximization with convergence rate of O( log t

t )
while per-iteration and space complexities are of one da-
tum O(d).

The paper is organized as follows. The next section intro-
duces the problem of AUC maximization and our proposed
algorithm. Section 3 establishes the convergence of our al-
gorithm. We validate the performance of our algorithm in
Section 4. The paper is concluded in Section 5.

2. Formulation and Algorithm
For a linear scoring function g(x) = w>x, its AUC score,
denoted by AUC(w), is the probability of a random pos-
itive sample ranking higher than a random negative sam-
ple (Hanley & McNeil, 1982; Clémençon et al., 2008). To
be specific, suppose z = (x, y) and z′ = (x′, y′) are
independently drawn from an unknown distribution ρ on
Z = X × Y , where X ⊆ Rd is a bounded domain and
Y = {±1}. Then, the AUC score is given by

AUC(w) = Pr(w>x ≥ w>x′|y = 1, y′ = −1)

= E
[
I[w>(x−x′)≥0]

∣∣y = 1, y′ = −1
]
. (1)

In practice, one often replaces the indicator function I[·]
by a convex surrogate loss φ : R → R+ which satis-
fies I[w>(x−x′)<0] ≤ φ(w>(x − x′)). Common choices
are the least square loss, φ(s) = (1 − s)2, or the hinge
loss, φ(s) = (1 − s)+. Throughout the paper, we focus
on the least square loss as the hinge loss is not statisti-
cally consistent (Gao & Zhou, 2015). To summarize, we
consider the following regularization framework for AUC
maximization:

min
w∈Rd

{
p(1− p)E

[
(1−w>(x− x′))2

∣∣y = 1, y′ = −1
]

+ Ω(w)
}
. (2)

Here, p = Pr(y = 1) and Ω(·) is a convex penalty
term. The constant p(1 − p) is introduced for sim-
plicity of formulation to cancel the denominator ap-
peared in the conditional expectation E

[
(1 − w>(x −

x′))2
∣∣y = 1, y′ = −1

]
= 1

p(1−p)
∫∫

(1 − w>(x −
x′))2I[y=1]I[y′=−1]dρ(x, y)dρ(x′, y′). The paper (Ying

et al., 2016) considered the case when w is restricted to
a bounded ball with radius R, i.e., Ω(w) = 0 if ‖w‖ ≤ R
and Ω(w) = ∞ otherwise. Throughout this paper, we as-
sume that Ω is strongly convex with parameter β > 0, i.e.,
for any w,w′ ∈ Rd, Ω(w) ≥ Ω(w′)+〈∂Ω(w′),w−w′〉+
β
2 ‖w −w′‖2. Examples of such penalty terms include the
Frobenius norm, Ω(w) = β‖w‖2, or elastic net (Zou &
Hastie, 2005), Ω(w) = β‖w‖2 + ν‖w‖1, where β and ν
are positive regularization parameters.

2.1. Equivalent Formulation

We can establish a similar theorem for formulation. Here,
the proof is generalized from (Ying et al., 2016) for the
general regularization framework (2). The present proof is
much simpler and more intuitive.

Theorem 1. The AUC optimization (2) in the linear case
is equivalent to

min
w,a,b

max
α∈R

{
E[F (w, a, b, α; z)] + Ω(w)

}
, (3)

where the expectation is with respect to z = (x, y), and
F (w, a, b, α; z) = (1 − p)(w>x − a)2I[y=1] + p(w>x −
b)2I[y=−1] + 2(1 + α)w>x(pI[y=−1] − (1 − p)I[y=1]) −
p(1− p)α2.

Proof. Specifically, the double integral mainly comes from
the multiplication of two single integrals:

E[(1−w>(x− x′))2|y = 1, y′ = −1]

= 1− 2E[w>x|y = 1] + 2E[w>x′|y′ = −1]

+ (E[w>x|y = 1]− E[w>x′|y′ = −1])2

+ Var[w>x|y = 1]) + Var[w>x′|y′ = −1]). (4)

Observe the fact that

(E[w>x|y = 1]− E[w>x′|y′ = −1])2 = max
α
{−α2

+ 2α(E[w>x′|y′ = −1]− E[w>x|y = 1])}. (5)

In addition,

Var[w>x|y = 1] = min
a

E[(w>x− a)2|y = 1], (6)

and

Var[w>x′|y′ = −1] = min
b

E[(w>x′−b)2|y′ = −1]. (7)

It is easy to see that the optima for (6), (7), and (5) are
respectively achieved at

a(w) = w>E[x|y = 1], b(w) = w>E[x|y = −1], (8)

α(w) = w>(E[x|y′ = −1]− E[x|y = 1]). (9)
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Algorithm 1 Stochastic Proximal AUC Maximization
(SPAM)

Input: Step sizes {ηt > 0 : t ∈ N}
Initialize w1 ∈ Rd.
for t = 1 to T do

Receive sample zt = (xt, yt)
Compute a(wt), b(wt), and α(wt) according to (8)
and (9).
ŵt+1 = wt − ηt∂1F (wt, a(wt), b(wt), α(wt); zt)
wt+1 = proxηtΩ(ŵt+1)

end for

Putting the above observations together, one can see now
that, for any w, there holds

p(1− p)E[(1−w>(x− x′))2|y = 1, y′ = −1] = p(1− p)
+ min

a,b
max
α

E[F (w, a, b, α; z)].

This completes the proof.

The problem (3) is a standard stochastic saddle point prob-
lem (see e.g. (Nemirovski et al., 2009)). It is easy to show
that its objective function is convex with respect to w, a,
and b and concave with respect to α. We later refer to w,
a, and b as primal variables and α as a dual variable.

2.2. Proposed Algorithm and Interpretation

The algorithm proposed in (Ying et al., 2016) essentially
performs stochastic gradient descent on the primal vari-
ables w, a, and b and stochastic gradient ascent on the dual
variable α. The critical observation in this paper is that, for
fixed w, the optima for a, b, and α in saddle formulation
(3) has the exact formulations as given by (8) and (9).

This motivates us to conduct stochastic gradient descent
only on w, while a, b, and α are then updated using equa-
tions (8) and (9), rather than doing stochastic gradient up-
dates. More specifically, upon receiving data zt, we update
w by

wt+1 = wt − ηt∂1F (wt, a(wt), b(wt), α(wt); zt), (10)

where ∂1F denotes the gradient with respect to the first
argument and the ηt’s are the step sizes. To accommodate
the possibly non-smooth penalty term Ω(·), the next step is
to perform a proximal mapping. Specifically, the proximal
mapping associated with a convex function Ω : Rd → R is
defined as

proxηtΩ(u) = arg min{1

2
‖u−w‖2 + ηtΩ(w)}. (11)

The pseudo-code of the proposed algorithm is outlined in
Algorithm 1. This new online algorithm has per-iteration

and storage cost of one datum. In the algorithm, it is as-
sumed that the probability of class 1, i.e., p = Pr(y = 1),
and E(x|y = 1) and E(x|y = −1) are known. In prac-
tice, using a portion of the training data, one can efficiently
estimate p by the proportion of samples of class 1, and the
population means E(x|y = 1) and E(x|y = −1) by sample
means.

Before we present the rigorous convergence rate of SPAM,
let us briefly illustrate the intuition as to why it can be ex-
pected to achieve a faster rate ofO( 1

t ) in contrast toO( 1√
t
)

of SOLAM in (Ying et al., 2016). To see this, let us present
a simple but critical lemma as follows. For this purpose, let
f(w) = p(1 − p)E

[
(1 −w>(x − x′))2

∣∣y = 1, y′ = −1
]

which is identical to mina,b maxα E[F (w, a, b, α; z)].

Lemma 1. Let wt be given by SPAM described in Algo-
rithm 1. Then, we have that

∂f(wt) = Ezt [∂1F (wt, a(wt), b(wt), α(wt); zt)],

where Ezt [·] denotes the expectation with respect to zt =
(xt, yt).

Proof. Denote by ∂iF the partial derivative of F with re-
spect to the ith argument. Applying the chain rule gives

∂wf(wt) = ∂wEzt [F (wt, a(wt), b(wt), α(wt); zt)]

= Ezt
[
∂wF (wt, a(wt), b(wt), α(wt); zt)

]
= Ezt

[
∂1F (wt, a(wt), b(wt), α(wt); zt)

]
+ Ezt

[
∂2F (wt, a(wt), b(wt), α(w); zt) ∂wa(wt)

]
+ Ezt

[
∂3F (wt, a(wt), b(wt), α(wt); zt) ∂wb(wt)

]
+ Ezt

[
∂4F (wt, a(wt), b(wt), α(wt); zt)∂wα(wt)

]
. (12)

The second inequality of interchanging differentiation and
integration follows from the Leibniz’s Integral rule since
F (wt, a(wt), b(wt), α(w); zt) is quadratic and the input
space X is a bounded domain. In the last equality, the
fact that wt only depends on {z1, z2, . . . , zt−1} implies
that Ezt

[
∂2F (wt, a(wt), b(wt), α(w); zt) ∂wa(wt)

]
=

∂2Ezt
[
F (wt, a(wt), b(wt), α(w); zt)

]
[E(x|y = 1)].

Since a(wt) is the minimizer of
mina,b maxα Ezt [F (wt, a, b, α; zt)], the first order
optimality condition gives, for any b and α, that
∂2Ezt

[
F (wt, a(wt), b, α; zt)

]
= 0. Therefore we have

that ∂2Ezt
[
F (wt, a(wt), b(wt), α(wt); zt)

]
= 0. Hence,

Ezt
[
∂2F (wt, a(wt), b(wt), α(w); zt) ∂wa(wt)

]
= 0.

Likewise, the third and fourth terms on the righthand side
of (12) equal to zero. This completes the proof of the
lemma.
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The above lemma implies, conditioned on {z1, . . . , zt−1},
that ∂1F (wt, a(wt), b(wt), α(wt); zt) is an unbiased es-
timator of the true gradient ∂wf(wt). This strongly indi-
cates that SPAM will have a fast convergence rate similar
to SGD algorithms (Rakhlin et al., 2012a; Shalev-Shwartz,
2012) for a strongly convex objective function. We will
leverage this intuition to prove the fast convergence rate in
the next section.

More related work: We should point out that our proposed
algorithm has similar spirit to the online forward-backward
splitting (Duchi & Singer, 2009) and stochastic proximal
gradient methods (Rosasco et al., 2014). However, there
are two main differences between our proposed algorithm
and their algorithms. Firstly, these algorithms focused on
the accuracy performance where the objective function is
a single summation/integral over individual samples. Sec-
ondly, the convergence proofs in (Duchi & Singer, 2009;
Rosasco et al., 2014) critically depend on the bounded-
ness assumptions: the iterates and the stochastic gradients
are uniformly bounded or the conditional variance of the
stochastic gradient is bounded by the square norm of the
true gradient plus a constant, which may not be true and
is difficult to verify in practice. Our proof techniques for
the convergence of SPAM do not need these bounded-
ness assumptions as shown in the next section. Lastly, the
very recent work (Palaniappan & Bach, 2016) developed
an appealing stochastic primal-dual algorithm for saddle
point problems with convergence rate of O( 1

T ) which, as
a by-product, can be applied to AUC maximization with
least square loss. However, their saddle point formulation
is different from (3) and the algorithm there needs to as-
sume strong convexity on both the primal and dual vari-
ables. In addition, the algorithm has per-iteration complex-
ityO(n+d) where n is the total number of training samples
and d is the dimension of the data.

3. Convergence Analysis
Before we present the convergence rate of SPAM, let us
introduce some notations. Recall that f(w) = p(1 −
p)E
[
(1 − w>(x − x′))2

∣∣y = 1, y′ = −1
]
. Let w∗ de-

note the optimal solution of formulation (2), i.e.,

w∗ = arg min
w∈Rd

{f(w) + Ω(w)}.

Define
E[‖G(w∗; z)− ∂f(w∗)‖2] = σ2

∗, (13)

where, for notional simplicity, we denote G(w; z) =
∂1F (w, a(w), b(w), α(w); z). The convergence results
are established based on the following two assumptions:

• (A1) Assume that Ω(·) is β-strongly convex.

• (A2) There exists an M > 0 such that ‖x‖ ≤ M for
any x ∈ X .

Furthermore, let Cβ,M := β
128M4 , C̃β,M = β

(1+ β2

128M4 )2
,

and C̄β,M = C̃β,MCβ,M = 128M4β2

(128M4+β2)2 . We use the con-
ventional notation that for any T ∈ N, NT = {1, . . . , T}.

The proofs for Theorems 2 and 3 critically depend on the
following lemma which clearly describes how ‖wt −w∗‖
evolves along time t.

Lemma 2. Under the assumptions of (A1) and (A2), let
{wt : t ∈ NT+1} be generated by SPAM. Then, the follow-
ing statements hold true.

(i) For any t ∈ N there holds

E[‖wt+1 −w∗‖2]

≤ 1 + 128M4η2
t

(1 + ηtβ)2
E[‖wt −w∗‖2] + 2σ2

∗η
2
t . (14)

(ii) If, furthermore, 0 < ηt ≤ Cβ,M :=
β

128M4
for any

t ∈ NT , then we have , for any t ∈ NT ,

E[‖wt+1 −w∗‖2]

≤
(
1− C̃β,M ηt

)
E[‖wt −w∗‖2] + 2σ2

∗η
2
t . (15)

Proof. Recall that w∗ is the optimal solution of (2). One
can directly derive from the first-order optimality condition
using subgradients that, for any ηt > 0,

w∗ = proxηtΩ(w∗ − ηt∂f(w∗)).

The above observation together with the definition of wt+1

in algorithm SPAM yields that

‖wt+1 −w∗‖2

= ‖proxηtΩ(ŵt+1)− proxηtΩ(w∗ − ηt∂f(w∗)‖2. (16)

Now since ηtΩ(w) is ηtβ-strongly convex due to (A1),
then by Proposition 23.11 in (Bauschke & Combettes,
2011), proxηtΩ(·) is (1 + ηtβ)-cocoercive, i.e., for any u
and w, there holds 〈u −w, proxηtΩ(u) − proxηtΩ(w)〉 ≥
(1 + ηtβ)‖proxηtΩ(u)− proxηtΩ(w)‖2. This, by Cauchy-
Schwartz inequality, implies that

‖proxηtΩ(u)− proxηtΩ(w)‖ ≤ 1

1 + ηtβ
‖u−w‖.

Putting this back into (16), we get

‖wt+1 −w∗‖2

= ‖proxηtΩ(ŵt+1)− proxηtΩ(w∗ − ηt∂f(w∗)‖2

≤ 1

(1 + ηtβ)2
‖ŵt+1 − (w∗ − ηt∂f(w∗))‖2

=
1

(1 + ηtβ)2
‖(wt −w∗)− ηt(G(wt, zt)− ∂f(w∗))‖2,
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where in the last equality we recall the notation that
G(wt; zt) = ∂1F (wt, a(wt), b(wt), α(wt); zt). Now tak-
ing the expectation of both sides of the above inequality,
and expanding out the right hand side, we have

E[‖wt+1 −w∗‖2] ≤ 1

(1 + ηtβ)2

(
E[‖wt −w∗‖2]

− 2ηtE[〈wt −w∗, G(wt; zt)− ∂f(w∗)〉]

+ η2
tE[‖G(wt; zt)− ∂f(w∗)‖2

)
. (17)

We first bound the middle term of the righthand side of
(17). By Lemma 1, we know that

E[〈wt −w∗, G(wt; zt)− ∂f(w∗)〉]
= E[〈wt −w∗,Ezt [G(wt; zt)]− ∂f(w∗)〉]
= E[〈wt −w∗, ∂f(wt)− ∂f(w∗)〉] ≥ 0, (18)

where the last inequality follows from the convexity of f .

For the last term on the righthand side of (17), we proceed
as follows: E[‖G(wt; zt)−∂f(w∗)‖2] ≤ 2E[‖G(wt; zt)−
G(w∗; zt)‖2] + 2E[‖G(w∗; zt) − ∂f(w∗)‖2]. Note that
G(wt; zt) is a linear function of wt. So by the assump-
tion that ‖xt‖ ≤M , it is easy to see that

‖G(wt; zt)−G(w∗; zt)‖
≤ 4M2(1− p)‖wt −w∗‖I[yt=1]

+ 4M2p‖wt −w∗‖I[yt=−1]

+ 4M2|p− I[yt=1]|‖wt −w∗‖
≤ 8M2‖wt −w∗‖. (19)

Furthermore, from (13), we have E[‖G(w∗; zt) −
∂f(w∗)‖2] = Ezt [‖G(w∗; zt)− ∂f(w∗)‖2] = σ2

∗. Hence,

E[‖G(wt; zt)−∂f(w∗)‖2]

≤ 2(8M2)2E[‖wt −w∗‖2] + 2σ2
∗. (20)

Putting together (17), (18) and (20), we get

E[‖wt+1 −w∗‖2]

≤ 1

(1 + ηtβ)2

(
E[‖wt −w∗‖2]

+ 2(8M2)2η2
tE[‖wt −w∗‖2] + 2σ2

∗η
2
t

)
≤ 1 + 128M4η2

t

(1 + ηtβ)2
E[‖wt −w∗‖2] + 2σ2

∗η
2
t . (21)

This finishes part (i) of the lemma.

For the second part of the lemma, notice that ηt ≤ Cβ,M :=
β

128M4
. The coefficient in (21) can be rewritten as follows:

1 + 128M4η2
t

(1 + ηtβ)2
= 1−

(
1− 1 + 128M4η2

t

(1 + ηtβ)2

)
= 1− [2β + β2ηt − 128M4ηt]ηt

(1 + ηtβ)2
. (22)

Applying the assumption that ηt ≤
β

128M4
gives that

[2β + β2ηt − 128M4ηt]

(1 + ηtβ)2
ηt ≥

β(
1 + β2

128M4

)2 ηt. (23)

In addition, notice that β
128M4 ≤

(
1+ β2

128M4

)2
β . This im-

plies the assumption ηt ≤ β
128M4 guarantees that 1 −

β(
1+ β2

128M4

)2 ηt ≥ 0. Combining together (22) with (23)

yields the desired result in part (ii). This completes the
proof of the lemma.

The following lemma is from (Smale & Yao, 2006) and will
be used to prove Theorems 2 and 3.
Lemma 3. For any 0 < ν ≤ 1, 0 < α < 1, t < T , and
0 < θ ≤ 1, the following estimations hold true.

(i)
∑T
j=t+1 j

−α ≥ 1
1−α [(T + 1)1−α − (t+ 1)1−α],

(ii)
∑T−1
t=1

1
t2α exp

{
− ν

∑T
j=t+1 j

−α
}
≤ 18

νTα +

9T 1−α

(1−α)21−α exp{− ν(1−2α−1)
1−α (T + 1)1−α},

(iii) e−cx ≤
(
b
ce

)b
x−b for x > 0, c > 0 and b > 0.

We now present the convergence analysis.
Theorem 2. Under the assumptions (A1), (A2), and choos-
ing step sizes with some θ ∈ (0, 1) in the form of

{
ηt =

Cβ,M
tθ

: t ∈ N
}

, the algorithm SPAM achieves the follow-
ing:

E[‖wT+1 −w∗‖2]

≤
[

exp
( C̄β,M

1− θ

)( θ

C̄β,Me

) θ
1−θE[‖w1 −w∗‖2]

+ 2σ2
∗C

2
β,M

( 9

(1− θ)21−θ

( 1

C̄β,M (1− 2θ−1)e

) 1
1−θ

+
18

C̄β,M
+ 1
)]
T−θ.

Proof. Denote rt = E[‖wt − w∗‖2]. The choice of the
step sizes ηt =

Cβ,M
tθ

satisfies the condition in Lemma 2,
i.e. ηt ≤ Cβ,M . Recall that Cβ,M = β

128M4 , C̃β,M =
β

(1+ β2

128M4 )2
, and C̄β,M = C̃β,MCβ,M which guarantees

that 1 − C̃β,Mηt ≥ 1 − C̃β,MCβ,M = 1 − C̄β,M ≥ 0 for
any t ∈ NT . Then, it is easy to see from (15) that, after T
iterations, there holds

rT+1 ≤ r1

T∏
k=1

(
1− C̃β,Mηk

)
+ 2σ2

∗

T−1∑
k=1

T∏
i=k+1

(
1− C̃β,M ηi

)
η2
k + 2σ2

∗η
2
T . (24)
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The first term on the right hand side can be bounded using
the fact that 1− x ≤ exp(−x) for all x ∈ R, giving that

r1

T∏
k=1

(
1− C̃β,Mηk

)
= r1

T∏
k=1

(
1− C̃β,MCβ,M/kθ

)
≤ r1 exp

(
− C̄β,M

T∑
k=1

1

kθ

)
, (25)

where C̄β,M = C̃β,MCβ,M = 128M4β2

(128M4+β2)2 .Applying part
(i) in Lemma 3 gives that

r1 exp
(
− C̄β,M

T∑
k=1

1

kθ

)
≤ r1 exp

(
C̄β,M
1− θ

[
1− (T + 1)1−θ])

= r1 exp
( C̄β,M

1− θ

)
exp

(
− C̄β,M

1− θ
(T + 1)1−θ

)
.

Applying part (iii) in Lemma 3 with b = θ
1−θ , x = (T +

1)1−θand c =
C̄β,M
1−θ yields that

exp

(
− C̄β,M

1− θ
(T + 1)1−θ

)
≤
(

θ

C̄β,Me

) θ
1−θ

(T + 1)−θ.

Putting the above two inequalities back into (25), we have

r1

T∏
k=1

(
1− C̃β,Mηk

)
≤ r1 exp

( C̄β,M
1− θ

)( θ

C̄β,Me

) θ
1−θ

T−θ. (26)

To bound the second term on the righthand side of (24), we
proceed again as in the first term:

T−1∑
k=1

T∏
i=k+1

(
1− C̃β,Mηi

)
η2
k

= C2
β,M

T−1∑
k=1

1

k2θ

T∏
i=k+1

(
1− C̄β,M

iθ

)

≤ C2
β,M

T−1∑
k=1

1

k2θ
exp

(
− C̄β,M

T∑
i=k+1

1

iθ

)
. (27)

Applying Lemma 3 (ii) with ν = C̄β,M and α = θ gives
that the above is bounded by

T−1∑
k=1

1

k2θ
exp

(
− C̄β,M

T∑
i=k+1

1

iθ

)
≤ 9T 1−θ

(1− θ)(21−θ)
exp

(
− C̄β,M (1− 2θ−1)

1− θ
(T + 1)1−θ

)
+

18

C̄β,MT θ
. (28)

And again, applying Lemma 3 (iii) with b = 1
1−θ , x =

(T + 1)1−θ and c =
C̄β,M (1−2θ−1)

1−θ to (28) gives that

exp
(
− C̄β,M (1− 2θ−1)

1− θ
(T + 1)1−θ

)
≤
( 1

C̄β,M (1− 2θ−1)e

) 1
1−θ

(T + 1)−1. (29)

Putting (28) and (29) back into (27), we have

2σ2
∗

T−1∑
k=1

T∏
i=k+1

(
1− C̃β,M ηi

)
η2
k

≤ 2σ2
∗C

2
β,M

[ 9

(1− θ)21−θ

( 1

C̄β,M (1− 2θ−1)e

) 1
1−θ

+
18

C̄β,M

]
T−θ. (30)

The last term on the righthand side of (24) is straightfor-
ward: 2σ2

∗η
2
T ≤ 2σ2

∗C
2
β,MT

−θ. This, in combination of
(26) and (30), yields the desired result.

This theorem indicates the last output of SPAM achieves
the convergence rate ofO(T−θ) with polynomial decaying
step sizes in the form of ηt = O(t−θ) for θ ∈ (0, 1). For
θ = 1, we can obtain the following result.

Theorem 3. Under the assumptions of (A1), (A2), and
choosing step sizes {ηt = [C̃β,M (t + 1)]−1 : t ∈ N},
the algorithm SPAM achieves the following:

E[‖wT+1 −w∗‖2]

≤
(
t0E[‖wt0 −w∗‖2]

) 1

T
+

4σ2
∗

C̃2
β,M

log T

T
.

where t0 = max
(

2,
⌈
1 + (128M4+β2)2

128M4β2

⌉)
.

Proof. The condition that t ≥ t0 guarantees the assump-

tion in part (ii) of Lemma 2 that ηt =
[
C̃β,M (t+ 1)

]−1

≤
Cβ,M is satisfied. Now by letting rt = E[‖wt −w∗‖2] we
have

rt+1 ≤
(

1− C̃β,M ηt

)
rt + 2σ2

∗η
2
t . (31)

Then, we have

rT+1 ≤ rt0
T∏

k=t0

(
1− C̃β,Mηk

)
+ 2σ2

∗η
2
T

+ 2σ2
∗

T−1∑
k=t0

T∏
i=k+1

(
1− C̃β,Mηi

)
η2
k. (32)

The first term on the right hand side of the above inequality
can be estimated as follows: rt0

∏T
k=t0

(1 − C̃β,Mηk) =



Stochastic Proximal Algorithms for AUC Maximization

rt0
∏T
k=t0

k
k+1 =

t0rt0
T+1 ≤ t0rt0

T . For the second
term on the righthand side of (32), there holds
2σ2
∗ηT =

2σ2
∗

C̃2
β,M (T+1)2

≤ 2σ2
∗

C̃2
β,MT

. To bound the

third term on the righthand side of (32), we can do
the following

∑T−1
k=t0

∏T
i=k+1(1 − C̃β,Mηi)η

2
k =

C̃−2
β,M

∑T−1
k=t0

∏T−1
i=k+1

(
1 − 1

i+1

)
1

(k+1)2 =

C̃−2
β,M

1
T

∑T−1
k=t0

1
k+1 ≤ C̃−2

β,M
log(T−1)−log t0

T ≤
C̃−2
β,M

log T
T . Putting all the above estimations together

yields the desired result.

The convergence of SPAM proved in the above theorem
shows that it can achieve O( log T

T ). The convergence rate
ofO( 1

T ) could be obtained using averaging schemes devel-
oped by (Lacoste-Julien et al., 2012; Rakhlin et al., 2012b;
Shamir & Zhang, 2013).

The term E[‖wt0 − w∗‖2] can indeed be estimated
as follows if ηt = [C̃β,M (t + 1)]−1 for t ∈
N. From part (i) of Lemma 2, we have, for any
t ∈ N, E[‖wt+1 − w∗‖2] ≤ 1+128M4η2t

(1+ηtβ)2 E[‖wt −
w∗‖2] + 2σ2

∗η
2
t ≤ (1 + 128M4η2

t )E[‖wt − w∗‖2] +

2σ2
∗η

2
t . Therefore, E[‖wt0 − w∗‖2] ≤

∏t0−1
k=1 (1 +

128M4η2
k) + 2σ2

∗
∑t0−1
k=1

∏t0−1
j=k (1 + 128M4η2

j )η2
k ≤(∏t0−1

k=1 (1+128M4η2
k)
)(

1+2σ2
∗
∑t0−1
k=1 η2

k

)
.Notice that∏t0−1

k=1 (1+128M4η2
k) ≤ exp

(
128M4

C̃2
β,M

∑t0−1
k=1 (k+1)−2

)
≤

exp
(

128M4

C̃2
β,M

). and 2σ2
∗
∑t0−1
k=1 η2

k =
2σ2
∗

C̃2
β,M

∑t0−1
k=1 (k +

1)−2 ≤ 2σ2
∗

C̃2
β,M

. Hence, one can have the following bound

depending on β and M :

E[‖wt0 −w∗‖2] ≤ 2σ2
∗

C̃2
β,M

+ exp
(128M4

C̃2
β,M

).

4. Experiments
In this section, we report the experimental evaluation of
SPAM by comparing it against existing algorithms for
AUC optimization.

In particular, we use SPAM-L2 to denote SPAM with the
Frobenius norm, i.e., Ω(w) = β

2 ‖w‖
2. The solution to

the proximal step using the Frobenius norm is very straight
forward. The other version, SPAM-NET, uses the elastic
net norm (Zou & Hastie, 2005), i.e., Ω(w) = β

2 ‖w‖
2 +

β1‖w‖1. The proximal step can be written as

arg min
w

{1

2

∥∥∥∥w − ŵt+1

ηtβ + 1

∥∥∥∥2

+
ηtβ1

ηtβ + 1
‖w‖1

}
,

for which the optimal solution is the soft-thresholding op-
erator (e.g. Parikh et al. (2014)).

Table 1. Basic information about the datasets.

DATA NAME # INSTANCES # FEATURES

1 DIABETES 768 8
2 FOURCLASS 862 8
3 GERMAN 1000 24
4 SPLICE 3175 60
5 USPS 9,298 256
6 A9A 32,561 123
7 MNIST 60,000 780
8 ACOUSTIC 78,823 50
9 IJCNN1 141,691 22

10 COVTYPE 581,012 54
11 SECTOR 9,619 55,197
12 NEWS20 15,935 62,061

We compare our algorithms with both batch and online
AUC optimization algorithms. To ensure a fair compar-
ison with (Ying et al., 2016), the algorithm SOLAM was
modified to include the Frobenius-norm regularization term
instead of the original bounded restriction on the norm of
‖w‖. We also compare our algorithm against the one-pass
AUC optimization algorithm (Gao et al., 2013) with the
least square loss and the OAMseq and OAMgra algorithms
(Zhao et al., 2011) with hinge loss. Lastly, we include the
B-LS-SVM algorithm (Joachims, 2006), a batch learning
algorithm for AUC maximization with least square loss.

Table 1 summarizes the details of each of the data sets we
used for comparison. All of these datasets are available to
download from the LIBSVM (Chang & Lin, 2011) and UCI
machine learning repository (Frank & Asuncion, 2010). It
is worthy of noting that some of the datasets are multi-class.
We converted them to binary data by randomly partitioning
the data into two groups, where each group includes the
same number of classes.

We used 80% of the data for training and the remain-
ing 20% for testing. The results are based on 20 runs
for each dataset for which we used to calculate the aver-
age AUC score and standard deviation. To determine the
proper parameters for each dataset, we conduct 5-fold cross
validation on the training sets to determine the parameter
β ∈ 10[−5:5] for SPAM-L2 and β1 ∈ 10[−5:5] for SPAM-
NET. All experiments were conducted with MATLAB and
the MATLAB codes for the compared methods were ob-
tained from the authors.

Classification performance on all of the data sets is summa-
rized in Table 2. SPAM-L2 and SPAM-NET both achieve a
similar performance as the other state of the art AUC max-
imization algorithms in both the online and batch settings.
This validates the algorithms we proposed in this paper.
The data set sector shows the advantage of using elastic
net. Next, we compared the CPU running time of SPAM-
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Table 2. Comparison of the testing AUC values (mean±std.). To accelerate the experiments, the values for OPAUC, OAMseq, OAMgra,
and B-LS-SVM were taken from (Gao et al., 2013).

DATA SPAM-L2 SPAM-NET SOLAM OPAUC OAMSEQ OAMGRA B-LS-SVM

1 .8272±.0277 .8085±.0431 .8128±.0304 .8309±.0350 .8264±.0367 .8262±.0338 .8325±.0329
2 .8210±.0203 .8211±.0205 .8213±.0209 .8310±.0251 .8306±.0247 .8295±.0251 .8309±.0309
3 .7942±.0388 .7937±.0386 .7778±.0373 .7978±.0347 .7747±.0411 .7723±.0358 .7994±.0343
4 .9263±.0091 .9267±.0090 .9246±.0087 .9232±.0099 .8594±.0194 .8864±.0166 .9245±.0092
5 .9868±.0032 .9855±.0029 .9822±.0036 .9620±.0040 .9310±.0159 .9348±.0122 .9634±.0045
6 .8998±.0046 .8980±.0047 .8966±.0043 .9002±.0047 .8420±.0174 .8571±.0173 .8982±.0028
7 .9254±.0025 .9132±.0026 .9118±.0029 .9242±.0021 .8615±.0087 .8643±.0112 .9336±.0025
8 .8120±.0030 .8109±.0028 .8099±.0036 .8192±.0032 .7113±.0590 .7711±.0217 .8210±.0033
9 .9174±.0024 .9155±.0024 .9129±.0030 .9269±.0021 .9209±.0079 .9100±.0092 .9320±.0037

10 .9504±.0011 .9508±.0011 .9503±.0012 .8244±.0014 .7361±.0317 .7403±.0289 .8222±.0014
11 .8768±.0126 .9077±.0104 .8767±.0129 .9292±.0081 .9163±.0087 .9043±.0100 -
12 .8708±.0069 .8704± .0070 .8712±.0073 .8871±.0083 .8543±.0099 .8346±.0094 -

(a) splice (b) usps (c) a9a

Figure 1. AUC vs. CPU running time curves of SPAM-L2 against SOLAM (Ying et al., 2016) and OPAUC (Gao et al., 2013).

L2 versus SOLAM and the OPAUC algorithm. We did not
compare the running time of SPAM against OAM (Zhao
et al., 2011) since it used hinge loss. It was observed that
the running time is inferior to OPAUC as shown in (Gao
et al., 2013) and to SOLAM (Ying et al., 2016).

The main advantage of SPAM is the running efficiency.
As we pointed out in the introduction, it has a faster con-
vergence rate of O( 1

t ) than SOLAM’s convergence rate of
O( 1√

t
), and its per-iteration running time and space com-

plexity are linear in data dimension. The running time per-
formance against OPAUC and SOLAM is depicted in Fig-
ure 1 on splice, usps and a9a datasets. Theses results
show that SPAM demonstrates a competitive performance
while achieving a faster rate of performance.

5. Conclusion
In this paper, we proposed a novel stochastic proximal
algorithm (SPAM) for AUC maximization with general
penalty terms. We showed that the algorithm can achieve a
convergence rate of O(1/T ) up to a logarithmic term for

strongly convex objective functions while the space and
per-iteration complexity are of one datum.

There are several directions for future work. Firstly, it
would be very interesting to extend the ideas of this paper
to design stochastic variance reduction algorithms (John-
son & Zhang, 2013) and stochastic primal-dual algorithms
(Zhang & Xiao, 2017) for AUC maximization, which can
achieve the linear convergence rate. Secondly, it remains
unclear to us whether SPAM can achieve convergence rate
O(1/T ) without strong convexity (e.g. SPAM-L2 with
β = 0). One possible approach is to adapt the proof tech-
niques in (Bach & Moulines, 2013; Yang & Lin, 2015) to
the setting of AUC maximization.
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Clémençon, S., Lugosi, G., and Vayatis, N. Ranking and
empirical minimization of u-statistics. The Annals of
Statistics, pp. 844–874, 2008.

Duchi, J and Singer, Y. Efficient online and batch learning
using forward backward splitting. Journal of Machine
Learning Research, 10(Dec):2899–2934, 2009.

Duchi, J., Hazan., E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(Jul):2121–
2159, 2011.

Elkan, C. The foundations of cost-sensitive learning. In
International joint conference on artificial intelligence,
2001.

Fawcett, T. An introduction to roc analysis. Pattern recog-
nition letters, 27(8):861–874, 2006.

Frank, Andrew and Asuncion, Arthur. Uci machine learn-
ing repository [http://archive. ics. uci. edu/ml]. irvine,
ca: University of california. School of information and
computer science, 213, 2010.

Gao, W., Jin, R., Zhu, S., and Zhou, Z.-H. One-pass auc
optimization. In International Conference on Machine
Learning, pp. 906–914, 2013.

Gao, Wei and Zhou, Zhi-Hua. On the consistency of auc
pairwise optimization. In IJCAI, pp. 939–945, 2015.

Hanley, J. A. and McNeil, B. J. The meaning and use of the
area under a receiver operating characteristic (roc) curve.
Radiology, 143(1):29–36, 1982.

Hazan, E. and Kale, S. Projection-free online learning. In
Proceedings of the 29th International Coference on In-
ternational Conference on Machine Learning, 2012.

Herschtal, A and Raskutti, B. Optimising area under the
roc curve using gradient descent. In Proceedings of the
twenty-first international conference on Machine learn-
ing, pp. 49. ACM, 2004.

Joachims, Thorsten. A support vector method for multivari-
ate performance measures. In Proceedings of the 22nd
international conference on Machine learning, pp. 377–
384. ACM, 2005.

Joachims, Thorsten. Training linear svms in linear time.
In Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’06, pp. 217–226, New York, NY, USA, 2006.
ACM. ISBN 1-59593-339-5. doi: 10.1145/1150402.
1150429. URL http://doi.acm.org/10.1145/
1150402.1150429.

Johnson, Rie and Zhang, Tong. Accelerating stochastic
gradient descent using predictive variance reduction. In
Advances in neural information processing systems, pp.
315–323, 2013.

Kar, P., Sriperumbudur, B., Jain, P., and Karnick, H. On
the generalization ability of online learning algorithms
for pairwise loss functions. In International Conference
on Machine Learning, pp. 441–449, 2013.

Kotlowski, W, Dembczynski, K J, and Huellermeier, E. Bi-
partite ranking through minimization of univariate loss.
In Proceedings of the 28th International Conference on
Machine Learning (ICML-11), pp. 1113–1120, 2011.

Lacoste-Julien, Simon, Schmidt, Mark, and Bach, Fran-
cis. A simpler approach to obtaining an o (1/t) con-
vergence rate for the projected stochastic subgradient
method. arXiv preprint arXiv:1212.2002, 2012.

Moulines, Eric and Bach, Francis R. Non-asymptotic anal-
ysis of stochastic approximation algorithms for machine
learning. In Advances in Neural Information Processing
Systems, pp. 451–459, 2011.

Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A.
Robust stochastic approximation approach to stochas-
tic programming. SIAM Journal on optimization, 19(4):
1574–1609, 2009.

http://doi.acm.org/10.1145/1150402.1150429
http://doi.acm.org/10.1145/1150402.1150429


Stochastic Proximal Algorithms for AUC Maximization

Orabona, F. Simultaneous model selection and optimiza-
tion through parameter-free stochastic learning. In Ad-
vances in Neural Information Processing Systems, pp.
1116–1124, 2014.

Palaniappan, Balamurugan and Bach, Francis. Stochastic
variance reduction methods for saddle-point problems.
In Advances in Neural Information Processing Systems,
pp. 1416–1424, 2016.

Parikh, Neal, Boyd, Stephen, et al. Proximal algorithms.
Foundations and Trends R© in Optimization, 1(3):127–
239, 2014.

Rakhlin, A., Shamir, O., and Sridharan, K. Making gradi-
ent descent optimal for strongly convex stochastic opti-
mization. In Proceedings of the 29th International Con-
ference on Machine Learning (ICML-12), pp. 449–456,
2012a.

Rakhlin, A, Shamir, O, and Sridharan, K. Making gradient
descent optimal for strongly convex stochastic optimiza-
tion. In Proceedings of the 29th International Confer-
ence on Machine Learning, pp. 449–456, 2012b.

Rakotomamonjy, Alain. Optimizing auc with support vec-
tor machine. In European Conference on Artificial Intel-
ligence Workshop on ROC Curve and AI, 2004.

Robbins, H. and Monro, S. A stochastic approximation
method. The annals of mathematical statistics, pp. 400–
407, 1951.

Rosasco, Lorenzo, Villa, Silvia, and Vũ, Bang Công.
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