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Abstract

The LASSO is a well-studied method for use
in high-dimensional linear regression where
one wishes to recover a sparse vector 3 € RP
from noisy observations y € R™ measured
through a matrix X € R™*? with the model
y = X8 4+ w where w is a vector of in-
dependent, mean-zero noise. We study the
linear asymptotic regime where n/p — ¢
for a constant 0 € (0,00). Using a care-
fully constructed approximate message pass-
ing (AMP) algorithm that converges to the
LASSO estimator and recent finite sample
theoretical performance guarantees for AMP,
we provide large deviations bounds between
various measures of LASSO loss and their
concentrating values predicted by the AMP
state evolution that shows exponentially fast
convergence (in n) when the measurement
matrix X is i.i.d. Gaussian. This work re-
fines previous asymptotic analysis of LASSO
loss in [Bayati and Montanari, 2012].

1 INTRODUCTION

A fundamental problem in high-dimensional statistics
is estimating an unknown signal 3 € RP from noisy
measurements y € RP in the linear regression model

y=XB+w, (1)

where X is a known n x p design matrix and w € RP
is vector of noise having independent entries and vari-
ance o2. Define § = n/p > 0. Strictly speaking, the
‘high-dimensional’ case is when § € (0,1), meaning
n < p, and this is the regime we study, although our
results hold more generally when 6 > 1. Without any

sort of structural or probabilistic constraints on the
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unknown signal 3, the high-dimensional problem is in-
feasible, so one often assumes that 3 is sparse, meaning
most of its values are exactly equal to 0.

The LASSO [Tibshirani, 1996, Chen and Donoho,
1995], is a widely-used method for recovering an un-
known, sparse signal 8 when given X and y. It pro-
vides a sparse estimate computed as

B = arg min C,(b), (2)
where, for a tuning parameter A > 0,
1 2
Ca(b) = Slly = Xbllz + Allb]1, (3)

where |||, denotes the standard ¢,-norm. Because of
the penalty term A||b||1, the LASSO estimate is sparse,
with the level of sparsity controlled by the parameter
A. The LASSO reconstruction technique is well stud-
ied, and has been shown to provide good estimates of
the truth 3, when 3 is sparse and the measurement
matrix satisfies nice properties relating to the orthog-
onality of its columns on the support set of 3 (see, for
example, [Hastie et al., 2015]).

This work studies asymptotically exact expressions
for various types of loss, for example, the mean squared
error (MSE), between the LASSO optimum 3 and the
truth B, where the asymptotics are with respect to the
problem dimensions, what we refer to as the ‘large sys-
tem limit’'. Such characterizations of asymptotic loss
for the LASSO have been studied both by developing
Approximate Message Passing (AMP) algorithms that
converge to the LASSO optimum [Bayati and Monta-
nari, 2012] and by employing a convex Gaussian min-
max theorem [Thrampoulidis et al., 2015]. In particu-
lar, in [Bayati and Montanari, 2012], it was shown that
in the large system limit, the MSE, p~1(|8—2), is a de-
terministic value predicted by a fixed point of a scalar
iteration in the case that the matrix X has i.i.d. Gaus-
sian entries. The analysis builds from theoretical guar-
antees for the asymptotic performance of the efficient,

!The ‘large system limit’ refers to the setting where
n,p — oo with n/p — § € (0, 00)
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iterative AMP algorithms given in [Bayati and Mon-
tanari, 2011]. Recent results in [Rush and Venkatara-
manan, 2015] refine the asymptotic performance guar-
antees for AMP given in [Bayati and Montanari, 2011],
by studying how the algorithm deviates from these
precise asymptotic predictions in the non-asymptotic
regime. However, for the non-asymptotic analysis, the
AMP theory only extends to O(logn/loglogn) itera-
tions, and the authors suggest that this rate may not
be able to be improved with the current AMP theory
that employs inductive proof methods.

We use the non-asymptotic analysis of AMP to
study how the loss of the LASSO estimator deviates
from its exact asymptotic performance predictions in
the non-asymptotic regime, and show that the finite
sample bound for the LASSO loss is of the same or-
der as that of the finite sample bounds for AMP, thus
extending to O(logn/loglogn) iterations. In particu-
lar, we provide a large deviations bound for the MSE,
p~1||B— 8| and other measures of loss for the LASSO
estimator, in the case that the matrix X has i.i.d.
Gaussian entries and the signal 3 has a prior distri-
bution that its entries are i.i.d. according to some sub-
Gaussian density pg. This work refines the asymptotic
results of [Bayati and Montanari, 2012] and shows that
the rates of concentration for the LASSO loss match
the rates at which the AMP iterates concentrate to
predicted values provided by the AMP state evolu-
tion given in [Rush and Venkataramanan, 2015]. As
in the previous asymptotic work, we prove this result
by studying the efficient AMP algorithm, but now us-
ing the finite sample analysis of its performance.

Similar analyses of AMP algorithms have been used
to provide asymptotic characterizations of the loss
for a number of classical statistical estimation pro-
cedures including M-estimation [Donoho and Monta-
nari, 2016], logistic regression [Sur and Candes, 2019],
SLOPE [Bu et al., 2019], and ¢,-regularized least
squares [Zheng et al., 2017], and also to study proper-
ties of these estimators, like in [Su et al., 2017]. We
believe that the analysis pursued here can also be stud-
ied in these cases to give similar refinements of the
asymptotic characterizations.

Notation. Bold, lower-case (upper-case) letters rep-
resent vectors (matrices). Non-bold letters denote
scalars, as in v; indexes the i*" element of the vec-
tor v and X;; the (i,7)!" element of X. With a
slight abuse of notation, upper-case letters represent
random variables and lower-case letters their values,
e.g. Z ~ N(p,0?) is a Gaussian random variable
with mean g and variance o2. We denote the set
{1,2,...,n} by [n]. Throughout, K,C,k,c > 0 are
generic, positive constants whose values are not explic-

itly stated but do not depend on n or ¢t. The indicator
of event A is denoted I{A}.

Outline In Section 2, we introduce the AMP algo-
rithms that converge to the LASSO optimum,and we
also state the existing performance guarantees for such
AMP algorithms. In Section 3 we present the main re-
sults, Theorem 2 and Theorem 3. Moreover, we prove
Theorem 2 in Section 3 and then in Section 4 we state
a technical result that is used to prove Theorem 3. We
end with a discussion in Section 5.

2 AMP ALGORITHMS FOR LASSO

As mentioned previously, our analysis uses a class of
approximate message passing (AMP) algorithms [Bay-
ati and Montanari, 2011, Donoho et al., 2009a, Krza-
kala et al., 2012, Montanari, 2012, Rangan, 2011, Ran-
gan et al., 2019] designed to converge to the LASSO
optimum that were originally introduced in [Donoho
et al., 2009b]. Before presenting the main results,
in this section, we introduce the AMP algorithm in
(5)-(6) and its theoretical performance guarantees pro-
vided by the state evolution given in (7).

AMP Definitions To iteratively update the esti-
mate of the unknown vector, AMP uses the soft-
threshold function, : R x Ry — R, defined as

n(x;0) = sign(x) max{|z| — 6,0} (4)

The soft-thresholding function equals 0 when the mag-
nitude of its input is below some threshold, and shrinks
the input towards 0 outside the threshold. Using
the soft-thresholding function, the AMP algorithm up-
dates as follows, iteratively providing estimates of the
signal 3" € RP and the residual z* € R?. We initialize
the AMP updates with 3° = 0 € R? and for ¢ > 0,

ﬂt+1 _ n(XTZt +ﬁt;0t)a (5)

: e (27N 18
d=y-Xp () ©
where [|B']lo = >_7_, I{8! = 0} counts the number
of non-zero values of B, the soft-thresholding func-
tion acts element-wise on vector input, X” denotes the
transpose of the matrix X, and {6;}+>0 is a sequence
of thresholds to be specified in what follows.

A remarkable property of AMP is that its perfor-
mance can be characterized via a scalar recursion re-
ferred to as state evolution. Define a sequence {77 }+>0
starting with 78 = 02 + E{B?}/§ where B ~ pp (re-
calling that pp specifies the prior distribution on the
elements of the signal) and o2 is the noise variance,
i.e. Ew?] = 0% for i =1,2,...,n. Then for t > 0, let

ey =0+ %E{ [77(3 + 12 0;) — B]z}’ (7)
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where Z ~ N(0,1) independent of B ~ pp and
0 = n/p. AMP has the desirable property that the
input to the soft-thresholding function, X7z + 3" (see
(5)), which we henceforth refer to as the ‘effective ob-
servation’ is approximately equal in distribution to the
true signal plus independent Gaussian noise, where the
variance of the noise is given by the state evolution.
Namely, X7z + 8" ~ B + 7,Z where Z ~ N(0,1,x,)
where I,x, is the p x p identity matrix. This ap-
proximation is made precise asymptotically in [Bay-
ati and Montanari, 2011], and [Rush and Venkatara-
manan, 2015] shows that the deviation between the
two, A" := (XTz* + 3") — (B + ~Z), concentrates to
zero exponentially fast, in the sense that for € € (0, 1),

1 >
P<f|\AtH2 > e) < Kje—rre
p

for constants K¢, k; > 0 not depending on p or €, but
depending on t.

2.1 AMP Performance

We first present the performance guarantees for AMP
from [Rush and Venkataramanan, 2015] that are used
for our work. Their analysis uses a stopping criterion,
set by the user, that terminates the algorithm once
the expected squared error of the estimates is either
very small or stops improving appreciably. The spe-
cific form of the stopping criterion is not important for
our presentation, so we do not elaborate on its defini-
tion, however we note that the algorithm is run only
for iterations 0 < t < T™ where the exact value of the
stopping iteration 7™ is discussed in the cited work.

The AMP performance analysis provided by The-
orem 1, restated below from [Rush and Venkatara-
manan, 2015, Thm. 3.1], shows that the loss of the
AMP estimates B° at any iteration 0 < t < T*, when
the loss is measured by a pseudo-Lipschitz loss func-
tion, concentrates to a deterministic value predicted by
the state evolution for large, but finite n. A function
¢ : R™ — R is pseudo-Lipschitz (of order 2) if there
exists a constant L > 0 such that for all x,y € R™,

6(x) = (¥)| < L+ [[x[| + ly )]l =yl

Finally, we make the following assumptions, which
are needed for the AMP concentration result to hold.

(A1) Measurement Matrix: The entries of the
n X p measurement matrix X are i.i.d. ~ N(0,1/n).

(A2) Signal: The prior distribution of the
length—p signal 3 assumes the entries are i.i.d. accord-
ing to a sub-Gaussian distribution pp with E{82} = 02
for i € [p] where we assume 0 < 03 < oo. The sub-
Gaussian assumption implies [Boucheron et al., 2013],

for generic constants K,k > 0,

2

1,0 _
= — >e) < rnet,
P11 — o] > ) < e ®)

(A3) Measurement Noise: The entries of the
length—n measurement noise vector w are i.i.d. ac-
cording to some sub-Gaussian distribution py, with
mean 0 and E[w?] = 02 < oo for i € [n].

Below, we restate the AMP performance guaran-
tees [Rush and Venkataramanan, 2015, Thm. 3.1] that
are used in our analysis.

Theorem 1. [Rush and Venkataramanan, 2015,
Thm. 3.1] Under assumptions (A1) — (A3), the fol-
lowing holds for any (order-2) pseudo-Lipschitz func-
tion ¢ : R? - R, e € (0,1), and 0 <t < T*, where T*
is determined by the stopping criterion.

P(|L 3 ot6t 30 B [o(n(B + mz:00,5)]| 2
=1
< Kte”’””f"g.

In the expectation above, B ~ pg and Z ~ N(0,1)
are independent, and Ty is given by (7). The constants
Ky, Ky are given by K; = C?'(11)10 K, = W, where
C,c > 0 are universal constants (not depending on t,
n, or €) that are not explicitly specified.

For the AMP algorithm introduced in (5)-(6) to
converge to the LASSO optimum, one needs to care-
tully choose the sequence of thresholds {6;};>0. As
introduced in [Donoho et al., 2009b], these thresholds
ultimately control the sparsity of the AMP estimate
in a similar manner to A in the LASSO cost (3).

2.2 AMP Relation to the LASSO Solution

We connect the Theorem 1 performance guarantees
to the LASSO solution (2), by relating the thresh-
olds {6;};>0 to the LASSO parameter A > 0 in the
following way. Throughout, we take 8, = a7, where
a > 0 is fixed and 7, is given by the state evolution
in (7). Now we restate the state evolution given in (7)
with this choice of 8, noting that moving forward this
is the state evolution that we will reference. Taking
78 = 0% + E{B?}/§ where B ~ pp and o2 is the vari-
ance in (1), for ¢ > 0 define 77, ; = F(77, ary) where

1 2
F(r% ar) = o* + SE{ [n(B +77Z;a1) — B} }, (9)
where Z ~ N (0, 1) independent of B ~ pg. This is an
intuitive choice of threshold: since the effective obser-
vation is the input to the soft-thresholding function in
(5) and it is approximately distributed as 8 + 7 Z, it
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is natural to make the threshold proportional to the
standard deviation of the noise, 74, in order to sepa-
rate noise from signal. This choice of threshold has a
number of nice properties that have been investigated
in [Donoho et al., 2009b], among other works.

The recursion in (9) has been well-studied [Bayati
and Montanari, 2012, Donoho et al., 2009b, Donoho
et al., 2009a], and, as stated in the following lemma,
it has been shown that the sequence {77};>0 always
converges to the solution of the fixed point equation

72:02+%E{[77(B+TZ;047)*B}2}7 (10)

for appropriately chosen «.

Lemma 1. [Bayati and Montanari, 2012, Prop. 1.5]
Let aunin to be the unique, nonnegative solution to
(14 a®)®(—a) — ad(a) = §/2, where ®(-) and ¢(-)
are the Gaussian CDF and PDF, respectively. Then
for 02 > 0 and o > Qumin, the state evolution map-
ping F(72, at) defined in (9) is concave and monotone
increasing in T2. Moreover, there exists a unique T2
such that F(12,ar.) = 72 and the monotone sequence
{72}i>0 converges to T2 ast — oo.

The choice of a value in the AMP equations con-
trols the sparsity of the solutions, serving an analogous
role to A in the LASSO cost. Therefore, to relate the
AMP algorithm introduced in (5)-(6) to the optimum
of the LASSO cost (3), we use a calibration between A
and « values provided in [Bayati and Montanari, 2012].
In particular, there is a one-to-one correspondence be-
tween X in (3) and the choice of ayin < @ < 0o used
in the threshold for the AMP updates in (5). The fol-
lowing relationship is used to determine the threshold
level o used in the AMP iterates (5) - (6) for a given
value A > 0 in (3):

AMa) = at, (1 - %E{n'(B + 1.7, aT*)D, (11)

where 7'(-) is the weak derivative of the soft-
thresholding function 7(-, -) defined in (4), Z ~ A(0,1)
is independent of B ~ pp, and 7. is defined in
Lemma 1. We will need to invert the above func-
tion and we call the inversion «(\). Details about
a()) are given in [Bayati and Montanari, 2012], for
this manuscript we simply need to know that such a
function is well defined.

3 MAIN RESULT

The main result shows concentration for pseudo-
Lipschitz loss functions of the minimizer of the LASSO
cost function to the truth @. This is a finite sam-
ple version of [Bayati and Montanari, 2012, Thm. 1.5].

Recall, 7, denotes the unique fixed point solving (10)
when « is selected according to the function a(A) for
a given value of \. We know that the state evolution
converges to 7, as t — oco. We denote 6, = aT.

The two main results, Theorem 2 and Theo-
rem 3, are concentration results involving specific t¢-
dependent (universal) constants, d;, ;. At the end of
this section we state and prove Lemma 2, which defines
these values explicitly and shows that both approach
0ast— oo.

Theorem 2. Assume, t = O(lolof” ) For any
glogn

(order-2) pseudo-Lipschitz function ¢ : R? — R, un-
der the same assumptions as those in Theorem 1, for
the LASSO solution in (2) and tpm < t < T* (for
some tmin < T specified in more detail in Section 4),
define an event T (p) as

RN
520 ~E(B - n i) B

26"’_51& +F/€Vt7

where & > 0 is a universal constant and vy and 0; are
defined in Lemma 2. Then, for large enough n,

P(T(p)) < KKy rmene (13)

Constants K,k are defined in the Thm. 1 statement.

Remark 1. To get a more concrete idea of the re-
sult in Theorem 2, it is useful to consider some spe-
cific pseudo-Lipschitz functions. First, let ¢(a,b) =
(a — b)2, then Theorem 2 proves that the MSE of the
LASSO minimizer concentrates to a known constant
value with exponentially small probability of error in
n. In particular, for allt > 0,

P(‘IIB —BI*/p—6(re — )| > e+ 6 + Fn/t)
S KKte_HK’tnez.

Similarly, taking ¢(a,b) = |a — b| the theorem proves
that the normalized Ly-error, || B— 81 /p, concentrates
around Eln(X + 7.Z;0.) — X|.

Remark 2. The bound in Theorem 2 implies the
asymptotic result of [Bayati and Montanari, 2012,
Thm. 1.5]. To see this, mnotice that the sum
Sl P(T(p) < 32024 K Ke="%90<" s finite for all
t >0, and therefore

= E[p(n(B + 7Z;0.), B)] + 6 + R

Taking the limit t — oo, the terms 6, vy — 0 as shown
in Lemma (2). We note that taking the limits in the
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other direction, namely t — oo followed by p — oo
would result in term that is greater than 1 on the right
hand side of the upper bound provided in (13).

Remark 3. Theorem 2 also refines the asymptotic
convergence result [Bayati and Montanari, 2012, Thm.
1.5] in that it specifies how large t can be (compared
to the dimension n) for the state evolution predictions
to be meaningful in characterizing AMP performance.
As detailed in [Rush and Venkataramanan, 2015], us-
ing the expression for k; in the Theorem 1 statement,

we need that t = O(log)ign) in order for the term in

the exponent of (13), kkime? — oo as n grows.

Thus, when the AMP is run for a growing number
of iterations, the state evolution predictions are guar-
anteed to be valid until iteration t if the problem di-
mension grows faster than exponentially in t.

Theorem 2 is a direct consequence of the following
result showing that the mean square error between the
AMP estimate at any time ¢ and the LASSO solution
concentrates on some deterministic value that is de-
creasing to 0 with ¢. This is a large deviations version
of [Bayati and Montanari, 2012, Thm. 1.8].

Theorem 3. Assume that t = O( log n ) For the

loglogn
LASSO solution in (3) and {B8"}o<i<r~, the estimate
of the AMP iteration at time ty, <t <T* (for some
tmin < T* specified in more detail in Section 4), we
have for € € (0,1), and large enough n,

1 ~
P18 =BIP > e+ 0}) < KK, (1)

where utz 1s defined in Lemma 2. The constants Ky, k¢
are given by K; = CH() k; = W’ where
C,Cy,c,c1 > 0 are universal constants (not depend-

ing on t, n, or €) that are not explicitly specified.

We next use Theorem 3 to prove Theorem 2 and
then we prove Theorem 3 in what follows.

Proof of Theorem 2. Let k = 2L\/5+ 403+ 2by

where o2 is the element-wise variance of the signal
defined in (8), L is the pseudo-Lipschitz constant of ¢,
and b; = max{B, B} are values defined in Lemma 7 in
the supplementary materials that are high-probability
upperboundb on the standardized norms of the AMP
estimate 3" and the LASSO minimizer ,8 Now, con-

sidering the event 7 (p) defined in (12), we see that

M*ﬁ

&((B:, ) — Elo(n(B + 7.26.), B))

D=

1

-
Il

(b(ﬁuﬁz) - ¢( fvﬁi)

VAN
| —
M

3

i=1

1
ARG
P4
Therefore, P(7 (p)) is upper bounded by
B
P4

ORI ERIE

Elo(n(B +.2:0.), B)]|

—E[p(n(B + 1.2;0,), B)]‘ >y 5t)

% F;Vt). (15)

Label the two terms of (15) as T} and T>. We provide
upper bounds for both.

First consider Ty of (15).
of §; from (18), notice that

Recalling the definition

’%Zcﬁ( !, 8:) — Elo(n(B + 7.256.), B))
‘% Z E[p(n(B + 7:Z;0;), B)]) 16

Therefore, by Theorem 1, we can upper bound 77 with

P53 e

< Kjemme’ /4,

~ El$(n(B +2:6,), B))| = 5)

Now consider term 75 of (15). First notice that by
the Triangle Inequality and the the pseudo-Lipschitz
property of ¢, for all ¢ € [p], we have

6(B:, B;) — d(BL, Bi)|< L(1 + 21| + 18] + 1BLD)B: —

Then by Cauchy-Schwarz,
p ~ 2
(3 [oBi i) - 008,50
i=1

p
< LB - B'IP Y0 (1 + 28] + [Bi] + [85])*.

i=1

Finally we notice that by Cauchy-Schwarz again,

P

> (14218 +|Bil +18])*

=1

< 4(p+4]1BI°+IBI*+18°11)-
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Therefore, term T, is upper bounded by

P(2LII3—ﬂtII H4||ﬁ||2+||3H2+Hﬁtll2 €
VP P 2

(16)

Notice that ||8 — 8|/ /P concentrates to v; by Theo-
rem 3 and the terms under the square root concentrate
to constants by (8) and Lemma 7 in the supplementary
materials. We now show how this leads to an upper
bound on the probability in (16).

Recall, & = 2L+/5 + 402 + 2b;. Then if the follow-

ing event is true,

18 -8
-

ﬁ{nfﬁﬁ }{H || <b.),

it follows that

Hﬂll2

<vi+ — }

<00+6}

BB,y B PP 1P
p p p

<2L(1/t—|— )\/1+4 (0% +€) + 2by

_(yt—i— >n<2—|—m/t

2K

Now we use this to bound the probability in (16).
Notice, for events A,B, and C, if AnB — C
then P(C) > P(AN B) and P(C°) < P((AN B)°) =
P(A°U B°) < P(A°) + P(B°). Therefore,

2L||f3—ﬂt||\/ 1812 1812 . 18]

Pl 20 /14+4

( /P * D * D * D
2

SP(";”203+6)+P

P 2n) e (B2 v )

—rrgr2ne?

< Ke—ﬁnez +K8—nn52 _|_Ke—nne2 +KKt€ i

<||f;||2 > 1)

E

(17)

The final inequality follows from (8), Lemma 7 in the
supplementary materials, and Theorem 3 along with
Lemma 1 in the supplementary materials. We note
that the use of Lemma 1 in the supplementary ma-
terials and Theorem 3 means thats there is a v} in
the concentration bound of (17) and therefore in (13).
However, noting that x; has a % term, the fact that
v¢ decays like te™*t as shown in Lemma 2 means that
the presence of /2 in the bound won’t change the over-
all rate of the concentration (meaning how t can grow
with n), so it is not explicitly stated. Similarly, for the
additional ¢ in front. O

*+I<JV)

Z € +%Vt)

Finally, we explicitly define the ¢t-dependent con-
stants that show up in the two theorems above and we
show their rates of convergence.

Lemma 2. Define the following t-dependent terms.
For any (order-2) pseudo-Lipschitz function ¢ : R? —
R, define fort >0,

O 1= (18)
E[6(B +7.2:0.), B) - 6(a(B + 7 2:6,), )|

€1 = ‘)\ — 0, {1 - EEW(B + 1 Z; 9t)]} ’a (19)

where Z ~ N(0,1
constant k1 > 0,

) independent of B ~ pp and for

2

€t 1= |:02 + Cmazi| 5(’7}2 — 2Et,t71 + ’7'371)
t—1
(é\t)266max
e (20)
1+ temas)e 24+ temax
Vt2 = Kllet|:( /\2 ) i . j|7 (21)

where Cpin and Cpmqq are the concentrating values for
the mazimum and minimum (non-zero) singular val-
ues of the matriz X as defined in Lemma 4, Condition
(4), and Ey11 4 is defined by the following more general
state evolution recursion. Define a set of covariances,
{E) s }r>0,s>0 recursively such that

§Fgi1 41 = 007+ (22)
E{[U(B + TSZS; 95) - B] [77(3 + TTZT; er) - B]} )

where Zg and Z, are jointly Gaussian but independent
of B ~ pg, with IE[ s) = E[Z,] =0, E[Z2] = E[Z?] =
1, and E[ZZ,] = *TT Note that By = 77 defined in
(7) Finally we deﬁne the boundaries such that Ey o =
o?+ 1E{B*} = 7¢ and

5E0,t+1 = (50’2 + E{[_B][U(B + TtZt; et) - B]} ) (23)

for Zy ~ N(0,77) independent of B ~ pg.

Then 6, eq, and €, converge to 0 (as t grows) like
Ke™"t while v} converges to 0 like Kte ",

Proof. The proof uses the exponential convergence of
the state evolution sequence proved in [Bayati and
Montanari, 2012, Appendix C] and restated below in
Lemma 3 for convenience. The proof of Lemma 3
doesn’t change for our analysis and is quite technical,
so we don’t include the details.

Lemma 3. [Bayati and Montanari, 2012, Lemma
5.7 Assume o > Qg defined in Lemma 1 and let
{Es1}s,i>0 be defined by recursion (22) with initial
condition (23). Then, for all t > 0, there exist con-
stants Bi,m1 > 0 such that, |Eyy — 72| < Bie ™t
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and |Ey 41 — 72| < Bie™™t. Moreover, E} |, | —
2Et—l7t + Et2,t < Ble—ht.

We first prove, for universal constants K,x > 0,
that §; < Ke . To see this, recall that ¢(-,-) is
pseudo-Lipschitz, and therefore,

[601(B +7.2:0.). B) = 6(n(B + 7:2:0,). B)|
< L[U+20BI + [n(B + 7.Z:0.)| + In(B +7Z;0,)]]

X [n(B +7.250.) = (B +72:60,)|. (24)

For the soft-thresholding function defined in (4),
[n(z,0)] < |z| and it is easy to show the following
bounds [n(z1,0) —n(x2,0)| < |x1 — zo| and [n(z,01) -
n(x,02)| < |01 — 03]. This implies

‘n(B +7.2;6,) —n(B+ TtZ;Ht)‘

< ’n(B +7.7Z;0,) —n(B+ 1.7;6)

+ ’n(B +7:Z;0,) —n(B+12Z;60;)
< |9* — 9t| + ‘T* - Tt||Z| = |7-* - Tt|(a + ‘ZD

Using these bounds for the soft-thresholding function
in (24), we have

1B +7.2:0.). B) = 6(n(B + 7:2:6,), B)|
S L1+ 4IB| + (1w + 1) Z])(a + | Z]) |7 — T3]

Therefore,
0 = E|o(n(B +7.250.), B) — 6(n(B + 1:.2:0,), B)|
< Llr. = nfE[(1+4B| + (1. + 7)|Z]) (@ + | 21)]

Using 7. + 7+ < 2max{79, 7.}, by the above &; <
Ko(a, T)|T« — 7¢|, where the constant ka(c,7) > 0
does not depend on n or ¢t and

ka(o, 7)== L(a + E|Z])(1 + 4E|B|)

25
+ L2 max{7y, 7+ } (aE|Z| + 1). (25)

The result follows from Lemma 3 with constants K =
koB1 and k = 71 where r1,B; > 0 are defined in
Lemma 3.

We now show &;1 < Ke *(t+1). By (11), we have
A = 0.1 — $E[y/(B + 7.Z;6,)]], and by the defini-
tion of the soft-threshold function in (4), we have that
E[7/(x;0)] = P(|z| > 0). Therefore,

€ry1 = ’)\ — 0, [1 - %E[TII(B + 1 Z; at”] ’

<t — |+

amax{7y, T}

We have used that |6, — 6] = a|r. — 7| and that 6,
and 6; are both upper bounded by o max{7y, 7.} since
the sequence {7;};>¢ is monotone by Lemma 1. Now
the desired upper bound then follows by Lemma 3 and
Lemma 6 in the supplementary materials.

The fact that e; < Ke™ " follows using ¢; < Ke™"
as proved above, 6;_1 > amin{7, 7.}, and that 72 —
2B 1 +77, < Ke " by Lemma 3. The result v <
Kte~ " follows immediately from e; < Ke "t

O

4 OPTIMIZATION LEMMA

The proof of Theorem 3 uses the following lemma,
which gives conditions under which the result of The-
orem 3 is true. Then to prove Theorem 3, we must
prove that the conditions in Lemma 4 are met. We
will state Lemma 4, leaving the proof to a longer ver-
sion of this manuscript. Then we use the remainder of
the paper to sketch a proof of the conditions.

Before stating the lemma, we introduce some addi-
tional notation. Consider a matrix M € RP*P and a
vector v € RP. Then for any subset S C [p], we let Mg
be the sub-matrix of M consisting of just the columns
of M corresponding to the subset S and vg be the vec-
tor of elements of v in subset S. We let the support of a
vector be denoted supp(v) = {i : v; # 0}. We will con-
sider the spectral properties of the n x p i.i.d. Gaussian
matrix X, labelling ¢2,;,(X) and ¢2,,,(X) the mini-
mum and maximum singular values of the matrix X.
We label 6,4, (X) to be the minimum, non-zero singu-
lar value of X. Finally, the sub-differential of a convex
function f : RP — R at any point x € RP is denoted
by Jf(x). We refer frequently to the sub-differential
of the £y norm, [|x[|1 = >, lzil, as

Ox[h ={veR?: |vy| <1Vijz; # 0 — v, = sign(z;)}.

Lemma 4. Suppose the following are true for generic
constants K,k > 0.

anglition 1. For some universal constant by =
max{B, B} > 0 defined in Lemma 7 in the supplemen-
tary materials,

1 ~
P(SIIB = B2 = 4b1 ) < KK qe™™ .
p

Condition 2. For constant e; defined in Lemma
2 there exists a sub-gradient sg(C, B") € 0C(8") with

1 " _ 2
_ > < Khi—1Mere”
P(\/Z»)H59(07ﬁ )” = e—i—\/et) < KK;_ie

Condition 3. Let c1,ca, and c3 be universal con-
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stants with 0 < ¢y, c9,c3 < 1. Define
v = (1) [X (y — XB) + s9(C, 8] € 918" |1
and St(cy) == {i € [N] : |v}| > 1 —¢1} where sg(C, 3")

is the sub-gradient from Condition 2 above. Then for
any S’ C [N] with |S’] < caN, it follows

P(O—?nin(XSt(cl)US’) <c3) < Ke 7.

Condition 4. For constants ¢min,Cmaz > 0, the
maximum and minimum non-zero singular values of
X satisfy,

P([f2 (X)) < emin —€) < Ke_m“z,

min

and
2

P(02,,,(X) > Chas + €) < Ke "¢,

max —

Assume t = O( logn ) Then, for e € (0,1), all

loglogn
t > tmin (whose value isn’t stated explicitly but doesn’t
depend on € or n), and for large enough n,

1 ~
P(};H/gfﬁt”Q 2 E+Vt2) S KKteflﬂ‘Ltng27 (26)

where e, is defined in (20) and

4 b
2 etﬁ+(1+

_ tcmam ~
vy = — )&t

Cmin C3

with

- 32\/ €tb1 vV etbl 4
[ 5 ( 2 + )
cica A Cmin

v? is also defined in Lemma 2 equation (21), though

we state it again here to show the dependence on the
other constants ¢; — c3 in conditions (1) - (4) above.

The result given by Lemma 4 is a refined result
of [Bayati and Montanari, 2012, Lemma 3.1], the main
difference being that our proof carefully tracks the re-
lationship between t and n along with the rates at
which critical values are concentrating. The details of
the proof of Lemma 4 will be given in a longer version
of this manuscript. The proof of Theorem 3 follows
from Lemma 4 if one can show that Conditions 1-4
hold and we now sketch how one shows these results,
leaving the full details to a longer manuscript.

The first condition follows from Lemma 7 in the
supplementary material, which shows that the norms
of the LASSO estimator, 3, and the AMP estimate at
time ¢, 8%, concentrate around constant values.

Condition 2 is proved by defining a specific subgra-
dient that meets the requirement of the condition, and
in particular, this subgradient depends on the differ-
ences BT — 3" and 2!t — 2!, i.e. the differences in the

output of the AMP algorithm (5) - (6) at subsequent
iterations. The main technical piece is showing that
the norms |3t — 8Y(|2/p and ||z**+! — 2!||?/n concen-
trate on known values that approach 0 as ¢t grows. This
is mostly a consequence of the AMP analysis provided
by [Rush and Venkataramanan, 2015].

The most difficult part of proving Theorem 3 is
proving Condition 3. This requires proving some gen-
eral statements about the minimum singular value of
sub-matrices of X and also arguing that the sequence
of sets considered by S*(c;) does not change consider-
ably when t > t,,,;,. We note that t,,;, will be defined
explicitly in the longer version of this document, and
it depends on problem parameters related to the rate
of algorithm convergence like B; and r; of Lemma 3,
and we can ensure t,,;, < T by allowing T™ large
enough, though letting 7" grow degrades the rate of
the concentration given in Theorem 1.

Condition 4 follows from Lemma 5 in the supple-
mentary material, which gives concentration for the
singular values of random matrices.

5 DISCUSSION

This work studies the asymptotic rate at which the
loss between the LASSO estimator and the truth in
a high-dimensional linear regression model approaches
predicted values when n/p — 6 a constant ¢ € (0, 00),
and the measurement matrix has i.i.d. Gaussian en-
tries. An important tool in the proof is an approx-
imate message passing (AMP) algorithm constructed
to find the LASSO estimator and the theory relating
to the AMP state evolution. In future work we hope to
extend beyond the i.i.d. Gaussian measurement matri-
ces, which will require a refined analysis of the AMP
algorithms considered.

After providing a rigorous proof of the rate at which
the AMP algorithm converges to the LASSO estima-
tor, we use this convergence to pass along the AMP al-
gorithm state evolution guarantees to provide asymp-
totic predictions about the LASSO loss. A limitation
of this work is that the current finite sample AMP
state evolution analysis requires the number of itera-
tions ¢ for which the algorithm is run, to be such that

t= O(lololgn ) Hence, when considering the rates at
glogn

which the LASSO loss concentrates to the predicted
values, this rate holds.
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