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Abstract

One of the major open problems in complexity theory is proving super-logarithmic lower
bounds on the depth of circuits (i.e., P ¢ NC'). Karchmer, Raz, and Wigderson [KRW95]
suggested to approach this problem by proving that depth complexity behaves “as expected”
with respect to the composition of functions f ¢ g. They showed that the validity of this
conjecture would imply that P ¢ NC!.

Several works have made progress toward resolving this conjecture by proving special cases.
In particular, these works proved the KRW conjecture for every outer function f, but only for
few inner functions g. Thus, it is an important challenge to prove the KRW conjecture for a
wider range of inner functions.

In this work, we extend significantly the range of inner functions that can be handled. First,
we consider the monotone version of the KRW conjecture. We prove it for every monotone
inner function g whose depth complexity can be lower bounded via a query-to-communication
lifting theorem. This allows us to handle several new and well-studied functions such as the
s-t-connectivity, clique, and generation functions.

In order to carry this progress back to the non-monotone setting, we introduce a new no-
tion of semi-monotone composition, which combines the non-monotone complexity of the outer
function f with the monotone complexity of the inner function g. In this setting, we prove the
KRW conjecture for a similar selection of inner functions g, but only for a specific choice of the
outer function f.
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1 Introduction

A major frontier of the research on circuit complexity is proving super-logarithmic lower bounds
on the depth complexity of an explicit function, i.e., proving that P ¢ NC!. This question is an
important milestone toward proving lower bounds on general circuits, and also captures the natural
question of whether there are tractable computational tasks that cannot be parallelized. The state
of the art is the work of Hastad [Has98|, who proved a lower bound of (3 — o(1)) - logn, following
a long line of work [Sub61, Khr72, And87, PZ93, IN93|. This lower bound has not been improved
for more than two decades except for the lower order terms [Tall4], and it is an important problem
to break this barrier.

Karchmer, Raz, and Wigderson [KRW95] proposed to approach this problem by studying the
(block-)composition of Boolean functions, defined as follows: if f : {0,1}"" — {0,1} and ¢ :
{0,1}"™ — {0,1} are Boolean functions, then their composition f ¢ g takes inputs in ({0,1}")™ and
is defined by

foglxy,...;xm) = f(g9(z1),...,9(xm)). (1)

Let us denote by D(f) the minimal depth of a circuit with fan-in 2 that computes f. The circuit that
computes f ¢ g using Equation (1) has depth D(f) + D(g). Karchmer et. al. [KRW95] conjectured
that this upper bound is roughly optimal:

Conjecture 1.1 (The KRW conjecture). Let f : {0,1}" — {0,1} and g : {0,1}" — {0,1} be
non-constant functions. Then
D(f og) = D(f) +D(9)- (2)

Karchmer et. al. observed that their conjecture, if proved, would imply that P ¢ NC'. The
meaning of “approximate equality” in Equation (2) is intentionally left vague, since there are a
many variants that would imply that separation.

While we are still far from resolving the KRW conjecture, several works [KRW95, EIRS01,
HWO93, Has98, GMWW17, DM18, KM18] have made progress toward it by proving special cases.
The state of the art is that the KRW conjecture is known to hold for every outer function f, but
only when combined with two specific choices of the inner function g: the parity function, and the
universal relation. There are no results proving the KRW conjecture for a broader family of inner
functions.

In this work, we prove the KRW conjecture for a rich family of inner functions g, namely,
those functions whose depth complexity can be lower bounded using lifting theorems. This includes
functions that are considerably more interesting than previous composition theorems could handle.
We prove these results in the monotone setting, and in a new setting which we call the semi-
monotone setting. Below, we discuss the background to this work and present our results.

Karchmer-Wigderson relations. It is useful to study the KRW conjecture through the lens of
communication complexity, and in particular, using the framework of Karchmer-Wigderson rela-
tions. Let us denote the (deterministic) communication complexity of a problem R by CC(R). The
Karchmer-Wigderson relation of a function f : {0,1}" — {0,1}, denoted KWy, is the communica-
tion problem in which the inputs of Alice and Bob are z € f~!(1) and y € f~1(0) respectively, and
their goal is to find a coordinate ¢ such that z; # y;. Karchmer and Wigderson [KW90] observed
that D(f) = CC(KWy). This connection between functions and communication problems allows us
to study the depth complexity of functions using techniques from communication complexity.



The KRW conjecture from the KW perspective. Let f:{0,1}"" — {0,1} and g : {0,1}" —
{0, 1} be non-constant functions. It will be useful to denote the KW relation K W, of the composed
function by KWy o KW,. In this relation, Alice and Bob get X € (fog)™'(1) and Y € (fog)~1(0),
viewed as m x n matrices, and their goal is to find an entry (4, j) such that X; ; # Y; ;. The KRW
conjecture can be restated as:

CC(KW; o KW,) ~ CC(KW;) + CC(KW,).

It is worth noting the obvious protocol for solving KWy o KW,: Let a,b be the column vectors that
are obtained from applying g to the rows of X, Y, and observe that they constitute an instance
of KW;. The players begin by solving KW} on a and b, thus obtaining a coordinate i € [m] such
that a; # b;. Then, they solve KW, on the rows X;,Y;, which constitute an instance of KWy, thus
obtaining a coordinate j € [n] where X; ; # Y; ;. The communication complexity of this protocol is
CC(KW;)+CC(KWy), and the KRW conjecture says that this obvious protocol is roughly optimal.

Previous work on the KRW conjecture. The KRW conjecture has been studied extensively,
and a long line of papers have made progress on important restricted cases. These papers can be
broadly divided into two categories.

The first category involves proving the KRW conjecture for a simplified communication problem.
Specifically, Karchmer et. al. [KRW95] proposed a simplification of KW relations called the
universal relation (denoted U,,) which is the following communication problem: Alice and Bob get
two distinct strings x,y € {0,1}", and their goal is to find a coordinate on which they disagree. The
universal relation is harder to solve than KW relations, since the inputs of Alice and Bob are not
assumed to come from the preimage of some function f, and so the protocol cannot take advantage
of any properties of f. Just as the universal relation is a simplified version of KW relations, one can
define simplified versions of KW o KWy, such as the composition Uy, oU,, of two universal relations
and the composition KWy ¢ U, of a KW relation and a function. Several works have studied this
type of compositions [KRW95, EIRS01, HW93, GMWW17, KM18]|, and the state of the art is that
the KRW conjecture holds for KWy ¢ U, for every non-constant function f : {0,1}" — {0,1}
[GMWW17, KM18].

The second category where important progress was made is for KWy o KWg where f can be
any non-constant function and €p is the parity function. The KRW conjecture for this case has
been proved implicitly by Hastad [Has98], and an alternative proof was recently given by Dinur
and Meir [DM18].

The papers discussed so far are able to handle an arbitrary choice of the outer relation KWy,
but only very specific choices of the inner relation KW,. This seems to suggest that the crux
of the difficulty in proving the KRW conjecture lies in having to deal with an arbitrary choice
of KWy. In order to bypass this difficulty, Meir [Meil9] recently observed that in order to prove
that P ¢ NC', it suffices to prove a version of the KRW conjecture in which K W, is replaced with
a specific communication problem, namely, the multiplezor relation MUX of [EIRSO01]. Specifically,
he defined a composition of the form KWy o MUX, and showed that if a variant of the KRW
conjecture for KW; ¢ MUX holds for every non-constant outer function f, then P ¢ NC!.

Motivation. Following the above discussion, our goal is to “replace” the relations U, and KWg
in the known results with MUX. Unfortunately, this seems to be very difficult — in particular, the
relation MUX seems to be significantly more complicated than U, and KWgy.

In order to make progress, we propose that a good intermediate goal would be to try to prove
the KRW conjecture for the composition KWy o KW, for inner functions g that are as complex



and expressive as possible. Ideally, by extending the range of inner functions g that we can handle,
we will develop stronger techniques, which would eventually allow us to prove the conjecture for
KW;o MUX.

An additional motivation for proving the KRW conjecture for harder inner functions is that it
may allow us to improve the state of the art lower bounds on depth complexity. The best known
lower bound of (3 —o0(1)) -logn [And87, PZ93, IN93, Has98] was achieved by implicitly proving the
KRW conjecture for KWy o KWg, and it may be improved by proving the KRW conjecture for
new inner functions.

The question is, which inner functions g would be good candidates for such a program? Ideally,
a good candidate for g would be such that the KW relation KW, is more interesting than U,, and
KWgy, but less complicated than MUX. Unfortunately, there are not too many examples for such
relations: in fact, the relations U, KWgy, and MUX are more or less the only relations that are
well-understood. Thus, we have a shortage of good candidates g for this program.

As a way out of this shortage, we propose to consider monotone depth complezrity in the
study of inner functions. Given a monotone function f, the monotone depth complexity of f,
denoted mD(f), is the minimal depth of a monotone circuit that computes f. The monotone KW
relation of a monotone function f, denoted mK Wy, is defined similarly to KWy, but this time the
goal of Alice and Bob is to find a coordinate i such that x; > y; (rather than x; # y;). Karchmer
and Wigderson [KW90] observed that mD(f) = CC(mKWy).

Fortunately, there are many monotone KW relations that are well-understood, and which are
significantly more interesting than U, and KWg. We would like to study compositions in which
these monotone KW relations serve as the “inner part”, in the hope that such study would lead us
to discover new techniques.

1.1 Our results
1.1.1 The monotone composition theorem

Motivated by considerations discussed above, our first result concerns the monotone KRW con-
jecture. This conjecture says that for every two non-constant monotone functions f,g it holds
that

CC(mKWy o mKWy) = CC(mKW;) + CC(mK W)

(where mKWgomKW, © K Weg). This conjecture was studied in the original paper of Karchmer
et. al. [KRW95], who proved it for the case where both f and g are the set-cover function. However,
it received far less attention than the non-monotone conjecture, perhaps because the monotone
analogue of P ¢ NC! has been known to hold for a long time, and monotone depth complexity is
considered to be very well understood in general.

Nevertheless, we believe that this conjecture is interesting for several reasons: First, it is a
very natural question in its own right. Second, if we cannot prove the KRW conjecture in the
monotone setting, what hope do we have to prove it in the non-monotone setting, which is far
less understood? Finally, proving the monotone KRW conjecture might prove useful for tackling
other important questions on monotone depth complexity, such as proving lower bounds on slice
functions (which in particular would imply non-monotone lower bounds).

Our first main result is a proof of the monotone KRW conjecture for every non-constant mono-
tone function f, and for a wide range of monotone functions g. Specifically, our result holds for
every function g whose monotone depth complexity can be lower bounded using a “lifting theorem”:
A lifted search problem S ¢ gd is obtained by composing a search problem S with an appropriate



“gadget” function gd. A lifting theorem is is a theorem that translates a lower bound for S in a
weak model of computation to a lower bound for S ¢ gd in a strong model.

Here, the relevant weak model of computation is query complexity. Informally, the query com-
plexity of a search problem S, denoted Q(.S), is the number of queries one should make to the input in
order to find a solution (see Section 2.4 for a formal definition). Fix a gadget gd : {0,1}' x {0,1}} —
{0,1} of input length t. A few lifting theorems [RM99, CKLM17, WYY 17, CFK*19] establish that
if the gadget gd satisfies certain conditions, then CC(S o gd) = Q(Q(S) - t). In this work, we use
a lifting theorem of Chattopadhyay et. al. [CFKT19], which hold for every gadget gd that has
sufficiently low discrepancy and sufficiently large input length (see Theorem 2.26 for the formal
statement).

Our result says that the monotone KRW conjecture holds whenever the lower bound on mKWj
can be proved using the theorem of [CFK™19]. More specifically, there should exist a reduction
to mK W, from a lifted search problem S ¢ gd that satisfies the conditions of [CFK*19]. This is a
much wider family of inner functions than what previous composition theorems could handle (i.e.,
universal relation and parity), though we are now working in the monotone rather than the non-
monotone setting. Informally, the composition theorem can be stated as follows (see Theorem 3.1
for the formal statement):

Theorem 1.2 (monotone composition theorem, informal). Let f : {0,1}" — {0,1} and g :
{0,1}" — {0,1} be non-constant monotone functions. If there is a lifted search problem S o gd
that reduces to mKW, and satisfies the conditions of the theorem of [CFKt19], then

CC(mKW; o mKW,) > CC(mKWy) +Q(Q(S) - t).

In particular, if CC(mKWgy) = O (Q(S) - t), then
CC(mK Wy o mKW,) > CC(mKWy) + Q(CC(mKW,)). (3)

We would like to note that the the theorem is applicable to many interesting cases, including
the classic s-t-connectivity function [KW90, GS91] clique function [GH92, RW92|, and generation
function [RM99] (see Appendix A for details). Moreover, we would like to mention that the bound
of Equation (3) is good enough for the purposes of the KRW conjecture.

We would also like to stress that while the statement of our monotone composition theorem
refers to the lifting theorem of [CFK™19], we believe it can be adapted to work with similar lifting
theorems such as the ones of [RM99, CKLM17, WYY17] (in other words, the specific choice of
the lifting theorem is not particularly crucial). Finally, it should be mentioned that the formal
statement of the monotone composition theorem actually refers to formula complexity rather than
depth complexity.

In order to prove Theorem 1.2, we introduce a generalization of the lifting theorem of [CFK™19],
which may be of independent interest. Roughly, our generalization shows a lower bound for the
lifted problem S ¢ gd even when restricted to a subset of its inputs, as long as this subset satisfies
a certain condition. See Section 1.2.1 for further discussion.

1.1.2 The semi-monotone composition theorem

Recall our end goal is to gain insight into the non-monotone setting. To this end, we define a new
form of composition, called semi-monotone composition, which composes a non-monotone outer
KW relation with a monotone inner KW relation. The purpose of this new composition is to enjoy
the best of both worlds: On the one hand, this notion allows us to use candidates for the inner
function g that come from the monotone setting. On the other hand, we believe that this notion is



much closer to the non-monotone setting. Thus, by studying semi-monotone composition we can
tackle issues that come up in the non-monotone setting but not in the monotone setting.

In order to gain intuition for the definition of this composition, consider the obvious protocol
for the non-monotone composition KW;o KW,. Recall that the inputs to this protocol are matrices
X,Y € {0,1}™" and that we denote by a, b the column vectors that are obtained by applying g
to the rows of those matrices. Observe that there are two key properties of KWy o KW, that allow
the obvious protocol to work:

e The players can find a row ¢ € [m] such that a; # b; by solving KWy on a,b.

e For every i € [m] such that a; # b;, the players can find a solution for KWy o KW, by solving
mKW, on the rows X;,Y;.

Note that, while the obvious protocol always finds a solution in a row ¢ where a; # b;, the rows
where a; = b; might contain solutions as well.

We define the semi-monotone composition of KW; and mKW, as a communication problem
that is identical to KWy ¢ KW, except that in the second property above, the non-monotone
relation KW, is replaced with the monotone relation mKW,. Formally, we define semi-monotone
composition as follows.

Definition 1.3 (Semi-monotone composition). Let f : {0,1}" — {0, 1} be a non-constant (possibly
non-monotone) function, and let g : {0,1}" — {0,1} be a non-constant monotone function. The
semi-monotone composition KW;omKW, is the following communication problem. Alice and Bob
get as inputs m x n binary matrices X and Y respectively. Let a,b € {0,1}™ denote the column
vectors that are obtained by applying g to each row of X and Y respectively. Then, f(a) = 1 and
f(b) = 0, and the goal of the players is to find an entry (4, j) that satisfies one of the following three
options:

e a; > b; and Xi’j > Yi,j-
e a; < b; and Xm’ < Yi,j-
e a; =b;and X;; #Y; ;.

Note that this communication problem has the desired structure: Indeed, it is not hard to see
that when a; # b;, finding a solution in the the i-th row is equivalent to solving mKW, on X;,Y;.
It is also not hard to show that CC(KW; o mKW,) < CC(KWy) + CC(mKW,) bits, by using an
appropriate variant of the obvious protocol of KWy ¢ KW,. Therefore, a natural “semi-monotone
variant” of the KRW conjecture would be the following.

Conjecture 1.4 (Semi-monotone KRW conjecture). For every non-constant function f : {0,1}"" —
{0,1} and non-constant monotone function g : {0,1}" — {0, 1},

CC(EW; o mKW,) 2 CC(KWy) + CC(mKW,).

Our result. Ideally, we would have liked to prove Conjecture 1.4 for every outer function f and
for a wide range of inner functions g. Unfortunately, we are only able to prove it for the case
where the outer relation mK Wy is replaced with the (non-monotone) universal relation, i.e., the
composition U,, o mKW,. This composition is defined similarly to Definition 1.3, with the following
difference: instead of promising that f(a) = 1 and f(b) = 0, we only promise that a # b. The
natural conjecture in this case would be that

CC(Up, o mKWy) 2 CC(Uy,) + CC(mKWy) > m+ CC(mKW,), (4)



where the second inequality holds since CC(U,,) = m + ©(1) (see [KRW95, TZ97]). Our semi-
monotone composition theorem proves such a result for every monotone inner function g for which
a lower bound on CC(mKW,) can be proved using a lifting theorem of [IRMN*19].

Before describing our result, we briefly describe the lifting theorem of [dRMNT'19]. Given
an unsatisfiable CNF formula ¢, its associated search problem Sy is the following task: given
an assignment z to ¢, find a clause of ¢ that is violated by z. The Nulistellensatz degree of ¢,
denoted NSr(¢), is a complexity measure that reflects how hard it is prove that ¢ is unsatisfiable
in the Nullstellensatz proof system over a field F (see Section 2.6 for a formal definition). Fix a
gadget gd : {0,1}F x {0,1}* — {0,1} of input length ¢. The lifting theorem of [IRMN*19] says that
CC(Sy o gd) > Q(NSr,(¢) - t) provided that the gadget gd has sufficiently large rank.

Our result says that Equation (4) holds whenever there is a reduction from such a lifted problem
Spogd to mKW,. We require the gadget gd to be the equality function eq, and require the reduction
to be injective (see Definition 2.8 for the definition of injective reduction). Informally, our semi-
monotone composition theorem can be stated as follows (see Theorem 4.1 for the formal statement):

Theorem 1.5 (semi-monotone composition theorem, informal). Let g : {0,1}" be a non-constant
monotone function, and let eq be the equality function on strings of length t. Suppose there exists
a lifted search problem Sy o eq that reduces to mKWg via an injective reduction and satisfies the
conditions of the theorem of [ARMN*19]. Then

CC(Up, 0o mKWy) > m + Q(N Sk, (9) - t).

In particular, if CC(mKWgy) = O(N Sk, (¢) - t), then
CC(Up, © mEKWy) > m + Q(CC(mKW,))
for some € > 0.

As in the case of the monotone composition theorem, the semi-monotone theorem is applicable
to many interesting cases, including the classic s-t-connectivity, clique, and generation functions
mentioned above (see Appendix A for details), and the bound that it gives is good enough for the
purposes of the KRW conjecture.

Comparison to monotone composition. Recall that our goal in defining semi-monotone com-
position is to captures issues that arise in the non-monotone setting but are not captured by the
monotone setting. We claim that our definition succeeds in this task for at least one significant
issue, to be discussed next.

Recall that the KRW conjecture says that the obvious protocol for KWy o KW, is essentially
optimal. Intuitively, this should be the case since it seems that the best strategy for the players
is to work on a row where a; # b;, and to do it, they must first find such a row. While it seems
reasonable that the best strategy is to work on a row where a; # b;, it is not clear how to prove
it: indeed, this is a central challenge in the proofs of known composition theorems (though not the
only challenge).

On the other hand, Karchmer et. al. [KRW95] observed that in the monotone setting, the
players can be forced to solve the problem on a row where a; > b;. This means that in the monotone
setting, we can easily bypass a central challenge of the non-monotone case. An important feature of
semi-monotone composition is that the observation of [KRW95] fails for this composition. Hence,
we believe that the semi-monotone setting is much closer to the non-monotone KRW conjecture
than the monotone setting.



1.2 Our techniques
1.2.1 The monotone composition theorem

We use the high level proof strategy that was introduced by [EIRSO01], and further developed in
[DM18, Meil7, KM18]. The main technical lemma is a structure theorem, formalizing that any
correct protocol must first solve mK Wy, and then solve mKW,. A bit more formally, we show
that for any partial transcript 71 of II, if mK W} has not yet been solved at 1, then II must send
~ CC(mKW,) additional bits before it can find a solution for mKW; o mKW,.

To accomplish this, at 7;, we partition the rows of X,Y into two types: (1) “revealed” rows
where 7 knows much information, and (2) “unrevealed” rows, where 7; knows only a small amount
of information. We then show that the revealed rows can be forced to be useless (that is, we can
ensure that the players cannot find a coordinate (i, j) where i is a revealed row). It follows that in
order for the protocol to finish after 71, it has to solve mK W, on one of the unrevealed rows.

The remaining step is therefore to show that in order to solve mK W, on one of the unrevealed
rows, the protocol must transmit ~ CC(mKW,) additional bits. While this claim sounds intuitive,
proving it is non-trivial since some (small amount of) information has been learned about each
unrevealed row, and this revealed information can be highly dependent. Moreover, the protocol
is allowed to choose on which unrevealed row it would solve mK W, and this could in principle
make the task significantly easier. In previous works, those issues were dealt with in a way that
was tailored to the particular choice of g. Specifically, one would take a known lower bound
proof for KW, and show that it still goes through even after accounting for the aforementioned
complications.

In our case, we do not know the particular choice of g, but we do know that the lower bound
for mKW, is proved using the lifting theorem of [CFK*19]. Hence, our goal is show that this lower
bound proof still goes through. To this end, we prove a generalization of that lifting theorem which
may be of independent interest (see Theorem 5.1). Informally, our generalization shows that S gd
remains hard even if we restrict it to a subset X’ x ) of its inputs, as long as the coordinates remain
unpredictable. Since this is the case for the unrevealed rows, we get the lower bound that we desire.

The notion of unpredictability required by our lifting theorem is based on average degree as
defined by [EIRS01, RM99]: given a set of strings W € A’ and a subset of coordinates I C [f],
the average degree AvgDeg;(VV) is the average number of ways to complete a string in W|j_; to
a string in W. Informally, our generalized lifting theorem says the following (see Theorem 5.1 for
the formal statement):

Theorem 1.6 (informal). Let S o gd be a lifted search problem that satisfies the conditions of
of [CFKT19]. Let X x Y be a subset of the inputs of Sogd such that AvgDeg;(X) and AvgDeg;())
are sufficiently large for every set of coordinates I. Then, the communication complezity of solving
Sogd on the inputs in X x Y is at least Q (Q(S) - t).

Our proof of the generalized lifting theorem mostly follows the proof of [CFK*19], except for
one significant issue: In both proofs, the communication complexity is bounded using a potential
argument. In the original proof of [CFK*19], the potential function is the min-entropy deficiency
with respect to the uniform distribution over all the inputs. In our proof, on the other hand,
the potential function measures the deficiency with respect to the uniform distribution owver the
restricted set of inputs. The latter distribution is less structured, and hence the potential argument
requires a more refined analysis.
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1.2.2 The semi-monotone composition theorem

We prove the lower bound on U,, ¢ mKW, using the Razborov rank method (see Section 2.5).
Basically, in order to use this method to prove a lower bound on a communication problem S C
X x Y x O, one needs to construct an matrix A of order |X'| x | Y| such that A has a high rank, but
its restriction to every S-monochromatic rectangle has a low rank. Roughly, the lifting theorem
of [{RMNT19] gives such a matrix A for mK W, and we use this matrix to construct a corresponding
matrix M for U,, o mKW,.

The matrix M for U,,omKWj is constructed as follows. The rows and columns of M are indexed
by matrices X and Y respectively. We view the matrix M as a block matrix that consists of 2™ -2™
blocks — a block for each value of a and b. For every a, b such that a = b, the corresponding block
is the all-zeroes matrix. For every other choice of a, b, the corresponding block is formed by taking
the Kronecker product, for every ¢ € [m], of either A (if a; # b;) or the identity matrix I (if a; = b;).

The matrix M is constructed in that way in order to guarantee that all its restrictions to
monochromatic rectangles have low rank. On the one hand, having the matrix A in rows ¢ where
a; # b; guarantees that monochromatic rectangles that solve mK W, on such rows X;,Y; have low
rank. On the other hand, having the identity matrix I in rows ¢ where a; = b; guarantees that
monochromatic rectangles that find different entries X; ; # Y; ; are all-zeroes rectangles.

An important part of the proof is the observation that the when the theorem of [{RMNT19] is
applied with the equality gadget over Fy (as we do), it gives a matrix A that satisfies that A? = I.
This property creates a connection between A and I that allows us to analyze the rank of M and
its sub-matrices using Gaussian elimination.

Organization of this paper. We cover the necessary preliminaries in Section 2. Then, we prove
the monotone composition theorem in Section 3, and the semi-monotone composition theorem
Section 4. We prove our generalization of the lifting theorem of [CFK*19] in Section 5. Finally, in
Section 6 we discuss open problems for future research, and in Appendix A, we show how to apply
our theorems to the classic functions s-t-connectivity, clique, and generation.

2 Preliminaries

Throughout the paper, we use bold letters to denote random variables. For any n € N, we denote
by [n] the set {1,...,n}. We denote by Fa the finite field of size 2. We say that a CNF formula ¢
is a CNF contradiction if and only if it is unsatisfiable.

Given two strings z,y € {0,1}", we write x > y if x; > y; for every ¢ € [n]. We say that a
Boolean function f : {0,1}" — {0,1} is monotone if for every x,y € {0,1}" such that z > y it
holds that f(z) > f(y).

Given an alphabet A and a set I C [n], we denote by A’ the set of strings of length |I| whose
coordinates are indexed by I. Given a string w € A" and a set I C [n], we denote by w; € Al the
projection of w to the coordinates in I (in particular, wy is defined to be the empty string). Given
a set of strings W C A™ and a set I C [n], we denote by W the set of projections of strings in W
to I.

We denote by A™*™ the set of m x n matrices with entries in A, and for sets I C [m] and
J C [n], we denote by A’*” the set of |I| x |.J| matrices whose entries are indexed by I x J. Given

a matrix X € A™*" and a rectangle R “rxrc [m] x [n], we denote by X|g the projection of X
to R. We denote by X; € A™ the i-th row of X. Given a matrix A € F™*™ over a finite field F, we
denote its rank by rankp(A).
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Search problems. Given a finite set of inputs Z and a finite set of outputs O, a search problem S
is a relation between Z and O. Given z € Z, we denote by S(z) the set of outputs o € O such that
(z,0) € S. Intuitively, a search problem S represents the following task: given an input z € Z, find
a solution o € S(z). Without loss of generality, we may assume that S(z) is always non-empty,
since otherwise we can set S(z) = {_L} where L is some special failure symbol that does not belong
to O.

2.1 Communication complexity

We assume familiarity with the basic definitions of communication complexity (see, e.g., [KN97]).
In what follows, we highlight some important basic definitions and facts that we will use, and define
some less standard notions. Recall that a (deterministic) protocol I is defined as a binary tree. We
identify the vertices of the protocol with the transcripts that they represent. Given sets X and ),
we say that the protocol has domain X' x ) if the inputs of Alice and Bob are taken from the sets
X and ) respectively. We say that the range of the protocol is a set O if the protocol outputs
elements in O.

Definition 2.1. Given a transcript w, we say that it is a full transcript if it corresponds to a leaf
of the protocol tree, and otherwise we say that it is a partial transcript. Given a pair of inputs
(z,y) € X x ), we define the transcript of (z,y), denoted II(z,y), as the full transcript of the
protocol when Alice and Bob get the inputs z and y respectively.

Definition 2.2. We say that two protocols II, II' over the same domain and range are equivalent
if they have the same output on every pair of inputs.

Definition 2.3. A communication problem S C X x Y x O is the search problem in which Alice
and Bob get inputs x € X and y € ) respectively, and would like find a solution o € S(z,y). A
protocol solves S if on every pair of inputs (z,y) € X x ) it outputs some o € S(x,y).

Definition 2.4. The communication complexity of a protocol II, denoted CC(II), is the the depth
of the protocol tree. For a search problem S, the (deterministic) communication complexity of S,
denoted CC(.9), is the minimal communication complexity of a protocol that solves S.

Definition 2.5. We define the size of a protocol II to be its number of leaves. We define the
protocol size of a search problem S, denoted L(S), as the size of the smallest protocol that solves
it (this is also known as the protocol partition number of S).

It is not hard to see that for every protocol II it holds that CC(II) > logL(II) — informally,
every “shallow” protocol is “small”. The following folklore fact establishes a connection in the
other direction: namely, every “small” protocol can be transformed into a “shallow” one. This
transformation is sometimes called protocol balancing.

Fact 2.6 (protocol balancing, see, [KN97, Lemma 2.8]). For every protocol I there is an equivalent
protocol TI' such that CC(II') < 2logL(IT). In particular, for every communication problem S it
holds that

logL(S) < CC(S) < 2logL(S)

and hence CC(S) = ©(log L(S5)).

Notation 2.7. Let II be a protocol with domain X x ) and let m be a transcript of II. Recall
that the set of inputs (z,y) € X x ) on which the protocol reaches the vertex 7 is a combinatorial
rectangle. We denote this rectangle by X x V.. We say that « is a full transcript if it corresponds
to a leaf of the protocol tree, and otherwise we say that it is a partial transcript.
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Finally, we use the following definition, which generalizes the notion of a rectangular reduction
of [BNS92] to search problems.

Definition 2.8. Let S C X x Y x O and S’ C X’ x )’ x O be communication problems. A
reduction from S to S’ consists of functions R4 : X — X/, Rg : Y — V', and Roy : O’ — O that
satisfy the following condition: for every z € X, y € Y, and o’ € O, if ¢’ is a solution for S’ on
inputs R4(x) and Rp(y), then Ry (0') is a solution for S on (z,y).

We say that the reduction is injective if the functions R4, Rp are injective (but the function
Royt is not required to be injective).

Remark 2.9. An important aspect of Definition 2.8 is that the function Ry, is required not to
depend on the inputs z,y. This stands in contrast to other definitions of reductions for search
problems (e.g. a Levin reduction), which do allow their analogue of Royt to depend on the inputs.
We note that this requirement is used in the proof of the semi-monotone composition theorem
(Theorem 4.1), but not in the proof of the monotone composition theorem (Theorem 3.1).

2.2 Subadditive measures on trees
We use the following notions of a subadditive measure and a separating set of a tree.

Definition 2.10. Given a binary tree T' = (V, E), we say that a function v : V' — N is a subadditive
measure on T if for every internal vertex v with children vy and vy it holds that v(v) < v(vg)+~(v1).

Definition 2.11. Given a binary tree T = (V, E), we say that a set of vertices M C V is a
separating set of T' if every path from the root of T to its leaves passes through M.

We use the following fact about subadditive measures.

Claim 2.12. Let T = (V, E) be a binary tree with root r, let v be a subadditive measure on T, and
let M be a separating set of T. Then, there exists a vertex v € M such that y(v) > v(r)/|M].

Proof sketch. Let T, r, 7, and M be as in the claim. By applying the definition of subadditive
measure inductively, it is not hard to show that

() < Y ().
The claim now follows by averaging. |

2.3 Monotone formulas and Karchmer-Wigderson relations

In this section, we define monotone formulas and KW relations formally, and state the connections
between them.

Definition 2.13. A monotone formula ¢ is a binary tree, whose leaves are labeled with input
variables x;, and whose internal vertices are labeled as AND (A) or OR (V) gates. We note that
a single input variable z; can be associated with many leaves. The size of a monotone formula is
the number of its leaves (which up to a factor of 2 is the same as the number of edges or vertices
of the tree).

Definition 2.14. A monotone formula ¢ over n variables computes a monotone Boolean func-
tion f : {0,1}" — {0,1} in the natural way. The monotone formula complexity of a monotone
function f : {0,1}" — {0,1}, denoted mL(f), is the size of the smallest monotone formula that
computes f. The monotone depth complexity of f, denoted mD(f), is the smallest depth of a
formula that computes f.
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Remark 2.15. Note that we define here the monotone depth complexity of a function as the depth
of a monotone formula that computes f, whereas in the introduction we defined it as the depth of
a monotone circuit that computes f. However, it is not hard to see that the two definitions are
equivalent.

Next, we generalize the above definitions from functions to promise problems, which will be
useful when we discuss Karchmer-Wigderson relations.

Definition 2.16. Let X', Y C {0,1}". We say that a monotone formula ¢ separates X and Y if
¢(x) =1 for every x € X and ¢(y) = 0 for every y € ).

It is not hard to prove that two sets X, C {0,1}" are separated by some monotone formula
if and only if they satisfy the following property: for every x € X and y € ) it holds that x; > y;
for some coordinate i € [n]. We denote this property by X > V.

Definition 2.17. Let X, C {0,1}" be sets such that X > ). The monotone formula complezity
of the rectangle X x ), denoted mL(X x }), is the size of the smallest formula that separates
X and Y. The monotone depth complexity of the rectangle X x Y, denoted mD(X x ), is the
smallest depth of a formula that separates X and ). If the rectangle X x Y is empty, we define
mL(X x Y) =mD(X xY)=0.

Note that Definition 2.14 is indeed a special case of Definition 2.16 where X = f~1(1) and Y =
f71(0). We turn to defining monotone KW relations. We first define them for general rectangles,
and then specialize the definition to functions.

Definition 2.18. Let X, C {0,1}" be two sets such that X = Y. The monotone KW relation
mKWyy is the communication problem in which the input of Alice is x € X, the input of Bob
us y € Y, and they would like to find a coordinate i € [n]| such that x; > y;. Note that such a
coordinate always exists by the assumption that X > ).

Definition 2.19. Let f : {0,1}" — {0,1} be a non-constant monotone function. The monotone
KW relation of f, denoted mK Wy, is defined by mK Wy def MEWi—1(1)x p-1(0)-

We are now ready to state the connection of monotone KW relations to monotone depth and
formula complexity.

Theorem 2.20 ([KW90], see also [Raz90]). For every two sets X, C {0,1}" such that X =) it
holds that mD(X x V) = CC(mKWxxy) and mL(X x V) = L(mKWxyy). In particular, for every
non-constant f : {0,1}" — {0,1}, it holds that mD(f) = CC(mK W) and mL(f) = L(mKWy).

Due to Theorem 2.20, in the rest of the paper we use the notations mL(X x V) and L(mKWxxy)
interchangeably.
Given a protocol II that solves mK Wy y, we can view the complexity measure mL as a subad-

ditive measure over the protocol tree. Specifically, this measure assigns to each vertex v of II the

value mL(v) def mL(X, x ),), where X, x ), is the rectangle that is associated with v.

To see that this is indeed a subadditive measure, let v be an internal vertex of II, and let vy
and vy be its children. Without loss of generality, assume that at the vertex v it is Alice’s turn to
speak. Then, &, = X,, UX,, and ), = Vy, = Wy, It holds that

mL(v) = mL(X, x Vy)
< mL(Xyy X Vo) + mL(Xy, x V) (5)
= mL(Xyy X Vo) + mL(Xy, X Vo) (Since Yy = Vg = Vo)
= mL(’UQ) + mL(vl).
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To see why Equation (5) holds, consider the following protocol for mK Wy, «y,: Alice starts by
saying whether her input belongs to &, or to &},. Then, the players proceed by invoking the
optimal protocol for either mK Wy, xy, or mKWx, xy, respectively. It is easy to see that the size
of this protocol is at most mL(X,, x ) + mL(X,, x )). Hence, mL is a subadditive measure, as
required.

2.4 Decision trees

Informally, a decision tree is an algorithm that solves a search problem S C {0, 1}4 x O by querying
the individual bits of its input. The tree is computationally unbounded, and its complexity is
measured by the number of bits it queried. Formally,

Definition 2.21. A (deterministic) decision tree T with domain {0,1}" and range O is a binary
tree in which every internal node is labeled with a coordinate in [¢] (which represents a query),
every edge is labeled by a bit (which represents the answer to the query), and every leaf is labeled
by an output in O. Such a tree computes a function from {0, 1}(Z to O in the natural way, and with
a slight abuse of notation, we identify this function with 7. The query complezity of T is the depth
of the tree.

Definition 2.22. We say that a decision tree T solves a search problem S C {0, l}e x O if for every
z € {0,1}" it holds that T(z) € S(z). The (deterministic) query complexity of S, denoted Q(S), is
the minimal query complexity of a deterministic decision tree that solves S.

2.5 The Razborov rank measure

The Razborov rank measure [Raz90] is a complexity measure that can be used to prove lower
bounds on communication complexity. In order to introduce this measure, we first establish some
notation. Let S C X x ) x O be a communication problem. For some o € O, we say that a
rectangle R C X x ) is o-monochromatic (for S) if o € S(z,y) for every (z,y) € R. We say
that R is S-monochromatic if it is o-monochromatic for some o € O. Let R denote the set of
S-monochromatic rectangles.

Now, let F be a field. Given a matrix A € F¥*Y the Razborov F-rank measure of S with respect

to Ais
rankp(A)

def
MF(S7 A) = .
%g%rankﬁr (Alr)

The Razborov F-rank measure of S, denoted pp(.S), is the maximum of upr(S, A) over all matrices
A € F¥*Y_ We have the following result.

Fact 2.23 ([Raz90]). For every field F, it holds that L(S) > ur(S), and hence CC(S) > log ur(S).

2.6 The Nullstellensatz proof system

The Nullstellensatz proof system is a method for certifying that a set of polynomials does not have
a common root. Formally, let F be a field, and let P = {pi F¢— F}i elm] be a set of polynomials.
By Hilbert’s Nullstellensatz, the polynomials p1,...,p, do not have a common root if and only if
there exist polynomials qi, ..., ¢y, : F"" — F such that the following equality holds syntactically:

P+ ..+ Pmgm =1 (6)
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The Nullstellensatz degree of P with respect to qi,...,qn is the minimal degree of the polynomial
pi - ¢ over all i € [m]. The Nullstellensatz degree of P is the minimal Nullstellensatz degree of P
over all polynomials qi, ..., ¢y, that satisfy Equation (6).

The Nullstellensatz proof system can be used to certify that a CNF formula is unsatisfiable.
Let ¢ be a CNF formula over variables x1, ..., x,. Given a clause C of ¢, we define the polynomial
encoding of C' as the polynomial that is obtained by multiplying 1 — x; for every positive literal
x; that appears in C, and multiplying by x; for every negative literal —x; that appears in C. Let
P4 denote the set of polynomials that consists of the polynomial encodings of all the clauses of ¢,
and of the polynomials z% — z1, . .. ,x% — zy. Then, a result of Buss et. al. [BIK1T97] says that ¢
is unsatisfiable if and only if the set Py does not have a common root. This leads to the following
natural definition of the Nullstellensatz degree of a CNF contradiction.

Definition 2.24. Let ¢ be a CNF contradiction, and let IF be a field. The Nullstellensatz degree
of ¢ over F, denoted NSg(¢), is the Nullstellensatz degree of the set Py (where the polynomials
in Py are viewed as polynomials over the field IF).

2.7 Lifting theorems

Lifting theorems are theorems that relate the complexity of a search problem S in a weak model to
the complexity of the composed search problem S ¢ gd in a strong model. Formally, given a search
problem S C {0, 1}6 x O and a “gadget” function gd : A x A — {0, 1}, the lifted search problem
Sogd C Al x AY x O is the communication problem defined by

Sogd((z1,-,20), (W1, y0) L S (gd(@1,m1), .-, gd(we, o)) -

Lifting theorems are theorems that lower bound the complexity of S¢ogd in terms of the complexity
of S. The first theorems of this kind were proven by Raz and McKenzie [RM99], Shi and Zhou
[SZ09], and Sherstov [Shell]. The recent years have seen a flurry of results on lifting theorems and
their applications (see, e.g., [GP18, GLM*16, GPW15, GPW17, dRNV16, RPRC16, CKLM17,
PR17, WYY17, HHL18, PR18, CFK'19]). In this work, we use a theorem of [CFK™19] for lift-
ing query complexity (discussed in Section 2.7.1 below), and a theorem of [ARMN™19] for lifting
Nullstellensatz degree (discussed in Section 2.7.2).

2.7.1 Lifting from query complexity

It is not hard to see that for every search problem S, it holds that CC(S ¢ gd) < Q(S) - CC(gd):
this upper bound is obtained by the protocol that simulates an optimal decision tree for S on the
string gd(z1,41), ..., gd(zs, y¢), and answers the queries of the tree by invoking an optimal protocol
for gd. The first lifting theorem, due to Raz and McKenzie [RM99], established that if the gadget
gd is the index function over sufficiently large inputs, then this upper bound is essentially tight,
that is,

CC(S o gd) = 2(Q(S) - CC(gd)).

In other words, the theorem “lifts” the query complexity of S to a lower bound on the communica-
tion complexity of S ¢ gd. This theorem was recently generalized to other choices of the gadget gd
by [CKLM17, WYY17, CFK*19]. In this paper, we use the latter work of Chattopadhyay et. al.
[CFK'19], which proved a lifting theorem for every gadget gd that has sufficiently low discrepancy.
Below, we recall the definition of discrepancy, and state the relevant theorem of [CFK*19].
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Definition 2.25 (discrepancy). Let A be a finite set, let gd : A x A — {0, 1} be a function, and let
u, v be independent random variables that are uniformly distributed over A. Given a combinatorial
rectangle R C A x A, the discrepancy of gd with respect to R, denoted disc(gd, R), is defined as
follows:

disc(gd, R) def |Prgd(u,v) =0 and (u,v) € R] — Pr{gd(u,v) =1 and (u,v) € R]|.
The discrepancy of gd, denoted disc(gd), is defined as the maximum of disc(gd, R) over all combi-
natorial rectangles R C A x A.

Theorem 2.26 ([CFK119]). For every n > 0 there exists ¢ € N such that the following holds: Let
S be a search problem that takes inputs from {0,1}", and let gd : {0,1} x {0,1}' — {0,1} be an
arbitrary function such that disc(gd) < 277" and such that t > c-logl. Then

CC(Sogd) = Q(Q(S) - ).

2.7.2 Lifting from Nullstellensatz degree

Let ¢ be a ¢-CNF contradiction. The search problem Sy that corresponds to ¢ is the following
problem: given an assignment for ¢, find a clause that is violated by the assignment. A series
of works [RPRC16, PR17, PR18] showed that for appropriate gadgets gd, the communication
complexity of Sy ¢ gd can be lower bounded in terms of the Nullstellensatz degree of ¢. In fact,
those theorems give a lower bound on the Razborov rank measure of Sy ¢ gd, which is a stronger
result.

In a recent joint work with Marc Vinyals [IRMNT19], we generalized the latter theorems to
work for every gadget gd that has a large rank when viewed as a matrix. Formally, we have the
following result.

Theorem 2.27 ([dRMNT19]). Let ¢ be an q-CNF contradiction over { variables, let Sy be its
corresponding search problem, let F be a field, and let gd : A x A — {0,1} be a gadget such that
rankp(gd) > 4. Then

—logg.

log 1 (S o gd) > NSk () - log (NSF(@ 'rankF(gd)> 6-£-loge

e-l  rankp(gd)

In particular, when gd is the equality function with input length ¢ > 2log¥, we obtain the
following result.

Corollary 2.28. Let ¢ be an q-CNF contradiction over { wvariables, let Sy be its corresponding
search problem, let F be a field, and let eq : {0,1}" x {0,1}" — {0,1} be the equality function such
that t > 2logt. Then

log pr (S 0 eq) = QL (NSr(¢) - t) — logg.

2.8 Min-entropy

Given a random variable v that takes values from a finite set V, the min-entropy of v, denoted
Hoo(v), is the largest number k € R such that Pr[v =v] < 27% holds for every v € V. In other
words,

def . 1
Hy(v) = log —— .
(v) E;nelB{OgPr[v:v]}

Min-entropy has the following easy-to-prove properties.
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Fact 2.29. H(v) <log|V]|.

Fact 2.30. Let £ CV be an event. Then, Hoo(v|E) > Hoo(v) — log %[5}.

Fact 2.31. Let vi,vs be random variables taking values from finite sets Vi, Vs respectively. Then,
Hoo(v1) > Hoo(v1,v2) — log | Val.

2.9 Prefix-free codes

A set of strings C C {0,1}" is called a prefiz-free code if no string in C is a prefix of another string
in C. Given a string w € {0,1}", we denote its length by |w|. We use the following corollary of
Kraft’s inequality. A simple proof of this fact can be found in [CFKT19, Fact 2.8].

Fact 2.32 (Corollary of Kraft’s inequality). Let C C {0,1}" be a finite prefiz-free code, and let w

be a random string taking values from C. Then, there exists a string w € C' such that Pr [w = w] >
1
PICIN

2.10 Degrees of sets of strings

We use a framework of [EIRS01] for measuring the uncertainty of coordinates of strings. As a
motivation, consider an unknown string w € A, where the only thing we know about w is that it
belongs to some set of strings W € AN. We would like to measure how much uncertainty we have
about w. Perhaps the simplest way to measure it is the following notion of density.

Definition 2.33. The density of a set of strings W C AV is

. def |W|
density(W) = —.

We would also like to measure the uncertainty we have about certain coordinates of w, condi-
tioned on the other coordinates. The framework of [EIRS01] measures this uncertainty using the

following notion of degree.

Definition 2.34. Let W C AV, and let I C [N] be a set of coordinates. The degree of a string
w e ANI=T in W, denoted deg(w’, W), is the number of extemsions of w’ to strings in W. The
average degree of I in W, denoted AvgDeg (W), is the average degree over all string w' € W/|inj_7.
If I = {i} is a singleton, we denote the average degree of I by AvgDeg;(W).

Intuitively, the degree of w’ measures how much uncertainty we have about w; if we know that
Wip)—1 = w’. The average degree of I in W is a way to capture how much uncertainty we have
about w; conditioned on the other coordinates. It will be more convenient to work with the relative
average degree, i.e., the ratio of the average degree to the largest possible degree, defined as follows.

Definition 2.35. Let W and I be as before. The relative average degree of I in WV is

def AvegDeg (W
rAvgDeg;(W) = g|A‘gII|( )

One useful property of average degree is that it behaves nicely when additional information is
revealed about W, which is captured by the following fact.

Fact 2.36 ([EIRSO1]). Let W C W C AY be sets of strings and let I C [N]. Then, rAvgDeg;(W') >

”ﬂlﬂ -rAvgDeg;(W).
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Another useful property of the average degree is that when we remove a set of coordinates
I C [N] with a small average degree, the density of W increases. Intuitively, this means that when
we drop coordinates about which a lot is known, the relative uncertainty increases.

Fact 2.37 ([RM99)). Let W C AN and let I C [N]. Then
1
rAvgDeg; (W)
Average degree also satisfies the following useful “chain rule”.

Fact 2.38 (Implicit in [EIRSO1]). Let W C AN, and let I,J C [N] be disjoint sets of coordinates.
Then

density W|in—1) = - density (W).

rAvgDeg,;(W) = rAvgDeg; (W) - rAvgDeg ;(Win]—1)-

Finally, it is interesting to note that average degree is a lower bound on another measure of
uncertainty, namely, min-entropy:

Fact 2.39 ([KM18], following [EIRS01]). Let W C AN, and let w be a random variable that is
uniformly distributed over W. Then, for every I C [N] it holds that

1
Hoo(wr) = log AvgDeg (W) = [I] - log |A| — log rAvgDeg”

2.11 Kronecker product
Let F be a field. In what follows, all the matrices are over the field F.

Definition 2.40. Let A and B be m x n and m’ x n’ matrices respectively. The Kronecker product
of A and B, denoted A ® B, is an (m -m’) x (n-n') matrix whose rows and columns are indexed
by pairs in [m] x [m/] and [n] x [n'] respectively, such that for every i € [m], i’ € [m/], j € [n], and
j' € [n'] it holds that

(A® B) i),y = Aig B

We use the following easy-to-prove facts about the Kronecker product.
Fact 2.41. For every four matrices A, B,C, D it holds that
(A®B)- (C®D)=(A-C)®(B-D).
Fact 2.42. For every three matrices A, B, C it holds that A®Q (B+C)=A®B+A®C.
Fact 2.43. For every two matrices A, B it holds that rankp(A ® B) = rankp(A) - rankg(B).
Fact 2.44. Let A and B be block matrices that can be written as

K171 . KLQ L171 . Ll,q’
A= : : , B = : . :
Kp1 ... Kpg Lyy .. Lyg
where K; j, Ly j denote the blocks. Then, the matriz A® B is a block matriz that can be written as
Kyp®Lig - Kiq® Lyg
A ® B = K’L,] ® L’i’,j’
Kp1 @ Ly a s Kpg @ Ly ¢
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3 The monotone composition theorem

In this section we prove our monotone composition theorem. Recall that this theorem can be stated
informally as follows.

Theorem 1.2 (restated). Let f : {0,1}™ — {0,1} and g : {0,1}" — {0,1} be non-constant
monotone functions. If there is a lifted search problem S ¢ gd that reduces to mKW, and satisfies
the conditions of the theorem of [CFKT19], then

CC(mKWsomKWg) > CC(mKWy) +Q(Q(S) - t).
Formally, the theorem says the following.

Theorem 3.1. For every n > 0 there exists ¢ € N such that the following holds: Let f: {0,1}"" —
{0,1} and g : {0,1}" — {0,1} be non-constant monotone functions. Suppose that there erists a
search problem S C {0,1} x O, and a function gd : {0,1} x {0,1}' — {0,1} of input length
t > c-log(m ) and discrepancy at most 27, such that the lifted search problem S ogd reduces to
mKWg. Then,

log L(mK Wy o mKW,) > logL(mKW;) + Q(Q(S) - t).

Let n, f, g, S, and gd be as in the theorem. We will choose the parameter ¢ at the end of the
proof. For convenience, we denote Sgq = S ¢ gd. We also denote A def {0, 1}t, so the domain of gd
is A x A and the domain of Sgq is Af x AS.

Recall the communication problem mK Wy o mKW,: Alice and Bob get as inputs m x n binary
matrices X and Y respectively. Let a,b € {0,1}"" denote the column vectors that are obtained by
applying g to each row of X and Y respectively. Then, f(a) =1 and f(b) = 0, and the players are
required to find an entry (7,j) such that X; ; > Y; ;. The rest of this section is organized as follows.

e We start by proving that without loss of generality, it can be assumed that the players always
output an entry (4,7) such that a; > b;. This is done in Section 3.1.1.

e We then show that it suffices to prove a lower bound on a simpler communication problem,
denoted mKW; ® Sgq. This is done in Section 3.1.2.

e We prove the lower bound on mKW; ® Seq using a structure theorem, which says that,
intuitively, the obvious protocol for mKW;® S,q is the only efficient protocol for mKW;® Sqq.
In Section 3.2, we state this structure theorem, prove it based on two lemmas, and use it to
derive the lower bound on mKW; ® Sgq.

e Finally, we prove the latter two lemmas in Sections 3.3 and 3.4 respectively.

3.1 Reductions
3.1.1 The observation of [KRW95]

We define the following variant of mKW; o mKW,, denoted mKW; ® mKW,: The players get the
same inputs as before, but now they are required to find an entry (i, j) that satisfies both a; > b;
and X;; > Y ; (rather than just X;; > Y; ;). Karchmer et. al. [KRW95] implicitly observed that
mKW; ® mKW, reduces to mKW; o mKW,. This means that in order to prove Theorem 3.1, it
suffices to prove a lower bound on mKW; ® mKW,. We now make this observation explicit.

Theorem 3.2. The problem mKW; ® mKW, reduces to mKW; o mKW,.
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Proof. We describe functions R4, Rp, Royt as in the definition of a reduction (Definition 2.8).
Given a matrix X € {0,1}"™"" that is an input for Alice in mKWy @ mKW,, the function R4
constructs an input X’ € {0,1}™*" for Alice in mK Wy omK W, as follows: For every row index i €
[m], if the i-th row X; satisfies g(X;) = 1, then we leave it intact — i.e., we set X! = Xj; otherwise,
we set X/ to be the all-zeroes string. Similarly, the function Rp takes an input matrix Y € {0, 1}™*"
and constructs a new matrix Y’ by setting Y/ = Y; if g(Y;) = 0, and setting Y] to be the all-ones
string otherwise. Finally, the function Roy is the identity function: it leaves the solution (i, j) for
mKW; o mKW, intact.

To prove that the reduction works, we show that if (7, j) is a solution for mKWy o mKW, on
(X',Y’), then it is also a solution for mKW; ® mKW, on (X,Y). Let (i,j) be a solution for
mKWy o mKW; on (X',Y”). This means that X; ; > Y/,. In particular, X; is not the all-zeroes
string, and Y is not the all-ones string. By the definition of R4, Rp, it follows that X! = X; and
Y/ =Y, and also that g(X;) = 1 and ¢(Y;) = 0. Therefore, (i,7) is an entry that satisfies both
a; > b; and X;; > Y; ;. Hence, (4, 7) is a solution for mKW; ® mKW, on (X,Y), as required. W

Remark 3.3. As discussed in the introduction, this reduction is a key technique that works in the
monotone setting but not in the non-monotone and the semi-monotone settings. It is perhaps the
main reason why it is easier to prove composition theorems in the monotone setting.

3.1.2 The problem mKW; ® S,q

In this section, we define a new communication problem mKW; ® Sgq and show that it reduces to
mKWy ® mKW,. Informally, the problem mKW; ® Sgq is defined similarly to mKW; ® mKW,,
except that the players need to solve Sgq on the i-th row rather than mKW,. The reason that tis
problem is useful is that it is more convenient to prove a lower bound on mK Wy ® Sgq rather than
directly on mKW;y ® mKW,, since Syq is a lifted search problem and thus has a structure that we
can use. For the following definition, recall that the domain of Sgq is Af, and its range is O.

Definition 3.4. The communication problem mKW;®Sgq is defined as follows: Alice gets a matrix
X € A™*¢ and a column vector a € f~1(1), Bob gets a matrix Y € A™** and a column vector
b € f71(0), and their goal is to find a pair (i,0) € [m] x O such that a; > b; and 0 € Sga(X;,Y;)
(i.e., 0 is a solution for Sgq on the i-th rows of X and Y').

Proposition 3.5. mKW; ® Sgq reduces to mKWy ® mKW,.

Proof. By assumption, Sgq reduces to mKW,. Let Ra : A® — f~1(1), Rp : A* — f71(0),
and Royt @ [n] — O be the functions that define that reduction. We construct a reduction from
mEKW§ ® Sgq to mKWy ® mKW, by describing appropriate functions Ry, R, and Ry ;.

Given an input X € A™** and a € f~1(1) for Alice in mK W ® Sgq, the function R’y constructs
an input X’ € {0,1}"" for Alice in mKW; ® mK W, as follows: for every i € [m], we set X/ to
RA(X;) if a; = 1 and to the all-zeroes string otherwise. The function R’ is defined similarly on
an input Y € A™*¢ and b € f71(0), by setting Y/ to be Rp(Y;) if b; = 0 and to the all-ones string
otherwise. Observe that if we apply g to the rows of X’ and Y’ we get the column vector a and b
respectively. Finally, the function R[ takes a solution (i, ) for mKW; ® mKW, and translates it
to an output (i,0) for mKW; ® Sgq by keeping 4 intact and setting 0o = Rout(j)-

To prove that the reduction works, we show that if (7,j) is a solution for mKW; ® mKW,
on (X',Y’), then (i,0) is also a solution for mKW; ® mKW, on ((X,a),(Y,b)). Let (i,j) be a
solution for mKWy ® mKW, on (X', Y”). This implies that j is a solution for mKW; on (X/,Y/),
and that a; > b;. Since a; > b;, it holds that so a; = 1 and b; = 0, and hence, X! = R4(X;)
and Y/ = Rp(Y;). It follows that j is a solution for mK W, on (Ra(X;), Rp(Y:)), and therefore
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0 = Rout(j) is a solution for Sgq on (X;,Y;) by the definition of reduction. Thus, (7,0) is a solution
for mKWy ® Sgq, as required. |

3.2 The structure theorem

We turn to proving the desired lower bound on mK Wy ® Sgq. Let ¢ & Q(S) and A = {0,1}". We

prove that
log L(mKW; ® Sgq) > logL(mKWy) + Q(q - t). (7)

Observe that there is an obvious protocol for solving mK W;® Sgq: The players first solve mKW; on
the column vectors a, b, thus obtaining a coordinate ¢ € [m] such that a; > b;. Then, they solve Sgq
on X;,Y; and obtain a solution o for Syq. Finally, they output the pair (i,0). The communication
complexity of this protocol is CC(KWy) + CC(Sgq), and the logarithm of its size is

log L(mKWy) +1og L(Sga) < log L(mKWy) 4+ CC(Sga)
<logL(mKW;)+q-t.

Thus, our goal is to prove that the obvious protocol is optimal in terms of size, up to the constant
factor of the ¢ - ¢ term.

We prove this bound by showing that every protocol must behave like the obvious protocol, in
the sense that it must solve mK Wy on a,b before it starts solving Sgq on the rows X;,Y;. A bit
more formally, our result says that for every protocol II for mKW; ® Sgq the following holds: at any
given point during the execution of II in which the players have not solved mK W} yet, the protocol
must transmit at least another §2 (¢ - t) bits in order to solve mKW; ® Syq. We refer to this result
as the structure theorem. We state it formally below in Section 3.2.1, and show how to use it to
prove Equation (7) in Section 3.2.2. Then, we prove it based on two lemmas in Section 3.2.3.

3.2.1 Statement of the structure theorem

In order to formalize the structure theorem, we need to define what we mean when we say “the
players have not solved mKW; yet” at a given point in time. To this end, we show that the
protocol 1I contains, in a sense, a protocol for mKW;. Specifically, for a fixed matrix W € AL
we define the following protocol Iy, for mKWp: On inputs a, b for mK Wy, the protocol Iy, invokes
the protocol I on inputs (W, a) and (W, b), thus obtaining a pair (4, 0) such that a; > b; and o is a
solution for Sgq on (W;, W;). Then, the protocol Iy, outputs 4 as its solution for mKW;. It is not
hard to see that Ily is indeed a protocol for mKW.

Now, let m be a partial transcript of II, and observe that m can also be viewed as a partial
transcript of Iy for every W € A™**. Informally, we say that the protocol II has not solved
mK Wy yet at the transcript 7 if for an average matrix W ¢ A™ ¢ the protocol Iy has not solved
mK Wy yet at w. For short, we say also that such a transcript is alive.

We proceed to formalize this intuition. Let m be a partial transcript of the protocol, and let
W € A"™*¢ be a matrix. We denote by X, x Y, the rectangle of inputs that is associated with 7,
and denote

Arw ={ac€ 1) : (W,a) € X}
Brw = {be f1(0): (W,b) € Vr}.

In other words, A w X By is the rectangle of inputs that is associated with m when viewed as a
transcript of Ilyy. We measure how close Ilyy is to solving mK W} using the complexity measure

mL(Aﬂ',W X BW,W) = L(mKWAW,WXBﬂ,W)'
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We measure how close II is to solving mKW; by averaging this measure over all matrices W.
Formally,

Definition 3.6. Fix a protocol II for mKWj; ® Sgq. For a transcript = of II, we denote

def 1
’)/(7'(') = W . Z mL(Aﬂ—J/V X 871—71/{/).

WeAmx£
We say that 7 is alive if y(7) > 4m?.

We are finally ready to state the structure theorem. Informally, it says that if the protocol II is
currently at a live transcript, then it must transmit at least another € (g - t) bits in order to solve
mKW; ® Sgq. Formally, we have the following result.

Theorem 3.7 (Structure theorem for mKW; ® Sgq). Fiz a protocol 11 for mKWy ® Seq. For every
live transcript mp of 11, there exists a suffix mo of length at least Q(q -t) such that the concatenation
w1 oo s a transcript of I1.

Remark 3.8. It may seem odd that in the definition of the protocol Ilyy above, we give the
matrix W to both players as an input, since there is no particular reason to give the players an
identical matrix. Indeed, this requirement is made solely for convenience: We could have worked
with two matrices — a matrix X for Alice and a matrix Y for Bob — but that would have been
more cumbersome. The same goes for the definition of the measure v: we could have averaged
over all pairs of matrices X,Y € A™** and look at the rectangle Ay x X Bry, but using a single
matrix W simplifies the presentation.

3.2.2 The lower bound on mKW; ® Sgq

We now prove the lower bound on mK Wy ® Sgq using the structure theorem. Fix a protocol II that
solves mK Wy ® Segq.

Communication complexity lower bound. As a warm-up, we start by proving a lower bound
on the communication complexity of I, namely,

CC(IT) > log L(mKWy) + Q(q - t). (8)

To this end, we use the following lemma, which establishes the existence of a relatively long live
transcript.

Lemma 3.9. II has either a live transcript of length |log L(mKWy) — 2logm — 2], or a live tran-
script that is a leaf.

Proof. The idea of the proof is the following: At the beginning of the protocol, the complexity
of solving mK Wy is log L(mKW;). After the protocol transmits log L(mKWy) — 2logm — 2 bits,
we expect the complexity to go down to 2logm + 2. This means that we expect the measure vy to
become 221°8™+2 — 4m?2 which implies that the corresponding transcript is alive.

This intuition is formalized using the fact that the measure () of Definition 3.6 is a subadditive
measure on the protocol tree of II. To see it, note that each of the individual terms mL(Ax w % Brw)
is a subadditive measure (see Section 2.3), and therefore their sum is also a subadditive measure.
Next, let M be the set of vertices of II that are

e cither of depth exactly [logL(mKW;) —2logm — 2];
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e or a leaf of depth at most |logL(mKWy) —2logm — 2.
It is not hard to see that M is a separating set of II (see Definition 2.11), and that

|M‘ < QllogL(mKWf)—Qlogm—QJ < L(mKWf)/2210gm+2.

Observe that + assigns the root of II a value of L(mKW;). By Claim 2.12, there exists a vertex
w1 € M such that

L(mKWy) S L(mK W) > 4m?

‘M| — L(mKWf)/22logm+2 —

This means that 7 is a live transcript of II, as required. [

y(m1) =

By combining Lemma 3.9 with the structure theorem, we immediately obtain the desired lower
bound on the communication complexity of II. Indeed, Lemma 3.9 says that II has a live tran-
script my that is either of length [log L(mKWy) — 2logm — 2] or a leaf. The structure theorem says
that there is a suffix my of length at least (g - ¢) such that the concatenation 7 o 7o is a transcript
of TI. This implies in particular that 7; is not a leaf (or otherwise 71 o 2 would not be a legal
transcript of IT), and hence 7 is a partial transcript of length exactly |log L(mKWy) — 2logm — 2|.
It follows that 71 o 7o is a full transcript of II of length at least

llog L(mKWy) —2logm — 2| 4+ Q(g - t) > log L(mKWy) 4+ Q(q - t),

where the inequality uses the fact that ¢ > log(m). Hence, the communication complexity of IT is
at least log L(mKW;) + €Q(q - t) as required.

Protocol size lower bound. While the above argument proves a lower bound on CC(mKW; ®
Sed), our actual goal is to obtain a lower bound on the protocol size of mKWy ® Sgq, which is a
stronger statement. That is, we would like to prove that

log L(IT) > log L(mKWy) + Q(q - t).

We stress that we cannot derive this lower bound from Equation (8) directly using protocol bal-
ancing (Fact 2.6), since that would lose a constant factor in the term log L(mKW;) and we cannot
afford that loss. Nevertheless, we can afford to apply protocol balancing to the structure theorem,
since we can afford to lose a constant factor in the (q-t) term. This leads to the following corollary,
which will be used to prove the lower bound on L(II).

Corollary 3.10. For every live transcript m of II, there exist at least 229 suffizes my of such
that the concatenation w1 o wo s a full transcript of II.

Proof. Let m; be a live transcript of II, and let Iy be the sub-tree of II that is rooted in 7. We
prove that L(IIy) > 22@*)  and this implies the desired claim. By Fact 2.6, there exists a protocol
IT,, that is equivalent to IIy and has communication complexity at most 2log L(Ily). Let II' be the
protocol obtained from II by replacing IIy with II,.

Now, IT' is a protocol that solves mKW;®Sgq, and 71 is a live transcript of II’, so by Theorem 3.7
there exists a suffix my of length at least €2(q - t) such that the concatenation 7 o 7 is a transcript
of II'. This means that 7o is a transcript of II}, that has length at least Q(q - t), and therefore
CC(IL) > Q(q - t). It follows that

as required. [



We now prove the lower bound on L(II). Ideally, we would have liked to prove that if II did not
have many leaves, then there would have to be at least one live transcript m; that does not have
many leaves in its rooted sub-tree. Since the existence of such m; contradicts Corollary 3.10, this
would prove that IT must have many leaves.

The latter “ideal claim” about IT is not true in general. However, [KM18] observed that II can
be transformed into an equivalent protocol II’ that does satisfy that claim, and is not much larger
than II. We can therefore use the foregoing argument to show that IT’ has many leaves, and then
argue that since II’ is not much larger than II, the protocol IT must have many leaves as well. The
transformation of IT is done by the following lemma of [KM18].

Lemma 3.11 ([KM18], following [Tall4]). Let II be a protocol, and let s € N be a parameter such
that s < L(IT). Then there exists an equivalent protocol II' that satisfies the following: the protocol
tree II' has a separating set wy,...,m, where k < %(H)

rooted at w; has at most s leaves.

, such that for every i € [k], the subtree

By Corollary 3.10, there exists some some L = 22(4%) such that every live transcript 7 has at
least L suffixes. We prove that

log L(IT) > log L(mKWy) + log L — 2logm — 9, 9)

and this would imply that log L(mKW; ® Seq) > log L(mKWy) 4 €(q - t), as required. Suppose for

the sake of contradiction that Equation (9) does not hold, that is, we assume that
L(mKWy) - L
LI < ———5—

() < 512 - m?

Let II' be the protocol that is obtained by applying Lemma 3.11 to IT with s = L/2. Then, the
protocol tree II’ has a separating set 71, ..., 7 such that

36 L) L(mKW;)
<
= L/2 S Tim?

and such that for every i € [k], the subtree rooted at m; has at most L/2 leaves. Now, recall that
the measure y(7) is a subadditive measure on the protocol tree of II'. Moreover, recall that ~
assigns to the root of I a value of L(mKWy). Thus, by Claim 2.12, there exists a transcript 7; in
the separating set such that

L(mKWy) L(mK W)
k L(mKWy)/4m?

= 4m?>.

This means that m; is alive, and therefore by Corollary 3.10, there are at least L leaves in the
sub-tree of IT" that is rooted in ;. However, this contradicts the fact that there are at most L/2
such leaves. We reached a contradiction, and hence Equation (9) holds.

3.2.3 Proof of structure theorem from lemmas

Let II be a protocol that solves mK Wy ® Sgq. Our goal is to prove that if the protocol reaches a live
transcript 7, then it still has to transmit at least (g - t) bits in order to solve mKW; & Sgq. The
intuition for the proof is the following: The goal of the players is to solve Sgq on some row i where
a; > b;. By assumption, it is necessary to transmit Q(q - t) bits in order to solve Sgq from scratch.
However, it could be the case that the transcript 71 contains information that helps in solving Seq
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on some rows, which means that the players may need to transmit less than Q(q-¢) bits in order to
solve Sgq on those rows. The crucial point is that since at 71 the players have not solved KW} on
a, b yet, they do not know on which row of X, Y they should be solving Seq. Thus, the information
that the players communicated in 7 is likely to be wasted on irrelevant rows where a; < b;. Hence,
we might as well assume that the players have not made progress toward solving Seq in 71, so they
still have to transmit 2(q - t) bits in order to solve Sgq on some row.

This intuition is formalized as follows. Given a live transcript 71, we partition the rows of the
matrices X,Y into two types:

e “Revealed rows”, about which the transcript 7; reveals much information (i.e., more than
two bits of information).

e “Unrevealed rows”, about which the transcript m; reveals only a little information (i.e., at
most two bits of information).

Intuitively, if the protocol chooses to solve Sgq on an unrevealed row, then it has to send (q -
t) additional bits, since it barely made any progress on this row in in 7;. Thus, it suffices to show
that we can prevent the protocol from solving Seq on the revealed rows. This corresponds to our
previous intuition that if the players communicate about some rows before solving mKW;, then
this communication will be wasted.

In order to force the protocol to solve Sgq on the unrevealed rows, we show that we can find
a subset of the inputs that is consistent with 7y, and that satisfies that a; < b; holds for every
revealed row i. This means that on those inputs, the protocol is not allowed to output an entry
in any revealed row. Basically, we can find such a subset of inputs since we assumed that at m;
the players have not solved mKW; yet, and hence at this point they do not know any row ¢ for
which a; > b;. Therefore, when the protocol is invoked on this subset of inputs, it must solve Sgq
on an unrevealed row, and therefore must transmit about (¢ -t) additional bits, as required. More
formally, the proof consists of two steps:

e In the first step of the proof, we show that there exists a collection W of matrices W and
corresponding column vectors a, b that are consistent with 71, such that a; < b; holds for each
revealed row 1.

e In the second step of the proof, we prove that the complexity of solving mKW; ® Sgq on such
a collection of inputs is at least Q(q - t).

The following definition captures the collection of inputs that we would like to construct.

Definition 3.12. A collection consists of a set of matrices W C A™* and of column vectors
a € f71(1) and b € f=1(0) for each matrix W € W. We say that a transcript 7; of IT with a
corresponding rectangle X, X YV, supports the collection if for every matrix W € W, it holds that
(W,a"') € &y, and (W, ") € Vr,. We say that the collection is hard if there exists a set R C [m)]
of “revealed rows” that satisfies the following:

e For every set I C [m] — R:

1
rAveDeg g (Wipmi-ryxi0) = 777

(i.e., at most 2 |I| bits of information were revealed on every set I of unrevealed rows).

e For every W, W' € W, it holds that " |z < b"'|s.
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The following two lemmas now capture the two main steps of the proof, and together imply the
structure theorem. They are proved in Sections 3.3 and 3.4 respectively.

Lemma 3.13. Every live transcript of 11 supports a hard collection.

Lemma 3.14. If a transcript mp supports a hard collection, then there exists a suffix mo of length
at least Q(q - t) such that m o mo is a transcript of 11.

The structure theorem follows immediately by combining the two lemmas.

3.3 Proof of Lemma 3.13

Fix a protocol II that solves mKW; ® Sgq, and let 71 be a live transcript of II. Our goal is to
construct a hard collection that is supported by ;. To this end, we identify a set of matrices W,
a set of revealed rows R, and column vectors a"V & Az w and Woe B, w. We then show
that a"|p < bW/| g holds for every W, W’ € W. Our proof is a straightforward adaptation of an
argument of [KM18] to the monotone setting.

Our assumption that 7 is alive means that mL(Ay, w x Br, w) is sufficiently large for the
average matrix W. In order to carry out our argument, we need to start from a stronger assumption,
namely, that there is a significant number of matrices W for which mL(Ax, w x Br, w) is sufficiently
large. This can be proved by a standard averaging argument. Formally, in Section 3.3.1 below we
prove the following result.

Proposition 3.15. There exists a number p € N and a set of matrices Wy C A™*¢ such that
density(Wp) > 27P, and such that for every W € Wjy:

logmL( Az, .w X Br,w) > p+logm. (10)

Recall that the transcript 7 is obtained by invoking the protocol II on inputs of the form
(W, a) and (W,b). Intuitively, Proposition 3.15 means that when we restrict ourselves to Wy, the
transcript w1 reveals at most p bits of information about the matrix W, and still it has to transmit
more than p + log m bits to solve mK Wy on (a,b).

Warm-up. Before we explain the construction of the hard collection, we first present a simplified
version of the argument. Let R C [m] denote the set of rows of W on which 7; reveals more than
two bits of information. Since 7 reveals at most p bits of information about the whole matrix W,
it follows that |R| < p/2.

We would now like to choose column vectors "V e Az, w and W e B, w, such that for every
two matrices W, W’ in the collection we have that a"'|r < bW/| r. We start by choosing, for every
W € Wy, a pair of column vectors a"V', o' that satisfy a"V'|r < b |g only for W. To see why this is
possible, let W € Wy, and suppose that such column vectors a"', bW did not exist for W. We claim
that in this case, it is possible to solve mK Wy on the rectangle Ax, w x By, w by communicating
at most

|R| +logm < p+ logm (11)

bits, contradicting Equation (10). This is done as follows: By our assumption, for every a € Ar, w
and b € By, w, it holds that a; > b; for some 7 € R. Alice will send ar to Bob, and Bob will reply
with the corresponding coordinate i € R, thus solving mK Wy using at most |R| + logm bits.
Hence, we can choose for every matrix W € W, a pair of column vectors a"',b" such that
aV|r < bW |g. It remains to enforce the condition aV|r < bW’ | for every two matrices W, W’. To
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this end, let us denote by apr the most popular value of a"V|r over all matrices W € Wy. We take
our hard collection W to be the subset of matrices W € W for which a"|gr = ag, and discard all
the other matrices. It now holds for every W, W’ € W that

aV|p=ar=ap <bY,
as required.

It might seem as if the collection W satisfies our requirements. Indeed, we have a set of revealed
rows R, and a'|p < bW,| r holds for every W, W’ € W. However, the above reasoning suffers from
the following issue: When we moved from W, to W, we revealed additional bits of information
about the matrices W. This newly leaked information may create new revealed rows that do not
belong to R, thus violating the definition of a hard collection.

The actual proof. We resolve the latter issue by repeating the foregoing argument iteratively:
We start by setting W = W, and R = (). Then, in each iteration, we identify a set I of revealed
rows, add it to R, and move to a subset of W in which all the column vectors "V have the same
value ay. The process ends when there are no more revealed rows. In Section 3.3.2 below, we show
that this process yields the following.

Proposition 3.16. There exists a set of matrices W C Wy, a set of revealed rows R C [m], and
for each matriz W, a set AW C f=1(1) of candidates for a"V' such that properties are satisfied:

1. For every I C [m] — R:

1
rAvgDeg ;g V| (im)-r)x[g)) = VIR

2. All the candidate vectors in AW for all the matrices W € W agree on the coordinates in R.

3. For every W € W, it holds that mL(AY x By, w) > m.

Let W, R, and A" be the sets obtained from Proposition 3.16. We will choose W to be the
set of matrices in our hard collection. At this point, we know that the set VW satisfies the first
condition in the definition of a hard collection due to Property 1 above. We now explain how to
choose the column vectors "V and bW to satisty a"V|r < bW'| for every W, W’ € W, and this will
complete the proof of Lemma 3.13.

For every matrix W € W, we choose o' arbitrarily from A". By Property 2, all the column
vectors a"V' of all the matrices W agree on the coordinates in R; let us denote this agreed value
by ag. In order to choose the column vectors bV, we use the following result.

Claim 3.17. For every matrix W € W, there exists a column vector Woe B, w such that
Wlr > ag.

Proof. Let W € W. Suppose for the sake of contradiction that there exists no column vector
W B, w such that bWW|r > ap. We show that in this case there exists a protocol that solves
mK Wy on AW x By, w using log m bits, which contradicts the fact that log mL(AY x By, w) > logm
by Property 3.

We use the following protocol: Alice gets a column vector a € A", and Bob gets a column
vector b € B, w. Note that ar = ar by the definition of ar. Moreover, by our assumption, it
does not hold that bg > ap, and therefore there exists some coordinate i € R such that (ag); > b;.
We know that a; = (ag)i, so a; > b;, and therefore i is a solution for mKW; on AV B w-
Furthermore, Bob knows b, and also knows ap (since it does not depend on Alice’s input), and
therefore he can deduce i. Hence, Bob can send ¢ to Alice, thus solving the problem. It is easy to
see that this protocol sends at most log m bits, so we reached the desired contradiction. |
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We conclude by showing that the column vectors a"V,b" that we chose satisfy that a"V|p <
bW | g for every W, W' € W. Let W, W’ € W. Then, by Claim 3.17,

aV|r=agp< bW’\R,

as required.

3.3.1 The initial set W,

We now prove Proposition 3.15, which constructs the initial set W, for our argument.

Proposition 3.15 (restated). There exists a number p € N and a set of matrices Wy C A™*¢
such that density(Wy) > 27P, and such that for every W € Wy:

logmL(Az,.w X By, w) > p+logm.

Proof. By assumption, the transcript m; is alive, and therefore

1
y(m) = W . Z mL(.Am,W X Bm,W) >4- m2.

WeAmxt

In other words,

3 mL(Any g X Bryw) = 4-m? - ‘Amxf
WeAmxt

We partition the matrices W into m — logm buckets as follows: the first bucket V; consists of all
matrices W for which
mL(Ax . w X Br,w) < 2m,

and for every k > 1, the k-th bucket Vi consists of all matrices W for which

k1. m < mL(.Am’W X Bm,W) < 2k . m.

For every k € [m — logm|, we define the weight of a bucket V}, to be the sum

Z mL(Ar,.w X Bryw)-

wWev

Our assumption that 71 is alive says that the total weight of all the buckets together is at least
4-m?. ‘Amxel. Moreover, it is easy to see that the weight of V) is at most 2 -m - ‘Aqu. Hence,
the total weight of all buckets except the first bucket is at least

4‘m2.‘AmX€

_Q.m.‘Ame

By an averaging argument, there exists k € [m — logm] — {1} such that the weight of Vj, is at least

9. 2_Am><£
m ‘ ‘>2'm.‘Am><€
m—logm—1 —

We choose Wy o Vi, and p e 1. By definition, for every W € Wy we have

mL(.Am,W X Bm,W) >k lim=2P.m
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and hence
logmL(Az, w X Bryw) > p + logm.

It remains to lower bound the size of Wy. To this end, recall that the weight of W) is at least
2-m- ‘Amxﬂ. On the other hand, for every W € W:

mL(AﬂhW X B7T17W) < 2k -m = 2p+1 - m.
Hence, the weight of Wy is at most |[W| - 2P - m. It follows that

Wol- 2Pt m>2-m- ’Amxg

2.m - ’Am><€|
o+l .m

Wol >

)

— 9P, ‘Amxé

as required. [

3.3.2 The iterative procedure

We conclude the proof of the lemma by proving Proposition 3.16, restated next.

Proposition 3.16 (restated). There exists a set of matrices W C Wy, a set of revealed rows R C
[m], and for each matriz W, a set AW C f~1(1) of candidates for "V such that properties are
satisfied:

1. For every I C [m] — R:
1

rAVgDegIX[E](W‘([m}—R)x[ﬁ]) = Al

2. All the candidate vectors in AW for all the matrices W € W agree on the coordinates in R.

3. For every W € W, it holds that mL(AY x By, w) > m.

In order to streamline the presentation, we denote the set of unrevealed rows by U & [m] —
R. For convenience, throughout the procedure we will maintain the property that every partial
matrix W’ € Wluxjg has a unique extension to a matrix W € W. Intuitively, this property
is convenient since only the value of the unrevealed rows of a matrix matters. We refer to this
invariant as the unique extension property.

Let Wy be the set of matrices obtained from Proposition 3.15. The procedure starts by setting
W =Wy, R=0, and AW = A w for every W € W. Now, as long as there exists a non-empty
set I C U such that

rAveDeg g (Wluxig) < g

we perform the following steps:

1. We add I to R (and remove I from U).

2. We restore the unique extension invariant by choosing for every partial matrix W’ € W| Ux[f]
a single extension W € W, and removing all the other extensions of W’ from W.

3. For every W € W, we make sure that all column vectors in A" agree on the coordinates in I
as follows:
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(a) For each W € W, we partition A" to buckets {AW’“}UE{O 1} such that the bucket A"

contains the column vectors a € AV that satisfy a; = v.
(b) Let vy be the value that maximizes mL(AY x By, w).
(c) We replace A" with the bucket AW-2w

4. Finally, we make sure that all column vectors of all matrices agree on the coordinates in I as
follows:

(a) Let as be the most popular value among all the vy’s.

(b) We replace W with the subset of matrices W for which vy = ay.

By definition, when the procedure ends, Property 1 of Proposition 3.16 is satisfied. Moreover, it is
easy to see that Property 2 is satisfied.

It remains to show that Property 3 is satisfied. To this end, recall that when the procedure
starts, every W € W satisfies mL( Ay, w x By, w) > 2P-m by the definition of W;. Next, observe in
every iteration, Step 3 decreases mL(A" x B, w) by a factor of at most 211 by the subadditivity
of mL(AY x By, w). All the other steps of the procedure do not affect mL(AY x By, w) at all.
Hence, by the time the procedure halts, the value mL(A" x By, w) has decreased by a factor of
at most 2! so mL(Ar, . w % By w) > 22718l m. Thus, to prove that mL(AY x B, w) > m, it
suffices to show that |R| < p, which we establish next.

Claim 3.18. When the procedure halts, |R| < p.

Proof. We upper bound the size of R using a potential argument. Intuitively, the potential function
is the amount of information the players know about the rows in U. At the beginning of the process,
U = [m], and the players know p bits of information about all the rows together. For every revealed
row ¢ that is added to R, the potential is decreased by at least two, since the two bits that the
players knew about the row ¢ are discarded. Then, when the value «; is fixed to a constant «y,
it reveals at most one bit of information, thus increasing the potential by at most one. All in all,
each revealed row that is added to R decreases the potential function by at least one. Since the
potential starts from p and is always non-negative, it follows that the number of revealed rows will
never surpass p, which is what we wanted to prove.

Formally, our potential function is the density of W/ q. Recall that at the beginning of this
procedure, this density is at least 277 by the definition of Wy. We prove that in every iteration,
the density of W|y g increases by a factor of at least 211 where I is the set of rows that is added
to R at the iteration. Note that this implies the claim, since the density of a set can never exceed 1,
and R consists of the union of all the sets I.

Fix a single iteration. By assumption, at the beginning of the iteration we have

1
rAvgDeg . (g Wlux(g) < 4

In Step 1, the procedure removes I from U. To see how this step affects the density of W|U><[£}7
observe that Fact 2.37 implies that

1
rAvgDegr, (g (Wlux(q)

density (W!(U,I)X[g]) > 'density(W]UX[g]) > 411 denSitY(W‘Ux[e})~

Thus, Step 1 increases the density by a factor of 41!, Steps 2 and 3 do not affect the density
of W|U><[g] at all. Finally, it is not hard to see that Step 4 decreases the size of W\Ux[g] by a factor
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I

of at most 2!"1. All in all, at the end of the iteration, the density of W[y, |g is increased by at least

a factor of 21|, as required. |

This concludes the proof of Lemma 3.13.

3.4 Proof of Lemma 3.14

In this section, we prove Lemma 3.14. Let 71 be a transcript that supports a hard collection W, and
let X, x YV, be its associated rectangle. Our goal is to prove that the communication complexity
of solving mKW; ® Sgq on the inputs in X, x Vr, is at least Q(q - t). We use the following proof
strategy: We observe that solving mKW; ® Sgq on X, x Vr, amounts to solving sub-problem H
of some lifted problem S’ ¢ gd. Then, we apply to H our generalized lifting theorem, which deals
with sub-problems of lifted search problems, thus obtaining lower bound on mKW; ® Sgq. More
details follow.

Let R be the set of revealed rows of the hard collection W, and let U e [m] — R denote the
set of unrevealed rows. Let W denote the projection of the matrices in W to the rows in U. We
consider the following communication problem.

Definition 3.19. The communication problem H is defined as follows: Alice gets a matrix X' € W/,
Bob gets a matrix Y/ € W/, and their goal is to output (i,0) € U x O such that o € Sgq(X},Y;).

Proposition 3.20. H reduces to solving mKWy ® Sgq on the inputs in Xr, X Vr,.

Proof. We define the functions R4, Rg, Rout of the reduction. Given an input X’ € W of Alice

in H, the function R, translates it to an input (X,a™) of Alice in mK Wi ® Sgq, where X € W

is an arbitrary fixed extension of X’ to a matrix in W. We define Rp(Y”) e (Y,bY) similarly.

Finally, we set Rout to be the identity function.

Observe that the outputs (X, a*) and (Y,b") of this reduction are indeed inputs in X, x Vr,,
since 71 supports the collection W. It remains to show that if (i,0) is a solution for mK Wy ® Sgq
on inputs (X,a”™) and (Y,bY), then it is a solution for H on (X’,Y’). To see it, recall that the
assumption that (i,0) is a solution for mK W ® Sgq implies that a;* > b} and that o0 € Sgq(X;, Yi).
In particular, it must hold that ¢ € U, since by assumption aZX < b}/ for every i € R. Therefore,
(i,0) is a solution for H on (X', Y”). as required. [

It remains to prove a lower bound of Q(q - t) on CC(H). To this end, we show that H is (a
sub-problem of) a lifted search problem S’ ¢ gd. Consider the following search problem S’: given a

matrix Z € {0, 1}UXM, we would like to find a pair (¢, 0) such that o is a solution for S on Z; (i.e.,

0 € 5(Z;)). Now, consider the corresponding lifted search problem S def g ogd, and observe that

it can be described as follows: Alice gets a matrix X’ € AV*lY Bob gets a matrix Y/ € AV* and
their goal is to find a pair (i,0) € U x O such that o € Sgq(X;,Y;). Hence, the problem H is simply
the restriction of the lifted search problem S’ ¢ gd to input matrices that come from the set W'.

It is not hard to see that the query complexity of the problem S’ is ¢ def Q(S): indeed, if we
had a decision tree T' that solves S’ using less than ¢ queries, we could have used T to solve S
with less than ¢ queries by invoking T' on matrices whose rows are all equal. The lifting theorem
of [CFK'19] (Theorem 2.26) implies that CC(S” o gd) > Q(q - t). In order to prove a similar lower
bound for H, we use our generalized lifting theorem. This generalization applies to lifted search
problems when restricted to sets of inputs that have sufficiently large average degree. Formally, the
theorem says the following.
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Theorem 5.1 (restated). For every n > 0 and d € N there exist ¢ € N and k > 0 such
that the following holds: Let S be a search problem that takes inputs from {0, 1}4, and let gd :
{0,1}'x{0, 1} — {0, 1} be an arbitrary function such that disc(gd) < 2= and such that t > c-log (.
Let X, C ({0, l}t)z such that for every I C [£] both rAvgDeg;(X) and rAvgDeg;(Y) are at least
1/(d- fd)m. Then the communication complexity of solving S ogd on inputs from X x Y is at least

k- Q(S) - t.

In order to apply Theorem 5.1 to H, we need to lower bound the average degree of every set of
entries K C U x [¢] in W'. This is done in the following claim.

Claim 3.21. For every set of entries K C U x [{], it holds that rAvgDeg(W') > ﬁ.

Before proving the claim, we show how to use it to our lower bound on H. We apply Theorem 5.1
with S =5, X =Y =W, n=mn, and d = 4. We choose the constant ¢ to be the corresponding
constant that are obtained from the application of Theorem 5.1. It now follows that CC(H) > k-q-t
for some constant x > 0, which completes the proof of Lemma 3.14.

Proof of Claim 3.21. Intuitively, we need to prove that for every set K C U x [{] of entries,
the players know at most 2 | K| bits of information. By the assumption that W is a hard collection,
we know that on any set I C U of rows, the players know at most 2 |I| bits of information. Since
every set of entries K in contained in at most |K| rows, the claim follows. We now formalize this
intuition.

Let K C U x [{] be a set of entries, and let I C U be the set of rows that contain entries from K.
By the assumption that W is a hard collection,

1

rAvgDegr, W) = 4l

By the “chain rule” for average degree (Fact 2.38) it holds that
rAvgDeg, (o (W') = rAvgDeg (W') - tAveDeg (1 -x Wi - i)
and since relative average degree is always at most 1 it follows that
rAvgDeg (W') > rAvgDeg . q(W') >

as required. [

4 The semi-monotone composition theorem

In this section we prove our semi-monotone composition theorem. Recall that this theorem can be
stated informally as follows.

Theorem 1.5. Let g : {0,1}" be a non-constant monotone function, and let eq be the equality
function on strings of length t. Suppose there exists a lifted search problem Sy ¢ eq that reduces to
mKW, via an injective reduction and satisfies the conditions of the theorem of [ARMN*19]. Then

CC(Up, 0 mKWy) > m + Q(N Sk, (9) - t).

Formally, the theorem says the following.
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Theorem 4.1 (semi-monotone composition theorem). Let m € N and let g : {0,1}" — {0,1} be a
non-constant monotone function, and let eq be the equality function on strings of length t. Suppose
that there exists a q-CNF contradiction ¢ over £ variables, such that the lifted search problem Sgoeq
reduces to mKW, via an injective reduction and such that t > 2log/ . Then,

log L(Up, © mKWgy) > m + Q(N Sk, (¢) - t) — logg. (12)

The rest of this section is organized as follows. We start by setting up by some notation. Then,
we define a subproblem of U,, ¢ mKW,, denoted U,, © mKWxyy. Finally, we prove the desired
lower bound on U,, ¢ mK Wxxy using three propositions, which are proved in turn in Sections 4.1,
4.2, and 4.3 below.

Let m, g, eq, ¢, Sy be as in the theorem. For simplicity of notation, we denote A def {0, l}t, so the
domain of the lifted search problem Sgoeq is A® x AL, Let Ra : A* — g71(1), Rp : A* — g1(0),

and Rout @ [n] — O denote the assumed reduction from Sgq ¢ eq to mKW,, and recall that the

functions R4 and Rp are injective. Let X’ def RA(AK) and Y def RB(AZ) denote the images of R»

and Rp respectively, and observe that |X| = || = ‘Aq. We denote the latter size by K def |A£‘.

For every p € N, we denote by I, the identity matrix of order p, and we denote by I def g i the
identity matrix of order K. Finally, we let W C {0, 1}"™*" be the set of m x n matrices all of whose
rows belong to X U V.

We turn to define the subproblem U,, o mKWxxy. Recall that in the introduction, the commu-
nication problem U,, o mK W, was defined as follows: Alice and Bob get matrices X,Y € {0,1}"*",
and denote by a and b the column vectors that are obtained by applying g to the rows of X and Y
respectively. The players are promised that a # b, and they should either solve mKW, on a row
where a; # b; or find (4, j) such that a; = b; and X; ; # Y} ;.

In the subproblem U,, ¢ mKWxxy, we restrict the input matrices of the players to come from
the set WW. We also change the problem a bit as follows: we do not promise the players that a # b,
but rather, if the players find that a = b they are allowed to declare failure. It is not hard to see
that this modification changes the complexity of the problem by at most two bits (see [HW93]),
and it makes the problem easier to analyze since it ensures that the domain of the problem is a
combinatorial rectangle. Formally, the sub-problem U, ¢ mKWx 7y is defined as follows.

Definition 4.2. The communication problem U,, ¢ mK Wy 7y is defined as follows: The inputs of
Alice and Bob are matrices X,Y € W respectively. Let a and b denote the column vectors that are
obtained by applying g to the rows of X and Y respectively. The goal of the players is to find an
entry (i,7) that satisfies one of the following three options:

e a; > b; and X@j > Y;J‘.

e a; < b; and X@j < Y;J‘.

® a; — bz‘ and X@j 75 Y;J‘.
In addition, if a = b then players are allowed to output the failure symbol L instead of an entry
(i, 5)-
Proof of Theorem 4.1. We prove the theorem by establishing a lower bound on the Razborov
rank measure of Uy, o mK Wy y (see Section 2.5). To this end, we construct a matrix M € F;/VXW,

and show that
log pr, (U, © mEKWxxy, M) > m + Q(NSg,(¢) - t) —loggq.

We start with the following proposition, which constructs a matrix A € F; *Y that will be used as
a building block in the construction of M, and which is proved in Section 4.3 below.
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Proposition 4.3. There exists a symmetric matric A € FQXXJ) such that
log pg, (MK Wxxy, A) > Q(NSr,(¢) - t) —logg,

and such that A% = 1.

We now construct the matrix M is constructed as follows. Recall that the rows and columns
of M are indexed by matrices X,Y € W. We can associate them with corresponding column
vectors a,b € {0,1}". The matrix M is a block matrix, which consists of 2™ - 2" blocks — one for
each pair (a,b). The blocks that correspond to pairs where a = b are all-zeroes. For every other
block, we take the Kronecker product of m matrices, where the i-th matrix is A (if a; # b;) or I (if
a; = b;). More formally, for any two bits v,6 € {0, 1} we denote

I  otherwise.

i def {A ify # 6

Then, for every a,b € {0,1}", the block of M that correspond to the pair (a,b) is

{Aa1,bl ® A2 ... @ Avmbn g £}

all zeroes a=1b

Intuitively, on rows where a; # b;, the players should solve mKWyyy, so we put the matrix A
which is “hard” for mKWx«y. On the other hand, on rows where a; = b;, the players should verify
the inequality of strings from X U ), so we put the matrix I which is “hard” for this task.

We turn to prove the lower bound on pp, (U, © mKWyyy, M). To this end, we prove a lower
bound on the ratio rankp,(M)/ranky,(M|r) over all the monochromatic rectangles R of U, ©
mKWxyy . This is done in the following two propositions, which bound the the numerator and
denominator in the latter ratio, and are proved in Sections 4.1 and 4.2 respectively.

Proposition 4.4. The matrix M has full rank, i.e., logranky, (M) = log |W]|.

Proposition 4.5. For every monochromatic rectangle R of Uy, ¢ mKWxxy,
log rankg, (M |r) < log |W| —m — log up,(mKWxxy, A).

Together, the above two propositions immediately imply the desired lower bound on up, (U, ¢
mKWxxy, M), and hence, Theorem 4.1. [

We now establish some notation that will be used in the proofs of both Proposition 4.4 and
Proposition 4.5. First, we define an auxiliary matrix M’ € IF‘Q/V as follows: the matrix M’ that is
defined similarly to M, except that the blocks where a = b are not treated differently. In other
words, M’ is a block matrix that, for every a,b € {0,1}™, has the block A% 1@ A% ®...@ A%mbn,
Observe that the blocks where a = b are equal to I, and that those blocks are placed along the
main diagonal of M’. Thus, M' = M + Ijyy,.

We denote by M,y and M(’m_l) the versions of M and M’ that are defined for m — 1
rather than m — in other words, those are the matrices M and M’ that we would define for
Um_1 o mKWXXy.
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4.1 The rank of M

We start by proving Proposition 4.4, which says that M has full rank. We first claim that

I ® M, A® M/

A® My, 1) 1@ Mn-)

The equality holds for the following reason: The upper and lower halves of M correspond to the
cases where a1 = 0 and a1 = 1 respectively, and the left and right halves of M correspond to the
cases where by = 0 and by = 1. By Fact 2.44, the matrix I ® M, 1) is' the block matrix that is
obtained by taking the Kronecker product of I with each block of M(,, 1), and these are exactly
the blocks of M that correspond to a; = b;. Similarly, the matrix A ® M (’m_l) is the block matrix

that is obtained by taking the Kronecker product of A with each block of M (’m_l),
exactly the blocks of M that correspond to a; # by: here, we used M(’m_l) rather than M, 1)
since all those blocks satisfy a # b, and therefore we do not want to zero out the blocks when
a_1 = b_1 (where a_;,b_1 denote the column vectors a, b without the first coordinate).

We prove that M has full rank by applying row and column operations to Equation (13). Let
I' be the identity matrix of the same order as M,,_1), and recall that M(/m—l) = M1y + I

+1I'. By

and these are

Since we are working over [y, the latter equality can also be written as M,,_1) = M, (’m_l)

substituting the latter equality in Equation (13), we obtain the matrix

( e M, _+1)  AeM,, ) B ( Te M, ,+Ial A® M, )
A® M, I® (M, y+1') | A® M, ToM, +I1el |
Next, we subtract the product of A® I’ and the right half from the left half, and obtain the matrix
< T@ M, y+Iol'—(Aal')- (Ao M, ) A M|, > 14
AM, = (Axl)-(IeM,, ) (Axl')-Ixl') ITeM,, ,+Ial

We now use Fact 2.41 to determine each of the matrix products that appear in the last expression.
Recall that A% = I by Proposition 4.3. Then,

(A T) - (A® Mj,_) = (A-A) & (I' M},_,,) = [® M, (15)
(AT (18 M, ) =(A-I)@(I'-Mj,_,) = A® M, _,
Al - (Il =A-He(I' - T'=AxT.
By substituting the latter equalities in the matrix of Equation (14), we obtain the matrix

To M, +I1el'—IxM,, A® M,
AQM, \y—AM| ) —ARI" IT®M,, ,,+IT

/ /
_(I@I Ao M|, )

AT I®M(’m_1)+I®I’

where in the last equality we used the fact that we are working over Fy. We now subtract the
product of A ® I’ and the upper half from the lower half, and obtain the matrix

Ior A® M,
Aol'—(Acl)-(Iel) TeM \+Ial'—(Ael) (Ae M, ) |’

'Here, we apply Fact 2.44 with I being the “block matrix” that has a single block.

36



By substituting the equalities of Equation (15) in the latter expression, we obtain the matrix

I®I’ A®M(/mfl)

Al — AT [@M(’m_l)—i—I@I/—I@M(,m_l)
(1ol AeM|,

- 0 Il '

The latter matrix is an upper triangular matrix that has ones on its main diagonal, and therefore
has full rank, as required.
4.2 The rank of monochromatic rectangles

We turn to prove Proposition 4.5, which upper bounds the rank of monochromatic rectangles. Let
R C W x W be a monochromatic rectangle of Uy, o mKWxy. We prove that

W)
rankp, (M|r) < '
]Fg( |R) = om, MF2(mKWX><yaA)

Recall that R can be one of four types:
1. It could correspond to a solution (7, j) where a; > b; and X; > Y].
2. It could correspond to a solution (i, 7) where a; < b; and X; < Y;.
3. It could correspond to a solution (i, j) where a; = b; and X, ; # Y; ;.
4. It could correspond to the failure symbol L, which means that a = b.

We consider each of the types separately, starting with the simpler Types 3 and 4. If R is of Type 4,
every entry (X,Y) € R satisfies a = b, and by the definition of M, this implies that Mxy = 0.
Hence, M|g is the all-zeroes matrix and therefore ranky, (M|r) = 0.

If R is of Type 3, there exist some i € [m] and j € [n] such that every entry (X,Y) € R satisfies
a; = by and X;; # Y;;. We show that in this case, M|g is again the all-zeroes matrix. Without
loss of generality, assume that ¢ = 1. If @ = b, then again Mxy = 0. Otherwise, by the definition
of M, the block that corresponds to (a,b) is equal to

I ® Aa27b2 R ® Aamybm7

and thus the entry that corresponds to (X,Y) is equal to

m

MX,Y = IX1,Y1 ’ H(Aai?bi)Xi,Yi'
=2

Since X1 # Y7, we have Iy, y, = 0 and thus Mx y = 0 as well. Hence, M |p is the all-zeroes matrix
and therefore rankg, (M|r) = 0.

The bulk of the proof is devoted to the case where R is of Type 1 (the case where R is of
Type 2 can be dealt with similarly since A is symmetric). Assume that R corresponds to a solution
(1,7) where a; > b; and X;; > Y; ;. Without loss of generality, assume that ¢ = 1. Moreover,
without loss of generality, we may assume that R is maximal, since extending R can only increase
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the rank of M|g. This implies that R can be assumed to contain all inputs that satisfy a; > b; and
X;j >Y; ;. In other words, R can be written as R = U x V where:
Z/[déf{XEWlal=1,X1,j=1}={X€W:X1EX,XLJ':l}
VE LY eW:ib =01, =0l ={Y eW:V; € V,Y, =0},
where the second equality in each line holds since X C ¢g~!(1) and Y C ¢g~'(0). Now, define a
rectangle R* C X x ) by

R*dﬁf{xeX:szl}x{yey:yj:()}.
Then, we can write
R={(X,Y) e WxW|(X1,Y1) € R*}.

Recall that we denote by M,y and M(/m—l) the versions of M and M’ for Uy,—1 ¢ mKWxyxy. It
follows that
M| = Alge @ M{,,_y),

where we use M (/m—l) rather than M,,_;) since a # b for all the entries in R. In order to bound
the rank of this matrix, we use the following proposition, whose proof is deferred to the end of this
section.

Proposition 4.6. It holds that ranky,(M') = K™.

Observe that |W| = (2K)™: to see why, recall that W consists of all m x n matrices whose
rows come from X UY. The sets X', are disjoint and satisfy |X| = || = K, and hence |W| =
(]JX¥ UY|)™ = (2K)™. Moreover, observe that rankp,(A4) = K, since A2 = I and so A has full rank.
It follows that

rankp, (M|R) = rankp, (A|R*) - rankp, (M(,m—l))
= rankp, (A|g) - K™ !

rankp, (A) 1 ..
LK™ By definition of

= pr,(mEWx iy, A) (By pez)
K

— CKml rankp, (A) = K

) pipy (MK Wy, A) (ramke, (4) )

iy (MK Wiy, A)
w m
lad (W] = (25)™)

- om. M]FQ(mKWXX:y, A) '
The last equality holds since This concludes the proof.

Proof of Proposition 4.6. Let B denote the block matrix

def (I A
p (1 4),

We claim that M’ = B® --- ® B. To see why, note that the upper and lower halves of B correspond
—_—

m times
to the cases where a; = 0 and a; = 1 respectively, and the left and right halves correspond to the
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cases where b; = 0 and b; = 1. Hence, by Fact 2.44, when we take the Kronecker product of
m copies of B we get all the possible blocks of the form A% @ A%202 @ ... @ A%mbn

It therefore suffices to prove that rankp,(B) = K, since that will imply that rankg, (M’) = K™
by Fact 2.43. To this end, we subtract the product of A with the upper half of B from the lower
half of B, and obtain the matrix

1 A _ I A (1T A
A-A-T 1-4A%2) \A-A T1-1) \0 0)’
where the first equality holds since A2 = I by Proposition 4.3. The matrix on the right-hand size

clearly has rank K (since I L I is the identity matrix of order K'). This implies ranky,(B) = K,
as required. [

4.3 The existence of the matrix A

Finally, we prove Proposition 4.3, restated next.

Proposition 4.3 (restated). There exists a symmetric matriz A € Fy*Y such that
IOg NFg(mKWXXy’A) > Q(NSFQ (¢) : t) - Iqu, (16)
and such that A? = 1.

To this end, we use the lifting theorem of [ARMN™'19] (Theorem 2.27). By applying that
theorem to the lifted search problem S; ¢ eq, we obtain a matrix A € IFSEXA[ that satisfies the
lower bound of Equation (16) for Sy oeq. Our goal is to prove that A satisfies this lower bound for
mKWxxy, and to prove that A is symmetric and satisfies A2 = I.

We start by tackling the following minor technical issue: By its definition, the rows and columns
of A are indexed by A, whereas in order to lower bound p, (mK Wyxy), we need a matrix whose

rows and columns are indexed by X and ) respectively. To this end, recall that X def RA(A?) and

y def Rp(AY), where R4 and Rp are the injective functions of the reduction from Sgoeq to mKW,.

Thus, R4 and Rp are bijections from A’ to X and Y respectively. It follows that we can view the
rows and columns of A as being indexed by X and ) respectively by using R4 and Rp to translate
the indices.

Now, in order to prove that A gives the desired lower bound on pp,(mKWxyxy), we show that
every monochromatic rectangle ' C X x ) of mK Wy y is also a monochromatic rectangle of Syoeq

(when interpreted as a rectangle in AL x A? via RZI, Rél). Let T C X x ) be a monochromatic

rectangle of mK Wy y, and suppose that it is labeled with a solution j € [n]. Let o def Rout(4),

where Rgy¢ is the function of the reduction from Sy oeq to mKW,. Then, by the definition of Ry,
for every (z,y) € T it holds that o is a solution for Sy ¢ eq on (11?;1(:13),1%151 (y)). Thus, T can be
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viewed as an o-monochromatic rectangle of Sy ¢ eq. It follows that

log pp, (MK Wxyy, A) f log rankp, (A4) — max log rankp, (A|7)

monochromatic rectangle
T of mKWxxy
> log rankg, (A) — max log ranky, (A|7)
monochromatic rectangle

T of Sy oeq

def
= log i, (Sg 0 eq, A)

d-2t -1
>dlog( €>_6 2toge

- lOg q,

as required.

It remains to prove that A is symmetric and satisfies A2 = I. To this end, we take a closer look
at how the matrix A is constructed. The proof of [AIRMN*19] (following [Shell, RPRC16, PR17])
chooses the matrix A to be a pattern matriz, that is: there exists a multi-linear polynomial p :
Fé — Fy of degree ¢ such that, for every two inputs z,y € A¢,

def
Azy = pleq(z1, 1), -, eq(ze, ye)). (17)

This immediately implies that A is symmetric, since it is easy to see that the right-hand side of
Equation (17) remains the same if we swap z and y. In order to show that A2 = I, we write A as
a sum of Kronecker products: For every set T' C [], we denote by p(T') the coefficient of p at the
monomial [[;cp @i Let 15 denote the all-ones matrix of order |A| x |A, and for every 7' C [{] and

i € [¢], denote the matrix
1 itieT
Qr=4q M
Ly ifigT.
Robere [Rob18] showed that A can be written as follows:
A=Y HT)-Qure- ®Qur.

TC[h

Essentially, the latter identity holds since for every i € T', the value of I|5| at the entry x;,y; is
eq(z;,yi), whereas for every i ¢ T', multiplying by 1|5 does not change the value of the product.
It follows that

2

A% = Z PT) - Qir®- - ®Qur
TC[l]
2
= Z Qur®---@Qur (we are working over Fy)
TC):p(T)=1
= Z (Qr @ ®Qur) (Qur @ ®Qurv)
T, 7" C[e):p(T)=p(T")=1
= Z (Ql,T : QI,T’) R (Qe,T : Qe,T/) (Fact 2.41).

T 7' Cl):p(T)=p(T")=1
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Next, observe that for every two distinct sets T',7" C [¢], the last sum contains two terms:

(Qur Q1) @ @ (Qur - Qer) and (Qur - Q1r) ® -+ ® (Qurr - Quyr)

We now claim that those two terms are equal and therefore cancel each other. To this end, we
claim that for every i € [/] the matrices Q; 7 and @Q; 7 commute: the reason is that either one of
those matrices is I}y (and then they clearly commute) or both matrices are equal to N, (and then
again they clearly commute). It follows that for every two distinct sets T', 7" C [¢], the above terms
are equal and thus cancel each other. Hence, we remain only with the terms that correspond to
T =T so

A% = Z Q%,T®"'®Q?,T'

TC[A):p(T)=1

Finally, observe that |A| = 2 is even, and thus (]1| A|)2 is the all-zeroes matrix. Hence, every term
in the above sum in which one of the matrices Q; 1 is equal to 1},| zeroes out. The only term that
remains is therefore the term that corresponds to T' = [¢]. Furthermore, the degree of p is ¢, and
therefore p([¢]) = 1. It follows that

A =Qi e Qi
= Iy @ eIy

¢ times
:IlA\ ®"'®IW

£ times

def
:I’Ag’ — I

Hence, we have shown that A is symmetric and that A? = I, as required.

5 A generalized lifting theorem

In this section, we prove our generalization of the lifting theorem of [CFK*19] (Theorem 2.26).
The latter theorem says that if a search problem S C {0, 1}Z x O is lifted with an appropriate
gadget gd : {0,1}" x {0,1}* — {0,1}, then CC(S o gd) = Q(Q(S) - t). Essentially, our theorem says
that this lower bound remains intact even if we restrict the inputs of S ¢ gd to a rectangle X x Y,

as long as the relative average degree of any coordinate in X and ) is at least Formally,

oy
Theorem 5.1. For every n > 0 and d € N there exist c € N and k > 0 such that the following
holds: Let S be a search problem that takes inputs from {0,1}¢, and let gd : {0,1}' x {0,1}" — {0,1}
be an arbitrary function such that disc(gd) < 277" and such that t > c-log . Let X,Y C ({0, 1}t)€
such that for every I C [€] both rAvgDeg;(X) and rAvgDeg;(Y) are at least 1/(d - (). Then the
communication complexity of solving S o gd on inputs from X x Y is at least k - Q(S) - t.

We believe that it is possible to prove similar generalizations of the lifting theorems of [RM99,
GPW15, CKLM17, WYY17], which in turn would extend our monotone composition theorem to
work with those theorems.

Let n,d,S,gd be as in the theorem. We will choose the constants ¢ and k at the end of the
proof to be sufficiently large such that the various inequalities hold. For convenience, for every set
of coordinates I C [f] we denote by gd! the function that takes |I| independent inputs to gd and

computes gd on all of them. In particular, we denote G def gdw], so we can write S¢ogd =So(@.
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As in previous works, we prove the theorem by showing that every protocol that solves S ¢ gd
using C' bits can be transformed into a decision tree that solves S using % queries, which implies
the desired result. Let II be a protocol that solves S ¢ gd using C' bits of communication. We
construct a decision tree 1" that solves S using OLt) queries. The rest of this section is organized as
follows: In Section 5.1, we provide an overview of the proof. In Section 5.2, we state the background
that we need from the lifting literature. Then, in Section 5.3, we describe the decision tree T" and
prove its correctness. Finally, in Section 5.4, we upper bound the query complexity of 7.

5.1 Proof overview

We start with an overview of the proof of [CFK*19]. Their proof works by a simulation argument:
Given an input z € {0, 1}4, the tree T' constructs a full transcript « of II, such that the rectangle
X x Y, contains an input (z,y) € G~1(2), and returns the output of w. Clearly, the transcript 7
must output the correct solution for z, since S o G(z,y) = S(z).

The tree T constructs the transcript 7 by simulating IT message-by-message. Throughout the
simulation, the tree 17" maintains random variables @,y be that are distributed over X x V.. Let

o G(zx,y). The goal of the tree T is to make sure that when the simulation of IT halts, the
input z is in the support of z.

When the simulation starts, we set @, y to be uniformly distributed over all inputs, and therefore
z is uniformly distributed over {0, 1}6. As the simulation progresses, the transcript 7 reveals more
and more information about x,y, until at some point there are coordinates I C [¢] about which a
lot of information has been revealed. At this point, there is a danger that the value of z; might get
fixed to a value different than z;. Before this happens, the tree T' queries z7, and conditions the
random variables @,y on the event z; = z;. This conditioning is repeated whenever a significant
amount of information is revealed about some coordinates, where “a significant amount” is « - ¢
bits of information per coordinate in I for some constant a > 0.

Eventually, the simulation halts. At this point, we know that z is consistent with z in all its
fixed coordinates. Moreover, we can show that since only a little information has been revealed
about all the other coordinates, the value of z in the rest of the coordinates is uniformly distributed.
Hence, z must be in the support of z, as required.

It remains to upper bound the query complexity of 1. As noted above, the tree T' queries z
once for each coordinate on which the transcript revealed « - ¢ bits of information. On the other
hand, we know that the transcript m reveals at most C bits of information about «, y, since this is
the communication complexity of II. Thus, there are at most % coordinates about which 7 reveals
« - t bits of information, so the query complexity of T is O(%), as required.

We now give some more details on how the query complexity is bounded, since we will need
those details shortly. We bound the query complexity of T" using a potential argument. Let U
be the set of unfixed coordinates. Our potential function is the sum Hoo(xy) + Hoo(yy). At the
beginning of the simulation, @,y are uniformly distributed over all inputs and U = [{], so the
potential is 2 - ¢ - £. After C' bits were transmitted and ¢ queries have been made, it is possible to
show that the potential is decreased by at most C' + (2 — ) -t - ¢q. On the other hand, the potential
is always upper bounded by 2 -t - |U|, and since |U| = ¢ — ¢ it follows that

2.4 4—C—(2-a)t-q<2-t-|U|=2-t-({—q). (18)

from which we obtain the bound ¢ = O(C/t) after rearranging.

Our contribution. Our proof follows a similar outline, but at the beginning of the simulation,
we set x,y to be uniformly distributed over X and Y respectively. This difference results in two
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issues. The first issue is that if some coordinate i of x,y starts with relatively low min-entropy,
then there is a danger that z; will be fixed too early. Fortunately, such a situation can never happen
since we assumed that X', ) have high average degrees, which lower bounds the min-entropy (by
Fact 2.39).

The second issue is that the foregoing potential argument becomes slightly more complicated.
Specifically, the initial potential is now log|X'| + log |V| rather than 2 - ¢ - ¢, and the upper bound
on the potential is now log |Xy| + log |Vy| rather than 2 -t - |U|. Thus, Equation (18) is replaced
with the equation

log |X|+1log|Y|—C—(2—a)-t-q<log|Xy|+log|Vu]|.
In order to derive a bound on ¢ from the latter equation, we need to lower bound the difference

(log [X| + log |V[) — (log [Xy| + log [Vu]) -
To this end, we observe that

X
g (1)~ log (1) = tog (5 ) = ot (AveDeg o ()
and a similar equality holds for )). We now get the desired lower bound by using our assumed
bound on the average degrees of X and ).

5.2 Lifting machinery

As explained above, a key part of the simulation is keeping track of the coordinates on which the
protocol did not transmit much information. We model a string about which not much information
has been revealed using the following notion of a dense random variable (not to be confused with
the notion of density from Section 2.10).

Definition 5.2 ([GLM*16]). Let n € N and § > 0, and let « be a random variable taking values
in A™. We say that x is 0-dense if for every set of coordinates I C [n] it holds that Hoo () > 0-t-|I|.

We will keep track of which coordinates of z have been fixed and which are still free using the
standard notion of restriction.

Definition 5.3. A restriction p is a string in {0, 1, *}é. We say that a coordinate ¢ € [{] is free
in p if p; = *, and otherwise we say that i is fized. Given a restriction p € {0,1,*}", we denote
by free(p) and fix(p) the sets of free and fixed coordinates of p respectively. We say that a string
z €40, 1}£ is consistent with p if zg.(,) = Prix(p)-

Our decision tree will maintain the following invariant, which captures the idea that z =
G(z,y) is fixed in some coordinates, and not too much information has been revealed on the other
coordinates.

Definition 5.4 ([GLM*16, GPW17]). Let p € {0, 1, *}¢ be a restriction, let 7 > 0, and let @, y be
independent random variables taking values in A¢. We say that = and y are (p, 7)-structured if there
exist 0z, 0y > 0 such that @pee(p) and Ypee(,) are dp-dense and dy-dense respectively, o, + oy > 7,
and

gdﬁX(p) (mﬁx(p)a yﬁx(p)) = Pfix(p)-

43



The following results use the assumption that gd has input length ¢ > ¢ - log ¢ and discrepancy
at least 277t A key property of structured variables @,y is that in all the free coordinates, the
random variable 2f.ee(,) = G(2,y) has full support. This property is formalized by the following
result.

Proposition 5.5 (special case of [CFK ™19, Prop 3.10]). There exists a universal constant h such
that the following holds: Let @,y be random variables that are (p,T)-structured for T > 2 + % —n.

Then, the support of the random variable gd™() (Ttree(p)s Ytree(p)) 8 10 1 }free(e),

Whenever the protocol transmits so much information that & or y cease to be dense, we wish
to fix some coordinates in order to restore their density. This is done by the following folklore fact.

Proposition 5.6 (see, e.g., [GPW17]). Let n € N, let 6 > 0, and let x be a random variable taking
values in A™. Let I C [n] be a mazimal subset of coordinates such that Hoo (1) < 0 -t-|I|, and let
x; € Al be a value such that Pr [®r = x1] > patkatly Then, the random wvariable :c[n]_1|:c1 = x5 s
d-dense.

Proposition 5.6 allows us to restore the density of by fixing some set of coordinates I. In order
to maintain the invariant that = and y are structured, we also need to ensure that gd? (z7,y;) = pr.
To this end, we condition y on the latter event. However, this conditioning reveals information
about y, which may have two harmful effects:

e Leaking: As discussed in Section 5.1, our analysis of the query complexity assumes that
the transcript 7 reveals at most O(C) bits of information. It is important not to reveal
more information than that, or otherwise our query complexity may increase arbitrarily. On
average, we expect that conditioning on the event gd! (z7,4y;) = pr would reveal only |I| bits
of information, which is sufficiently small for our purposes. However, there could be values
of xy and p; for which much more information is leaked. In this case, we say that the
conditioning is leaking.

e Sparsifying: Even if the conditioning reveals only |I| bits of information about y, this could
still ruin the density of y if the set I is large. In this case, we say that the conditioning is
sparsifying.

We refer values of @ that may lead to those effects as dangerous, and define them as follows.

Definition 5.7 ([CFK*19]). Let n € N and let y be a random variable taking values from A™. We
say that a value 2 € A" is leaking if there exists a set I C [¢] and an assignment z; € {0,1} such
that

Pr [ng(:cf,yI) =z < 9~ M=,
Let 6, > 0, and suppose that y is d-dense. We say that a value x € A" is e-sparsifying if there
exists a set J C [n] and an assignment z; € {0,1} such that the random variable

Yp—sled (xr,y;) = 21
is not (0 —e)-dense. We say that a value z € A" is e-dangerous if it is either leaking or e-sparsifying.

Chattopadhyay et. al. [CFK'19] deal with this issue by upper bounding the probability of
dangerous values:

Lemma 5.8 (special case of [CFK*19, Lemma 3.9]). There exists a universal constant h such that
the following holds: Let 0 < ~yv,e,7 <1 be such that T > 2+ % —n and e > %, and let x,y be (p, T)-
structured random variables. Then, the probability that Tiee(,) takes a value that is e-dangerous

Jor Ypree(p) s at most %
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5.3 The construction of the decision tree T’

Let h be the maximum among the universal constants of Proposition 5.5 and Lemma 5.8. Let
e &t ffh, let § %1 7+5,and let 7 4 9.5 —¢. The tree T constructs a transcript « by simulating
the protocol II round-by-round, each time adding a single message to w. Throughout the simulation,
the tree maintains two independent random variables  and y that are distributed over X; and ),
respectively. The tree will maintain the invariant that  and y are (p, 7)-structured, where p is
a restriction that keeps track of the queries the tree has made to z so far. In fact, the tree will
maintain a more specific invariant: whenever it is Alice’s turn to speak, Tgee(p) is (0 —e)-dense and
Ysree(p) 18 0-dense, and whenever it is Bob’s turn to speak, the roles of « and y are reversed.

When the tree T' starts the simulation, the tree sets the transcript m to be the empty string,
the restriction p to {*}Z, and the variables & and y to be uniformly distributed over X and Y
respectively. We show that at this point,  and y are both J-dense, and thus satisfy the invariant.
Let I C [{] be a set of coordinates. We show that Hy,(x7) > 0-¢-|I|, and the proof for y is similar.
Recall that by Fact 2.39, the logarithm of average degree is a lower bound on min-entropy. Thus,
our assumption on the relative average degrees of X implies that

1
Hoo(xp) >t-|I| —log TAvgDeg, (X) (19)

> (t —dlogl —logd) - |1

dlogl logd
= (1 - TBL 1By

d+logd
> - 2tesdy g (t>c-log!).

c

By choosing ¢ to be sufficiently large, we can ensure that the last expression is at least d - ¢ - |I],
as required. We now explain how 7' simulates a single round of the protocol while maintaining
the invariant. Suppose that the invariant holds at the beginning of the current round, and assume
without loss of generality that it is Alice’s turn to speak. The tree T performs the following steps:

1. The tree conditions Zfee(,) on not taking a value that is e-dangerous for yp.qq(,)

2. The tree T chooses an arbitrary message M of Alice with the following property: the prob-
ability of Alice sending M on input « is at least 2~ 1M (the existence of M will be justified
soon). The tree adds M to the transcript 7, and conditions & on the event of sending M.

3. Let I C free(p) be a maximal set that violates the J-density of ®pee(p (i-., Hoo(®1) < -1-]1]),

and let 7 € A be a value that satisfies Pr X =x1] > 279t The tree conditions z on

x; = xy. By Proposition 5.6, the variable @f,cq(,)—7 is now d-dense.

4. The tree queries zy, and sets p; = z7.

5. The tree conditions y on ng(J:[,yI) = ps. Due to Step 1, the variable Zfce(,) must take a
value that is not e-dangerous, and therefore yg.qq(,) is necessarily (6 — ¢)-dense.

After those steps take place, it becomes Bob’s turn to speak, and indeed, e, and Ytree(p) A€
d-dense and (& —e)-dense respectively. Thus, the invariant is maintained. In order for the foregoing
steps to be well-defined, it remains to explain three points:

e First, we should explain why Step 1 conditions @ on an event with a non-zero probability.
To this end, we note that 7 is larger than 2 + % —n (see Equation (21) below for a detailed
calculation). Hence, by Lemma 5.8, the variable ®fcq(,) has a non-zero probability to take a
value that is not e-dangerous for Ypee(p)-
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e Second, we should explain why the message M in Step 2 exists. To see why, observe that the
set of possible messages of Alice forms a prefix-free code — otherwise, Bob would not be able
to tell when Alice finished speaking and his turn starts. Hence, by Fact 2.32, it follows that
there exists a message M with probability at least 2~ M.

e Third, we should explain why Step 5 conditions y on an event with a non-zero probability.
To this end, recall that & must take a value that is not e-dangerous for y, and in particular,
the value of @ is necessarily not leaking. This means that that the string gd’ (zr,y;) has
non-zero probability to be equal to p;.

Finally, when the protocol halts, the tree T" outputs the solution of the transcript =. We claim that
this solution is a correct solution for z. To this end, recall that since & and y are consistent with 7,
the transcript 7 outputs a solution for S ¢ gd that is correct for every pair (x,y) in the support
of (x,y). Thus, it suffices to show that there exists some pair (z,y) in the support of (x,y) such
that G(z,y) = z. In other words, it suffices to show that Pr[G(x,y) = 2] > 0.

Since  and y are (p, 7)-structured and p is consistent with z, it holds that gdfx(») (Thix(p)s Ysix(p)) =
Zfix(p) With probability 1. It remains to deal with the free coordinates of p. To this end, we note

that 7 is larger than 2 + % — 1 (see Equation (21) below for a detailed calculation). Hence,

Proposition 5.5 implies that zgee(,) is in the support of gdfree(r) (mfree(p),yfree(p)). It follows that

Pr[G(z,y) = 2] > 0, as required.

p)

5.4 The query complexity of T’

Let z be an arbitrary input for 7', and let ¢ be the number of queries that T' makes on input z. We
show that for some constant s that depends only on 7 and d, it holds that C' > k- ¢ - t, and this
will conclude the proof of the lifting theorem. To this end, we prove that when the tree T halts,

1
Hoo(mfree(p)) + HOO(yfree(p)) > log ’X| + log |y‘ -3-C— (1 +4+ E) l-q. (20)

We claim that Equation (20) implies the desired bound on C. To see why, observe that by Fact 2.29
it holds that

HOO(mfree(p)) + Heo (yfree(p)) < log ‘Xfree(p)‘ + log ‘yfree(p)‘ .
By combining the two bounds, it follows that

1
3-C > 10g|X’ +log|y| _log|Xfree(p)| _log|yfree(p)| - (1 +6+ E) l-q

|X] Y 1

= log —(140+-)-t-q
‘ Kree(p) ‘ ‘y free(p) ‘ ¢

+ log

1
= log AvgDegy(p) (X) + log AvgDegpiy() (V) = (1 +0+ —) -t ¢

Next, by applying our assumed lower bound on the relative average degrees and noting that ¢ =
Ifix(p)|, we obtain that

1
log AvgDegiy(,) (X) = ¢ - [fix(p)| — log - AveDegngy) ()
>t [fix(p)| — (d-log £ + logd) - [fix(p)|
=(t—d-logl—logd)-q (¢ = [fix(p)])

46



and the same lower bound holds for log AngegﬁX(p) ()). By combining the inequalities, it follows
that

3
3-C>2-(t—d-logl—logd)-q—(1+d0+-)-t-q
c
d+logd 3
>2-(1- &) toq—(1+d+-)-t-q (See Equation (19) for the calculation)
c
2d +2logd+ 3
>(1—6— + 2loga + ).t
c
n h 2d +2logd+ 3 def n h
=(-— — -t- 0=1—--— .
(4 2-c-n c ) ¢ ( 4+2'c~n)
We now choose x & g - ﬁ - w and observe that we can make sure that x > 0 by

choosing ¢ to be sufficiently large.
It remains to prove Equation (20). Observe that when the tree starts the simulation, free(p) = [/]
and x,y are uniformly distributed over X, respectively, and hence

Hoo(wfree(p)) + Heo (yfree(p)) = log |X‘ + log |y| :

We will show that in every round of the simulation, the sum Hoo(®free(p)) + Hoo (Ysree( p)) decreases
by at most 3-[M|+ (1+d+ 1) t-|I], where M is the message that the protocol sends and I is the
set of queries that the tree makes at that round. Since the sum of the lengths of all the messages M
is at most C, and the sum of the sizes of all sets [ is ¢, this will imply Equation (20).

Fix a round of the simulation, and assume without loss of generality that the message is sent
by Alice. We analyze the effect of each of the steps on Hoo(Ziree(p)) + Hoo (Ysree(p)) individually:

e In Step 1, the tree conditions g eq(,) on taking dangerous values that are not e-dangerous
for Yiree(p). We show that this step decreases Hoo (Tfree(p)) Py at most one bit. Recall that at
this point « and y are (p, 7)-structured, where

def

T=2-0—¢ (21)
n € o

=2 (1_1_‘_5) —€ (by definition of §)
o

2

n
=942

+2 n
2h

=24+ ——7 (S.incesdéf —).

c-e c-n

Therefore, by applying Lemma 5.8, it follows that the probability that @f.ee(,) is e-dangerous
is at most % By Fact 2.30, conditioning on that event decreases Hoo(Tfree(p)) by at most one

bit.

e In Step 2, the tree conditions & on the event of sending the message M, which has probability
at least 27IM|. By Fact 2.30, this decreases Hoo (Tfre0()) Dy at most |M] bits.

e In Step 3, the tree conditions on & on the event x; = xj, which has probability greater
than 2-9tH| By Fact 2.30, this decreases Hoo (Tfree(p)) Dy at most 6 -t - |I] bits.

e In Step 4, the tree removes I from free(p). By Fact 2.31, this removal decreases Hoo(Yireo(p))
by at most ¢ - |I| bits. Moreover, this removal does not affect Hy, (Tfree(p))s since at this point
x; is fixed.
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e Finally, in Step 5, the tree conditions y on the event gd!(z7,y;) = pr. Due to Step 1, the
value z; is not dangerous and hence not leaking, so the latter event has probability at least
2-HI=1_ Tt follows that this conditioning decreasing Hoo (Yfree(p)) Py at most [I[ + 1 bits.

Summing up, the round decreases H (a:free(p)) + Hoo(yfree( p)) by at most
IM|+1+6-t-|[I|+t-|I|+[I]+1
=M+ (1464 5) ¢ |1 +2
<3 M+ (U454 2) ¢
§3-|M|+(1+5+%)-t-|l|,

as required.

6 Open questions

An obvious question that arises from this work is whether we can strengthen our semi-monotone
composition theorem (Theorem 1.5) to work for every non-constant outer function f. As a starting
point, can we prove such a semi-monotone composition theorem that holds when the inner function
g is the s-t-connectivity function? We note that proving such a result would likely require new
ideas, since our techniques seem to be insufficient:

e On the one hand, we cannot prove such a result along the lines of our monotone composition
theorem, since in the semi-monotone setting we cannot assume that the protocol outputs an
entry (i,7) for which a; # b; (as in the observation of [KRW95] in the monotone case).

e On the other hand, we cannot prove such a result along the lines of our semi-monotone
composition theorem, since the Razborov rank measure cannot prove interesting lower bounds
for non-monotone KW relations [Raz92]. In particular, we would not be able to analyze the
complexity of a non-monotone outer relation KW} using this technique.

Another interesting question is whether we can strengthen our monotone composition theorem
(Theorem 3.1) even further: Although this theorem holds for many choices of the inner functions g,
there are still a few “classic” functions that it does not cover — most notably the matching func-
tion [RW92]. Can we prove a monotone composition theorem where f can be any non-constant
monotone function, and ¢ is the matching function?

Finally, recall that in the long run, our goal is to prove the KRW conjecture for the compo-
sition KWy o MUX (for every f), since this would imply that P & NC!. To this end, it seems
reasonable to try to prove first the monotone and semi-monotone versions of this conjecture. The
monotone version might be within reach (see [Meil9] for the statement of this conjecture). Can we
prove it?

A Composition theorems for classic functions

In this appendix, we show that our composition theorems can be applied to three classic functions,
namely: s-t-connectivity [KW90], clique [GH92, RW92], and generation [RM99]. Recall that if ¢
is a CNF contradiction, we denote by Sy its corresponding search problem. We prove our results
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by showing that for each of the above above functions, there is an injective reduction from the
lifted search problem Sy o gd to mK W, for some appropriate formula ¢ and gadget gd. Specifically,
for our monotone composition theorem we will choose the gadget gd to be inner product mod 2
function ip. For our semi-monotone composition theorem we will choose the gadget to be the
equality function eq. In both cases, we will denote the input length of the gadget by ¢.

Preliminaries

Following [GP18, Olil5, Robl18], we will construct our reductions from Sy ¢ gd to mKW, in two
steps: first, we will reduce Sy ¢ gd to to the monotone KW relation mK Wggpsar for a certain
constraint satisfaction problem CSPSAT, and then we will reduce the latter relation to mKW,. We
now define the constraints satisfaction problem and the related notions.

Definition A.1. Let H = (LU R, E) be a bipartite graph, and let A be a finite alphabet. For
every vertex r € R, we denote by N(r) C L the set of neighbors of r. The constraint satisfaction
problem CSPSATp a is the following decision problem: The input consists of a set of predicates
P, : AN — {0,1} for every r € R. The answer on an input is “yes” if and only if there exists an
assignment « : L — A that satisfies all the predicates.

Definition A.2. Let ¢ be a CNF formula. The graph of ¢, denoted graph(¢), is the bipartite
graph whose left and right vertices are the variables and clauses of ¢ respectively, and whose edges
connect each clause with its variables.

We reduce Sgogd to CSPSAT using the following generic technique, due to [RM99, GP18, Olil15]
(see also [Rob18, Sec. 6.1]). We note that the “moreover” part in the following theorem is implicit
in those works, and that its condition is is satisfied by the gadgets that we use.

Theorem A.3. For every CNF contradiction ¢ and gadget function gd : X x Y — {0, 1}, the lifted
search problem Sy ¢ gd reduces to the monotone KW relation of CSPSATgrapn(g),x- Moreover, the
reduction is injective if for every y € Y, the function gd(-,y) : X — {0,1} is non-constant and
determines y.

In order to reduce mK Wcgpsar to mKW,, we reduce the function CSPSAT to g using the following
special type of reduction.

Definition A.4. We say that a function p : {0,1}"™ — {0, 1}"? is a monotone projection if for every
J € [n2], it either holds that the j-th output is a constant (i.e., always 0 or always 1), or there exists
an input coordinate ¢ € [n1] such that for every x € {0,1}"" it holds that p(z); = z;. Given two
monotone functions g; : {0,1}"* — {0,1} and g2 : {0,1}"* — {0, 1}, we say that there is monotone
projection from g1 to go if g1 = g2 o p for some monotone projection p : {0,1}"* — {0,1}"2.

It is not hard to see that if there is a monotone projection from g; to gs, then there is an
injective reduction from mKW,, to mKW,,. Finally, we will use the following fact to lower bound
the query complexity of search problems.

Fact A.5 (see, e.g., [ARMN™19, Appx. C]). Let ¢ be a CNF contradiction. Then Q(Sy) > NSp,(¢).

The s-t-connectivity function

The s-t-connectivity function STCONN,, takes as input the adjacency matrix of a directed graph
over n vertices with two distinguished vertices s, ¢, and says whether s and t are connected in the
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graph. Karchmer and Wigderson [KW90] proved that CC(mK Wsrcon, ) = ©(log®n) for the case
of undirected graphs, and alternative proofs were given by [GS91, Pot17, Rob18] for the case of
directed graphs.

Below, we apply our main results to derive composition theorems with the inner function being
STCONN,,. Following [Rob18], we do this using the induction principle of [BP98], which is the CNF
contradiction defined as follows:

Indg(z1,. .., 20) e A (721 Vz2) A (22 V z3) Ao A (zem1 Vo zg) A —zp.

Buss and Pitassi [BP98] showed that NSg,(Ind;) = O(log#). We now reduce Styg, ¢ gd to
mK Wsrcony,, by constructing a monotone projection from CSPSATg aph(Ind,),a t0 STCONN,,.

Proposition A.6. For every £ € N and every finite set A, there is a monotone projection from
CSPSATgaph(Ind,),a to STCONNy, for n defy. |A] + 2.

Proof. We construct a projection that maps an input of CSPSATgyapn(1nd,),A t0 an input of STCONN,,.
The input of STCONN,, will be a layered graph G that has £+ 2 layers. The first layer will contains
only the distinguished vertex s, and the last layers will contain only the distinguished vertex t.
Each of the ¢ middle layers will consist of |A| vertices, which we label with the elements of A.

The edges of G are determined by the input of CSPSATg apn(Ind,),a a@s follows. Recall that
an input to CSPSATgpapn(ind,),a consists of the following predicates: a predicate P, : A — {0,1},
predicates of the form Py, : A> = {0, 1} for every i € [¢ — 1], and a predicate P-., : A — {0,1}.
Now,

e For every vertex v € A of the second layer, we put an edge (s,v) in G if and only if P, (v) = 1.

e For every vertex v € A of the second-to-last layer, we put an edge (v,t) in G if and only if
P, (v)=1

e For every two middle layers ¢ and ¢ + 1, we put in G an edge between a vertex u € A of the
layer i and a vertex v € A of the layer ¢ 4+ 1 if and only if P, ,(u,v) = 1.

It can be verified that this mapping from inputs of CSPSATgph(1nd,),a t0 inputs of STCONN,, is a
monotone projection. To see that it maps “yes” inputs of CSPSATgapn(1nd,),A 10 “yes” instances of
STCONN,, and vice versa, observe that every satisfying assignment specifies a path from s to ¢ in G
and vice versa. |

We now apply our main results to obtain a monotone and semi-monotone composition theorems
with the inner function being g = STCONN,,.

Theorem A.7. For every non-constant monotone function f : {0,1}" — {0,1}, it holds that for
almost all n € N,

log L(mK Wy o mK Wsrconn, ) = log L(mK W) + Q(log L(mK Wsrconn,))
CC(Um <o mKWSTCONNn) Z m _|" Q (CC(mKWSTCONNn)) .

Proof. Let f:{0,1}"" — {0,1} be a non-constant monotone function, and let ¢ be the maximum
between 2 and the constant obtained from our monotone composition theorem for n = % (since the

discrepancy of ip is 27%t). Let ¢ € N be such that £ > m, and let ¢ aof [c-log(m - £)]. We show

that the theorem holds for n < ¢. 2t + 2 and this will imply the theorem for almost all n € N by
padding.
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By combining Proposition A.6 with Theorem A.3, we obtain injective reductions from Stnq, ©ip
and Stnq, ©eq to mK Wsrconn,, - By the aforementioned result of [BP98] it holds that N.Sg,(Indy) =
©(log¢), and this implies that Q(Ind,) > Q(log¥) by Fact A.5. It now follows by our monotone
composition theorem that

log L(mK W o mK Wsrconn,,) > log L(mKW;) + Q(Q(Indy) - t)
= log L(mKW;) 4+ Q (log ¥ - log(m - £))
= log L(mK W) + Q (log?n)
= log L(mKWy) + Q (log L(mK Wercons,)) -

Similarly, our semi-monotone composition theorem implies that

=m + Q (CC(mKWSTCONNn)) 5

as required. |

The clique function

We denote by CLIQUE,, ;, the function that takes as an input the adjacency matrix of an n-vertex
graph and says whether it contains a k-clique. Observe that for every k,n € N it holds that
CC(mKWcwuque, ) < klogn, which is witnessed by the circuit that checks all (Z) potential cliques

by brute force. Goldmann and Hastad [GH92] proved that CC(mK Woyque, ;) > Q(V'k) for every
k< (n/2)2/3, and Raz and Wigderson [RW92] improved this bound to CC(mK Wewque, ) = Q(k)
that for every k < %n + 1. In what follows, we use lifting to improve the latter lower bound to
Q(klogk) for small values of k, namely, k < 20(VIogn) We then apply our main results to obtain
corresponding compositions theorems with the inner function being g = CLIQUE,, ;.

To this end, we choose our the CNF contradiction to be the bitwise pigeonhole principle, defined
as follows: Let d € N. The bitwise pigeonhole principle bitPHP, is a 2(d — 1)-CNF contradiction
over ¢ % 2d. (d — 1) variables. The variables are partitioned into 2¢ blocks of (d — 1) variables
each, and we view each block as encoding a number in [Qd_l]. The formula bitPHP, contains
(2;) clauses that check that every two blocks encode different numbers. Informally, this formula
encodes the statement that 2¢ pigeons can not be mapped injectively into 2¢~! pigeonholes.

It follows from a recent work of de Rezende et. al. [IRGNT] that NSk, (bitPHP,) > Q(2%) =
Q(¢/log ). We have the following monotone projection from CSPSATgaph(bitPHP,),A 10 CLIQUE,, k.

Proposition A.8. For every d € N and every finite set A, there is a monotone projection from
def

CSPSATgraph(bitPHP,),A 10 CLIQUE, . for n def o . \A|d71 and k = 2%,
Proof. We construct a monotone projection that maps an input of CSPSATg.pnbitPHP,),A t0 an
input of CLIQUE,, ;. The input of CLIQUE, ; will be a graph G that consists of 2¢ classes of
\A\d_l vertices each. Within each class, we label the vertices with strings in A?~!. All the edges
of G will connect different classes, so a clique will contain at most one vertex from each class.
The edges between the classes are determined by the input of CSPSAT.pnmitpHP,),A a8 fol-
lows. Recall that an input of CSPSATapnbitPHP,),A 1S @ constraint satisfaction problem over of
¢ variables, which are partitioned to 2% blocks of (d — 1) variables each. Moreover, the input to
CSPSATgraph(bitPHP,),A COnsists, for every two distinct blocks 4, j, of a predicate P; ; AT A
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{0,1}. Now, for every distinct 7, j, we put in G an edge between a vertex u € A of the i-th class
and a vertex v € A of j-th class if and only if P; j(u,v) = 1.

It can be verified that this mapping from inputs of CSPSATgpnbitPHP,),A t0 inputs of CLIQUE,, 4,
is a monotone projection. To see that it maps “yes” inputs of CSPSATg.pnbitPHP,),A TO “yes”
instances of CLIQUE,, ;, and vice versa, observe that every satisfying assignment specifies a clique
of size 2% in G and vice versa. |

We use Proposition A.8 together with the lifting theorem of [{RMN19] to obtain the following
lower bound on CC(mK WCLIQUEn,k).

Theorem A.9. For almost all n € N it holds that CC(mKWcuque, ) = Qklogk) for every
b < 208,

Proof. Let d € N, let ¢ L 9 d.(d— 1) and let ¢ ¢ [2 logl] = ©(d). We prove the theorem
for n % 9d+@=1)t — 90(d*) and | L 9d — 2@<V1°g"), and this will imply the theorem for almost

alln € Nand k < 20V1ogn) by padding. By applying the lifting theorem of [dRMNT19] (specifically,
Corollary 2.28) together with the bound N Sg,(bitPHP;) > Q(@) of [dARGN™], it holds that

CC(Shitpup, © €q) > O -t) —log (2(d — 1)) = Q(¢).

log £
By combining Proposition A.8 with Theorem A.3, we obtain a reduction from Spipup, © eq to
mK WCLIQUEn,k’ and therefore.

CC(mK Wewnque,, ) = Q(€) = Q27 - d) = Q(klog k),
as required. [

We now apply our main results to obtain a monotone and semi-monotone composition theorems
with the inner function being g = CLIQUE,, j.

Theorem A.10. For every non-constant monotone function f : {0,1}" — {0,1} the following
holds: For almost all n € N and for k = 20(Vlegn)

log L(mK W} o mK Wsrcoy,) = log L(mKWy) + Q(log L(CLIQUE,, 1))
CC(Um & mKWCLIQUEn,k) Z m + Q (CC(mKWCLIQUEn’k)) .

Proof. Let f:{0,1}"" — {0,1} be a non-constant monotone function, and let ¢ be the maximum

between 2 and the constant obtained from our monotone composition theorem for n = % (since

the discrepancy of ip is 27%t). Let d € N be such that d > logm, let £ = def gd . <(d—-1), and let

¢ 9 [c-log(m - ¢)]. We show that the theorem holds for n e gd+(d=1)t = 90(d*) apd | L 2
29(‘/@), and this will imply the theorem for almost all n € N by padding.

By combining Proposition A.8 with Theorem A.3, we obtain injective reductions from Spitpup,©
ip and Shipup, © eq to mKWewque, - By the aforementioned result of [dRGNT] it holds that
N Sr, (bitPHP,) > Q(2%), and this implies that Q(bitPHP,;) = Q(2¢) by Fact A.5. It now follows
by our monotone composition theorem that

log L(mK W o mK Warcoxy, ) > log L(mKW;) + Q(Q(bitPHPy) - t)
= log L(mKW;) +Q (zd log(m - £) )
> logL(mKW;) +Q <2 ) (since d > logm and log ¢ = ©(d))
=log L(mKW;) 4+ Q (klogk).



Finally, recall that log L(CLIQUE, ;) = O(klogn). Since k = 29(V106™) it holds that klogk =

Q(klogn), and therefore
log L(mK W o mK Wercons,) > log L(mKW;) + Q(log L(CLIQUE,, 1))

Finally, by applying our semi-monotone composition theorem and using similar calculations as in
the proof of Theorem A.9, we obtain that

CC(Upm © mE Wsrconn,) > m + Q(klogk) > m + Q (CC(mK Wewngue, ) »

as required. |

The generation function

Let n € N. Given a set 7 C [n]®, we say that T generates a point w € [n] if w = 1, or if there is
a triplet (u,v,w) € T such that 7 generates u and v. The generation function GEN,, takes as an
input a set T C [n]3 and says whether T generates n or not. This function was introduced by Raz
and McKenzie [RM99] in order to separate the monotone NC hierarchy.

Raz and McKenzie [RM99] showed that CC(mKWgey, ) > Q(n®) for some constant ¢ > 0
by using their lifting theorem for query complexity. Specifically, they considered a certain 3-
CNF contradiction Peba, (namely, the pebbling contradiction of the pyramid graph) and re-
duced the lifted search problem Spey, A © gd to mK Wggy,, . Recently, Robere [Rob18] applied their
method with the lifting theorem for Nullstellensatz degree of [RPRC16] and obtained a bound of
CC(mKWggx,) > Q(n'/5). Below, we use our main results to obtain corresponding composition

theorems with the inner function being g = GEN,,.

For every h € N, the formula Peba, has ¢ e w variables. It can be shown that N Sg,(Peba, )

©(h) by combining the results of Cook [Coo74] and Buresh-Oppenheim et. al. [BCIP02] (see
[Rob18, Sec 6.3] for details). We use the following result due to Robere [Rob18].

Proposition A.11 (implicit in the proof of [Robl8, Thm. 6.3.3]). For every h € N and every
finite set A, there is a monotone projection from CSPSATgraph(PebAh),A to GEN,, forn defy. |A| + 2.

Remark A.12. We note that the proof of Proposition A.11 in [Rob18] only states this claim for
A= [62], but it actually works for every finite set A.

We now apply our main results to obtain a monotone and semi-monotone composition theorems
with the inner function being g = GEN,, that match the lower bounds of [RM99] and [Rob18]
respectively.

Theorem A.13. There exists € > 0 such that the following holds. For every non-constant mono-
tone function f:{0,1}"™ — {0,1}, it holds that for almost all n € N,

log L(mK Wy o mKWgey,, ) = log L(mKW;) + Q(nf). (22)

Proof. Let f:{0,1}"" — {0,1} be a non-constant monotone function, and let ¢ be the constant
obtained from our monotone composition theorem for n = % (since the discrepancy of ip is 2_%t).

Let h € N and ¢ def % be such that ¢ > m, and let ¢ € N be such that ¢t > ¢ -log(m - £). We

show that Equation (22) holds for n g 9t 42 < pie+2 and this will imply the required result for
almost all n € N by padding.
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By combining Proposition A.11 with Theorem A.3, we obtain a reduction from Spe Ay © ip to
mKWeep,, - By the foregoing discussion NSg,(Peba,) = €(h), and this implies that Q(Ind,) >
Q(h) by Fact A.5. It now follows by our monotone composition theorem that

log L(mK Wy o mK Wsrconn, ) > log L(mKW;) + Q(Q(Indy) - t)
> log L(mKW¢) + Q (h)

:bymmm+ﬂ@éﬁ.

By choosing € =

ﬁ, we obtain the required result. [
>

Theorem A.14. For every m € N and for almost all n € N it holds that CC(Uy, © mKWggy,,)
m +Q (n/5).

Proof. Let m € N. Let h € N, let /¢ def h(h D) and et ¢ = [2log ¢]. We prove the theorem for

2
n ot yo = ©(h%) and this will imply the theorem for almost all n € N by padding. By

combining Proposition A.6 with Theorem A.3, we obtain an injective reduction from Spep A, ©€d
to mK Wggy,,. Moreover, by the foregoing discussion NSk, (Peba, ) > Q(h). It now follows by our
semi-monotone composition theorem that

CC(Um Lo mKWSTCONNn) 2 m + Q(NS[F2 (PebAh) . t)
>m + Q(h)
= m + Q(n'/9).

as required. [
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