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SEARCH PROBLEMS IN ALGEBRAIC COMPLEXITY, GCT, AND
HARDNESS OF GENERATORS FOR INVARIANT RINGS

ANKIT GARG, CHRISTIAN IKENMEYER, VISU MAKAM, RAFAEL OLIVEIRA,
MICHAEL WALTER, AND AVI WIGDERSON

Abstract. We consider the problem of computing succinct encodings of lists of generators
for invariant rings for group actions. Mulmuley conjectured that there are always polyno-
mial sized such encodings for invariant rings of SLn(C)-representations. We provide simple
examples that disprove this conjecture (under standard complexity assumptions).

We develop a general framework, denoted algebraic circuit search problems, that captures
many important problems in algebraic complexity and computational invariant theory. This
framework encompasses various proof systems in proof complexity and some of the central
problems in invariant theory as exposed by the Geometric Complexity Theory (GCT) pro-
gram, including the aforementioned problem of computing succinct encodings for generators
for invariant rings.

1. Introduction

In complexity theory, one often encounters problems that ask for an efficiently computable
collection of functions/polynomials satisfying a certain property. Once we are faced with such
problems, two natural questions are: how do we represent the property? And how do we
encode the required functions? The answer to these will depend on the context and use.
We will first define the informal notion of an algebraic circuit search problem, and then give
illustrative examples.

Definition 1.1 (Algebraic circuit search problems). Given an input (of size n), construct
an algebraic circuit in a complexity class C with k(n)-inputs and m(n)-outputs such that the
polynomials they compute satisfy a desirable property P.

Let us illustrate this definition in the context of algebraic proof complexity: in Nullstellen-
satz-based proof systems, one is given a set of multivariate polynomials g1, . . . , gr over an
algebraically closed field F and in variables x = (x1, . . . , xn), and one wants to decide whether
the system g1(x) = g2(x) = . . . = gr(x) = 0 has a solution over F. A fundamental result of
Hilbert tells us that the system has no solution if and only if there is a set of polynomials
{fi}ri=1 such that

∑

i figi = 1. This brings us to the Ideal Proof System [GP14]:

• Ideal Proof System (IPS): Given a collection of polynomials g1(x), g2(x), . . . , gr(x),
we ask to construct a polynomial sized circuit C with n+r inputs. The desirable prop-
erty P is that C(x1, . . . , xn, g1(x), . . . , gr(x)) = 1 and that C(x1, . . . , xn, 0, . . . , 0) = 0.
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It is not so hard to see these conditions will give us a linear combination of the form
∑

i figi = 1 as required.

In [GP14] the authors show that super-polynomial lower bounds in this proof system imply
algebraic circuit lower bounds (i.e., VP 6= VNP), which remains a long standing open prob-
lem in complexity theory. Another important point to make is that an instance of 3-SAT,
say φ, can be encoded as a collection of polynomials {gi} such that φ is satisfiable if and only
if the {gi} have a common solution. In other words, φ is unsatisfiable if and only if ∃ polyno-
mials fi such that

∑

i figi = 1. This converts a co-NP complete problem (unsatisfiability of
3-SAT, called co-3-SAT) into an algebraic circuit search problem of the IPS form described
above. The existence of a polynomial sized circuit as demanded by the IPS proof system
would mean the existence of fi with small circuits. But that would mean that co-3-SAT is
in NP, thus proving NP = co-NP.

Other important examples of algebraic search problems in proof complexity (with different
desirable properties) are the original Nullstellensatz proof system, Polynomial Calculus, and
the Positivstellensatz1 for sum of squares (SOS) proofs. For more on these systems we refer
the reader to [Kra19, Chapter 6].

Remark 1.2. An analogous notion of a “boolean circuit search problem” can also be in-
troduced in the boolean setting. Also here, important problems such as the construction
of pseudorandom generators and the construction of extractors can be captured as boolean
circuit search problems.

1.1. Geometric Complexity Theory. The GCT program was proposed by Mulmuley and
Sohoni (see [MS01, MS08]) as an approach (via representation theory and algebraic geom-
etry) to the VP vs. VNP problem. While there have been some negative results2 in recent
years regarding the techniques one can use towards this program, these results do not disrupt
the core framework of the GCT program. Instead, these results indicate the difficulty of the
problem from the viewpoint of algebraic combinatorics, and have identified new directions
of research in asymptotic algebraic combinatorics. In [Mul17], Mulmuley views the VP vs.
VNP problem through the lens of computational invariant theory, and identifies important
and interesting problems in computational invariant theory that form a path towards resolv-
ing the VP vs. VNP problem. These include several conjectures, some of which fit into the
framework of algebraic circuit search problems, and have important connections and conse-
quences to problems in optimization, algebraic complexity, non-commutative computation,
functional analysis and quantum information theory (see [GGOW16, GGOW18, BFG+18]).
We therefore believe that a better understanding of algebraic circuit search problems will
likely result in fundamental advances in the aforementioned areas. Some evidence for these
conjectures has emerged over the past few years as they have been established for special
cases (see, for example, [Mul17, GGOW16, IQS18, FS13, DM17b, DM18, DM17a]).

Let us briefly mention an important algebraic circuit search problem and one that will be
central to this paper: given a group action, describe a set of generators for the invariant ring
(we will elaborate on invariant theory in a subsequent section). Unfortunately, the number
of generators for an invariant ring is usually exponential (in the input size of the description

1In this case our field is the real numbers, which is not algebraically closed.
2The results of Bürgisser, Ikenmeyer and Panova, which show that occurrence obstructions cannot give a

super-polynomial lower bound on the determinantal complexity of the permanent polynomial (see [BIP19]).
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of the action). So, in order to get a computational handle on them, Mulmuley suggests
in [Mul17] that we should look for a succinct encoding (defined below in Definition 1.3)
using some auxiliary variables. One amazing feature of such a succinct encoding is that it
would immediately give efficient randomized algorithms for null cone membership and the
orbit closure intersection problems which can then be derandomized in some cases (see, e.g.,
[FS13, IQS18, DM18]). We will define these problems in a subsequent section, but here we
are content to say that many important algorithmic problems such as graph isomorphism,
bipartite matching, (non-commutative) rational identity testing, tensor scaling and a form
of quantum entanglement distillation are all specific instances (or arise in the study) of null
cone membership and orbit closure intersection problems.

Mulmuley conjectures ([Mul17, Conjecture 5.3]3) the existence of polynomial sized succinct
encodings for generators of invariant rings. The main goal of this paper is to (conditionally)
disprove this conjecture. More precisely we give an example of an invariant ring (for a torus
action) where the existence of such a circuit would imply a polynomial time algorithm for the
3D-matching problem, which is well known to be NP-hard. We also give another example
(where the group is SLn(C)) where the existence of such a circuit would imply VP 6= VNP.
Further, the nature of the latter example makes it clear that no simple modification of this
conjecture can hold.

The rest of this section will proceed as follows. We first give a brief introduction to
invariant theory. Then, we discuss the algebraic search problems of interest in computational
invariant theory, followed by the precise statements of our main results. Finally, we discuss
some open problems and future directions.

1.2. Invariant Theory. Invariant theory is the study of symmetries, captured by group
actions on vector spaces (more generally, algebraic varieties), by focusing on the functions
(usually, polynomials) that are left invariant under these actions. It is a rich mathematical
field in which computational methods are sought and well developed (see [DK15, Stu08]).
While significant advances have been made on computational problems involving invariant
theory, most algorithms are based on Gröbner bases techniques, and hence still require
exponential time (or longer).

The basic setting is that of a continuous group4 G acting (linearly) on a finite-dimensional
vector space V = Cm.

An action (also called a representation) of a group G ⊆ GLn(C) on an m-dimensional
complex vector space V is a group homomorphism π : G → GLm(C), that is, an association
of an invertible m × m matrix π(g) for every group element g ∈ G, satisfying π(g1g2) =
π(g1)π(g2) for all g1, g2 ∈ G. To be precise, a group element g ∈ G acts on a vector v ∈ V by
the linear transformation π(g), and in this paper we will be dealing with algebraic actions,
that is, the entries of the matrix π(g) will be rational functions in the entries of the matrix g.
We will write g · v = π(g)v. Invariant theory is nicest when the underlying field is C and the
group G is either finite, the general linear group GLn(C), the special linear group SLn(C),

3In the conjecture, the group is specified to be SLn(C), which was done for the purpose of accessibility
and brevity, but it is natural to ask this problem for general connected reductive groups. We will discuss
this further in a later section.

4In general, the theory works whenever the group is connected, algebraic and reductive. However in this
paper, we will deal with very simple groups.
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or a direct product of these groups and their diagonal subgroups. We denote by C[V ] the
ring of polynomial functions on V .

Invariant Polynomials: Invariant polynomials are precisely those which cannot distin-
guish between a vector v and a translate of it by an element of the group, i.e., g · v. In other
words, a polynomial function f ∈ C[V ] is called invariant if f(g · v) = f(v) for all v ∈ V
and g ∈ G. Equivalently, invariant polynomials are polynomial functions on V which are
left invariant by the action of G. More precisely, the action of G on V gives an induced
action of G on C[V ], the space of polynomial functions on V . For a polynomial function
p on V , the group element g ∈ G sends it to the function g · p which is defined by the
formula (g ·p)(v) = p(g−1 · v) for v ∈ V . Then, a polynomial function is invariant if and only
if g · p = p for all g ∈ G. A set {fi}i∈I of invariant polynomials is called a generating set if
any other invariant polynomial can be written as a polynomial in the fi’s. Two simple and
illustrative examples are

• The symmetric group G = Sn acts on V = Cn by permuting the coordinates. In this
case, the invariant polynomials are symmetric polynomials, and the n elementary
symmetric polynomials form a generating set (a result that dates back to Newton).

• The group G = SLn(C)×SLn(C) acts on V = Mn(C) by a change of bases of the rows
and columns, namely left-right multiplication: that is, the action of (A,B) sends X
to AXBT . Here, det(X) is an invariant polynomial and in fact every invariant poly-
nomial must be a univariate polynomial in det(X). In other words, det(X) generates
the invariant ring.

The above phenomenon that the ring of invariant of polynomials (denoted by C[V ]G) is gen-
erated by a finite number of invariant polynomials is not a coincidence. The finite generation
theorem due to Hilbert [Hil90, Hil93] states that, for a large class of groups (including the
groups mentioned above), the invariant ring must be finitely generated. These two papers of
Hilbert are highly influential and laid the foundations of modern commutative algebra and
algebraic geometry. In particular, “finite basis theorem” and “Nullstellansatz” were proved
as “lemmas” on the way towards proving the finite generation theorem!

Orbits and Orbit Closures: The orbit of a vector v ∈ V , denoted by Ov, is the set of
all vectors obtained by the action of G on v. The orbit closure of v, denoted by Ov, is the
closure of the orbit Ov in the Euclidean topology.5 For actions of continuous groups, such
as GLn(C), it is more natural to look at orbit closures. The null cone for a group action
is the set of all vectors which behave like the 0 vector i.e. the 0 vector lies in their orbit
closure. Many fundamental problems in theoretical computer science (and many more across
mathematics) can be phrased as questions about orbits and orbit closures. Here are some
familiar examples:

• Graph isomorphism problem can be phrased as checking if the orbits of two graphs
are the same or not, under the action of the symmetric group permuting the vertices.

• Geometric complexity theory (GCT) [MS01] formulates a variant of the VP vs. VNP
question as checking if the (padded) permanent lies in the orbit closure of the de-
terminant (of an appropriate size), under the action of the general linear group on
polynomials induced by its natural linear action on the variables.

5It turns out mathematically more natural to look at closure under the Zariski topology. However, for the
group actions we study, the Euclidean and Zariski closures match by a theorem due to Mumford [Mum65].
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• Border rank (a variant of tensor rank) of a 3-tensor can be formulated as the minimum
dimension such that the (padded) tensor lies in the orbit closure of the unit tensor,
under the natural action of GLr(C)×GLr(C)×GLr(C). In particular, this captures
the complexity of matrix multiplication.

1.3. Computational invariant theory, Mulmuley’s problems and conjectures. From
its origins in the 19th century, the subject of classical invariant theory has been computa-
tional in nature – one of its central goals is explicit descriptions of generators of invariant
rings, their relations, etc. With the more recent advent of the theory of computation, it
is only natural to ask for the complexity of these descriptions. The influence of complexity
theory has taken an important role in invariant theory as a consequence of the connections to
fundamental problems such as VP vs. VNP that were uncovered as part of the GCT program
by Mulmuley in [Mul17]. In [Mul17], Mulmuley considers the computational complexity of
various invariant theoretic problems. Let G be a group acting on V .

(1) (Generators) Output a list of polynomials that generate the invariant ring C[V ]G.
(2) (NNL) Output a list of polynomials f1, . . . , fr, such that each fi is a homogeneous

polynomial and the invariant ring C[V ]G is integral over C[f1, . . . , fr].
6

(3) (Orbit closure intersection) Given two elements of the vector space, do their orbit
closures intersect?

(4) (Null cone membership) Given an element of the vector space, does the 0 vector
lie in its orbit closure?

Let us point out straight away that Generators and NNL (Noether Normalization Lemma)
are both algebraic circuit search problems (we will define Generators as an algebraic circuit
search problem more precisely below). Orbit closure intersection and Null cone membership
are not algebraic circuit search problems, but are related to Generators and NNL in a way
that will become clear in a later discussion. We will not get into the details of how the group
is given and how the group action is described. It turns out that even for simple groups and
group actions, these problems turn out to be interesting. They have been long studied and
many algorithms have been developed in the invariant theory community [DK15, Stu08].
Mulmuley [Mul17] introduced these problems to theoretical computer science with the hope
of making progress on the polynomial identity testing (PIT) problem. Before describing
the main conjectures in Mulmuley’s paper, let us see what it even means to output a list of
generating polynomials for an invariant ring. Typically the number of generating polynomials
can be exponential in the dimension of the group and the vector space. To get around this
issue, Mulmuley introduced the following notion of a succinct encoding of the generators of
an invariant ring (which in fact applies to any collection of polynomials).

Definition 1.3 (Succinct encoding of generators). Fix an action of a group G on a
vector space V = Cm. We say that an arithmetic circuit C(x1, . . . , xm, y1, . . . , yr) succinctly
encodes the generators of the invariant ring if the set of polynomials formed by evaluat-
ing the y-variables, {C(x1, . . . , xm, α1, . . . , αr)}α1,...,αr∈C, is a generating set for the invariant
ring C[V ]G.

Remark 1.4. The size of a succinct encoding as defined above is given by the size of the
circuit C(x1, . . . , xm, y1, . . . , yr), which is measured by the bit complexity of the constants

6This is equivalent to the condition that the zero locus of f1, . . . , fr is precisely the null cone.
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used in the computation of C as well as the number of gates of the computation graph of C.
In particular, this means that all constants used in the computation of C are rationals.

The above notion of a succinct encoding motivates us to define the following algebraic
search problem.

Problem 1.5 (Generators). Let G be a group of dimension n and that acts algebraically on
an m-dimensional vector space V by linear transformations. Output a poly(n,m) sized circuit
C(x1, . . . , xm, y1, . . . , yr) such that the polynomials {C(x1, . . . , xm, α1, . . . , αr)}α1,...,αr∈C form
a generating set for the invariant ring C[V ]G. In other words, the problem asks to output a
poly(n,m) sized succinct encoding for the generators of C[V ]G.

Conjecture 1.6 (Mulmuley). In the case that G is a connected reductive algebraic group7,
Problem 1.5 has a positive answer. That is, there exists a poly(n,m) sized circuit which
succinctly encodes the generators of C[V ]G.

Mulmuley requires the circuit family (that succinctly encodes the generators) to be uniformly
computable by a polynomial time algorithm, but we will see that even this weaker conjecture
is false (under standard complexity assumptions).

In [Mul17, Conjecture 5.3], Mulmuley states the above conjecture for actions of the group
SLn(C). However, it is evident that there is nothing special about SLn(C) with regard to
the GCT program and it is natural to state the conjecture in the generality of connected
reductive groups. Let us also note that it was already evident to Mulmuley that one cannot
drop the “connected” assumption on the group, because the permanent appears as an in-
variant polynomial for a non-connected reductive group that would disprove the conjecture
immediately using a similar line of reasoning to the one we use in the next section (see, e.g.,
[BIJL18]).

To understand Mulmuley’s motivation for the conjecture, let us see what it means for the
problems of orbit closure intersection and null cone membership. By definition, invariant
polynomials are constant on the orbits (and thus on orbit closures as well). Thus, if Ov1 ∩
Ov2 6= ∅, then p(v1) = p(v2) for all invariant polynomials p ∈ C[V ]G. A remarkable theorem
due to Mumford says that the converse is also true for the large class of reductive groups:

Theorem 1.7 ([Mum65]). Fix an action of a reductive group G on a vector space V . Given
two vectors v1, v2 ∈ V , we have Ov1 ∩Ov2 6= ∅ if and only if p(v1) = p(v2) for all p ∈ C[V ]G.

Now suppose one had a succinct encoding C(x1, . . . , xm, y1, . . . , yr) for action of a group
G on V = Cm. Then because of Mumford’s theorem, for two vectors v1 and v2, their orbit clo-
sures intersect iff the two polynomials C(v1(1), . . . , v1(m), y1, . . . , yr),
C(v2(1), . . . , v2(m), y1, . . . , yr) are identically the same. These are instances of polynomial
identity testing (PIT)! Thus if Conjecture 1.6 were true (and additionally the succinct en-
coding circuits were polynomial time computable), it immediately gives randomized polyno-
mial time algorithms for the orbit closure intersection and null cone membership problems.
This also gives us a nice family of PIT problems to play with. Perhaps one might hope
that solving these PIT instances will result in development of new techniques which might
shed a light on the general PIT problem. In fact, for the first few group actions that were

7We have not defined what a connected reductive algebraic group is. One should think of simple groups
like the general linear group GLn(C), the special linear group SLn(C), or a direct product of these groups
and their diagonal subgroups.
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studied in this line of work, simultaneous conjugation [Mul17, FS13] and left-right action
[GGOW16, IQS18, DM17b], for which there are polynomial sized succinct encodings of gen-
erators, the null cone membership problems correspond to PIT problems for restricted models
of computation: read-once algebraic branching programs and non-commutative formulas with
division8, both of which have been successfully derandomized, see [FS13, GGOW16, IQS18].

1.4. Our results. While the truth of Conjecture 1.6 would have great implications, we prove
that it is false under plausible complexity hypotheses. We first state our counterexamples
(they are very simple, and probably many others exist), and then discuss how a related
conjecture may be true and almost as powerful as the original.

For our first counterexample, we analyze a simple (torus) action on 3-tensors. Here,
STn(C) denotes the group of n× n diagonal matrices with determinant 1.

Theorem 1.8. Consider the natural action of G = STn(C) × STn(C) × STn(C) on V =
Cn ⊗ Cn ⊗ Cn. Then any set of generators for the invariant ring cannot have a polynomial
sized (in n) succinct encoding, unless NP ⊆ P/poly.

Corollary 1.9. Conjecture 1.6 is false, unless NP ⊆ P/poly.

Remark 1.10. As mentioned previously, a primary motivation for succinct encodings of
generators is that they imply (randomized) polynomial time algorithms for null cone mem-
bership problem. For the action in Theorem 1.8, it is important to note that even though
we do not have a succinct encoding for generators, we still have a polynomial time algorithm
for null cone membership since once can reduce it to an instance of linear programming. For
a general connection between null cone membership and optimization, see [BFG+19].

For the above counterexample for the torus action, the notion of a succinct encoding is
quite crucial to our argument, and it is natural to wonder if tweaking the notion would get
rid of the issue. We give another counterexample where it becomes apparent that the precise
form of encoding of the generators is not quite as crucial, as we identify an invariant that is
hard to compute and is essential to any generating set in a sense that we will make precise in
Section 4. Moreover, it is an SLn(C)-action, which provides a counterexample to the exact
formulation of the conjecture in [Mul17].

Theorem 1.11. Let k ≥ 2 be even. Consider the action of G = SL2kn(C) on V =
⊗2k

C2kn.
Then any set of generators for the invariant ring cannot have a polynomial sized (in n)
succinct encoding, unless VP = VNP.

Corollary 1.12. Conjecture 1.6 is false, unless VP = VNP.

1.5. Conclusion, open problems and future directions. We have disproved a conjec-
ture of Mulmuley about the existence of polynomial sized succinct encodings of generators
for invariant rings. We want to emphasize that this only serves a first guiding light for
Mulmuley’s program of understanding the orbit closure intersection problems (and null cone
membership problems) and connections to PIT. To solve the orbit closure intersection prob-
lems, one does not necessarily need a generating set of generators. This motivates the
following definition.

8Actually a stronger model concerning inverses of matrices.
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Definition 1.13 (Separating set of invariants). For a group G acting algebraically on a
vector space V by linear transformations, a subset S ⊆ C[V ]G is called a separating set of
invariants if for all u, v ∈ V such that Ou∩Ov 6= ∅, there exists f ∈ S such that f(u) 6= f(v).

This leads to a natural algebraic search problem that corresponds to the algorithmic problem
of orbit closure intersection. Mulmuley already suggested that a positive answer to the
following search problem would suffice for the purposes of GCT.

Problem 1.14 (Separators). Let G be a group of dimension n and suppose it acts
algebraically on an m-dimensional vector space V by linear transformations. Output a
poly(n,m) sized circuit C(x1, . . . , xm, y1, . . . , yr), if one exists, such that the set of polyno-
mials S = {C(x1, . . . , xm, α1, . . . , αr)}α1,...,αr∈C is a separating set of invariants.

Similarly, we can define a search problem that corresponds to the algorithmic problem of
null cone membership.

Problem 1.15 (Null cone definers). Let G be a group of dimension n and suppose G
acts algebraically on an m-dimensional vector space V by linear transformations. Out-
put a poly(n,m) sized circuit C(x1, . . . , xm, y1, . . . , yr) with the property that the set S =
{C(x1, . . . , xm, α1, . . . , αr)}α1,...,αr∈C consists of invariant polynomials whose zero locus is pre-
cisely the null cone NG(V ) = {v ∈ V | 0 ∈ Ov}.

We conclude the introduction with some open open problems:

(1) Are there polynomial sized succinct encodings for separating invariants or, even sim-
pler, invariants defining the null cone? In other words, do we have positive answers
to Problems 1.14 and 1.15 for connected reductive groups? Perhaps the first non-
trivial example is the natural action of G = STn(C) × STn(C) × STn(C) on V =
Cn ⊗Cn ⊗Cn. Here a tensor T is in the null cone iff there exists vectors x, y, z ∈ Rn

s.t. xi+yj+zk > 0 for all (i, j, k) ∈ supp(T )9 and
∑

i xi =
∑

j yj =
∑

k zk = 0 (by the

Hilbert-Mumford criterion). Is there a polynomial sized circuit C((zi,j,k), y1, . . . , yr)
s.t. C(T, y1, . . . , yr) is identically zero (as a polynomial in the y-variables) iff T is in
the null cone?

(2) For the natural action of SLn(C)× SLn(C)× SLn(C) on V = Cn ⊗Cn ⊗Cn, it is not
even clear if there exists one invariant which has a polynomial sized circuit. Either
produce such an invariant or prove that all invariants are hard to compute.

(3) Are there polynomial time algorithms for the orbit closure intersection and null cone
membership problems? The analytic approach pursued in the papers [GGOW16,
BGO+17, AZGL+18, BFG+19] seems the most promising approach towards getting
such algorithms.

(4) More broadly, invariant theory is begging for its own complexity theory and con-
necting it with ours. This includes finding reductions and completeness results, and
characterizations/dichotomies about hard/easy actions. An example of a complete-
ness reduction is the reduction from all quiver actions to the simple left-right action
[DW00, DZ01, SVdB01, DM17b, GGOW18]. Also the papers [Mul17, GGOW16,
IQS18, FS13, DM17b, DM18, DM17a], as well as the current paper, are trying to
identify easy and hard problems in invariant theory.

9supp(T ) = {(i, j, k) ∈ [n]× [n]× [n] : Ti,j,k 6= 0}.
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2. Preliminaries

In this section we establish notation and we formally state basic facts and definitions which
we will need in later sections.

Definition 2.1 (3-dimensional matching [Kar72]). The 3-dimensional matching problem is
defined as follows:

Input: a set U ⊆ [n]× [n]× [n], representing the edges of a tripartite, 3-uniform hypergraph.
Output: YES, if there is a set of hyperedges W ⊆ U such that |W | = n and no two elements

of W agree in any coordinate (that is, they form a matching in this hypergraph).
NO, if there is no such set.

Theorem 2.2 (NP-completeness of 3-dimensional matching [Kar72]). The 3-dimensional
matching problem is NP-complete.

2.1. Basic facts from algebraic complexity. We now give basic facts that from algebraic
complexity which we will use in the next sections.

The next proposition shows that homogeneous components of low degree of an arithmetic
circuit can be efficiently computed, with a small blow-up in circuit size and without the
use of any extra constants. This proposition was originally proved by Strassen in [Str73]
and its proof can be found in [SY+10, Theorem 2.2]. In the following proposition, given a
polynomial p(x), we denote its degree-d homogeneous component by Hd[p(x)].

Proposition 2.3 (Efficient computation of homogeneous components). Given a circuit C(x)
of size s, then for every r ∈ N there is a homogeneous circuit Ψ(x) of size O(r2s) computing
H0[C(x)], H1[C(x)], . . . , Hr[C(x)]. Moreover, the constants used in the computation of the
components Hi[C(x)] are a subset of the coefficients used in the computation of C(x).

The next theorem, proved by [AB03, Theorem 4.10] gives us a randomized polynomial time
algorithm to test whether an algebraic circuit of polynomial size, with rational coefficients, is
identically zero. Another randomized algorithm easily follows from [Sch79, Lemma 2], when
adapted for polynomials with rational coefficients.

Theorem 2.4 (PIT for poly-sized circuits [AB03]). Let P (x) ∈ Q[x] be a polynomial in the
variables x = (x1, . . . , xn), with each variable xi having degree bounded by di, and whose coef-
ficients are rationals with bit complexity bounded by B. If P (x) is given as an arithmetic cir-
cuit of size s, then there exists a randomized algorithm running in time poly(n, s, log(B), 1/ǫ)
and using O (

∑n

i=1 log(di) + log(B)) random bits which tests whether P (x) is identically zero.
If P (x) is the identically zero polynomial then the algorithm always succeeds. Otherwise, it
errs with probability at most ǫ.

3. Hardness of Generators for torus actions

Let C∗ denote the multiplicative group consisting of all non-zero complex numbers. A
direct product Tn = (C∗)n is called a torus, and is clearly an abelian group. Tori are
important examples of reductive groups – any abelian connected reductive group is a torus!
It is often the case that it is easier to understand tori in comparison with more general
(non-abelian) reductive groups. This is no different for invariant theory, see for example
[DK15, Weh93]. We also point to [DM19, Proposition 3.3] for an elementary linear algebraic
description of the invariant ring for torus actions. Conjecture 1.6 already fails in this well
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behaved setting. This is the content of our Theorem 1.8, which we will prove in this section.
Recall that STn(C) ∼= {z ∈ Tn : z1 · · · zn = 1}, which is itself a torus.

Theorem 3.1 (Theorem 1.8, restated). Consider the natural action of G = STn(C) ×
STn(C) × STn(C) on V = Cn ⊗ Cn ⊗ Cn, where an element (a, b, c) ∈ G acts on a tensor
u ∈ V as follows: (a, b, c) · u := v, such that vijk = aibjckuijk. Any set of generators for the
invariant ring of this action cannot have a polynomial sized (in n) succinct encoding, unless
NP ⊆ P/poly.

Proof. Suppose that the natural action above has a set of generators with a polynomial sized
succinct encoding. Thus, there is an arithmetic circuit C(x,y) of size s = poly(n), where
x = (xijk)

n
i,j,k=1 is the set of variables corresponding to V and y = (y1, . . . , yr) is the set of

auxiliary variables, with r = poly(n). Moreover, from the definition of the size of a succinct
encoding we also have that the constants used in the computation of C(x,y) are rational
numbers with bit complexity bounded by b = poly(n). In particular, C(x,y) ∈ Q[x,y].

Let us consider the circuit C(x,y) as a circuit whose constants are in Q[y] and whose
variables are only the x variables, that is, a circuit in Q[y][x]. Then, Proposition 2.3 tells
us that there exists a homogeneous circuit Cn(x,y), in the x variables, of degree n and size
O(n2s) that computes the homogeneous component of C(x,y) of degree n as a function
of x. Moreover, the constants of this circuit are a subset of the constants used in the circuit
C(x,y). Since we consider the latter as a circuit in only the x variables, the constants in this
case are given by the elements of Q used in the computation of C as well as the auxiliary
variables y. In particular, Cn(x,y) can be written in the following way:

(1) Cn(x,y) =
∑

m∈Nn(x)

fm(y) · m,

where Nn(x) is the set of all monomials of degree n in the variables x and fm(y) are poly-
nomials in the variables y of degree at most 2s, as the circuit C has size at most s.

In Proposition 3.2 below, we will show that the invariants of minimum degree of our
action are in degree n, and these are spanned by the (maximum) 3-dimensional matching
monomials. Thus, if a monomial of degree n is invariant under our action, it must be the case
that this monomial corresponds to a 3-dimensional matching. Moreover, the action maps
any monomial (invariant or not) to a constant times itself. As Cn(x,y) must only compute
invariant polynomials, this implies that equation (1) is actually of the following form:

(2) Cn(x,y) =
∑

m∈Mn(x)

fm(y) ·m,

where Mn(x) is the set of all 3-dimensional matching monomials in the variables x. Moverover,
since C(x,y) succinctly encodes of a set of generators, the span of {Cn(x, α)}α∈Cr must nec-
essarily be the same as the span of the 3-dimensional matching polynomials.

We will now show that the existence of the circuit Cn(x,y) implies that NP ∈ P/poly. For
that purpose, we will show that given Cn(x,y) one can solve the 3-dimensional matching
problem in P/poly. Let H be a tripartite 3-uniform hypergraph, whose edges are given by
a subset E ⊆ [n]× [n]× [n]. We can associate to this graph the tensor v ∈ V where vijk = 1
if hyperedge (i, j, k) ∈ E and vijk = 0 otherwise. Note that H has a 3-dimensional matching
of size n if and only if at least one of the 3-dimensional matching monomials does not vanish
on our tensor v. This last condition is equivalent to the fact that the circuit Cn(v,y) does
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not compute the zero polynomial (as we know that the span of the set {Cn(x, α)}α∈Cr is the
same as the span of all 3-dimensional matching monomials). Thus, to solve the 3-dimensional
matching problem in P/poly it is enough to give a randomized polynomial time algorithm
for testing whether Cn(v,y) is the zero polynomial or not.10

Since Cn(v,y) is a circuit of size poly(n) with rational constants of bit complexity poly(n),
it computes a polynomial P (y) with rational coefficients having bit complexity at most
exp(poly(n)) and degree at most exp(poly(n)). This is the setting in which Theorem 2.4
applies, giving us the desired randomized polynomial time algorithm. This concludes our
proof modulo Proposition 3.2, which we will now turn our attention to. �

In the following proposition, we denote by Sn the symmetric group on n letters.

Proposition 3.2. The maximum 3-dimensional matching monomials
∏n

i=1 xiσ(i)τ(i), where
σ, τ ∈ Sn, span the invariants of degree n of the natural action of G = STn(C)× STn(C)×
STn(C) on V = Cn ⊗Cn ⊗Cn. Moreover, there are no nonconstant invariants of degree less
than n for this action.

Proof. Since the action maps any monomial to a constant times itself, it is easy to see that
the invariant polynomials are generated by invariant monomials. To prove the proposition,
it is therefore enough to show that the matching monomials are invariant, that there are no
other invariant monomials of degree n, and that there are no invariant monomials of smaller
degree.

We first prove that the matching monomials are invariant. Note that the natural action of
G on V induces the following action on the variables xijk: (a,b, c) · xijk = (aibjck)

−1 · xijk.
11

Additionally, note that
∏n

ℓ=1 aℓ =
∏n

ℓ=1 bℓ =
∏n

ℓ=1 cℓ = 1. Given a matching monomial
∏n

i=1 xiσ(i)τ(i), we therefore have that

(a,b, c) ·
n
∏

i=1

xiσ(i)τ(i) =
n
∏

i=1

(

(aibσ(i)cτ(i)))
−1 · xiσ(i)τ(i)

)

=
n
∏

i=1

(aibσ(i)cτ(i))
−1 ·

n
∏

i=1

xiσ(i)τ(i)

=

n
∏

i=1

xiσ(i)τ(i)

where in the last equality we note that for any permutation σ ∈ Sn (or τ) we have 1 =
∏n

ℓ=1 aℓ =
∏n

ℓ=1 aσ(ℓ) (and similarly for b and c). This proves that the matching monomials
are invariant monomials of the natural G-action on V .

Now, let us prove that no other monomial of degree n is an invariant for this action. Let
∏n

m=1 ximjmkm be a monomial, where (im, jm, km) ∈ [n]3, that is not a matching monomial.
Then there exists some coordinate, w.l.o.g. the first coordinate, for which the set {im}

n
m=1 is a

strict subset of [n]. Equivalently, there is an element ℓ ∈ [n] such that ℓ 6∈ {im}nm=1. W.l.o.g.,
we can assume that ℓ = 1. Thus, the action of a = (αn−1, α−1, . . . , α−1),b = c = (1, . . . , 1)

10It is enough to give a randomized polynomial time algorithm because we know that BPP/poly = P/poly.
11The inverse comes from the general formula (g · p)(v) := p(g−1 · v).
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on our monomial
∏n

m=1 ximjmkm is as follows:

(a,b, c) ·
n
∏

m=1

ximjmkm = αn ·
n
∏

m=1

ximjmkm

which proves that this monomial is not an invariant. This completes the proof that the
matching monomials span the invariants of degree n.

Now we are left with proving that there are no nonconstant monomials of degree less
than n that are invariant. Note that if we have a monomial with degree less than n, we can
represent it as

∏d

m=1 ximjmkm, where d < n and by the pigeonhole principle, we know that
there exists ℓ ∈ [n] such that ℓ does not appear as a first coordinate entry in the set of tuples
{(im, jm, km)}. If d > 0 then, analogously to the previous paragraph, we know that such
monomials cannot be invariants of the natural action of G over V , therefore showing that
no nonconstant monomial of degree < n can be an invariant. This completes the proof. �

4. Invariant Theory for SLn(C) and Mulmuley’s conjecture

In this section, we will give another example of a group action on tensors for which any set
of generating invariants is hard to compute, i.e., we will prove Theorem 1.11. Even though
the previous section already gives a counterexample, this example illustrates something more.
The feature of this group action is that invariants of minimial degree span a 1-dimensional
space. In other words, up to scaling, we have a unique invariant of minimal degree. This
unique invariant in the minimal degree is called the hyperpfaffian polynomial (introduced by
Barvinok in 1995 as a natural generalization of the well-known Pfaffian polynomial to higher
order tensors). We then study the hyperpfaffian’s computational complexity and prove that
it is VNP-complete. The importance of this example is that such a unique invariant in
the minimal degree is essential in any generating set. So, it is not even possible to give
a generating set consisting of invariant polynomials that are easy to compute, even if we
remove all restrictions on the size of the generating set. Moreover, the group action is by
SLn(C) rather than a torus. Therefore our counterexample disproves Mulmuley’s original
conjecture in a strong sense.

4.1. Invariant Rings and Symmetric Tensors. The special linear group SLn(C) consists
of complex n×n-matrices with unit determinant and acts canonically on Cn by matrix-vector
multiplication. This action extends to any m-th tensor power

⊗m
Cn by

(3) g · (v1 ⊗ · · · ⊗ vm) := (g · v1)⊗ · · · ⊗ (g · vm)

and linear continuation. We will always use the standard bilinear form on
⊗m

Cn that
satisfies 〈gT · v, w〉 = 〈v, g · w〉 for all v, w ∈

⊗m
Cn, g ∈ SLn(C).

Let V be an arbitrary finite-dimensional SLn(C)-representation (such as V =
⊗m

Cn).
Then SLn(C) also acts on C[V ]d, the vector space of degree-d homogeneous polynomials
on V , via the formula

(g · p)(v) := p(gT · v),

where p ∈ C[V ]d, g ∈ G and v ∈ V . The formula above is the dual representation of the
action on the ring of all polynomial functions C[V ] =

⊕∞

d=0C[V ]d that we explained in
in Section 1.2. Using the dual here is only for presentation purposes, as it gives a clearer
connection to multilinear algebra as follows. Note that a polynomial p ∈ C[V ] is invariant if
and only if ∀g ∈ SLn(C) we have g · p = p.
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It is convenient to identify polynomial functions with symmetric tensors. Note that SLn(C)

acts canonically on any d-th tensor power
⊗dV of V . This action restricts to the d-th

symmetric tensor power Symd V , i.e., the Sd-invariant subspace of
⊗dV . Recall that Sd is

the symmetric group on d letters; it acts on V ⊗d by permuting tensor factors. For any t ∈
Symd V , we can define a homogeneous degree-d polynomial p ∈ C[V ]d by p(v) := 〈t, v⊗d〉.
Here we use the quadratic form on Symd V induced by a non-degenerate bilinear form on V
that satisfies 〈gt · v, w〉 = 〈v, gw〉 for all v, w ∈ V , g ∈ SLn(C) as above. Then, p is invariant
if and only if the symmetric tensor t is invariant, i.e., if ∀g ∈ SLn(C) we have g · t = t. We
will tacitly go back and forth between symmetric tensors in Symd

⊗m
Cn and homogeneous

polynomials in C[
⊗m

Cn]d.
Now, we turn to studying hyperpfaffians.

4.2. Hyperpfaffians. The Pfaffian is the unique (up to scale) homogeneous SL2n(C)-invariant
of degree n on C2n ⊗ C2n. There are no SL2n(C)-invariants in lower degrees. If we identify
C2n ⊗ C2n with the space of complex 2n × 2n matrices A, then the Pfaffian is invariant
under the action of SL2n(C) given by g · A := gAgT . The defining property of the Pfaf-
fian generalizes to tensors of even order as follows (the classical Pfaffian is the special case
of k = 1):

Proposition 4.1. For any k and n, there is a unique (up to scale) homogeneous SL2kn(C)-

invariant polynomial Pfk,n of degree n on
⊗2k

C2kn. Pfk,n identifies with the symmetric

tensor e1 ∧ · · · ∧ e2kn ∈ Symn
⊗2k

C2kn. There are no nonconstant SL2kn(C)-invariants of
lower degree.

Before proving Proposition 4.1 we recall some representation theory. The material is well-
known, and we refer to standard texts (e.g., [FH91]) for details. A partition λ is a non-
increasing sequence of natural numbers with finite support. We write λ ⊢n m to say
that |λ| :=

∑

i λi = m and λn+1 = 0. If λn+1 = 0, then we say that λ is an n-partition.
The irreducible polynomial GLn(C)-representations are indexed by n-partitions. For a parti-
tion λ, let {λ} denote the irreducible GLn(C)-representation corresponding to λ. Restricted
to SLn(C), the representation {λ} is trivial if and only if λ1 = . . . = λn; note that this implies
that n | m. The irreducible representations of Sm are indexed by partitions λ with |λ| = m.
Let [λ] denote the irreducible Sm-representation corresponding to λ.

Consider
⊗m

Cn. This space has an action of SLn(C) by (3), but also an action of Sm that
permutes the tensor factors. Both actions commute, so we have an action of the product
group SLn(C)× Sm. The following well-known result will be crucial for our purposes.

Theorem 4.2 (Schur–Weyl duality). As an SLn(C) × Sm-representation, we have the de-
composition:

⊗m
Cn =

⊕

λ⊢nm

{λ} ⊗ [λ].

Using Schur–Weyl duality, one sees immediately that
⊗m

Cn contains nonzero SLn(C)-
invariant vectors if and only if n | m. This is because a vector is invariant if and only
if it spans a trivial irreducible representation – but {λ} is trivial if and only if λ1 = . . . = λn,
as mentioned above. For m = n, there is a unique (up to scale) SLn(C)-invariant vector.
This is because the invariants in

⊗n
Cn correspond to the component {1n} ⊗ [1n], where we

write 1n for the partition λ1 = . . . = λn = 1. Here, {1n} is the trivial representation of
13



SLn(C) and [1n] is one-dimensional, as it is the sign representation of Sn. Thus the space of
invariants is one-dimensional. This unique vector (up to scale) is given by the wedge product
e1∧ e2∧· · ·∧ en, where a∧ b := 1

2
(a⊗ b− b⊗a), and higher order wedge products are defined

analogously.

Proof of Proposition 4.1. It suffices to show that Symd
⊗2k

C2kn contains no SL2kn(C)-invariant
vector if 0 < d < n and that it contains a unique such vector if d = n. Note that
Symd

⊗2k
C2kn is a subspace of

⊗d⊗2k
C2kn ≃

⊗2kd
C2kn. Thus the first claim holds since

⊗2kd
C2kn contains SL2kn(C)-invariant vectors only if 2kn | 2kd. Thus if 0 < d < n, there are

no invariants. For d = n,
⊗d⊗2k

C2kn ≃
⊗2kn

C2kn contains the unique SL2kn(C)-invariant
vector v = (e1∧· · ·∧e2k)∧· · ·∧(e2k(n−1)+1∧· · ·∧e2kn). It remains to show that v is symmetric,

i.e., an element of Symd
⊗2k

C2kn, which is a subspace of
⊗d⊗2k

C2kn. But this is easy to
see since each of the d blocks has even size 2k and the wedge product is skew-commutative.
This proves the second claim. �

The polynomial Pfk,n was introduced in [Bar95, Def. 3.4] in its monomial presentation, where
it is called the hyperpfaffian. Note that, for fixed k, Pfk := (Pfk,1,Pfk,2, . . . ) is a p-family
(i.e., both the degree and the number of variables are polynomially bounded), since Pfk,n has
degree n and (2kn)2k variables. The monomial presentation in [Bar95] immediately yields
that Pfk ∈ VNP.

Theorem 4.3. For even k, Pfk is VNP-complete.

Proof. We present a projection of Pfk,d to the d× d permanent. The same projection yields
the determinant if k is odd, which explains why the proof does not work for the classical
Pfaffian (k = 1). The case k = 2 is enough to disprove Mulmuley’s conjecture.

By Proposition 4.1, the Pfaffian Pfk,d identifies with the symmetric tensor

v := e1 ∧ · · · ∧ e2kd ∈ Symd
⊗2k

C2kd.

Thus, the evaluation Pfk,d(p) at a tensor p ∈
⊗2k

C2kd is given by 〈v, p⊗d〉 (cf. [Ike12,
Sec. 4.2(A)]). We choose

p =
d−1
∑

i,j=0

xi+1,j+1(e1+2ki ⊗ e2+2ki ⊗ · · · ⊗ ek+2ki ⊗ ek+1+2kj ⊗ ek+2+2kj ⊗ · · · ⊗ e2k+2kj),

where the xi,j (1 ≤ i, j ≤ d) are formal variables.
The point p is parametrized linearly by the xi,j, so the evaluation of Pfk,d at p is a

projection of Pfk,d. We verify that the evaluation of Pfk,n at p gives the d × d permanent
(up to a constant nonzero scalar) as follows.

p⊗d =
d−1
∑

i1,j1,...,id,jd=0

xi1+1,j1+1 · · ·xid+1,jd+1(e1+2ki1 ⊗ e2+2ki1 ⊗ · · · ⊗ ek+2ki1 ⊗ ek+1+2kj1 ⊗ ek+2+2kj1 ⊗ · · · ⊗ e2k+2kj1 )

⊗ · · · ⊗ (e1+2kid ⊗ e2+2kid ⊗ · · · ⊗ ek+2kid ⊗ ek+1+2kjd ⊗ ek+2+2kjd ⊗ · · · ⊗ e2k+2kjd )
14



and by linearity

〈v, p⊗d〉 =
d−1
∑

i1,j1,...,id,jd=0

xi1+1,j1+1 · · ·xid+1,jd+1〈v, (e1+2ki1 ⊗ e2+2ki1 ⊗ · · · ⊗ ek+2ki1 ⊗ ek+1+2kj1 ⊗ ek+2+2kj1 ⊗ · · · ⊗ e2k+2kj1 )

⊗ · · · ⊗ (e1+2kid ⊗ e2+2kid ⊗ · · · ⊗ ek+2kid ⊗ ek+1+2kjd ⊗ ek+2+2kjd ⊗ · · · ⊗ e2k+2kjd )〉

A crucial property of v is that 〈v, eπ(1) ⊗ eπ(2) ⊗ · · · ⊗ eπ(n)〉 6= 0 iff π is a permutation, in
which case it is equal to the sign of the permutation. It follows that the nonzero summands
in 〈v, p⊗d〉 are precisely those for which i = (i1, . . . , id) and j = (j1, . . . , jd) are permutations
of {0, . . . , d− 1}. For a single summand with i and j permutations we see:

xi1+1,j1+1 · · ·xid+1,jd+1〈v, (e1+2ki1 ⊗ e2+2ki1 ⊗ · · · ⊗ ek+2ki1 ⊗ ek+1+2kj1 ⊗ ek+2+2kj1 ⊗ · · · ⊗ e2k+2kj1)

⊗ · · · ⊗ (e1+2kid ⊗ e2+2kid ⊗ · · · ⊗ ek+2kid ⊗ ek+1+2kjd ⊗ ek+2+2kjd ⊗ · · · ⊗ e2k+2kjd)〉

= sgn(i)k sgn(j)kxi1+1,j1+1 · · ·xid+1,jd+1.

Hence, for even k we obtain 〈v, p⊗d〉 = d! Perd. �

Finally, we put together the preceding results to prove Theorem 1.11.

Theorem 4.4 (Theorem 1.11, restated). Let k ≥ 2 be even. Consider the action of G =

SL2kn(C) on V =
⊗2k

C2kn. Then any set of generators for the invariant ring cannot have
a polynomial sized (in n) succinct encoding, unless VP = VNP.

Proof. We summarize the results so far. Let k ≥ 2. Consider the action of G = SL2kn(C) on

V =
⊗2k

C2kn. Then:

(1) There are no homogeneous invariant polynomials of degree < n.
(2) The space of homogeneous invariant polynomials of degree n is 1-dimensional, and

spanned by the hyperpfaffian polynomial Pfk,n.
(3) The hyperpfaffian polynomial Pfk,n is VNP-complete.

The rest of the proof proceeds along the same lines as in the proof of Theorem 1.8 in Section 3.
If we had a poly-sized succinct encoding for the generators of this invariant ring, then one
would be able to extract the lowest degree part, which would yield a poly-sized circuit
computing Pfk,n. This is not possible unless VP = VNP, since Pfk,n is VNP-complete. �
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