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Abstract—Leveraging the intrinsic symmetries in data for clear
and efficient analysis is an important theme in signal processing
and other data-driven sciences. A basic example of this is the
ubiquity of the discrete Fourier transform which arises from
translational symmetry (i.e. time-delay/phase-shift).

Particularly important in this area is understanding how sym-
metries inform the algorithms that we apply to our data. In this
paper we explore the behavior of the dimensionality reduction
algorithm multi-dimensional scaling (MDS) in the presence of
symmetry. We show that understanding the properties of the
underlying symmetry group allows us to make strong statements
about the output of MDS even before applying the algorithm
itself. In analogy to Fourier theory, we show that in some cases
only a handful of fundamental “frequencies” (irreducible rep-
resentations derived from the corresponding group) contribute
information for the MDS Euclidean embedding.

Index Terms—Multidimensional scaling, representation theory,
Fourier theory on groups, metric geometry

I. INTRODUCTION

The use of groups and representation theory in the data-
driven sciences has a long if understated history. The canonical
reference is Diaconis’ book [4] which shows the surprisingly
broad range of real world problems in statistics and probability
that can be solved by utilizing tools from representation theory.

More recently, convolutional neural networks have made
remarkable strides toward solving problems in computer vision
by utilizing the group convolution for Z × Z to achieve
invariance to translation in images [8]. researchers in machine
learning have been exploring how symmetries and their corre-
sponding groups can be built into machine learning algorithms
to achieve invariance to certain types of structured variation.
Some recent examples include [2], [3], [7].

Finally, of particular relevance to this paper is [9] which
explores similar themes (albeit in a somewhat different con-
text) for the Karhunen-Loève decomposition rather than multi-
dimensional scaling. [9] shows that by utilizing the intrinsic
symmetries of a dataset, the computational burden of calcu-
lating the Karhunen-Loève decomposition can be significantly
reduced. Similar results will hold in many cases for MDS and
we hope that in a future work we can explore the efficiency
gains (as a function of the group and the metric) in greater
depth.

The main contributions of this paper are the following
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• Explicit computations of the MDS eigendecomposition
with Hamming distance on both the symmetric group and
on the elementary abelian 2-group (Section IV).

• Formula for the spectral decomposition of any bi-
invariant metric on a group (Theorem III.1).

This paper is organized as follows. In Section II we review
the multidimensional scaling algorithm. Section III contains
the primary content of this paper. Here we consider what
happens when MDS is applied to a dataset which is also a
group. We begin this section with a quick overview of repre-
sentation and character theory. In Section IV we explore the
particular case where MDS is applied to a set of permutations
with Hamming distance as the chosen metric. Two examples
of using MDS on groups for data visualization are explored
in V followed by the conclusion in Section VI.

II. MULTIDIMENSIONAL SCALING

Our main reference for the MDS algorithm is [1]. Let
(X, d) be a finite metric space so that X is a finite set of
size n and d : X × X → R≥0 is the metric on X which
encodes some notion of distance between points in X . Note
that in this setting elements in X need not come with intrinsic
coordinates; only distances between elements. The input to
MDS is the n × n pairwise distance matrix D defined by
(X, d) and the output is an embedding of X into Euclidean
space where the Euclidean distance (or more generally the
pseudo-Euclidean distance) between points approximates d.

For data visualization, one takes k to be 2 or 3. Otherwise,
the size of the embedding dimension k is determined by the
magnitudes of eigenvalues computed in the following way:
define H := Hn − 1

n11T , where Hn is the n × n identity
matrix and 1 is the n×1 vector of all ones. Define the double
mean centered inner-product matrix

M := −1

2
H(D ◦D)H,

where ◦ denotes the Hadamard or element-wise product.
Compute the spectral decomposition: M = FΛFH . A

fundamental property of MDS is that M is positive semi-
definite if and only if there exists a Euclidean configuration of
points for which D equals the Euclidean distances [1, Theorem
14.2.1]. In the case where D is not the matrix of a Euclidean
configuration, there are two possibilities.

In the classical algorithm, one discards any negative or zero
eigenvalues of M and also the corresponding columns of F.
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Define the n×k matrix X := F̂Λ̂1/2, where the “hat” indicates
that the coordinates corresponding to eigenvalues less than or
equal to 0 have been removed. We follow the usual ordering
convention (Λ is put in descending order). The rows of X
give embedding coordinates to X in Euclidean k-space. The
Euclidean distance between rows i and j approximates the
input distance dij between points xi and xj . MDS minimizes
strain on inner-products [1, Section 14.4]. If k is the number
of coordinate directions used, then the optimal MDS solution
M̃ has strain

tr((M− M̃)2) =
n∑

i=k+1

λ2i , (1)

where {λi}ni=1 are the eigenvalues from Λ, i.e. the error is
measured by the norm of the discarded eigenvalues. Perfect
reconstruction on finite dimensional metric spaces is achieved
by taking k = n.

Our interest is in metric spaces which are decidedly non-
Euclidean, so we anticipate information rich coordinate direc-
tions tagged by negative eigenvalues. One way [10] to work
with a non-Euclidean metric space is to keep both positive
and negative eigenvalues and measure distances by a pseudo-
Euclidean computation. The process is simple and ought to be
familiar to physicists working in Minkowski space. Suppose
there are p positive and q negative eigenvalues with p+ q = k
(as before, discard any zero eigenvalues). Arrange Λ̂ into two
corresponding blocks of size p× p and q × q, and define the
coordinates X := F̂|Λ̂|1/2. The pseudo-Euclidean distance
computation breaks up into two parts - compute the Euclidean
distance on the p “positive” coordinates and subtract off the
Euclidean distance on the q “negative” coordinates. Just as
in the Euclidean case, if we take k = n, we achieve an exact
reconstruction of D by using the pseudo-distance computation
on the rows of X:

d(xi, xj) = dCp(xi,xj)− dCq (xi,xj),

where xi denotes the coordinate free ith element of the set X ,
and xi denotes its vector form from MDS.

Finally, it’s useful to understand MDS as a “kernel method”
[12], and think of the linear algebra outlined above as taking
place in a Hilbert space of (square integrable) functions
on X . In this language, the MDS kernel is the symmetric
function m : X × X → R defined by m(xi, xj) = Mij .
Equivalent to the matrix M is the Hilbert-Schmidt operator
M : L2(X) → L2(X), and the columns of F determine
a collection {f1, . . . , fk} of eigen-functions for M . Then,
m(xi, xj) =

∑n
t=1 λtft(xi)ft(xj).

III. MDS ON GROUPS

Suppose now that G is a finite set which is also a group
with group multiplication denoted by juxtiposition (i.e. if
g, h ∈ G then gh is the product of g and h). If d is a metric
on G, we say that d is left-invariant to the action of G if
d(g, h) = d(fg, fh) for all f, g, h ∈ G. We define a right-
invariant metric analogously. A metric which is both left and
right invariant is called bi-invariant.

For a given finite group G, consider the (non-centered)
MDS kernel m(g, h) = − 1

2d
2(g, h) for a G-invariant metric

d. Group invariance implies that M is a convolution matrix.
Formally, if φ, ψ ∈ L2(G) and g, h ∈ G, then convolution is
defined by

φ ? ψ(h) :=
∑
g∈G

φ(hg−1)ψ(g).

Define µ(g) ∈ L2(G) by µ(g) := m(g, e). The MDS
operator M : L2(G)→ L2(G) is defined for g, h ∈ G by

M(φ)(h) =
∑
g∈G

m(h, g)φ(g)

=
∑
g∈G

µ(hg−1)φ(g)

= µ ? φ(h).

Every electrical engineer will recognize this as a generalization
of ordinary convolution used to define linear time invariant
operators. In our more general set-up, µ plays the role of the
transfer function for band-pass filtering. Indeed, our goal in
this paper is to compute the spectrum of frequencies amplified
by the MDS operator for various groups.

A. Representations and Characters

We briefly explain what is meant by “frequency” for func-
tions on an arbitrary finite group G. The reader is referred
to [5], [13] for rigorous accounts of the character and repre-
sentation theory of groups. The short answer is that L2(G)
decomposes into a set of mutually orthogonal subspaces,
the so-called irreducible representations specific to the group
G. The presence of a frequency in a signal φ ∈ L2(G)
is determined by the amplitude of the projection coefficient
onto the corresponding irreducible representation subspace.
Schur’s Lemma [13, Proposition 4] guarantees that every
linear G-equivariant operator (i.e. convolution operator) has
a spectral decomposition whose eigenspaces are direct sums
of irreducible representations.

In the classical case, when a signal is sampled at n evenly
spaced intervals, frequency information is determined by the
discrete Fourier transform. In our language, the classical case
corresponds to the cyclic group G = Cn, and the irreducible
representations are tagged by integers 0, . . . , n−1 correspond-
ing to the Fourier frequencies. Each irreducible representation
determines a one dimensional subspace in L2(Cn), the kth
such subspace spanned by the function f(m) = exp 2πimk

n ∈
L2(Cn). The main difference for an arbitrary group G is that
a single frequency may account for a subspace in L2(G) of
dimension greater than 1. In fact, such a frequency always
exists for any group which is non-abelian.

Informally, a representation of G assigns to each element
of G an invertible matrix so that the group multiplication law
of G is realized by matrix multiplication. Formally, an n-
dimensional representation of G is a pair (V, ρ) where V is a
(for our purposes, complex) n-dimensional vector space and ρ
is a group homomorphism from G to the general linear group



on V , which is the group of all invertible linear transformations
on V with group law given by composition of transformations.
When the representation (ρ, V ) is understood from context we
may, for convenience, omit the ρ from our notation e.g. if
g ∈ G, v ∈ V , we write g · v to indicate the application of
transformation g to vector v, instead of ρ(g)v.

A representation V is reducible if there exists a non-trivial,
proper subspace W ⊂ V such that W is preserved by all
transformations of G i.e. for all w ∈ W and all g ∈ G,
ρ(g)w ∈ W . If V is not reducible, it is called irreducible.
Maschke’s theorem [13, Theorem 2] guarantees that every
complex representation V of a finite group G decomposes into
a unique set of irreducible representations, which comprise a
decomposition of V into orthogonal subspaces.

Note that L2(G) is a representation of G: it is a vector space
of dimension n = |G| and each element of G acts as a linear
transformation on L2(G) by the rule g · φ(h) := φ(g−1h).

Next, we investigate how MDS filters frequencies in L2(G)
for the symmetric group. To do so will be an exercise in the
linear algebra of characters: Associated to any representation
(V, ρ) is the character χρ, which is an element of L2(G)
defined by χρ(g) = Tr(g), the trace of the linear transforma-
tion. It turns out that characters uniquely determine irreducible
representations.

If (V, ρ) and (V ′, ρ′) are distinct irreducible representations,
then the characters are orthogonal under the L2 inner product:

〈χρ, χ′ρ〉 :=
1

|G|
∑
g∈G

χρ(g)χρ′(g)

=

{
0 (V, ρ) 6∼= (V ′, ρ′)
1 (V, ρ) ∼= (V ′, ρ′)

.

We now state the fundamental relationship between charac-
ters, bi-invariant metrics, and multi-dimensional scaling.

Theorem III.1. Let m be the MDS kernel and µ(g) :=
m(g, e). If d is a bi-invariant metric on G, then

i.

µ(g) =
k∑
i=1

σiχρi(g),

where σi ∈ R and each χρi is the character of an
irreducible representation ρi of G.

ii. Each irreducible (Vi, ρi) which appears in the sum deter-
mines an eigenspace of the MDS operator M . If di :=
dim(Vi), then the eigenvalue associated to Vi ⊂ L2(G)

is given by λi =
|G|
di
σi.

Equivalently, the spectral decomposition of the MDS matrix
is M =

∑k
i=1 λiViV

H
i .

The Theorem gives us a concrete way of computing which
frequencies are filtered by the MDS operator for a given bi-
invariant metric.

Also note that the trivial representation, whose character
is χ(g) = 1 for all g ∈ G, necessarily appears as an
eigenfunction of the MDS operator M . The double mean
centering step in the MDS algorithm will project the trivial

character to 0 and leave the other eigenfunctions fixed (by
the orthogonality of characters). Then, for simplicity, we use
the non-centered MDS kernel m(g, h) := − 1

2d
2(g, h) for our

computations and simply remember to project away from the
trivial representation.

The theorem follows from two facts. (1) If d is a bi-invariant
function in L2(G), then for all g, h ∈ G, µ(hgh−1) = µ(g).
It is said that µ is a class function on G. (2) The characters
of the irreducible representations form an orthonormal basis
for all class functions on G [5, Proposition 2.30]. We leave it
to the reader to verify the formula for the eigenvalues, which
follow from these two facts and that M is convlution with µ.

IV. MDS WITH HAMMING DISTANCE

In this section we derive the eigendecomposition of MDS
under the Hamming distance on two frequently used groups.

A. Binary data and the Hamming metric

Let C2 be the cyclic group of order 2 and let G = (C2)
k

be the product of k copies of C2. The order of G is n = 2k

and elements of G can be represented by length k strings
of 0’s and 1’s. The Hamming distance on G counts the
number of positions at which two binary strings differ. For
example, dH(00, 11) = 2. dH is a G bi-invariant metric, and
by Theorem III.1 we are guaranteed that the MDS kernel can
be written as a sum of irreducible characters of G. Moreover,
since G is abelian, its irreducible representations are all 1
dimensional.

Represent an element in G by g = (n1, . . . , nk), ni ∈
{0, 1}. It’s well-known that the irreducible characters are
indexed by elements S of the power set on {1, . . . , k}. For
a non-empty S, define

χS(n1, . . . , nk) := (−1)
∑

s∈S ns ,

and define the character corresponding to the empty set to be
the one’s function on G. In discrete signal processing, these
are called the Walsh functions. What group theorists call the
character table is exactly the same as the Walsh-Hadamard
matrix. If k = 2, the character table is:

00 10 01 11
χt2 1 1 1 1
χta 1 1 −1 −1
χat 1 −1 1 −1
χa2 1 −1 −1 1

,

where t and a refer to trivial and alternating which is the
language used by group theorists.

Now, Theorem III.1 suggests that we should decompose
µ(g) := m(g, e) into irreducible characters. To begin, note
that the distance between any string g = (n1, . . . , nk) and
the identity string e = (0, . . . , 0) counts the number of ones
in string g. We may decompose this function as a sum of
irreducible characters:

dH(g, e) =
1

2
(k −

k∑
i=1

(−1)ni).



character eigenvalue num principal directions
χtk−1a λ1 = 2k−2 · k k

χtk−2a2 λ2 = −2k−2
(
k
2

)
else 0 2k − (k +

(
k
2

)
)

Fig. 1. The MDS eigenvalues and number of principal directions associated
with Hamming distance on G = Ck

2 .

Then, the MDS kernel is given by:

µ(g) := −1

2

(
1

2
(k −

k∑
i=1

(−1)ni

)2

= −1

8

k2 − 2k
k∑
1

(−1)ni +

(
k∑
1

(−1)ni

)2


= −1

8

(
k2 + k

)
+
k

4

k∑
1

(−1)ni − 1

4

∑
1≤i<j≤k

(−1)ni+nj .

Now we simply read off the eigendecomposition of the
MDS operator. In particular, the appearance of a character
in the sum gives an eigenfunction, and the coefficients give
eigenvalues (after multiplication by |G| = 2k). Remember also
that the MDS algorithm calls for projection away from the
trivial representation, and so we discard the translation term
out front. We summarize the eigendecomposition in Figure 1.

A few observations are in order. First, the computation
reveals low dimensional structure, as the distance matrix itself
is 2k × 2k, yet the rank is only k +

(
k
2

)
.

Next, using strain (1) as our measurement of projection
error, principal directions corresponding to λ1 contribute more
than those corresponing to λ2, and any directions with the
same eigenvalue are equally strong.

Finally, note that the first k coordinates are tagged with a
positive eigenvalue and the last

(
k
2

)
are tagged with a negative

eigenvalue. This gives a measure of the extent to which the
metric space (Ck2 , dh) is Euclidean. Formally, this means that
we use a pseudo-Euclidean inner-product to make geometric
measurements.

B. Hamming metric on the symmetric group

In this section we explore another type of Hamming metric,
only this time on the symmetric group G := Sn. As a
prerequisite for this section, the reader should understand what
is meant by the “standard representation” of Sn. We refer the
reader to [5], [11] for more details.

Of fundamental importance to the representation theory of
Sn is that there is one irreducible representation for each
integer partition of n. Compare this to the discrete Fourier
case where frequencies are tagged by integers 0, . . . , n − 1,
or, as in the last section, to the case Ck2 , where frequencies
are tagged by elements of the power set on {1, . . . , k}.

We use square brackets to denote partitions e.g. If n = 3
then 2+1 = 3 is denoted [2, 1], and the trivial partition 3 = 3
is denoted [3], etc. We denote the character associated to the
irreducible [2, 1] by χ2,1.

The Hamming distance dH between two permutations
counts the number of places where the two permutations
differ e.g. Using the cycle notation for permutations we have
dH((12), (123)) = 2, since the two permutations agree only
on 1 7→ 2. It’s straight-forward to check that this metric is
bi-invariant on Sn.

As in the last section, our goal is to produce the MDS
eigendecomposition by decomposing µ(g) into characters. The
Hamming distance between permutation g and the identity
permutation e is given by the difference between n and the
number of fixed points of the permutation g. i.e.

d(g, e) = n−#f.p.(g).

We can write this in terms of the characters of irreducible
representations:

d(g, e) = (n− 1)χn(g)− χn−1,1(g),

where χn is the character of the trivial representation (which
equals 1 on all elements of Sn) and χn−1,1 is the character
of the standard representation. Squaring this expression gives
the MDS kernel m:

−2µ(g) = ((n− 1)χn(g)− χn−1,1(g))2

= (n− 1)2χn(g)− 2(n− 1)χn−1,1(g) + χ2
n−1,1(g)

All that remains is to decompose the squared character
χ2
n−1,1 into a sum of irreducible characters, which we can

do since irreducible characters form an orthogonal basis for
class functions. This is accomplished using the fact that the
square of a character corresponds to the tensor product of
the underlying representation space, and then extracting the
Kronecker coefficients. In our case, the formula is simply [5]:

χ2
n−1,1 = χn + χn−1,1 + χn−2,1,1 + χn−2,2.

Table 2 then summarizes the MDS embedding of Hamming
distance in terms of its decomposition into irreducibles. Note
that the formula for each eigenvalue relies on the dimension
of the corresponding representation, which may be computed
using the “hook-length” formula [5].

Here, the energy is highly concentrated in only three sub-
spaces. Moreover, while the group has order n! the rank of the
MDS matrix is on the order of n4. The Euclidean coordinates
of the metric are picked up by the standard representation,
which is also the dominant representation, whereas the pseudo-
Euclidean coordinates are given by the subspaces of χn−2,1,1
and χn−2,2.

V. DATA VISUALIZATION EXAMPLES

In this section we apply MDS to two datasets that take
values in a group and to which we apply a bi-invariant metric.

Example V.1. The first dataset is a set of rankings from
the American Psychological Association (APA) presidential
election in 1980. This dataset can be found in [4, Chapter 5B].
It consists of 5,738 full rankings of 5 candidates. The original
dataset included partial rankings, but we have omitted these.
Of course we can interpret these full rankings as permutations



character eigenvalue num principal directions
χn−1,1

(2n−3)n!
2n−2 (n− 1)2

χn−2,1,1
−n!

(n−1)(n−2)
(
1
2 (n− 1)(n− 2)

)2
χn−2,2

−n!
n(n−3)

(
1
2n(n− 3)

)2
Fig. 2. The MDS eigenvalues and number of principal directions associated
with Hamming distance decomposed in terms of irreducible representations
of the symmetric group Sn. Note that only a minority of the irreducible
representations of Sn (indexed by all partitions of n) have support here.

Fig. 3. A visualization of rankings of the American Psychological Association
presidential election from 1980 [4, Chapter 5B] using MDS.

by choosing an initial order of the candidates. A given ranking
corresponds to the permutation that takes the original order to
the order given by the ranking.

In Figure 3 we show the MDS approximation of the
permutations in this dataset in R3 with respect to Hamming
distance (without scaling). We use the size of points in the
scatterplot to indicate the frequency of a particular permutation
and use color to indicate a fourth coordinate (also taken from
the block of standard representations).

The second dataset is the SUSHI preference dataset [6]
which contains 5000 full rankings of 10 types of sushi. Note
that whereas in the APA election dataset there are more data
points than there are permutations (5, 738 vs 5! = 120), in
this dataset there are far more possible permutations (5, 000
vs 10! = 3, 628, 800) than there are data points. In Figure 4 we
show a visualization of all these rankings in R3 using MDS.
As seen above, despite the fact that distances on permutations
have the capacity to be quite high dimensional, by under-
standing what symmetric representations actually contribute
information to the Euclidean embedding, we can directly
project into these representations because applying the MDS
dimensionality reduction algorithm.

VI. CONCLUSION

In this paper we have shown how unstructured data can
be analyzed and synthesized using the general notion of

Fig. 4. A visualization of the SUSHI dataset [6] using MDS.

frequency on a group and the MDS algorithm. We have
seen how the principal directions extracted from MDS are
given geometric meaning as irreducible representations, and
how each representation contributes to the pseudo-Euclidean
structure of the group metric space.

In practical terms, the theory and examples presented here
may be used for dimensionality reduction. In a future work we
plan to more closely investigate the efficiency gains brought
by group theory considerations as well as analysis of other
commonly encountered groups and metrics.

Since this work lies in the intersection of metric geometry,
group theory, and data analysis, we hope this paper is useful
for a wide range of audiences.
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