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Abstract

A multi-output Gaussian process (GP) is a
flexible Bayesian nonparametric framework
that has proven useful in jointly modeling the
physiological states of patients in medical time
series data. However, capturing the short-
term effects of drugs and therapeutic interven-
tions on patient physiological state remains
challenging. We propose a novel approach
that models the effect of interventions as a hy-
brid Gaussian process composed of a GP cap-
turing patient baseline physiology convolved
with a latent force model capturing effects
of treatments on specific physiological fea-
tures. The combination of a multi-output GP
with a time-marked kernel GP leads to a well-
characterized model of patients’ physiological
state across a hospital stay, including response
to interventions. Our model leads to analyti-
cally tractable cross-covariance functions that
allow for scalable inference. Our hierarchical
model includes estimates of patient-specific
effects but allows sharing of support across
patients. Our approach achieves competitive
predictive performance on challenging hospi-
tal data, where we recover patient-specific
response to the administration of three com-
mon drugs: one antihypertensive drug and
two anticoagulants.
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1 Introduction

In the era of digital medicine, modern medical devices
enable clinicians to accurately and frequently measure
the physiological state of their patients. Heart rate,
blood pressure, arterial oxygen saturation, and white
blood cell counts are just a few of the physiological
measurements used to monitor patient state and to
predict outcomes such as hospital discharge rate, pa-
tient survival, or readmission (Ranganath et al., 2016;
Rajkomar et al., 2018). To model the complex rela-
tionships governing patient state dynamics, a large
body of work exploits the flexible properties of Gaus-
sian processes (GPs). Both single output (Stegle et al.,
2008; Lasko et al., 2013) and multi-output methods
(Nemati et al., 2012; Ghassemi et al., 2015; Cheng et al.,
2017; Futoma et al., 2017) use carefully designed ker-
nels to improve prediction accuracy of patient states
across sparse, noisy, and irregularly sampled time series
horizons. These methods predict correlations between
patient vital signs that give insight into imputing hard-
to-sample state variables, detecting patient trends, and
making decisions under uncertainty. Modeling patient
state dynamics is made difficult by the administration
of drugs and other therapeutic interventions, which di-
rectly impact state features for a limited time window
and often return to a baseline. Accurate prediction of
patient state following an intervention allows a clinician
to consider multiple options for intervention and make
informed treatment decisions.

Recent papers have attempted to model the complex
effects of interventions on patient state (Xu et al., 2016;
Schulam and Saria, 2017). These models do not incor-
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porate a control systems understanding of the complex
mechanisms governing the tightly controlled responses
of physiological traits to interventions. This leads to
inaccurate and non-generalizable predictions when in-
sufficient training data is available, which is often the
case when predictions include a patient-specific compo-
nent to allow for personalized response estimation.

One motivation for modeling intervention effects on
patient state with dynamical systems is to learn opti-
mal treatment policies. For instance, prior work used
reinforcement learning (RL) to derive a closed-loop
anesthesia controller to regulate mean arterial pressure
based on a dynamical model of a patient (Padmanab-
han et al., 2015). Other applications, including finding
multi-drug therapies for human immunodeficiency virus
(HIV), have used dynamical systems models (Adams
et al., 2004).

In this paper, we introduce a Bayesian nonparametric
framework for estimating the dynamics of clinical traits
in response to drug interventions through electronic
health records (EHRs) from hospital patients. Specif-
ically, we develop an approach to learn the patient-
specific response of clinical traits to treatments from
medical time series data. Our approach convolves a
baseline multi-output Gaussian process (GP) with la-
tent force models (LFMs) (Alvarez et al., 2009), which
we model using GPs with kernels derived from differ-
ential equations representing dynamical systems.

To model the effects of interventions on clinical traits,
we use latent force functions sampled from GPs with
“causal” (time-marked) kernels (Cunningham et al.,
2012). Here, the term “causal” refers to the physical
constraint that an observation can only be affected by
events that occurred earlier in time, not simultaneously
or later in time; we show that this constraint is impor-
tant for accurately capturing the effects of interventions.
By estimating shared and patient-specific parameters
that capture the effects of interventions on specific clin-
ical traits, our model offers novel mechanistic insights
and patient specificity, and also achieves competitive
predictive accuracy when compared to state-of-the-art
methods (Soleimani et al., 2017).

The contributions of this work are two-fold: First, we
use time-marked kernels to model medical time-series
data in order to capture the latent dynamics of interven-
tion effects using a GP. Second, we incorporate these
treatment effects in a model of patient state by con-
volving this GP latent force model with a multi-output
GP that captures patient state absent interventions.
Our approach is a necessary step towards achieving
optimal control of patient health through personalized
treatment policies (Särkkä et al., 2017). We show the
predictive value of our approach on a large hospital

patient data set.

2 Background

2.1 Gaussian Processes for Time Series

In the medical time series setting, data are collected
from n patients, indexed by i, across Ti time points
indexed by t. Single output data typically correspond
to time-varying covariates encoding physiological states
such as blood pressure or heart rate. The measured
pairs D = {xi, yi}ni=1, where xi corresponds to the time
at which the covariate yi ∈ R was recorded, are then
modeled through an underlying latent function f(·)
such that yi = f(xi) + εi, where εi ∼ N (0, σ2

i ) is inde-
pendent Gaussian noise. The goal is to estimate and to
evaluate f(·) at future time points to enable prediction
and early detection of physiologically abnormal states.

Gaussian processes (GPs) represent a versatile genera-
tive framework for modeling the distribution of an arbi-
trary real-valued function f(·). GPs are nonparametric
stochastic processes specified by mean and covariance
functions:

f(x) ∼ GP(µ(x), k(x,x′)), (1)

where µ(x) is the mean function µ(x) = E[f(x)]
and k(x,x′) is the covariance function or kernel :
k(x,x′) = E[(f(x) − µ(x))(f(x′) − µ(x′))]. The
mean function µ(x)) is often assumed to be zero
(Rasmussen and Williams, 2006). An immediate re-
sult is the multivariate Gaussian form of the joint
[f(x1), f(x2), . . . f(xn)] ∼ N (0,K), where K is the
n× n kernel matrix with entries Ki,j = k(xi, xj).

Properties of the function f(x) such as smoothness
or periodicity are determined by the kernel function
k(x,x′). One commonly used kernel is the squared
exponential (SE) kernel

k(x,x′) = σ2 exp

(
−||x− x′||2

2`2

)
, (2)

which is parameterized by a length scale ` and a scale
factor σ. The functions generated by a GP with an
SE kernel are smooth because the kernel function is
infinitely differentiable. SE kernels capture stationary
processes, as the covariance between two vectors de-
pends on the difference in time (or other covariate)
||x− x′|| but not on absolute time.

GPs have been studied extensively in the context of
time series (Roberts et al., 2012), and are especially use-
ful when the data are sparsely or irregularly sampled.
In medical time series, the clinical measurements are
recorded sporadically and sometimes sparsely across
time. To better model multiple correlated measure-
ments, multi-output GPs (MOGPs), which capture the
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covariance structure between multiple measurements,
have been adapted for use on medical data (Ghas-
semi et al., 2015; Futoma et al., 2017; Cheng et al.,
2017). However, kernels used to capture temporal de-
pendencies between sequential clinical measurements
are mostly stationary. This is a limitation since, dur-
ing a patient’s stay in the hospital, clinical events and
interventions occur that affect physiological state for a
period of time.

2.2 Latent Force Models for Patient Data

Physiological dynamics have been long studied by phys-
iologists using systems of differential equations. For
heart rate and blood pressure, for example, the cardiac
conduction system is assumed to be a network of self-
excitatory pacemakers leading to systems of nonlinear
oscillators (Glass, 2001). Medical time series-based
prediction of these covariates has relied on linear and
nonlinear regression models, including but not limited
to GPs; yet an explicit connection with control the-
ory has been lacking. Recently, several methods were
proposed that bridge the gap between stochastic con-
trol methods and nonparametric time series models
(Gao et al., 2008; Alvarez et al., 2009). In particular,
multi-output GPs may be used to represent latent force
models (LFMs), where the covariance functions (ker-
nels) are derived using ordinary differential equations
(ODEs). In the LFM setup, we would like to model the
system dynamics between a set of observed processes,
{gq(t)}Qq=1, and a set of unobserved latent forces, fm(t),
assuming that they interact according to differential
equations capturing those dynamics. For example, in
a first-order LFM, the following equation holds:

dgq(t)
dt

+Dqgq(t) = Bq +
M∑
m=1

Sqmfm(t), (3)

with Bq and Dq representing the base level value and
underlying decay parameter of each output q, and Sqm
the influence constants from each latent force fm to
each output gq(t). This formulation recovers the latent
force functions fm(t) and input functions gq(t) from
discrete observations. Solving the ODE yields

gq(t) =
Bq
Dq

+
M∑
m=1

Sqm exp(−Dqt)

∫ t

0

fm(τ) exp(Dqτ)dτ.

(4)
In LFMs, the latent forces fm are modeled indepen-
dently as samples from their respective GPs. For cer-
tain classes of covariance functions, such as SE kernels,
one can show that the outputs gq are also GPs with
analytically closed-form covariance functions, as well as
cross-covariances between latent forces and the outputs
(Alvarez et al., 2009).

While sampling the latent forces fm from independent
GPs is computationally convenient, important infor-
mation can be lost. For example, when provided with
historical patient data, we might want to know the
physiological dynamics shared across patients from re-
lated covariate groups (i.e., same age, sex, BMI) or
across patients receiving similar treatments. Limited
numbers of observations also motivate a hierarchical
approach to this problem, in order to share strength
across patients.

2.3 Treatment Effect Estimation

In addition to modeling physiological state, accurate
modeling of patient data requires incorporating treat-
ment effects, to allow the control or stabilization of the
physiological states of patients. Treatments are often
drug interventions that can be characterized by drug
name, administration type (e.g., oral, intravenous), and
dosage. Estimating the effect of a treatment on a pa-
tient’s physiological state is paramount for comparing
and choosing from potential treatments.

While GPs are commonly used to model medical time
series data, several extensions have been proposed to
estimate the effects of medical treatments. Counterfac-
tual Gaussian processes (CGPs) (Schulam and Saria,
2017) use marked point processes (MPP) as an event
model to account for dependencies between actions
and observed physiological trajectories. In Xu et al.
(2016), a class of parametric function is introduced to
model the effects of dialysis for patients with acute
kidney injury. The functions were designed to model
different types of effects, including delay and decay. To
explain heterogeneity across patients, a Dirichlet pro-
cess was used for clustering patients. In Futoma et al.
(2017), the treatment effects are modeled in the prior
mean function of multi-output GPs, formulated as the
sum of multiple exponential decay functions. These
approaches require the response dynamics to conform
to a specific functional form, whereas in practice these
dynamics are often heterogeneous.

More recently, Soleimani et al. (2017) introduced treat-
ment effects as the output of a linear time-invariant
(LTI) system. The inputs are the observed drug ad-
ministrations (e.g., type and dosage), and the effects
are estimated based on a chosen form of a second-order
filter. Patient-specific filter parameters were estimated
and regularized using a global prior across patients.

To allow the treatment response to take on arbitrary
functional forms with scalable effects sizes and direc-
tions, we use a hierarchical GP to model the latent
forces. In particular, we replace the independent GPs
with a causal-kernel GP whose hyperparameters are
shared across patients to allow arbitrary functional
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response and to share strength by capturing shared
responses across patient groups.

3 Causal Convolutional GPs

Here, we propose a flexible framework to model med-
ical time series data. Our method brings together
ideas from GP latent force models (Alvarez et al., 2009;
Särkkä et al., 2017) and causal GPs (Cunningham et al.,
2012) to address a challenge in modeling medical time
series data–the systematic inclusion of multi-treatment
effects on the dynamics of multiple physiological covari-
ates. We first introduce the notation in the context
of time-marked medical data, and then introduce the
model. We also discuss the details of implementation
and inference methods.

3.1 Medical Time Series with Treatments

We denote the observed medical time series data yti,j
from i = {1, 2, . . . , n} patients characterized by j =
{1, 2, . . . , J} physiological dynamic covariates across
irregularly sampled time points t = {1, 2, . . . , Ti,j}, as
noisy samples from a Gaussian process with a patient-
and covariate-specific mean function µi,j(t) and kernel
kbi,j(t, t

′):

yi,j(t) = fi,j(t) + εj , εj ∼ N (0, σ2
i,j)

fi,j(t) ∼ GP
(
µi,j(t), k

b
i,j(t, t

′)
)
. (5)

Here, the kernel kbi,j accounts for stationary temporal
fluctuations of physiological signals, such as circadian
rhythms. We choose this kernel as a sum of one SE
kernel and one periodic kernel:

kbi,j = kSe + kPer = σ2
1,i,j exp

[
− (t− t′)2

2`21,i,j

]
+

σ2
2,i,j exp

[
− sin2 (π||t−t

′||/pi,j)

2`22,i,j

]
. (6)

For each patient i, we index treatments as m =
1, 2, . . . ,Mi, and denote the time of treatment as
ti1, t

i
2, . . . t

i
Mi

. For each treatment, we use function
τi : 1, 2, . . . ,Mi → T to map the treatment index
to a treatment set T representing the treatment type.
Since the dosage-response curve of the same drug usu-
ally has a nonlinear curve that varies across dosages
(Myers and Thiessen, 1980; Ghassemi et al., 2014), and
the characteristics of absorption vary across different
routes, we treat the same drug with different dosages
or taken via different routes (e.g., oral or injection) as
different treatments. Whenever clear from the context,
we drop the patient index from these variables.

We assume there are different latent forces induced
by each type of treatment. For a treatment m given

at time tm, we model the latent force as a function of
time fm(t; tm) drawn from a Gaussian process. We also
assume that each patient has a patient-specific latent
force, and use a hierarchical model to share support
for latent force models across patients.

3.2 Causal Treatment Dynamics

The dynamic behavior of a treatment’s response to the
clinical covariates are represented in our setup as a
latent force model. In particular, we model the mean
function µi,j(t) of the clinical traits through the the
first-order dynamical system LFM:

dµi,j(t)
dt

+Di,jµi,j(t) = Bi,j +

Mi∑
m=1

Si,j,mfm(t; tm),

(7)

where the decay Di,j , the baseline covariate output
Bi,j , and treatment effect size Si,j,m are patient-specific
parameters that control the dynamics of the treatment
response. We assume these patient-specific parameters
come from a population-wise empirical prior based
on demographic data, such as age and weight. We
assume the latent force function fm(t; tm) of the same
treatment is shared across patients, and is sampled from
a Gaussian process with a causal covariance kernel:

fm(t; tm) ∼ GP(0, kf,f ′(t, t′; tm)). (8)

We use the term “causal” to refer to the constraint that
medication effects may only act forward in time. To
do this, we define the kernel function as,

kf,f ′(t, t′; tm) = exp

{
− [h(t− tm)− h(t′ − tm)]2

`2m

}
,

(9)

where h(t) = tI(t > 0) is the clipping function warping
the input space and enforcing forward-time causality,
while preserving the GP structure (Cunningham et al.,
2012). Through h(t), function fm(t; tm) is constant
before the current time tm. In our model, we introduce
an additional condition fm(t; tm) = 0 for t < tm.

3.3 Kernel Convolution

The structure of the latent force model leads to a
natural composition with the causal Gaussian process
prior, leading to an analytic computation of output
covariances and cross-covariances–in other words, a
convolution of kernels. This fact allows for simple
gradient descent-based inference. Closed-form kernels
were derived following the integral in Eqn. 4. For
instance, the cross-covariance between µi,j(t) and one
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latent force fm(t) when t, t′ > tm is computed as

kµi,j ,fm(t, t′; tm)

= Si,j,m exp (−Di,jt) exp

[
−
(
t′ − tm
`m

)2
]

× 1

Di,j
[exp (Di,jtm)− 1]

+

√
π`

2
Si,j,m exp [−Di,j(t− t′)] exp (ν2i,j,m)

×
[
erf
(
t− t′

`m
− νi,j,m

)
+ erf

(
t′ − tm
`m

+ νi,j,m

)]
,

(10)
where νi,j,m =

`mDi,j

2 . Details of the computation
of the closed-form kernels corresponding to the cases
t > tm > t′, tm > t, t′, and t′ > tm > t are in the
Supplementary Material.

3.4 Hyperparameter Learning for
Medication Effects Model

To learn the hyperparameters for each patient, we
optimize the marginal likelihood of the GP model with
respect to the vector of observations across covariates
xi and yi.

log p(yi|xi,θ) = − 1
2 (yi − µi)

>(Ki|θ + εI)−1(yi − µi)

− 1
2 log |Ki|θ + εI| −

(∑J
j=1 Ti,j

2

)
log (2π),

(11)
where µi = µi,j(xi). For each patient, we
learn a set of hyperparameter θ, which consists of
covariate-specific hyperparameters for baseline ker-
nel, {σ1,i,j , `1,i,j , σ2,i,j , `2,i,j , pi,j}, and hyperparame-
ters shared across covariates through causal LFM ker-
nel, {Bi,j , Di,j , Si,j,m, `i,j,m}. We assume that the
patient- and treatment-specific hyperparameters are
shared across treatments of the same type, while the
treatment effect size parameter differs for different
dosages or modes of administration. Our implemen-
tation is based on GPy (GPy, since 2012), and we
optimize the hyperparameters using scale conjugate
gradient methods. We derived the gradients using the
SymPy package (Meurer et al., 2017).

4 Experiments

In this section, we show the effectiveness of our method
by modeling multiple treatment effects on electronic
healthcare record (EHR) data from the Hospital of
University of Pennsylvania (HUP). We briefly describe
the data and preprocessing steps, and then we discuss
results from our method fitted to patient subsets moti-
vated by two clinical applications. We show empirical
results of our method using the metrics of prediction

accuracy. We compare results with baseline methods
with GPs using basic kernels and mean functions from
related work.

4.1 Inpatient Hospital Data

We evaluated our method using clinical data collected
at HUP. The data set consists of 139k patients with
access to demographic details (e.g., age, weight, gen-
der), as well as 139 clinical measurements consisting of
vital signs and lab tests, and administrated medications
during the patients’ stay in the hospital. We normalize
each clinical trait by subtracting the empirical mean
for each patient from each measurement. We tested our
method on two challenging applications–modeling the
effects of antihypertensive agents and anticoagulants.
We chose to focus on the patients with a primary diag-
nosis of myocardial infarction (MI; i.e., heart attack)
in our data set, resulting in total 1,716 adult patients,
as they usually received both types of treatments.

We first modeled the effects of the most frequently
administered antihypertensive drug in our data set,
metoprolol, on heart rate (HR) and systolic blood pres-
sure (SBP). Metoprolols are beta-blockers that are used
to treat high blood pressure or angina due to heart dis-
ease. We filtered MI patients to include patients with
at least five observations in both heart rate or blood
pressure, reducing the number of patients to 594. We
removed patients that were administrated metropolol
jointly with other antihypertensive agents, resulting
in 233 patients. Finally, we included treatments of
metoprolol that were administered at least 20 times
across all patients, resulting in 181 patients with six
type of treatments, including four different dosages
of metoprolol tartrate, and one dosage for metoprolol
succinate ER and metoprolol injection, for a total of
310 treatment administrations.

Second, we modeled the effects of two different types of
anticoagulants: heparin and warfarin. We filtered the
MI patients to include those with at least five obser-
vations on two lab test results that reflect a patient’s
ability to form blood clots: partial thromboplastin
time (PTT) and international normalized ratio (INR),
resulting in 581 patients. Among all treatments, we
considered the top three most frequently administered,
and we include patients that received at least one of
them. The filtered data includes 404 patients with a
total of 592 treatment administrations (Table 1).

4.2 Evaluation Metrics

We evaluated our model by comparing predictive per-
formance with three state-of-the-art GP models: (i)
univariate GPs with a constant mean function and
the baseline (squared exponential and periodic) ker-
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Antihypertensive (N = 181) Count

Heart Rate (HR) 9,798
Systolic Blood Pressure (SBP) 7,804
Metoprolol Tartrate (6.25 mg) 42
Metoprolol Tartrate (12.5 mg) 92
Metoprolol Tartrate (25 mg) 93
Metoprolol Tartrate (50 mg) 40
Metoprolol Succinate ER (25 mg) 22
Metoprolol Injection (5 mg) 21

Anticoagulants (N = 404) Count

Partial Thromboplastin Time (PTT) 4,911
International Normalized Ratio (INR) 4,348
Heparin Injection (5000 units) 246
Heparin Infusion (25000 units) 319
Warfarin (5mg) 27

Table 1: Data statistics of the two drug types
used in the experiments. Total number of observa-
tions for the targeted vital signs and lab results, and
the count of targeted treatments.

nel kbi,j(t, t′) (Eqn. 6; Se+Per), (ii) univariate GPs
with an exponential decay mean function and the
Ornstein-Uhlenbeck (OU) kernel (Futoma et al., 2017)
(Ou+Exp), and (iii) Matérn-3/2 kernel with a second-
order LTI filter for effect modeling (Soleimani et al.,
2017) (Mat32+Lti). For the comparative method
(ii) and (iii), we added a constant component in the
mean function in the proposed setup to account for
patient-specific baseline values of each covariate. For
all methods, we used the first 70% of observations for
each patient for training, and the remaining 30% for
testing. We computed the mean absolute error (MAE)
of predictions on test data to evaluate model perfor-
mance.

4.3 Clinical Impact

When comparing the MAE on test data for the two
experiments (antihypertensives and anticoagulants; Ta-
ble 2), our method performed competitively across
experiments on the predictive tasks for the covariates
responding to antihypertensives. Our model performs
better than related methods on the task of predicting
traits responding to anticoagulants, in particular the
blood clot formation trait PTT.

While predictive performance is similar across related
methods, our method shows important advantages in
model flexibility. The proposed model uses GP priors
for the medication effect function, which allow a flex-
ible functional form unlike the parametric functions
used in previous work (Futoma et al., 2017; Soleimani

et al., 2017). We demonstrate this through two case
studies: First, we study predictive trajectories and
the inferred effects on blood pressure and heart rate
of a treatment on one patient (Fig. 1). The patient
received 50 mg of metoprolol tartrate . We compare
the predictive trajectory with uncertainty from a re-
lated method (Mat32+LTI) (Fig. 1 a–b) with results
from our method (Fig. 1 c–d). Our method estimates
an explicit treatment-induced latent force with strong
effects on both heart rate and systolic blood pressure
(Fig. 1 e) that matches the time frame prescribed by
clinical medicine (Brogden et al., 1977; Kjekshus, 1986;
Kezerashvili et al., 2012). Indeed, the direction of es-
timated effects from the related method on SBP (Fig.
1, a and b) is the opposite of the clinical usage; this
error may be due to delayed effect of the drug on SBP.
While for this patient the MAE of the related method
is slightly lower than our method (4.68 vs. 5.37 in SBP;
7.90 vs. 8.09 in HR), results from our method are closer
to clinical ground truth with substantially smaller un-
certainty. Furthermore, with the GP model of latent
force, our estimated effect is more robust than a stan-
dard latent force model when presented with additional
uncertainty and noise in the data, such as delayed ef-
fects from the time of treatment administration, which
is important in the clinical setting.

Next, we find similar robust and clinically interpretable
behavior are achieved for a patient receiving multiple
heparin infusions (25,000 units) and heparin injections
(5,000 units; Fig. 2). For both our method and the
related method (Mat32+Lti), the longer-term effects
on PTT is estimated (Fig. 2, a and c). Both methods
estimated negative effects for the heparin injections
(Fig. 2f), while in general heparin is assumed not to
affect INR (Katzung and Trevor, 2015).

5 Discussion

We developed a framework using latent force mod-
els (LFMs) to capture treatment effects on patients’
physiological state estimated using medical time se-
ries data. By modeling treatment effects as latent
forces convolved with a multi-output GP, we create a
flexible framework that bridges the gap between the
smooth, stationary dynamics of patient state and a
mechanistic understanding of the forces that impact
clinical traits. A GP model of latent forces provides a
flexible probabilistic framework with convenient infer-
ence properties; we enforce appropriate effect dynamics
using a causal kernel. Two key contributions—the la-
tent force and multi-output GP model convolution and
the causal kernel in the latent force GP—lead to a
computationally tractable solution with low variance
and clinically-relevant interpretation of personalized
treatment effects. Further improvements in speed may



Cheng, Dumitrascu, Zhang, Chivers, Draugelis, Li, Engelhardt

Covariate Antihypertensive Agents
Se+Per Ou+Exp Mat32+Lti Proposed

SBP 10.688± 0.242 11.547± 0.292 10.502± 0.240 10.882± 0.242
HR 7.694± 0.173 7.780± 0.186 7.791± 0.173 7.851± 0.179

Covariate Anticoagulants
Se+Per Ou+Exp Mat32+Lti Proposed

PTT 12.646± 0.379 12.431± 0.512 12.436± 0.376 12.248± 0.368
INR 0.204± 0.009 0.339± 0.013 0.596± 0.011 0.180± 0.009

Table 2: Prediction results on test data. MAE (± standard error) was computed for results from our method
and three comparison methods using univariate GPs with different mean functions and kernels. Our method
performs competitively across covariates for the antihypertensives and better than the comparison methods for
the anticoagulants.

HR
SBP

Latent Force

Time (hours) Time (hours)

(a) (b)

(e)

Time (hours)

Time (hours) Time (hours)

(c) (d)

metoprolol tartrate - 50 mg (train)

metoprolol tartrate - 50 mg (test)

GP posterior meanGP prior mean

GP posterior 95% CIobservations (test)

observations (train)

Normal Range

S
B

P
S

B
P

H
R

H
R

Figure 1: Prediction of systolic blood pressure (SBP) and heart rate (HR) for one patient under
metroprolol tartrate treatments. (a) and (b): results from a related method Mat32+Lti. (c) and (d):
results from the proposed method. (e) The learned latent force for the first metroprolol tartrate (50 mg) treatment
and the effects on SBP and HR; the recovered effects on SBP and HR are in their original units. Our method
achieves higher confidence (lower predictive variance) and greater consistency with known clinical effects than the
related model.

be found by adapting a recent kernel approximation
(Guarnizo and Lopez, 2018).

There are several directions to improve our method for
clinical treatment effect estimation. Our framework
assumes that the effect of each treatment is independent

of any other, and interactions between treatments are
not modeled. These interactions could be modeled by
modifying the kernel for the latent force component.
In addition, the method assumes the decay parameters
(Di,j) of the treatment effect for a single patient are
treatment-independent and constant throughout the
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Figure 2: Prediction of partial thromboplastin time (PTT) and international normalized ratio (INR)
for one patient under heparin treatments. (a) and (b): results from the related method Mat32+Lti. (c)
and (d): results from the proposed method. (e) and (f): the estimated latent force for one heparin infusion (25000
units) and one heparin injection (5000 units), and their effects on PTT and INR; the recovered effects on PTT
and INR are in their normalized units.

patient’s hospital stay. As the decay parameters reflect
the physiology of drug absorption, which may change
as a function of patient state, we might model this
parameter as a stochastic process itself. For future
research, the latent force model encourages an optimal
control perspective: estimating treatment effect sizes
of each patient for each clinical covariate, coupled with
accurate patient state prediction, can provide a path
toward treatment prioritization and decision-making
in clinical interventions.
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