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Abstract

Given data drawn from an unknown distribution,

D, to what extent is it possible to “amplify” this

dataset and faithfully output an even larger set

of samples that appear to have been drawn from

D? We formalize this question as follows: an

(n,m) amplification procedure takes as input n

independent draws from an unknown distribu-

tion D, and outputs a set of m > n “samples”

which must be indistinguishable from m samples

drawn iid from D. We consider this sample am-

plification problem in two fundamental settings:

the case where D is an arbitrary discrete distri-

bution supported on k elements, and the case

where D is a d-dimensional Gaussian with un-

known mean, and fixed covariance matrix. Per-

haps surprisingly, we show a valid amplification

procedure exists for both of these settings, even

in the regime where the size of the input dataset,

n, is significantly less than what would be nec-

essary to learn distribution D to non-trivial accu-

racy. We also show that our procedures are opti-

mal up to constant factors. Beyond these results,

we describe potential applications of sample am-

plification, and formalize a number of curious di-

rections for future research.

1. Learning, Testing, and Sample

Amplification

How much do you need to know about a distribution, D, in

order to produce a dataset of size m that is indistinguish-

able from a set of independent draws from D? Do you need

to learn D, to nontrivial accuracy in some natural metric,
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or does it suffice to have access to a smaller dataset of size

n < m drawn from D, and then “amplify” this dataset

to create one of size m? In this work we formalize this

question, and show that for two natural classes of distri-

bution, discrete distributions with bounded support, and d-

dimensional Gaussians, non-trivial data “amplification” is

possible even in the regime in which you are given too few

samples to learn.

From a theoretical perspective, this question is related to

the meta-question underlying work on distributional prop-

erty testing and estimation: To answer basic hypothesis

testing or property estimation questions regarding a dis-

tribution D, to what extent must one first learn D, and can

such questions be reliably answered given a relatively mod-

est amount of data drawn from D? Much of the excitement

surrounding distributional property testing and estimation

stems from the fact that, for many such testing and esti-

mation questions, a surprisingly small set of samples from

D suffices—significantly fewer samples than would be re-

quired to learn D. These surprising answers have been re-

vealed over the past two decades. The question posed in

our work fits with this body of work, though instead of ask-

ing how much data is required to perform a hypothesis test,

we are asking how much data is required to fool an opti-

mal hypothesis test—in this case an “identity tester” which

knows D and is trying to distinguish a set of m independent

samples drawn from D, versus m datapoints constructed in

some other fashion.

From a more practical perspective, the question we con-

sider also seems timely. Deep neural network based sys-

tems, trained on a set of samples, can be designed to per-

form many tasks, including testing whether a given input

was drawn from a distribution in question (i.e. “discrimi-

nation”), as well as sampling (often via the popular Gen-

erative Adversarial Network (GAN) approach). There are

many relevant questions regarding the extent to which cur-

rent systems are successful in accomplishing these tasks,

and the question of how to quantify the performance of

these systems is still largely open. In this work, however,

we ask a different question: Suppose a system can accom-

plish such a task—what would that actually mean? If a

system can produce a dataset that is indistinguishable from
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a set of m independent draws from a distribution, D, does

that mean the system knows D, or are there other ways of

accomplishing this task?

1.1. Formal Problem Definition

We begin by formally stating two essentially equivalent

definitions of sample amplification and then provide an il-

lustrative example. Our first definition states that a function

f mapping a set of n datapoints to a set of m datapoints is

a valid amplification procedure for a class of distributions

C, if for all D ∈ C, letting Xn denote the random variable

corresponding to n independent draws from D, the distri-

bution of f(Xn) has small total variation distance1 to the

distribution defined by m independent draws from D.

Definition 1. A class C of distributions over domain S
admits an (n,m) amplification procedure if there exists a

(possibly randomized) function fC,n,m : Sn → Sm, map-

ping a dataset of size n to a dataset of size m, such that for

every distribution D ∈ C,

DTV (fC,n,m(Xn), D
m) ≤ 1/3,

where Xn is the random variable denoting n independent

draws from D, and Dm denotes the distribution of m in-

dependent draws from D. If no such function fC,n,m ex-

ists, we say that C does not admit an (n,m) amplification

scheme.2

Crucially, in the above definition we are considering the

random variable f(Xn) whose randomness comes from the

randomness of Xn, as well as any randomness in the func-

tion f itself. For example, every class of distributions ad-

mits an (n, n) amplification procedure, corresponding to

taking the function f to be the identity function. If, instead,

our definition had required that the conditional distribution

of f(Xn) given Xn be close to Dm, then the above defini-

tion would simply correspond to asking how well we can

learn D, given the n samples denoted by Xn.

Definition 1 is also equivalent, up to the choice of constant

1/3 in the bound on total variation distance, to the follow-

ing intuitive formulation of sample amplification as a game

between two parties: the “amplifier” who will produce a

dataset of size m, and a “verifier” who knows D and will

either accept or reject that dataset. The verifier’s protocol,

however, must satisfy the condition that given m indepen-

dent draws from the true distribution in question, the ver-

ifier must accept with probability at least 3/4, where the

probability is with respect to both the randomness of the set

of samples, and any internal randomness of the verifier. We

1We overload the notation DTV (·, ·) for total variation dis-
tance, and also use it when the argument is a random variable
instead of the distribution of the random variable.

2The constant in the definition is chosen for ease of exposition,
and we prove the theorems for general tolerance parameter.

briefly describe this formulation, as it parallels the pseudo-

randomness framework, and a number of natural directions

for future work—such as if the verifier is computationally

bounded, or only has sample access to D—are easier to

articulate here.

Definition 2. The sample amplification game consists of

two parties, an amplifier corresponding to a function

fn,m : Sn → Sm which maps a set of n datapoints in do-

main S to a set of m datapoints, and a verifier correspond-

ing to a function v : Sm → {ACCEPT,REJECT}. We

say that a verifier v is valid for distribution D if, when given

as input a set of m independent draws from D, the verifier

accepts with probability at least 3/4, where the probability

is over both the randomness of the draws and any internal

randomness of v:

Pr
Xm←Dm

[v(Xm) = ACCEPT ] ≥ 3/4.

A class C of distributions over domain S admits an (n,m)
amplification procedure if, and only if, there is an amplifier

function fC,n,m that, for every D ∈ C, can “win” the game

with probability at least 2/3; namely, such that for every

D ∈ C and valid verifier vD for D

Pr
Xn←Dn

[vD(fC,n,m(Xn)) = ACCEPT ] ≥ 2/3,

where the probability is with respect to the randomness of

the choice of the n samples, Xn, and any internal random-

ness in the amplifier and verifier, f and v.

As was the case in Definition 1, in the above definition it is

essential that the verifier only observes the output f(Xn)
produced by the amplifier. If the verifier sees both the

amplified samples, f(Xn) in addition to the original data,

Xn, then the above definition also becomes equivalent to

asking how well the class of distributions in question can

be learned given n samples.

Example 1. Consider the class of distributions C corre-

sponding to i.i.d. flips of a coin with unknown bias p.

We claim that there are constants c′ ≥ c > 0 such that

(n, n+cn) sample amplification is possible, but (n, n+c′n)
amplification is not possible. To see this, consider the am-

plification strategy corresponding to returning a random

permutation of the original samples together with cn ad-

ditional tosses of a coin with bias p̂, where p̂ is the em-

pirical bias of the n original samples. Because of the

random permutation, the total variation distance between

these samples and n + cn i.i.d. tosses of the p-biased coin

is a function of only the distribution of the total number of

heads. Hence this is equivalent to the distance between

Binomial(n + cn, p), and the distribution corresponding

to first drawing h ← Binomial(n, p), and then returning

h + Binomial(cn, h/n). It is not hard to show that the
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plification procedure that always returns a superset of the

original n points.

On the other hand, there is a constant c′ such that for any

ε, for n = d
ε log d

, and for sufficiently large d, there is an
(

n, n+ c′n
1

2
−9ε

)

amplification protocol for C that returns

a superset of the original n samples.

The above proposition suggests that to be able to amplify

at input size n = o(d/ log d), one must modify the input

samples. A naive way to modify the input samples is to dis-

card all the original n samples and generate m new samples

from the distribution N(µ̂,Σ), where µ̂ is empirical mean

µ̂ of the original set Xn. However this does not even give

an (n, n) amplification procedure for any value of n. To

achieve optimal amplification in the Gaussian case, the am-

plifier first computes the empirical mean µ̂ of the original

set Xn, and then draws m−n new samples from N(µ̂,Σ).
We then shift the original n samples to “decorrelate” the

original set and the new samples; intuitively, this step hides

the fact that the m− n new samples were generated based

on the empirical mean of the original samples. The final set

of returned samples consists of the shifted versions of the

n original samples along with the m− n freshly generated

ones. This procedure gives (n, n + O( n√
d
)) amplification,

and we also show that this is tight up to constant factors.

Theorem 2. Let C denote the class of d−dimensional

Gaussian distributions N (µ,Σ) with unknown mean µ and

fixed covariance Σ. For all d, n > 0 and m = n+O
(

n√
d

)

,

C admits an (n,m) amplification procedure.

This bound is tight up to constants, i.e., there is a fixed

constant c such that for all d, n > 0, C does not admit an

(n,m) amplification procedure for m ≥ n+ cn√
d

.

1.3. Open Directions

From a technical perspective, there are a number of nat-

ural open directions for future work, including establish-

ing tight bounds on amplification for other natural distri-

bution classes, such as d dimensional Gaussians with un-

known mean and covariance. More conceptually, it seems

worth getting a broader understanding of the range of po-

tential amplification algorithms, and the settings to which

each can be applied.

Weaker or More Powerful Verifiers? Our results show-

ing that non-trivial amplification is possible even in the

regime in which learning is not possible, rely on the mod-

eling assumption that the verifier gets no information about

the amplifier’s training set, Xn (the set of n i.i.d. samples).

If this dataset is revealed to the verifier, then the question

of amplification is equivalent to learning. This prompts

the question about a middle ground, where the verifier has

some information about the set Xn, but does not see the

entire set; this middle ground also seems the most practi-

cally relevant (e.g. how much do we need to know about

a GAN’s training set to decide whether it actually under-

stands a distribution of images?).

How does the power of the amplifier vary de-

pending on how much information the verifier

has about Xn? If the verifier is given a uniformly

random subsample of Xn of size n′ � n, how

does the amount of possible amplification scale

with n′?

Rather than considering how to increase the power of the

verifier, it might also be worth considering the conse-

quences of decreasing either the computational power, or

information theoretic power of the verifier.

If the verifier, instead of knowing distribution D,

receives only a set of independent draws from D,

how much more power does this give the ampli-

fier? Alternately, if the verifier is constrained to

be an efficiently computable function, does this

provide additional power to the amplifier in any

natural settings?

Potential Applications of Sample Amplification. An

interesting future direction is to examine if amplification is

a useful primitive in settings where the samples are given

as input to downstream analysis. Amplification does not

add any new information to the original data, but it could

still make the original information more easily accessible to

certain types of algorithms which interact with the data in

limited ways. For example, many popular algorithms and

heuristics are not information theoretically optimal, despite

their widespread use. It seems worth examining if ampli-

fication schemes could improve the statistical efficiency of

these commonly used methods. Since the amplified sam-

ples are “good” in an information theoretic sense (they are

indistinguishable from true samples), the performance of

downstream algorithms cannot be significantly hurt. Be-

low, we provide a toy example where amplification im-

proves the accuracy of a standard downstream estimator.

Example 2. Given labeled examples,

(x1, y1), . . . , (xn, yn) drawn from a distribution, D,

with xi ∈ R
d and yi ∈ R, a natural quantity to estimate

is the fraction of variance in y explainable as a linear

function of x: infθ∈Rd E(x,y)∼D[(θTx−y)2]. The standard

unbiased estimator for this quantity is the training error of

the least-squares linear model, scaled by a factor of 1
n−d .

This scaling factor makes this estimate unbiased, although

the variance is large when n is not much larger than d.

Figure 2 shows the expected squared error of this estimator

on raw samples, and on (n, n + 2) amplified samples, in
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be quite distinct problems. In the amplification setting, the

core question is how the amplifier can leverage a set of in-

dependent samples from D to generate a larger set of (pre-

sumably) non-independent samples that can successfully

masquerade as a set of i.i.d. draws from D.

Within this line of work on distributional property testing

and estimation, there is also a recent thread of work on

designing estimators or tests, whose performance given n
i.i.d. samples is comparable to the expected performance

of a naive “plugin” estimator (which returns the property

value of the empirical distribution) based on m > n i.i.d.

draws (Valiant & Valiant, 2016; Yi et al., 2018). The term

“data amplification” has been applied to this line of work,

although it is a different problem from the one we consider.

The recent work on sampling correctors (Canonne et al.,

2018) also considers the question of how to produce a

“good” set of draws from a given distribution. That work

assumes access to draws from a distribution, D, which is

close to having some desired structural property, such as

monotonicity or uniformity, and considers how to “correct”

or “improve” those samples to produce a set of samples that

appear to have been drawn from a different distribution D′

that possesses the desired property (or is closer to possess-

ing the property).

Our formulation of sample amplification as a game be-

tween an amplifier and a verifier, closely resembles the

setup for pseudo-randomness (see (Vadhan et al., 2012) for

a relatively recent survey). There, the pseudo-random gen-

erator takes a set of n independent fair coin flips, and out-

puts a longer string of m > n outcomes. The verifier’s job

is to distinguish the output of the generator from a set of m
independent tosses of the fair coin. In contrast to our set-

ting, in pseudo-randomness, both players know that the dis-

tribution in question is the uniform distribution, the catch is

that the generator does not have access to randomness, and

the verifier is computationally bounded.

Finally, it is also worth mentioning the work of Viola on the

complexity of sampling from distributions (Viola, 2012).

That work also considers the challenge of generating sam-

ples from a specified distribution, though the problem is

posed as the computational challenge of producing sam-

ples from a specified distribution, given access to uniformly

random bits. One of the punchlines is that there are distri-

butions, such as the distribution over pairs (x, y) where x
is a uniformly random length-n string, and y = parity(x),
where small circuits can sample from the distribution, yet

no small circuit can compute y = parity(x) given x.

2. Algorithms and Proof Overview

In this section, we describe our sample amplification algo-

rithms for the discrete and Gaussian settings, and give an

overview of their analyses. The full proofs of the upper and

lower bounds are provided in the supplementary material.

2.1. Discrete Distributions with Bounded Support

We begin by providing some intuition for amplification in

the discrete distribution setting, by considering the simple

case where the distribution in question is a uniform dis-

tribution over an unknown support. We then extend this

intuition to general discrete distributions.

Intuition via the Uniform Distribution. Consider the

problem of generating (n+1) samples from a uniform dis-

tribution over k unknown elements, given a set of n sam-

ples from the distribution. Suppose n �
√
k. Then with

high probability, no element appears more than once in a set

of (n+1) samples. Therefore, as the amplifier only knows

n elements of the support with n samples, it cannot produce

a set of (n+1) samples such that each element only appears

once in the set. Hence, no amplification is possible in this

regime. Now consider the case when n = c
√
k for a large

constant c. By the birthday paradox, we now expect some

elements to appear more than once, and the number of ele-

ments appearing twice has expectation ≈ c2

2 and standard

deviation Θ(c). In light of this fact, consider an amplifica-

tion procedure which takes any element that appears only

once in the set Xn, adds an additional copy it to the set Xn,

and then randomly shuffles these n+1 samples to produce

the final set Zn+1. It is easy to verify that the distribution of

Zn+1 will be close in total variation distance to a set Xn+1

of (n + 1) i.i.d. samples drawn from the original uniform

distribution. Since the standard deviation of the number of

elements in Xn+1 that appear twice is Θ(c), intuitively, we

should be able to amplify by an additional Θ(c) samples, by

taking Θ(c) elements which appear only once and repeat-

ing them, and then randomly permuting these n + Θ(c)
samples. Note that with high probability, most elements

only appear once in the set Xn, and hence the previous am-

plifier is almost equivalent to an amplifier which generates

new samples by sampling from the empirical distribution

of the original n samples, and then randomly shuffles them

with the original samples. Our amplification procedure for

general discrete distributions is based on this sample-from-

empirical procedure.

Algorithm and Upper Bound. To facilitate the analy-

sis, our general amplification procedure which applies to

any discrete distribution D, deviates from the sample-from-

empirical-then-shuffle scheme in two ways. The modifi-

cations avoid two sources of dependencies in the sample-

from-empirical-then-shuffle schemes. First, we use the

“Poissonization” trick and go from working with the multi-

nomial distribution to the Poisson distribution—making the

element counts independent for all≤ k elements. And sec-



Sample Amplification

ond, note that the new samples are dependent on the old

samples if we generate the new samples from the empirical

distribution. To leverage independence, we instead (i) di-

vide the input samples into two sets, (ii) use the first set to

estimate the empirical distribution, (iii) generate new sam-

ples using this empirical distribution, and (iv) randomly

shuffle these new samples with the samples in the second

set. More precisely, we simulate two sets XN1
and XN2

,

of Poisson(n/4) samples from the distribution D, using the

original set Xn of n samples from D. This is straightfor-

ward to do, as a Poisson(n/4) random variable is ≤ n/2
with high probability. We then estimate the probabilities

of the elements using the first set XN1
, and use these esti-

mated probabilities to generate R ≈ m − n more samples

from a Poisson distribution, which are then randomly shuf-

fled with the samples in XN2
to produce ZN2+R. Then the

set of output samples Zm just consist of the samples in XN1

concatenated with those in ZN2+R. This describes the main

steps in the procedure, more technical details can be found

in the full description in the supplementary. We show that

this procedure achieves (n, n+O
(

n√
k

)

) amplification.

To prove this upper bound, first note that the counts of each

element in a shuffled set Zm are a sufficient statistics for

the probability of observing Zm, as the ordering of the el-

ements is uniformly random. Hence we only need to show

that the distribution of the counts in the set Zm is close

in total variation distance to the distribution of counts in

a set Xm of m elements drawn i.i.d. from D. Since the

first set XN1
is independent of the second set XN2

, the

additional samples added to XN2
are independent of the

samples originally in XN2
, which avoids additional depen-

dencies in the analysis. Using this independence, we show

a technical lemma that with high probability over the first

set XN1
, the KL-divergence between the distribution of the

set ZN2+R and DN2+R of N2 + R i.i.d. samples from D
is small. Then using Pinsker’s inequality, it follows that

the total variation distance is also small. The final result

then follows by a coupling argument, and showing that the

Poissonization steps are successful with high probability.

Lower Bound. We now describe the intuition for show-

ing our lower bound that the class of discrete distributions

with support at most k does not admit an (n,m) amplifica-

tion scheme for m ≥ n + cn√
k

, where c is a fixed constant.

For n ≤ k
4 , we show this lower bound for the class of uni-

form distributions D = Unif[k] on some unknown k ele-

ments. In this case, a verifier can distinguish between true

samples from D and a set of amplified samples by counting

the number of unique samples in the set. Note that as the

support of D is unknown, the number of unique samples

in the amplified set is at most the number of unique sam-

ples in the original set Xn, unless the amplifier includes

samples that are outside the support of D, in which case

the verifier will trivially reject this set. The expected num-

ber of unique samples in n and m draws from D differs

by c1n√
k

, for some fixed constant c1. We use a Doob mar-

tingale and martingale concentration bounds to show that

the number of unique samples in n samples from D con-

centrates within a c2n√
k

margin of its expectation with high

probability, for some fixed constant c2 � c1. This implies

that there will be a large gap between the number of unique

samples in n and m draws from D. The verifier uses this to

distinguish between true samples from D and an amplified

set, which cannot have sufficiently many unique samples.

Finally, we show that for n > k
4 , a

(

n, n + c′k√
k

)

ampli-

fication procedure for discrete distributions on k elements

implies a (k4 ,
k
4+c′

√
k) amplification procedure for the uni-

form distribution on (k − 1) elements, and for sufficiently

large c′ this is a contradiction to the previous part. This re-

duction follows by considering the distribution which has

1 − k
4n mass on one element and k

4n mass uniformly dis-

tributed on the remaining (k − 1) elements. With suffi-

ciently large probability, the number of samples in the uni-

form section will be ≈ k
4 , and hence we can apply the pre-

vious result.

2.2. Gaussian Distributions with Unknown Mean and

Fixed Covariance

Given the success of the simple sampling-from-empirical

scheme for the discrete case, it is natural to consider the

analogous algorithm for d-dimensional Gaussian distri-

butions. In this section, we first show that this analo-

gous procedure achieves non-trivial amplification for n =
Ω(d/ log d). We then describe the idea behind the lower

bound that any procedure which does not modify the input

samples does not work for n = o(d/ log d). Inspired by the

insights from this lower bound, we then discuss a more so-

phisticated procedure, which is optimal and achieves non-

trivial amplification for n = Ω(
√
d).

Upper Bound for Algorithm which Samples from the

Empirical Distribution. Let µ̂ be the empirical mean

of the original set Xn. Consider the (n,m) amplifica-

tion scheme which draws (m − n) new samples from

N(µ̂,Σ) and then randomly shuffles together the original

samples and the new samples. We show that for any ε,
this procedure—with a small modification to facilitate the

analysis—achieves
(

n, n+O
(

n
1

2
−9ε

))

amplification for

n = d
ε log d

. This is despite the empirical distribution

N(µ̂,Σ) being 1− o(1) far in total variation distance from

the true distribution N(µ,Σ), for n = o(d).

We now provide the proof intuition for this result. First,

note that it is sufficient to prove the result for Σ = I .

This is because all the operations performed by our am-
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plification procedure are invariant under linear transforma-

tions. The intuition for the result in the identity covari-

ance case is as follows. Consider n = Θ(d/ log d). In

this case, with high probability, the empirical mean µ̂ sat-

isfies ‖µ − µ̂‖ = O(
√
log d) ≤

√
c log n for a fixed con-

stant c. If we center and rotate the coordinate system, such

that µ̂ has the coordinates (‖µ− µ̂‖, 0, . . . , 0), then the dis-

tribution of samples from N(µ̂, I) and N(µ, I) only dif-

fers along the first axis, and is independent across different

axes. Hence, with some technical work, our problem re-

duces to the following univariate problem: what is the total

variation distance between (n + 1) samples from the uni-

variate distributions N(0, 1) and D̃, where D̃ is a mixture

distribution where each sample is drawn from N(0, 1) with

probability 1 − 1
n+1 and from N(

√
c log n, 1) with proba-

bility 1
n+1? We show that the total variation distance be-

tween these distributions is small, by bounding the squared

Hellinger distance between them. Intuitively, the reason

for the total variation distance being small is that, even

though one sample from N(
√
c log n, 1) is easy to distin-

guish from one sample from N(0, 1), for sufficiently small

c it is difficult to distinguish between these two samples in

the presence of n other samples from N(0, 1). This is be-

cause for n draws from N(0, 1), with high probability there

are O(n1−c) samples in a constant length interval around√
c log n, and hence it is difficult to detect the presence or

absence of one extra sample in this interval.

Lower Bound for any Procedure which Returns a Su-

perset of the Input Samples. We show that procedures

which return a superset of the input samples are inherently

limited in this Gaussian setting, in the sense that they can-

not achieve (n, n+ 1) amplification for n ≤ cd
log d

, where c
is a fixed constant.

The idea behind the lower bound is as follows. If we con-

sider any arbitrary direction and project a true sample from

N(µ, I) along that direction, then with high probability, the

projection lies close to the projection of the mean. How-

ever, for input set Xn with mean µ̂, the projection of an

extra sample added by any amplification procedure along

the direction µ − µ̂ will be far from the projection of the

mean µ. This is because after seeing just cd
log d

samples, any

amplification procedure will have high uncertainty about

the location of µ relative to µ̂. Based on this, we construct

a verifier which can distinguish between a set of true sam-

ples and a set of amplified samples, for n ≤ cd
log d

.

More formally, Let x′i be the i-th sample returned by the

procedure, and let µ̂−i be the mean of all except the i-th
sample. Let “new” be the index of the additional point

added by the amplifier to the original set Xn, hence the am-

plifier returns the set {x′new, Xn}. Note that µ̂← N(µ, I
n
),

hence ‖µ − µ̂‖2 ≈ d
n

with high probability. Suppose the

verifier evaluates the following inner product for the addi-

tional point x′new,

〈x′new − µ̂−new, µ− µ̂−new〉. (1)

Note that µ̂−new = µ̂ as the amplifier has not modified any

of the original samples in Xn. For a point x′new drawn from

N(µ, I), this inner product concentrates around ‖µ−µ̂‖2 ≈
d
n

. We now argue that if the true mean µ is drawn from

the distribution N(0,
√
dI), then the above inner product

is much smaller than d
n

with high probability over µ. The

reason for this is as follows. After seeing the samples in

Xn, the amplification algorithm knows that µ lies in a ball

of radius ≈
√

d
n

centered at µ̂, but µ could lie along any

direction in that ball. Formally, we can show that if µ is

drawn from the distribution N(0,
√
dI), then the posterior

distribution of µ | Xn is a Gaussian N(µ̄, σ̄I) with µ̄ ≈
µ̂ and σ̄ ≈ 1

n
. As µ − µ̂ is a random direction, for any

x′new that the algorithm returns, the inner product in (1) is

≈ ‖x′new− µ̂‖‖µ− µ̂‖
(

1√
d

)

with high probability over the

randomness in µ | Xn. The verifier checks and ensures

that ‖x′new − µ̂−new‖ = ‖x′new − µ̂‖ ≈
√
d. Hence for any

(n, n + 1) amplification scheme, the inner product in (1)

is at most ≈
√

d
n

with high probability over µ | Xn. In

contrast, we know that this inner product is ≈ d
n

for a true

sample from N(µ, I).

Finally, note that the algorithm can randomly shuffle the

samples, and hence the verifier does the above inner prod-

uct test for every returned sample x′i, for a total of (n+ 1)
tests. If (n + 1) tests are performed, then the inner prod-

uct is expected to deviate by

√
d logn

n
around its expected

value of d
n

, even for (n+1) true samples drawn for the dis-

tribution. But if n� d
log d

, then
√

d
n
� d

n
−
√

d logn
n

, and

hence any (n, n + 1) amplification scheme in this regime

fails at least one of the following tests with high proba-

bility over µ: (1) ∀ i ∈ [n + 1], 〈x′i − µ̂−i, µ− µ̂−i〉 ≥
d
n
−

√
d logn

n
, and (2) ∀ i ∈ [n + 1], ‖x′i − µ̂−i‖ ≈

√
d.

As true samples pass all the tests with high probability, this

shows that (n, n + 1) amplification without modifying the

provided samples is impossible for n� d
log d

.

Optimal Amplification Procedure for Gaussians: Algo-

rithm and Upper Bound. The above lower bound shows

that it is necessary to modify the input samples Xn to

achieve amplification for n = o(d/ log d). What would be

the most naive amplification scheme which does not out-

put a superset of the input samples? One candidate could

be an amplifier which first estimates the sample mean µ̂
of Xn, and then just outputs m samples from N(µ̂, I). It

is not hard to see that this scheme does not even give a

valid (n, n) amplification procedure. The verifier in this

case could check the distance between the true mean and
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Algorithm 1 Sample Amplification for Gaussian with Unknown Mean and Fixed Covariance

Input: Xn = (x1, x2, . . . , xn), where xi ← N(µ,Σd×d).
Output: Zm = (x′1, x

′
2, . . . , x

′
m), such that DTV (D

m, Zm) ≤ 1
3 , where D is N(µ,Σd×d)

procedure AMPLIFYGAUSSIAN(Xn)

µ̂ :=
∑n

i=1
xi

n

εi ← N(0,Σd×d), for i ∈ {n+ 1, n+ 2, . . . ,m} . Draw m− n i.i.d samples from N(0,Σd×d)
x′i := µ̂+ εi, for i ∈ {n+ 1, n+ 2, . . . ,m}
x′i := xi −

∑m

j=n+1
εj
n

, for i ∈ {1, 2, . . . , n} . Remove correlations between old and new samples

return Zm := (x′1, x
′
2, . . . , x

′
m)

the mean of the returned samples, which would be signifi-

cantly more than expected, with high probability.

How should one modify the input samples then? The above

lower bound also shows what such an amplification pro-

cedure must achieve—the inner product in (1) should be

driven towards its expected value of d
n

for a true sample

drawn from the distribution. Note that the inner product

is too small for the algorithm which samples from the em-

pirical distribution N(µ̂, I) as the generated point x′new is

too correlated with the mean µ̂−new = µ̂ of the remaining

points. We can fix this by shifting the original points in Xn

themselves, to hide the correlation between x′new and the

original mean µ̂ of Xn. The full procedure is quite simple

to state, and is described in Algorithm 1. Note that unlike

our other amplification procedures, this procedure does not

involve any random shuffling of the samples. We show that

this procedure achieves (n,m) amplification for all d > 0

and m = n+O
(

n√
d

)

.

We now provide a brief proof sketch for this upper bound,

for the case when m = n + 1. Note that the returned

samples in Zm can also be thought of as a single sam-

ple from a (m × d)-dimensional Gaussian distribution

N
(

(µ, µ, . . . , µ)
︸ ︷︷ ︸

m times

, Σ̃md×md

)

, as the returned samples are

linear combinations of Gaussian random variables. Hence,

it is sufficient to find their mean and covariance, and use

that to bound their total variation distance to true sam-

ples from the distribution (which can also be though of

as a single sample from a (d × m)-dimensional Gaus-

sian distribution N
(

(µ, µ, . . . , µ), Imd×md

)

). The TV

distance between the two distributions is proportional to

‖Σ̃md×md − Imd×md‖F. Our modification procedure re-

moves the correlations between the original samples and

the generated samples to ensure that the non-diagonal en-

tries of Σ̃md×md are small, and hence the total variation

distance is also small.

General Lower Bound for Gaussians. We show a lower

bound that there is no (n,m) amplification procedure for

Gaussian distibutions with unknown mean for m ≥ n+ cn√
d

,

where c is a fixed constant. The intuition behind the lower

bound is that any such amplification procedure could be

used to find the true mean µ with much smaller error than

what is possible with n samples.

To show this formally, we define a verifier such that for

µ ← N(0,
√
dI) and m > n + cn√

d
, m true samples from

N(µ, I) are accepted by the verifier with high probability

over the randomness in the samples, but m samples gener-

ated by any (n,m) amplification scheme are rejected by the

verifier with high probability over the randomness in the

samples and µ. In this case, the verifier only needs to eval-

uate the squared distance ‖µ− µ̂m‖2 of the empirical mean

µ̂m of the returned samples from the true mean µ, and ac-

cept the samples if and only if this squared distance is less

than d
m
+ c1

√
d

m
for some fixed constant c1. It is not difficult

to see why this test is sufficient. Note that for m true sam-

ples drawn from N(µ, I), ‖µ − µ̂m‖2 = d
m
± O

(√
d

m

)

.

Also, the squared distance ‖µ − µ̂2‖ of the mean µ̂ of

the original set Xn from the true mean µ is concentrated

around d
n
± O

(√
d

n

)

. Using this, for m > n + cn√
d

, we

can show that no algorithm can find a µ̂m which satisfies

‖µ − µ̂m‖2 ≤ d
m
± O

(√
d

m

)

with decent probability over

µ← N(0,
√
dI). This is because the algorithm only knows

µ up to squared error d
n
± O

(√
d

n

)

based on the original

set Xn.

3. Conclusion

We introduce the notion of sample amplification, which

formalizes what it means to enlarge a dataset that consists

of independent draws from an unknown distribution, D.

For two fundamental classes of distributions—discrete dis-

tributions and high dimensional Gaussians—we show that

non-trivial amplification is possible even when one does

not have enough data to learn D. Beyond these results, we

present a toy example illustrating one potential application

of sample amplification, and outline several intriguing di-

rections of future work in this vein. We believe that further

exploration of sample amplification may inform how we

view and evaluate generative models.



Sample Amplification

Acknowledgements

We would like to thank Clément Canonne and the anony-

mous reviewers for their comments and feedback. This

work was supported by an NSF fellowship, NSF awards

1804222, 1813049, IIS1908774 and 1704417, DOE award

DE-SC0019205 and an ONR Young Investigator Award.

References

Antoniou, A., Storkey, A., and Edwards, H. Data augmen-

tation generative adversarial networks. arXiv preprint

arXiv:1711.04340, 2017.

Batu, T., Fischer, E., Fortnow, L., Kumar, R., Rubinfeld,

R., and White, P. Testing random variables for indepen-

dence and identity. In IEEE Symposium on Foundations

of Computer Science (FOCS), 2001.

Batu, T., Fortnow, L., Rubinfeld, R., Smith, W. D., and

White, P. Testing closeness of discrete distributions.

Journal of the ACM (JACM), 60(1):4, 2013.

Bhattacharya, B. and Valiant, G. Testing closeness with un-

equal sized samples. In Advances in Neural Information

Processing Systems, pp. 2611–2619, 2015.

Canonne, C. L., Gouleakis, T., and Rubinfeld, R. Sampling

correctors. SIAM Journal on Computing, 47(4):1373–

1423, 2018.

Chan, S.-O., Diakonikolas, I., Valiant, P., and Valiant,

G. Optimal algorithms for testing closeness of dis-

crete distributions. In Proceedings of the twenty-fifth an-

nual ACM-SIAM symposium on Discrete algorithms, pp.

1193–1203. SIAM, 2014.

Cohn, G. AI art at Christie’s sells for $432,500. The New

York Times, Oct 2018.

Diakonikolas, I. and Kane, D. M. A new approach for test-

ing properties of discrete distributions. In 2016 IEEE

57th Annual Symposium on Foundations of Computer

Science (FOCS), pp. 685–694. IEEE, 2016.

Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Gold-

berger, J., and Greenspan, H. Gan-based synthetic med-

ical image augmentation for increased cnn performance

in liver lesion classification. Neurocomputing, 321:321–

331, 2018.

Goldreich, O. and Ron, D. On testing expansion in

bounded-degree graphs. In Technical Report TR00-020,

Electronic Colloquium on Computational Complexity,

2000.

Levi, R., Ron, D., and Rubinfeld, R. Testing properties of

collections of distributions. Theory of Computing, 9(1):

295–347, 2013.

Orlitsky, A. and Suresh, A. T. Competitive distribution

estimation: Why is good-turing good. In Advances in

Neural Information Processing Systems, pp. 2143–2151,

2015.

Paninski, L. A coincidence-based test for uniformity given

very sparsely sampled discrete data. IEEE Transactions

on Information Theory, 54(10):4750–4755, 2008.

Vadhan, S. P. et al. Pseudorandomness. Foundations and

Trends R© in Theoretical Computer Science, 7(1–3):1–

336, 2012.

Valiant, G. and Valiant, P. Instance optimal learning of

discrete distributions. In Proceedings of the forty-eighth

annual ACM symposium on Theory of Computing, pp.

142–155. ACM, 2016.

Valiant, G. and Valiant, P. An automatic inequality prover

and instance optimal identity testing. SIAM Journal on

Computing, 46(1):429–455, 2017.

Valiant, P. Testing symmetric properties of distributions.

SIAM Journal on Computing, 40(6):1927–1968, 2011.

Viola, E. The complexity of distributions. SIAM Journal

on Computing, 41(1):191–218, 2012.

Wang, Y.-X., Girshick, R., Hebert, M., and Hariharan, B.

Low-shot learning from imaginary data. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 7278–7286, 2018.

Yi, H., Orlitsky, A., Suresh, A. T., and Wu, Y. Data ampli-

fication: A unified and competitive approach to property

estimation. In Advances in Neural Information Process-

ing Systems, pp. 8848–8857, 2018.

Yi, X., Walia, E., and Babyn, P. Generative adversarial

network in medical imaging: A review. Medical image

analysis, pp. 101552, 2019.


