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Abstract: We propose a new approach to compute an interval over-approximation of the
finite time reachable set for a large class of nonlinear systems. This approach relies on the
notions of sensitivity matrices, which are the partial derivatives representing the variations of
the system trajectories in response to variations of the initial states. Using interval arithmetics,
we first over-approximate the possible values of the second-order sensitivity at the final time
of the reachability problem. Then we exploit these bounds and the evaluation of the first-order
sensitivity matrices at a few sampled initial states to obtain an over-approximation of the first-
order sensitivity, which is in turn used to over-approximate the reachable set of the initial system.
Unlike existing methods relying only on the first-order sensitivity matrix, this new approach
provides guaranteed over-approximations of the first-order sensitivity and can also provide such
over-approximations with an arbitrary precision by increasing the number of samples.
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1. INTRODUCTION

Reachability analysis is the problem of evaluating the set
of all the successor states that can be reached in finite time
by a system starting from a given set of initial states (Blan-
chini and Miani, 2008). Since the reachable set can rarely
be computed exactly, we often rely on methods to over-
approximate this set. In the literature, we primarily find
two classes of reachability approaches. The first class con-
siders complex and flexible set representations, such as
zonotopes (Althoff, 2015), zonotope bundles (Althoff and
Krogh, 2011) ellipsoids (Kurzhanskiy and Varaiya, 2007),
support functions (Girard and Le Guernic, 2008), paving
of intervals (Jaulin, 2001). Their main focus is to over-
approximate the reachable set as tightly as possible, which
is particularly interesting to solve simple verification prob-
lems such as those with safety or reachability specifications
where the obtained over-approximation is immediately
checked against a set of unsafe or target states.

The second class considers a simpler set representation in
the form of (multi-dimensional) intervals, using methods
based on differential inequalities (Scott and Barton, 2013),
Taylor models (Chen et al., 2012), growth bounds (Reissig
et al., 2016) or monotonicity (Meyer et al., 2019). Due to
the simpler set representation, these methods tend to offer
better efficiency and scalability at the cost of the accuracy
of the over-approximations, and are thus particularly used
in the field of abstraction-based control synthesis (see e.g.
Moor and Raisch, 2002; Coogan and Arcak, 2015; Reissig
et al.,, 2016; Meyer and Dimarogonas, 2019) where the
number of reachable set over-approximations required for
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the creation of an abstraction grows exponentially in the
dimension of the state space.

In the subset of monotonicity-based interval reachability
approach, the simplest method, used in Moor and Raisch
(2002), relies directly on a monotonicity property (Angeli
and Sontag, 2003) and guarantees that an interval over-
approximation of the reachable set can be computed by
evaluating the successors of only two vertices of the in-
terval of initial states. A generalization of this property
called mixed-monotonicity was then introduced and used
for reachability analysis in Coogan and Arcak (2015),
where an auxiliary monotone system can be created by
decomposing the initial system into its increasing and
decreasing components. A further generalization of mixed-
monotonicity to any system with a bounded Jacobian
matrix was recently proposed in Yang et al. (2019) and
used for reachability analysis in Meyer and Dimarogonas
(2019). Finally, another interval reachability method in-
spired by the notion of mixed-monotonicity and applica-
ble to continuous-time nonlinear systems was proposed
in Meyer et al. (2018), where bounds on the sensitivity
matrix (the partial derivative describing the influence of
initial conditions on the successor states) are used to
compute an over-approximation interval of the reachable
set.

While Meyer et al. (2018) considers two approaches to
evaluate these sensitivity bounds, both have shortcomings:
one provides very conservative bounds by applying the
interval arithmetics results from Althoff et al. (2007), the
other only computes empirical bounds through a time-
consuming sampling procedure which is not guaranteed to
result in an over-approximation of the sensitivity values. In
this paper, we propose a novel and more flexible algorithm
to obtain sensitivity bounds by combining the advantages
of these two approaches while overcoming their main



drawbacks. In addition to the first-order sensitivity matrix
used above, the proposed approach also relies on the
second-order sensitivity in the following 3-step procedure:

e first over-approximate the reachable tube (over the
whole time range) for the first-order sensitivity matrix
using interval arithmetics,

e next use these bounds to over-approximate the reach-
able set (at the final time only) for the second-order
sensitivity using interval arithmetics,

e finally combine the second-order sensitivity bounds
with the numerical evaluation of the first-order sen-
sitivity on some sampled initial states to obtain an
over-approximation of the reachable set of the first-
order sensitivity.

This result has two major advantages. Compared to the
purely empirical sampling approach from Meyer et al.
(2018), the proposed algorithm is sound since for any
number of samples we are guaranteed to over-approximate
the set of first-order sensitivity values. Compared to the
one-step interval arithmetics method from Meyer et al.
(2018), which is conservative, we can now obtain arbitrar-
ily tight bounds of the first-order sensitivity by increasing
the number of samples. Indeed, the sampling in our third
step can be used to tune the desired tradeoff between
the computational complexity and the conservativeness of
the over-approximation. Compared to methods relying on
Taylor models such as Chen et al. (2012) which usually
require a decomposition of the time range to reduce the
accumulation of errors, the proposed approach relying on
mixed-monotonicity does not have this problem and all
over-approximations can be computed in a single time
step.

The paper is structured as follows. In Section 2, we provide
the notations and mathematical preliminaries that are
used throughout this paper. The considered reachability
problem for a nonlinear system is defined in Section 3.
In Section 4, we provide the definitions and equations
describing the first-order and second-order sensitivity ma-
trices. Section 5 presents the overall algorithm to solve
the reachability problem. Finally, the proposed approach
and its advantages compared to Meyer et al. (2018) are
illustrated on a numerical example in Section 6.

2. PRELIMINARIES
2.1 Notations

Let R and N be the sets of reals and positive integers,
respectively. Let I, € R™™ and Opxp,loxp € R™*P
denote the identity matrix of dimension n and the n X p
matrices filled with zeros and ones, respectively. Given two
matrices A € R"*P and B € R?*", we denote their matrix
product (if p = ¢) as Ax* B = AB € R"™*" and their
Kronecker product as A ® B € R™7*PT,

Let Z C 2% be the set of closed real intervals, i.e., for all
X € Z, there exist 2,7 € R such that X = [z,7] = {z €
R|z<z<7Z} CR.I" and Z"*P then represent the sets
of interval vectors in R™ and interval matrices in R™*P,
respectively. Given two interval matrices [4, A],[B, B] €
I™*P_ their sum is: [A4,A] + [B,B] = [A+ B,A + B].

From Jaulin (2001), the product of two scalar intervals
is defined as
[a, @] * [b, b] = [min(ab, ab, @b, ab), max(ab, ab, ab,ab)] € L.

For [A, A] € Z"*P and [B, B] € ZP*4, the product [C, C] =
[A, A] % [B, B] € T"*1 is defined elementwise such that

P
z]’ ZAq,kaAzk Bk;j}Bk‘j] I
kf

and the product of a scalar interval with a matrix interval
is defined as [C,C] = [ ,al * [B, B] € IP*7 with

[C.:,Cii] = [a.a] * [B;;, Bij] € T.
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For [A,A] € I™P and [B,B] € ZI9%", the interval
Kronecker product [C,C] = [A, A] ® [B, B] € I"*P" is
defined as a n x p block interval matrix with (¢, j) block

[C.:.Cij] = A, Ai] * [B, B] € T9%".
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2.2 Functional matrices

In this section, we provide definitions and results on the
manipulation of functional matrices used throughout the
paper. We first introduce the differential operator D for a
scalar differentiable function f: R™ — R to be:

Df(w) (ag(‘”) af@”)) |
1 oxy,
Then for a functional matrix A : R™ — RPX9 its
differential DA(x) € RP*™ is the p x ¢ block matrix where
each element A;;(z) € R of A(x) € RP*? is replaced by the
row vector of its differential DA;;(z) € RM*™:

DAll(iL‘) te DAlq(LU)
DA@) =| 1)
DApi () -+ DApg(x)
61411(17) L 8A11(:z:) L BAlq(:z:) L 8A1q(x)
81'1 al’n 8961 8:1771
OAp: (x) . 9Ap: (2) . OApg(z) o OApg(x)
0z Oz, 0z 0xy,

This notation ensures that we only work with 2-dimensional
matrices, instead of matrices with more than two dimen-
sions for which cumbersome matrix product definitions
would need to be introduced.

For a time-varying functional matrix A : R x R® — RP*?

its time derivative is denoted with a dot
. 0A(t, x)
Alt,x) = — 1=
(t,2) = 225,
and we keep the notation DA(t,x) as in (1) to denote its
derivative with respect to the second variable x € R"™.

For the product of two functional matrices, its differential

is obtained as in the following result from (Cheng et al.,

2012, Corollary 18.1).

Lemma 1. (Product rule). Given A : R" — RP*? B :

R™ — R9*", we have D(A(z)B(x)) € RP*™" given by
D(A(z)B(x)) = DA(z) x (B(z) ® I,,) + A(z) * DB(x).

Next, we introduce the chain rule for the composition of a
functional vector and functional matrix.



Lemma 2. (Chain rule). Given A : R™ — RP*? and b :
R™ — R™, we have D(A(b(x))) € RP*"? given by

D(A(b(z))) = DAWY),—p() * (Ig © Db(x)).
The proof of Lemma 2 is straightforward and omitted.
2.8 Reachability analysis of interval affine systems

The method presented in this paper partly relies on results
from Althoff et al. (2007) which use interval arithmetics
to over-approximate the reachable set and reachable tube
of affine interval systems. These results are summarized in
this section for self-containment of the paper.

Consider an affine interval system of the form

ie Az + B, (2)

with state z € RP*? and interval matrices A = [4, A] €
ZP*P and B = [B, B] € IP*9. Given an interval matrix of
initial states Zy = [20, Zo] € ZP*9 and a time step 7 > 0, we

denote the reachable set of (2) as z(1, Zy) C RP*? and its
reachable tube as 2([0, 7], Zo) = U, (o - 2(t; Zo) € RP*2.

The results from Althoff et al. (2007) rely on Taylor
series truncated at an order r € N which needs to satisfy
r > ||Alleoc™ — 2, where the infinity norm of the interval
matrix is defined by [|Alle = [ max(|A],|A])||c using
componentwise absolute value and max operators. Then
we introduce

_ (Aler)™* 742
C(7) = [ 1pxps Lpxp] * (r+1! r+2— Aot
o) =3 U e
i=0 ’
r Ai7i+1
E(T) = ; m + C(T)Ta

where all sums and products of interval matrices follow
the definitions in Section 2.1. We also define the inter-
val hull of two interval matrices [a,d], [b,b] € ZP*9 as
H([a,al,[b,b]) = [min(a,b), max(a,d)] using the compo-
nentwise min and max operators.
Lemma 3. (Althoff et al. (2007)). The reachable set of (2)
at time 7 > 0 is over-approximated by an interval in ZP*4
as follows:

z2(1,Zo) € D(1)Zo + E(T)B. (3)
If in addition we have B = {0,x,}, then the reachable
tube of (2) over time range [0, 7] is over-approximated by
an interval in ZP*? as follows:

z([0, 7], Zo) C H(Zy, D(7)Zo) + F(7)Zo. (4)
3. PROBLEM FORMULATION

We consider a continuous-time, time-varying system

&= f(t ), ()
with state z € R™ and vector field f : R x R* — R"
assumed to be twice differentiable in the state. Note
that a system & = f(t,x,p) with constant but uncertain
parameters p € R? can be written as in (5) by considering

p as states whose dynamics are p = 0. We denote as
O (t;t9,20) € R™ the state reached by (5) at time t > ¢
from initial state xg. In this paper, our goal is to compute
an interval over-approximation of the finite-time reachable
set of (5) as defined below.

Problem 4. Given a time range [to,ty] € Z and an interval
of initial states Xo = [z,T] € Z", find an interval in Z"
over-approximating the reachable set of system (5) defined
as

R(tf;to,Xo) = {‘I’(tf;to,l‘o) | xo € Xo}.

To solve Problem 4 with the method presented in Sec-
tion 5, we assume that bounds on both the first-order and
second-order Jacobian matrices of (5) are provided by the
user. These two Jacobian matrices are defined below using
the differential operator D of the vector field f(¢,z) with
respect to state = as introduced in Section 2.2:

JE(t,x) = Df(t,x) € R™*",

J*(t, ) = DJ*(t,x) € R™"

Then our main assumption is formulated as follows, using
the known time range [to,ty] from Problem 4:

Assumption 5. Given an invariant state space X C R™ for
system (5), there exist [J*, J*] € Z™*™ and [J**, J*%] €
Zm*"* such that for all ¢ € [to,tr] and x € X we have
Jo(t,x) € [J®, J*] and J¥(t,x) € [J*Z, J==].

4. SENSITIVITY EQUATIONS

The method presented in Section 5 to solve Problem 4
relies on the definition of the sensitivity matrices of system
(5) representing the differential influence of the initial
conditions on the successor ®(¢;tg, zo) at time ¢. Similarly
to the definition of the Jacobian matrices above, we use
D to denote the differential operator of the trajectory
D (t;tg, xo) with respect to initial state zg. Then the first-
order and second-order sensitivity matrices are defined as:

Sm(t; to,.’IIQ) = D(I)(t; to,.’IIQ) S Rnxn, (6)
Sxx(t; t07$0) = DSw(t;to,xo) S Rnan. (7)

Both sensitivity matrices defined in (6) and (7) can also
be described by the time-varying affine systems below.
Proposition 6. Using the short-hand notations S* :=
SI(t; t07 ZL’()), ST = Sw$(t, t07 ZL’()), J* = J‘T(t, (I)(t, to, (E()))
and J* = J*(t,®(t;to, o)), the sensitivity matrices
defined in (6) and (7) follow:
§% = J*x 57, (8)

ST = J" xS 4 T (ST ® ST, (9)

with Sw(to;to,l'o) = In and Smc(t();lfo,l'o) = Oan2.

o

Proof. System (8) is obtained as in Donzé and Maler
(2007) by applying the chain rule to the vector field f:

S (t;tg, o) = DD(t;tg, x0)

= Df(t, ®(t:to, z0))

= Df(tay)|y:q>(t;to,ggo) * D®(t;t0, z0)
= J¥(t, ®(t;t0,z0)) * S*(t;t0, x0)-

Since S* = DS? from (7), system (9) is obtained by
differentiating (8) and then applying the product rule and
the chain rule from Lemmas 1 and 2, respectively:



S«wx(t; to, $0) :sz(t; to, -%'0)
=DJ"(t, ®(t; to, 20)) * (S” (t; to, w0) © L)
+ JE(t, ®(t; Lo, z0)) * DS™ (t;t0, w0)
=T (t, ®(tsto, 0)) * (In ® 57 (t:to, o))
(87 (t:to, 20) ® In)
+ J7 (¢, B(t; to, o)) * ST (t: o, z0).

Finally, (I, ® S*)(S*® I,,) = S* ® S* is a property of the
Kronecker product. The initial conditions are immediately
obtained by using ®(to; ¢, 2o) = o in (6) and (7). O

5. REACHABILITY ALGORITHM

The proposed approach to solve Problem 4 is summarized
in Algorithm 1 and Figure 1. Below, we briefly explain this
algorithm by going backwards from step 4 to step 1.

The end goal in step 4 is to over-approximate the reachable
set of the nonlinear system (5) using the recent reachability
method in Meyer et al. (2018) that relies on interval
bounds on the reachable set of the first-order sensitivity
S*(tg;to, Xo). The method in Meyer et al. (2018) uses
either conservative bounds from a direct application of
Lemma 3 or empirical bounds from a sampling procedure.
In contrast, here we derive guaranteed bounds on S? in
step 3 by combining bounds on the reachable set of the
second-order sensitivity S**(ty;to, Xo) with the numerical
evaluation of S* at time t; on a finite set of sampled initial
states. The resulting bounds on S*(ts; o, Xo) can be made
arbitrarily tight by increasing the number of samples.

The bounds on S** are computed in step 2 by applying
(3) in Lemma 3 to (9), which requires the knowledge of
bounds of both Jacobian matrices (from Assumption 5)
and on the reachable tube of the first-order sensitivity
S%([to,tf];to, Xo). This reachable tube of S* is over-
approximated in step 1 by applying (4) in Lemma 3 to (8),
which requires bounds on J* taken from Assumption 5.

These steps are detailed in the following subsections. A
further discussion for using the first three steps instead of
directly over-approximating S*(ts;to, Xo) with Lemma 3
as in Meyer et al. (2018) is given in Section 5.4.

Input: Reachability problem for (5): to, ty, Xo = [z, 7]
Data: Jacobian bounds [JZ, J*], [J%%, J*%]
Step 1: Apply (4) to (8) and obtain an interval
over-approximation of S%([to, t]; to, Xo)
Step 2: Apply (3) to (9) and obtain an interval
over-approximation of S**(ts; 0, Xo)
Step 3: Obtain an interval over-approximation of
S*(tg;to, Xo) from the bounds on S** and the evaluation
of S%(ty;to,zo) on a finite subset of X,
Step 4: Obtain an interval over-approximation of
R(ty;to, Xo) as in Meyer et al. (2018) using the bounds
on S*
Output: Interval solving Problem 4

Algorithm 1: Reachability analysis of system (5).

5.1 Interval arithmetics on the sensitivity systems

For the first step of Algorithm 1, we first need to rewrite
the time-varying linear system of the first-order sensitivity

I, J*] (27, Jee]

G % Lemma 3 (4)
OA of S*([to,ts];t0, Xo)
(St Shr]
Goz iy 9) Lemma 3 (3)
OA of S (ty;tg, Xo)
522, §7=]
S in (6) Sampling {y*,...,y"} € Xo

Evaluations S%(ts;to,y")
OA of S*(ty;ty, Xo)

157, 57]

Reachability analysis

&= f(t,x) in (5)
»from Meyer et al. (2018)

OA of R(tf;to,Xo)

Fig. 1. Sketch of the 4-step reachability procedure in Al-
gorithm 1 where “OA” stands “over-approximation”.
For each box, top arrows are the input requirements,
side arrows are the equations used and bottom arrows
are the output results.

(8) into a linear interval system similarly to (2). This is
done using the bounds on J* from Assumption 5:

S%(t;to, o) € [J¥, J*] % S¥(t;to, o). (10)

Then, applying (4) in Lemma 3 with A = [J*, J*|, B =
{0nxn} and Zy = {I,} leads to an over-approximation

of the reachable tube S*([to, t¢]; to, [z, T]) C [Shr. Shr] €
Z"*™ defined as:

[Skr, Skrl = H({In}, D(t; = to)) + F(ts — to).

For the second step in Algorithm 1, we use the bounds
(St Stp] obtained in the previous step alongside the
Jacobian bounds from Assumption 5 to rewrite the time-
varying affine system of the second-order sensitivity (9)

into an affine interval system as in (2) with A =

(2, J7), B = [J22, J**] = ([Skps Skr] @ [Skr: Skr]) and
the initial condition Zy = {0, x,2} from Proposition 6.
This leads to an over-approximation of the reachable set
S (tssto, [z,T]) C [S*%, S*7] € 77" defined as:
[S¥*, 8%%] = E(ty — to)B.

Remark 7. Although step 2 only focuses on S** at time
tr, the interval matrix B in (2) used in Lemma 3 needs to
bound the values of J** x (S% ® S%) from system (9) for
all time in [to,ty]. This is why step 1 considers the whole
reachable tube of S* instead of only the reachable set.

5.2 Sampling for the first-order sensitivity

Step 3 of Algorithm 1 relies on the evaluation of the
first-order sensitivity for some sampled initial states. Let



{y',...,yV} = Y C [2,7] be a finite set of N samples
in the interval of initial states [z, Z]. Similarly to (Tempo
et al., 2012, Section 7.4.4), we define below the dispersion
of this set of samples, where the infinity norm of a state
r € R" is defined as [|2[|oc = max;eqy,... ny 2.

Definition 8. Given a finite set Y C [z, Z], the dispersion
of YV in [z, 7] is defined as:
aY) = sup_minfz— gl € R

z€[z,]

Smaller values of d(Y") imply that the sample states in ¥’
are well scattered in the interval [Q T|. After evaluating
the first-order sensitivity S*(ts;to,y") at time ¢y for each
of these sampled states through numerical integration of
(6) or (8), we can derive guaranteed bounds on the set
S*(ty;to, [z, T]) as follows.
Theorem 9. Given bounds on the second-order sensitivity
57 (¢ tg, [z,7]) C [9%%, 577 € I and a finite set
Y C [z,7] of sampled initial states, define M € R™"*" as

M = max (|S72],5%]) % (I, ® (1, * d(Y))),
using componentwise absolute value and max operators.
Then the set of first-order sensitivity values at time ¢y is
over-approximated as S*(ts;to, [z,7]) C [S%, S*] € Im<"
with, for all 4,5 € {1,...,n}:

ST, = max (S5 (tsito,y)) + Mij,

St = gg} (Szzj (tg;to,y)) — M.

Proof. Taking any x,y € [z, T], we define the straight line
between z and y as v : [0,1] — R™ with y(A) = y+A(z—y).
Then for all i, € {1,...,n}, the fundamental theorem of
calculus applied to S7; along ~ gives:

Szz](tf,to,l‘) — S” tf,to, )

/DS” tito, v (V) * (2 — y)dA.

From (1), we know that DS;(ts;to,y(A)) € R'*™ are the
elements of S*(ty;tg,y(A)) in row ¢ and from column
14 (5 — 1)n to column jn. By definition of the dispersion,
for any initial state x € [z, 7], there exists y € Y such
that || — y|leo < d(Y). Then, for any such (z,y) pair, the
distance of their first-order sensitivity S7; can be bounded
as follows:

‘SZ}(tf, t(], LU) —
T o (trito, YON) * (2 — )| dA

1 n

S/ZS

0 k=
<Zmax

;ceax]

Siwj(tf;t()vy){

FhrG—nn(trito, z) | x d(Y).

Since max,¢[zz] is equal to element

St -1y (trito, )
(i, k+(j — 1)n) of matrix max (|S**|, |S**|), we then have
S5 (s to, @) — S5 (tys to, y)| < M.

The theorem statement is finally obtained by bounding
Sfj(tf; to,y) by its extremal values over the set y € Y. O

The over-approximation interval [S*, S?] in Theorem 9
thus corresponds to the interval hull of the sampled
sensitivity evaluations {S®(ts;t0,y)|y € Y} dilated by M.

Although this result is valid for any non-empty set Y C
[z, T] of sampled initial states, the value of the dispersion as
in Definition 8 can be challenging to compute or to upper-
bound for any system with more than one state dimension
(n > 1). Below, we give a result adapted from Tempo
et al. (2012) stating that this dispersion can be exactly
computed for a sampling set defined as a uniform grid.

Lemma 10. Let Y be defined as a uniform grid in [z,7]
with a € N elements per dimension (i.e. containing N = a”
sample states) and such that on each dimension ¢ €

{1,...,n} the samples are separated by % and the first

sample is shifted of % from z;. Then the dispersion of
Y is given by:

|7 — 2l

d(Y) - 2a

From the definition of M in Theorem 9, we can see
that the size of the obtained bounds on the first-order
sensitivity S* grows with the dispersion of the sampling
set Y. As a consequence, the set Y can be used to tune
the tradeoff between reducing the conservativeness of the
sensitivity bounds [S®, S*] and limiting the computation
time (related to the number of samples). If computation
capabilities were unlimited, Theorem 9 could then provide
interval bounds of the first-order sensitivity values with
arbitrary precision, as formulated below.

Proposition 11. If the sample number grows to infinity
N — oo, we can design the sampling set ¥ such that
[S®,S%] from Theorem 9 converge to the unique tight
interval over-approximation of the set S*(ts;to, [z, Z]).

Proof. To ensure that we obtain limy_,o d(Y) = 0, we
need to pick the set Y such that the the whole interval
[, 7] is sampled (instead of just sampling a subset). The
uniform grid in Lemma 10 satisfies this property since we
have lim, , d(Y) = 0. This leads to M — 0,x, and
Theorem 9 then states that each element of the bounds
S% and S* is obtained from the sensitivity evaluation
ST(tg;to,y) for a state y € ¥ C [z,7]. This implies that
any interval strictly contained in [S%, S*] cannot contain
the whole set S*(ty;to, [z, T]), which is the definition of
tightness of an over-approximation. O

5.8 Reachability analysis of the initial system

This section corresponds to step 4 of Algorithm 1 in which
we apply the method for reachability analysis introduced
in Meyer et al. (2018). This reachability result is summa-
rized below for self-containment of this paper.

Let S¥* € R™ " denote the center of [S%, S*] and define
the decomposition function g : R x R™ x R®™ — R" whose

ith component with i € {1,...,n} is
gi(to, z, y):q)i(tf;tOv 2 +a'(z —y), (11)
where the state 2= [zt € R™ and row vector o* =
1 n
[af,...,al] e R“" are such that for all j € {1,. n},
(z;, max(0,-S%,;;)) if Si;" >0,

_ = 1 1, 12
(), 0f) = {(yj,max(asaj)) it S& < 0. (12)

Then an over-approximation of the reachable set of (5)
is obtained by computing only two evaluations of the
decomposition function g.



Lemma 12. (Meyer et al. (2018)). Given bounds on the
first-order sensitivity S(ts;to, [z,7]) C [S%, 5] € Im<"
and the definitions in (11)-(12), an over-approximation of

the reachable set of (5) is given by:
R(tfa tOv [&)f]) g [g(tO;gvj)vg(thfvg)y

Although the option for an arbitrary precision on [S*, S%]
from Proposition 11 does not transfer to the over-
approximation of R(ts;to,[z,Z]), the following remark
highlights under which conditions the result in Lemma 12
provides a tight over-approximation.

Remark 13. (Meyer et al. (2018)). If each element of the

sensitivity bounds [S*, S*] is sign-stable (i.e. for all 4, j €
{1,...,n}, either S¥,. > 0 or S*;; < 0), then the
interval defined in Lemma 12 is the unique tight over-
approximating interval of the reachable set R(ty; o, [z, T]).

5.4 Comparison to Meyer et al. (2018)

Two alternatives for the computation of bounds [S%, S*]
on the first-order sensitivity S%(¢y;to, [z, T]) were initially
introduced in Meyer et al. (2018), both with their own
shortcomings. To highlight the novelties and advantages of
the approach proposed in this paper, we briefly describe
below these two alternatives and compare them to steps 1-
3 from Algorithm 1. The main points of comparison of
these three approaches are summarized in Table 1.

The first method in Meyer et al. (2018) relies on replacing
steps 1-3 from Algorithm 1 by a single step where we over-
approximate the reachable set of the first-order sensitivity
directly. To do this, we apply the interval arithmetics result
from (3) in Lemma 3 to the linear interval system (10)
of the first-order sensitivity. This results in the following
over-approximation:

Sm(tf;t()a[lvf}) < D(tf 7t0)' (13)
Similarly to Algorithm 1, this provides a guaranteed over-
approximation of the possible values taken by the first-
order sensitivity. The computation time is very short in
most cases, but the obtained over-approximation tends to
be overly conservative due to being directly influenced in
(13) by the (possibly large) first-order Jacobian bounds
from Assumption 5.

The second alternative is simulation-based and has two
steps: sampling and falsification. The sampling step is done
similarly to Section 5.2, where we pick a finite sampling set
Y C [z,7], evaluate the first-order sensitivity S*(ts;to,y)
for all y € Y through numerical integration of (6) or (8)

and then define approximate bounds [S*, S*] as
(ST, S%45] = lgg} (Sf}(tf;to,y)) » Imax (Sfj(tf;to,y))

Then for all 4,5 € {1,...,n}, the falsification step runs an
optimization problem to find other initial states = € [z, ]
whose sensitivity evaluation does not belong to the current
bounds (S®(ts;to,z) ¢ [S*,S%]). If such state is found,
the bounds are enlarged accordingly and the falsification
step is repeated until we stop finding states falsifying the
current bounds. Since this is a simulation-based approach,
it tends to give very accurate approximation of the actual
set of first-order sensitivity values S*(tr; %o, [z, T]), and it

IA SF Algorithm 1
Guarantees yes no yes
Conservativeness large small tunable
Computation time small large tunable
Assumptions [J=,J%] none [JZ,J%], [J?Z, o7

Table 1. Comparison of the properties of
the over-approximation of S*(ty;to, [z, 7]) for
three methods: one based on interval arith-
metics (IA) from Meyer et al. (2018), one based
on sampling and falsification (SF) from Meyer
et al. (2018), and the one from Algorithm 1.

requires no assumption on system (5) or its Jacobian ma-
trices. On the other hand, both sampling and falsification
steps are computationally expensive (with an exponential
growth in the state dimension n) and since the falsification
step can only deal with local minima, the obtained bounds
are not guaranteed to be a true over-approximation of
Sz(tf7t07 [lv ED

In comparison, the method presented in this paper to
over-approximate the reachable set of the first-order sen-
sitivity (steps 1-3 from Algorithm 1) aims to combine
the advantages of both above approaches while elimi-
nating their shortcomings. As in the interval arithmetics
alternative, we obtain a guaranteed over-approximation of
S*(ty;to, [z, T]), which can be computed very quickly if
we pick a small sampling set Y in step 3. As in the sam-
pling and falsification approach, we can choose to obtain
an arbitrarily close over-approximation (as highlighted in
Proposition 11) by increasing the number of samples in
Y. The main drawback of this approach is that it requires
the user to provide bounds for both the first-order and the
second-order Jacobian matrices as in Assumption 5.

6. NUMERICAL ILLUSTRATION

In this section, we illustrate the approach in Algorithm 1
and the alternative methods from Meyer et al. (2018)
on a numerical example and highlight the elements of
comparison discussed in Section 5.4. We consider the
continuous-time uncertain unicycle model described as:

veos(xs) + 4
vsin(zs) + x5
i = w+ Tg
= 0 ,
0
0

where [z71;22] is the 2D position of the unicycle, x3
is its orientation, [z4;x5;x6] are constant uncertain pa-
rameters in the dynamics of the first three states, v =
0.25 is the controlled forward velocity and w = 0.3
is the controlled angular velocity. Using the conserva-
tive bounds cos(z3),sin(x3) € [—1,1], global Jacobian
bounds of (14) satisfying Assumption 5 are obtained by

(14)

taking [£1747,JI1,4] = [ﬁg,i,J””z,s] = [ﬁ3,6f3,6] =
{1} %5 J%1s] = (25, J723] = [L70) 45, J%105] =
[ﬁ2,15» J73,15] = [~v,v] and [ﬁz‘j»Jwij} = [ﬁwﬂciﬂ =

{0} for all other elements.

Taking the initial time tg = 0, we want to evaluate the
reachable set of (14) at time ¢ty = 10 for the following

interval of initial conditions: X = [0, 1] x [0, 1] x [§, %’T] X



[—0.05,0.05] x [—0.05, 0.05] x [—0.03,0.03]. This reachabil-
ity problem is solved in five ways described below.

e We first apply Algorithm 1 three times using a
uniform grid sampling as in Lemma 10 with an
increasing number of samples per dimension of the
state space a € {1, 2,3} (leading to a total number of
sample points of N = a% € {1,64,729}). In Figures 2
and 3, these results are plotted in dashed red, dot-
dashed blue and plain green, respectively.

e Next we use the one-step interval arithmetics (“IA” in
Table 2) approach from Meyer et al. (2018) described
in Section 5.4, plotted in dotted purple.

e Finally we apply the sampling and falsification (“SF”
in Table 2) approach from Meyer et al. (2018) de-
scribed in Section 5.4 using N = 64 samples, plotted
in dashed orange.

The computation times for each of the four steps in
Algorithm 1 (or alternatively, for obtaining bounds on
S*(tf;to, Xo) in both methods from Meyer et al. (2018))
are reported in Table 2. The obtained bounds on 575
and S35 for step 3 are plotted in Figure 2 and the
final reachability analysis (step 4) on states x; and o
is shown in Figure 3. In both figures, the cloud of black
dots represents the numerical integration of (6) and (14),
respectively, for 500 random samples in Xj.

From Table 2, we first note that the computation of the
final reachable set (step 4) is very fast and identical for
all method since this step is oblivious to the way the
sensitivity bounds [S?, S7] are obtained. As expected, the
three steps relying on the interval arithmetics results from
Lemma 3 (steps 1 and 2 in Algorithm 1 and step 3 in
method “IA”) are also achieved quickly. The sampling
computations in step 3 of Algorithm 1 naturally grows
with the number of samples. For the sampling and falsifica-
tion approach from Meyer et al. (2018), the sampling time
is identical to the one in the second call of Algorithm 1
(due to having the same number of samples N = 64),
but then the total computation time is increased by the 2
iterations of the falsification procedure used to improve the
estimated bounds on S*. Such expansion of the bounds is
not required in Algorithm 1 since from Theorem 9, step 3
is already guaranteed to over-approximate S7(ty;to, Xo).

In Figure 2, we can first note that, as hinted in Propo-
sition 11, the bounds on the first-order sensitivity ob-
tained in Algorithm 1 shrink as we increase the number
of samples. As mentioned in Section 5.4 and Table 1,
we can see that the one-step interval arithmetics method
from Meyer et al. (2018) gives very conservative bounds
on S¥ (similar in size to Algorithm 1 with a single sam-
ple point). While the sampling and falsification method
from Meyer et al. (2018) gives the closest approximation
of S%(ty;to, Xo), the obtained bounds are not actually an
over-approximation of this set (despite the 2 iterations of
falsification), which means that applying step 4 with such
bounds is not sound for the reachability analysis of (14).

Finally, we can combine Figure 3 and Table 2 to conclude
on the ability of Algorithm 1 to tune to our needs the
tradeoff between computation time and conservativeness.
The sampling and falsification approach from Meyer et al.
(2018) is discarded from this discussion as we already

Algorithm 1 IA SF
Samples N 1|64 | 720 | - 64
[S%7, SZ] 0.72 - -
[Sz@, Sez) 0.87 - -
(5%, 57] 035 [ 32 [ 36 | 0.44 | 3.1 442
R(tf;to, Xo) 0.07

Table 2. Time comparison (in seconds) of the

steps for reachability analysis in Algorithm 1

with three different sampling grids, and in both

methods from Meyer et al. (2018) using a single

step interval arithmetics (TA) or sampling and
falsification (SF).

showed above that it is unreliable when we want guar-
anteed over-approximations. When computation time is
our main concern, we can take N = 1 in Algorithm 1 to
obtain results comparable to the one-step “IA” method
from Meyer et al. (2018), in terms of both conservative-
ness and low computation time. In particular, although
the computation time of the interval arithmetics steps
1-2 would slightly increase with higher state dimension
n, the computational complexity of steps 3-4 is constant
(i.e. independent of the state dimension) when we take
N = 1. On the other hand, if more computational power
is available, increasing the number of samples tightens the
over-approximation and in this example, we can see in
Figure 3 that both N = 64 and N = 729 give tighter
bounds than the method from Meyer et al. (2018).
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Fig. 2. Comparison of over-approximations of the first-
order sensitivity components 575 and S35 at time
ty.

7. CONCLUSION

This paper provides a new reachability analysis relying
on the first-order and second-order sensitivity matrices of
a continuous-time nonlinear system. The proposed algo-
rithm first uses interval arithmetics to over-approximate
the reachable tube of the first-order sensitivity, then the
reachable set of the second-order sensitivity. The obtained
bounds are then combined with a sampling procedure on
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Fig. 3. Comparison of over-approximations of the reach-
able set of (14) at time ¢y for states z1 and z».

the first-order sensitivity matrix to obtain a guaranteed
over-approximation of its reachable set, which is in turn
used to over-approximate the reachable set of the initial
system. Although in the general case, the proposed method
has an exponential complexity in the state dimension due
to the gridded sampling, its main strength is its flexibility
allowing the user to tune the desired tradeoff between
conservativeness and computational cost. Indeed within
the same method, we can either pick a single sample
point to obtain a more conservative result but with a very
low complexity when computational power is limited, or
increase the size of the sampling set to tighten the over-
approximation if more computational power is available.

Current efforts are focused on the integration of this
new reachability algorithm within the recently published
toolbox TIRA (Meyer et al., 2019) which gathers several
other interval reachability methods. Future work will aim
to propose more efficient sampling criteria guided by the
obtained bounds on the second-order sensitivity to tighten
the over-approximations at a lesser computational cost
compared to the current uniform gridding.
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