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Abstract: We propose a hierarchical control framework for the synthesis of correct-by-
construction controllers for nonlinear control-affine systems with respect to reach-avoid-stay
specifications. We first create a low-dimensional continuous abstraction of the system and use
Sum-of-Squares (SOS) programming to obtain a low-level controller ensuring a bounded error
between the two models. We then create a discrete abstraction of the continuous abstraction
and use formal methods to synthesize a controller satisfying the specifications shrunk by the
obtained error bound. Combining both controllers finally solves the main control problem on
the initial system. This two-step framework allows the discrete abstraction methods to deal
with higher-dimensional systems which may be computationally expensive without the prior
continuous abstraction. The main novelty of the proposed SOS continuous abstraction is that it
allows the error between abstract and concrete models to explicitly depend on the control input
of the abstract model, which offers more freedom in the choice of the continuous abstraction
model and provides lower error bounds than when only the states of both models are considered.
This approach is illustrated on the docking problem of a marine vessel.
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1. INTRODUCTION

Abstraction-based control synthesis aims to abstract a
system into a simpler model, synthesize a controller on
the abstraction and finally refine this controller to ensure
the satisfaction of the same control objective on the initial
system. Starting from a continuous initial system modeled
as a differential equation, two abstraction-based control
approaches can be considered. In the hierarchical control
approach, we create a continuous abstraction with less
variables or simpler dynamics than the initial model and
we create a low-level controller for the concrete model to
track the abstract one (Girard and Pappas, 2009). Note
that this is slightly different from model reduction in which
the input and output variables of both models are kept
identical (Antoulas et al., 2001). In the symbolic control
approach, we create a discrete abstraction by partitioning
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the state space and using reachability analysis methods
to over-approximate the continuous dynamics into a finite
transition system (see e.g. Reissig et al., 2016). Due to
the state space partitioning, discrete abstractions are lim-
ited in their scalability. One possible approach to reduce
the complexity is to decompose the concrete system into
smaller subsystems for which discrete abstractions are
more easily created (see e.g. Pola et al., 2017). This method
is applicable to weakly interconnected networked systems,
but is not always practical for strongly interconnected sys-
tems with no clear structure to guide the decomposition.

In this paper, we address the scalability problem of discrete
abstractions through an alternative approach, by consider-
ing a two-step process sketched in Figure 1 and described
in more details in Section 2.3. In the first step, we design
a continuous abstraction of the concrete model and use
Sum-of-Squares (SOS) programming to find a low-level
controller ensuring that the concrete model tracks tra-
jectories of the continuous abstraction with an associated
error bound. Therefore, for the concrete system to satisfy
a reach-avoid-stay specification (reach a target set while
avoiding unsafe sets, then stay there), it is sufficient to look
for a controller of the continuous abstraction satisfying the
same specification with sets shrunk by the error bound.



The second step aims to create a discrete abstraction of the
lower-dimensional continuous abstraction and synthesize,
using formal methods, a correct-by-construction controller
to satisfy the shrunk specifications.

Although continuous and discrete abstractions are not
novel ideas on their own, few results have attempted to
combine them, and their applicability has been limited to
restrictive classes of systems, such as a double integra-
tor (Fainekos et al., 2009), piecewise affine systems (Mick-
elin et al., 2014), differentially flat systems (Colombo and
Girard, 2013) or bipedal robots (Ames et al., 2015). In
contrast, the SOS-based continuous abstraction proposed
here is applicable to the large class of control-affine nonlin-
ear systems approximated with polynomial dynamics. In
addition to its broader applicability, the proposed method
allows the error between abstract and concrete models to
depend not only on the states of both models, but also
on the control input of the abstract model. This input
dependence is particularly important when abstracting a
dynamical model into its kinematic version, since we want
to minimize the error between the velocities which are
states of the concrete model and inputs of the abstract one.
More generally, this offers more freedom in the choice of
the continuous abstraction model and provides lower error
bounds than when only the abstract state is considered.

In comparison, existing continuous abstraction methods
such as those relying on simulation functions for con-
tracting systems (Yang and Ji, 2014), Hamilton-Jacobi
reachability analysis (Herbert et al., 2017), or SOS pro-
gramming (Singh et al., 2018; Smith et al., 2019) are all
restricted to abstraction errors defined relative to the state
variables and not the control inputs. Herbert et al. (2017)
further combine their results with existing path planners
similarly to our second step, including online methods such
as RRT (Kuffner and LaValle, 2000) which are computa-
tionally efficient but might not be appropriate for safety
critical problems where satisfaction of the control objective
needs to be guaranteed before taking any control action.
In contrast, we provide formal guarantees at the cost of
increased computational complexity.

We apply this approach to a scenario where a marine vessel
docks autonomously at a harbor. Today, this maneuver
is done manually, due to high risk of collision and strict
requirements for precision, even when system faults have
occurred. Typically, path planning for autonomous ships
will consist of an offline algorithm making the preliminary
plan based on available information like time and fuel
consumption constraints, weather, and pre-defined safety
margins, and an online part doing contingency-handling
(e.g. collision avoidance). In order for autonomous ships
to be allowed to sail, the control system software must be
verified so that it is at least as safe as human navigated
ships (DNV GL, 2018). By using correct-by-construction
methods for design of offline path planning algorithms,
the burden on simulation-based testing of the autonomous
control system implementation is greatly reduced.

This paper is organized as follows. Section 2 formulates
the considered problem and provides an overview of the
proposed two-step approach. Section 3 presents the first
step and main theoretical contribution of this paper on
continuous abstraction. Section 4 provides the discrete ab-

straction procedure of the second step, which is presented
for self-containment of the overall approach. Finally, the
proposed method is illustrated in Section 5 for the docking
problem on the 6-dimensional model of a marine vessel.

2. PRELIMINARIES
2.1 Notations

Let N, R and R denote the sets of non-negative integers,
real numbers and non-negative real numbers, respectively.
For ¢ € R", R[] represents the set of polynomials in &
with real coefficients, and R™[¢] and R™*P[¢] denote all
vector and matrix valued polynomial functions. The subset
SE]={p=pi +p5+ ..+ | P1, s P € R[]} of RI¢]
is the set of SOS polynomials in £. A set X C R" is an
interval of the vector space R™ if there exists z,Z € X such
that for all x € X we have x < x < T using componentwise
inequalities. Given a positive vector ¢ € R} and a set X C
R”, we introduce X ¢ = {z+e e R" |z € X, e € [—¢,¢]}
and X7¢ = {z € R" | o + [—¢,¢] C X} as the set X
expanded and shrunk by the interval [—e, ], respectively.

2.2 Problem formulation

Consider a control-affine nonlinear system

&= f(z,w) +g(z,wu, (1)
with state x € X C R", bounded control input u €
U C R™, bounded disturbance input w € W C R+ and
Lipschitz continuous functions f : R™ x R™» — R"= and
g : R"™ x R™ — R"*"u The sets X, U and W are
assumed to be intervals of their respective spaces.

The control objectives are formulated as reach-avoid-stay
games which combine several safety and reachability sub-
goals. In addition to the state constraints defined by the
set X, we define two subsets X, X,- C X, where the safety
specification aims to avoid the set X, at all time, while the
reach-stay objective is to reach the set X, in finite time
and then stay there forever.

Problem 1. Given system (1) and subsets X,, X, C X,
find a set of initial states Xo C X and a control strategy
u : X — U such that for any disturbance signal w : Ry —
W, all trajectories  : Ry — R"= of the closed-loop system
initialized in Xy satisfies z(t) € X\ X, for all ¢ > 0 and
there exists ¢, > 0 such that z(¢) € X, for all ¢ > ¢,.

Particular cases of safety, reachability, reach-avoid or
reach-stay games can be considered by removing the cor-
responding conditions in Problem 1.

2.8 Qverview of the proposed approach

In this paper, we solve Problem 1 in a two-step approach
summarized below and in Figure 1, first by creating a
continuous abstraction of the concrete model (1), and
next by using formal methods to synthesize a correct-
by-construction controller on a discrete abstraction of the
lower-dimensional continuous abstraction.

Given the concrete model (1), the continuous abstraction

&= f(2,a,%), (2)
and the state and input constraints on both the concrete
model (X C R, U C R™, W C R™) and the abstract



model (X' C R, U CRwW, W C R™), the first step is
to design a low-level controller x : R x X x XxU—U
ensuring that the concrete model (1) can track trajectories
of the abstract model (2) with an error upper bounded by
the known vector ¢ € R™». This is achieved by applying
the Sum-of-Squares (SOS) methods detailed in Section 3.

To solve the reach-avoid-stay specifications (X, X,, X,)
from Problem 1 on the concrete model (1), it is thus
sufficient to solve an auxiliary problem on the abstract
model (2) with respect to the reach-avoid-stay specifica-
tion (X ¢, X ¢ X7¢) with the shrunk state constraints
X7¢ and target set X, ¢ and the expanded set of states
to be avoided X¢ (see Figure 3 in Section 5 for an
illustration of these sets). The second step of the approach,
detailed in Section 4, then consists in creating a discrete
abstraction of the abstract model (2) to synthesize a sym-

bolic controller K : X — U solving this auxiliary problem.

Combining the symbolic controller K : X — U with the

low-level controller x : R x X x X x U — U then results

in a controller solving Problem 1 on the concrete system.
Abstract model
z = f(&,0,w)

Concrete model
&= f(z,w) + g(x, w)u

| SOS continuous abstractionl

SOS feedback

Errorhound € - g Xx X xU = U

Reach-avoid-stay
(X, Xq, X,

Updated reach—avoiistay
(X7, X0, X09)

Discrete abstraction and synthesis

Symbolic controller
K:X->U

Solution to Problem 1

Fig. 1. Overview of the design steps to solve Problem 1.
2.4 Considering more general specifications

The control synthesis in the discrete abstraction step de-
scribed in Section 4 is not the main focus of this paper since
it relies on existing algorithms for finite transition systems.
In order to keep the description of this synthesis step as
concise as possible, we thus restricted Problem 1 to reach-
avoid-stay specifications, for which simple fixed-point algo-
rithms can be applied. We note however that more general

specifications, such as those expressed as Linear Temporal
Logic formulas (Baier et al., 2008), can in principle be
considered through the use of Rabin games (Belta et al.,
2017) which are computationally more expensive.

There also exists an alternative to consider more general
specifications while avoiding the use of a Rabin game. For
this we should focus the first step on designing a contin-
uous abstraction with simpler dynamics, and then replace
the second step by discrete abstraction methods restricted
to these simpler dynamics, such as single integrator mod-
els (Kress-Gazit et al., 2009) or linear systems (Kloetzer
and Belta, 2008), which result in deterministic transition
systems for which Linear Temporal Logic specifications are
easier to handle. This approach is not detailed further in
this paper since we instead made the choice to present in
Section 4 a discrete abstraction method applicable to gen-
eral nonlinear dynamics, which allows for more freedom in
the choice of the dynamics of the continuous abstraction.

3. CONTINUOUS ABSTRACTION

The first step of the proposed approach is to create a
simplified version of the concrete model (1), referred to as
continuous abstraction or abstract model and defined with
hatted notations as in (2), with state # € X C R, control
input a4 € U C R™ and disturbance @ € W C Rw,
Since the main goal of this first step is to reduce the
complexity of the second step in Section 4 (exponential
in the state-control dimension), we want to choose a
continuous abstraction whose state and control dimensions
satisfy Ny + My, < Mg + Ny,

We introduce a map 7 : R% x R — R" providing a
reference trajectory to be followed by the concrete model,
based on both the state and the control signals of the
abstract model, while all other methods in the literature
(see references in Section 1) only rely on the abstract state.
We can then define the error e € R™* between trajectories
of the concrete and abstract models:

e=x—7(&,a). (3)

In this paper, we use affine maps 7 (&,4) = P[#; 4] 4+ 9,
where matrix P € R *(?=+74) has at most one non-zero
element per row, and ) € R"=.

Remark 2. Although this method can be used without any
restriction on P, having one non-zero element per row is
critical for the discrete abstraction approach in Section 4.
Indeed, the above restriction on the rows of P is a sufficient
condition to preserve intervals through the inverse image of
m:i.e. if X C R™ is an interval of the concrete state space,

then the set X x U = {(&,4) € R™ x R | m(&,0) € X}
is an interval in the abstract state-input space R x R,

The error dynamics resulting from (3) are given as

é = fole, @, i, w, ) + ge(e, &, i, wu — Wﬁ, (4)

u
with f.(e, 2, @, w,0) = f(e+m(&, 1), w)—Wf(f )
and ge(e, &, 0, w) = gle+n(&,4),w). Let By C R™ denote

a compact set of initial conditions for the error system (4).

In Section 4, 4 is first designed as a discrete-time signal,
then implemented in the abstract model (2) with a zero-
order hold. This means



’LAL(t) = ’EL(Ti), Vit € [Ti,Ti+1), with 7, = T,

W(Tig1) = a(7i) + Ad(Tiga), (5)
where T is the sampling period, Ad(t) is the periodic
change in the abstract control, restricted to a set AU C
R™=. Since the signal # is piecewise constant, we thus have

ﬁ(t) = 0, Vt € [Ti,Ti+1).

We initially focus our analysis of the error system (4) on
the first sampling period [0,7s), before the input jump
At at time T,. Given the bounded set of initial conditions
Ey, we want to enforce the boundedness of the error state
during [0, T%) by introducing a low-level controller
u(t) = k(t, e(t), &(t), a(t)), (6)

defined by a time-varying, error-state feedback control law
kR x R™ x R?% x R%* — R"™. Below, we provide the
design requirements on k to obtain such an error bound.
Proposztwn 3. Given the error dynamlcs (4) and v € R,
T, >0, X C R, U C RW, W C Rw, W C R",
if there exists a C! function V : R x R — R, and
k: R x R% x R% x R — R™ such that

Eo C{e|V(0,e) <}, (7)

8V(t e) (F.(e.

Covite)
T

Bty 0, 1) + gele, 1, w)r(t, €, 7, @)

<0, Ve &, a,w, 1, st.tel0,Ts),

Vite)=n, 2eX, aelU, weW, veW, (8)
then for all e(0) € Ep, we have e(t) € {e | V(t,e) < v}, for
all t € [0, 7}).

Proof. Assume that there exists V and « satisfying (7)-
(8), time 0 < t; < Tj, initial condition eq € Ep, and
signals #(t) € X, a(t) € U, w(t) € W, @(t) € W such that
a trajectory e(t) from e(0) = eq satisfies V(t1,e(t1)) > 7.
Since e(0) € Ey C {e | V(0,e) < ~}, we have V(0,e(0)) <
~. According to mean value theorem, there exists a time 5,
where 0 < to < t1, such that V(¢a,e(t2)) = (V(t1,e(t1)) —
V(0,e(0)))/t1 > 0, which contradicts (8). O

Although Proposition 3 is stated for the first sampling
period [0, T5), it can be used for any other sampling period
[TiaTi+1) with T — ZTS

Corollary 4. Define the funnel F'(t) = {e | V(t,e) <~} C
R™=. For all e(r;) € F(0), we have e(r; + ) F(t), for all
t € [0,Ts), under the control signal u(r; +t) = k(t, e(r; +
t), &(r +t), 4(r; + 1))).

Next, we focus on the effect of the input jump Aa at the
end of each sampling period as in (5). From (3), A induces
a jump on the error described as follows, where 7, ; and

7%, denote sampling instant 7,11 before and after the
discrete jump, respectively:

e(ri1) = =(mihy) = Pla(rh)a(mh )] -
= x(7 1) — Pla(r5,);0(754) +A“( z+1)] Q
— (i) — P[0 M)

We introduce the additional condition below to charac-
terize the error jump induced by the control jump A4 in
terms of the funnel from Corollary 4.

Proposition 5. Given v € R, AU € R™_ if there exists a
function V' : R x R"» — R satisfying

V(0,e — P[0; Ad]) <+, Ve, Ad,

st. V(Ts,e) < v, Aae AU, (9)
then for all (7, ;) € F(T), we have e(7;} ;) € F(0).

We next combine the conditions for the error boundedness
for each sampling period and discrete jump from Propo-
sitions 3 and 5, respectively, to obtain the main result on
the boundedness of the error at all time, formulated below
and illustrated in Figure 2.

Theorem 6. If there exists V and & satisfying (7)—(9),
define ¢ € R'” such that Uyco ) F(t) € [—¢,¢]. Then
for all t > 0, &(t) € X, a(t) € U, Au(t) € AU, w( yeW

and w(t) € W, the error system (4) under control law
u(t) = k(t,e(t), 2(t),a(t))) with £ = (+ mod Ty) € [0,Ts)
satisfies:

e(0) € Eg = ¥Vt >0, e(t) € [—¢,¢].

Proof. From Corollary 4 and for all 7, = iTs, we have if
e(;) € F(0), then e(r; +t) € F(f) and e(r;,,) € F(Ty).
Then it follows from Proposition 5 that e(r;t,) € F(0).
As a result, for all e(0) € Ey C F(0), we have e(kTs +
t) € F(t) C [~¢,¢], for all k >0, and t € [0,T,). O

N

t="1T;

Fig. 2. lustration of Theorem 6, with initial error set Ej,
funnels F' on each sampling period, bounded error
jumps at sampling times. The red interval hull [—¢, €]
of Uieo,1,) F'(t) bounds the error e(t) for all times.

Finding storage functions V' and control laws & satisfying
the constraints (7)—(9) is a difficult problem. In this paper,
we use SOS programming to search for them at the cost
of a restriction to polynomial candidates V' € R[(¢, )] and
Kk € R™[(t,x,%,4)]. We make the following assumptions
besides the requirement that system (1) is control-affine.

Assumption 7. The error dynamics (4) are polynomials:
fe € R [e, &, 4, w,w] and ge € R"=*"[e, &, 4, w]. Ep, X,

, AU, W and W are semi- algebraic sets: there exists
po € R[ ] such that Ey = {e € R™ | po(e) < 0}; with
similar definitions for X, U, AU, W, W with polynomials
pz € R[Z], pa € R[a], pa € R[AG], py € Rlw], py € R[]

For a general nonlinear system, least-squares regres-
sion, Taylor expansion and change of variables can
be used to obtain a polynomial system (see e.g. Pa-
pachristodoulou and Prajna, 2002). By applying the gener-
alized S-procedure (Parrilo, 2000) to (7)—(9), and choosing
the volume of F'(t) as the cost function, we obtain the
following optimization problem:
min

Ts
| F(t))dt
min /0 volume(F(t))d

s.t. s; € X[(t, e, &, 0, w, )], Vi € {1,...,4},
sj € X(e, Ad)], Vj € {5,6},



N0 Ok W=

I e R[(t e, &,0,w,w)],s0 € Xle], (10a)
—(V(0,e) =) + s0 - po € Xe], (10b)
ov. oV
- <8t+8€'(fe+ge/€)> +1-(V—=7)+s1-ps
+ 52 pa+ 53 pw — s4 - H(Ts — 1)
€ X[t e, &, 4, w, w)], (10c¢)

= (V(0,e = P[0; Ad]) = v) + 55 - (V(T§,€) =)
+ 86 - pa € X(e, Ad)], (10d)
where s;, s; and [ are S-procedure certificates.

The above optimization has three bilinear pairs of decision
variables: (%—‘e/,n), (1, V), (s5,V(Ts,€)), making it non-
convex. If we either fix V, or (k,1, s5), the constraints in
(10) are convex. Similar to Smith et al. (2019), we tackle
the optimization above by alternating the search over V'
and (k,l, s5), and solving a series of convex problems as
shown in Algorithm 1. In the 7-step, the volume of F()
is shrunk by minimizing ~; in (11) of the V-step, the
funnel certified by the V-step, {e | Vi(e,t) < ~7}, is
enforced to be contained by the funnel from the ~-step,
{e | Vi7Y(e,t) < 47}, for all t € [0,Ts]. For more details
and an algorithm for the initialization of V° in Algorithm
1, the reader is referred to Smith et al. (2019).

Data: Function V° such that (10b)—(10d) are feasible by
proper choice of s, k, . Tolerance dy) > 0.

Result: (k, v, V) sub-optimal solution of (10).

repeat

~-step: decision variables (s, 1, k, 7).

Minimize v subject to (10a)—(10d) using V = VJ~1.

This yields (s2,17,k7) and optimal cost 7.

V-step: decision variables (s1-$4, S6, V).

Maximize the feasibility subject to (10b)—(10d) as

well as sq, s € X[(t, )], and

—sa- (V7L =47) +(V =47)
—sp - t(Ts — t) € X[(¢t,x)], (11)

using (y = 7,85 = sL,1 = I/, k = x7). This yields V7.

9 until |7 — 71| < G0l

Algorithm 1: Iterative optimization of (10) to obtain
function V' and low-level controller « satisfying (7)-(9).

After finding the funnel F(t) characterized by V from
Algorithm 1, computing the interval error bound [—¢,¢] C
R™ is achieved by solving the optimization problem:
min, Y% &, s.t. F(t) C [—¢,¢] for all t € [0,T), which
can be formulated as a convex SOS problem. Once ¢
is known, Theorem 6 implies that Problem 1 on the
concrete model (1) with the reach-avoid-stay specification
(X, X,, X,) can be solved through an auxiliary problem
on the abstract model (2) with respect to the modified
reach-avoid-stay specification (X ¢, X ¢, X, ¢) using the
notations from Section 2.1 to shrink the state constraints
X7¢ and target set X, ° and expand the set of states
to be avoided XJ¢ (see Figure 3 in Section 5 for an
illustration of these sets). Since X, X,, X, are intervals
of R™  the updated sets are also intervals. We can then
define XE,Xj,XTE C R™ and UE,U(f,Uf C R™ as the
projections of these sets into the abstract state-input space
R™= x R™ using the inverse image of 7 : R x R — R"=

X x U® ={(&,4) € R"™ x R™ | n(&,4) € X},

XE x Us = {(2,4) € R™ x R™ | n(&,4) € X},

X x Us ={(&,4) € R™ x R™ | n(&,a) € X °}.
As mentioned in Remark 2, due to the restriction of the
affine map 7 in (3), all these hatted sets are intervals.

Problem 8. Given system (2) and subsets X, X2 C X©
and U;Uf - UE, find a set of initial states XO - Xe
and a control strategy & : X° — U\US such that for
any disturbance signal @ : Ry — W, all trajectories
Z : Ry — R"™ of the closed-loop system initialized in
X satisfies Z(t) € X°\X¢ for all ¢ > 0 and there exists
t, > 0 such that Z(t) € X¢ and &(2(t)) € US for all t > £,.

4. DISCRETE ABSTRACTION AND SYNTHESIS

In Section 3, we defined a continuous abstraction (2) and
obtained from Theorem 6 a bound ¢ € R"* on the error
with respect to the concrete model (1). In this section, the
second step of the proposed approach is to solve Problem 8
by creating a discrete abstraction of (2) and using classical
model checking tools to synthesize a satisfying controller.

The discrete abstraction of (2) takes the form of a finite
transition system defined as a triple (X,U,d) containing
a finite set of states &X', a finite set of inputs U, and a
non-deterministic transition relation ¢ : X x U — 2%, We
first take a finite partition of X\ X¢ into smaller intervals,
where each partition element is represented by a unique
discrete state (also called symbol) in X. We add a last
symbol Out € X corresponding to the complement set
Out = R™\(X°\X¢), so that X becomes a partition of
the whole state space R™. Although uniform grid-like par-
titions are most commonly used, arbitrary partitions into
intervals are also admissible. No formal result currently
exists in the literature on how to choose the granularity of
the partition, but some empirical guidelines are provided
in Section 5. Next, we define U as a finite discretization of
the set of admissible control inputs U<\UE.

Before defining the transition relation 4, we first introduce
Z(t; &0, 0, W) to denote the state reached at time ¢ > 0 by
the abstract model (2) starting in &, with constant control
input @ and with disturbance signal @ : [0,#] — W. Then
for an interval of initial states [a,b] C R™=, the finite time
reachable set of (2) is defined as

R(t,[a,b],0) = {&(t; &0, 0, ®) | Zo € [a,b], @ :[0,1] — W}.
Then, given the time sampling Ty from Proposition 3,

the set of successors associated to each pair (s,4) €
(X\{Out}) x U is defined as

8(s,0) ={s' € X | N R(Ty,s,a) #0}.  (12)

Since the true reachable set R(Ts,s,ﬂ) can rarely be
computed exactly, we can replace it in (12) by an over-
approximation. Using over-approximations preserves the
fact that any behavior of (2) can be reproduced by
the discrete abstraction, which in turns ensures that a
controller synthesized on the discrete abstraction also
satisfies the desired specifications on (2). Several methods
for the over-approximation of reachable sets using intervals
and applicable to most nonlinear systems are described
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in Meyer et al. (2019). Problem 8 on (2) is then translated
into a control problem on its discrete abstraction.

Problem 9. Find a set of initial symbols Xy C X\{Out}
and a control strategy K : X — U such that any closed-
loop trajectory of the discrete abstraction sg, s1,... (i.e.
such that sg € Ay and s; 11 € d(s;,K(s;)) for all & > 1)
satisfies s, € X\{Out} for all i > 0, and there exists k € N
such that s; € X2 and K(s;) € U for all i > k.

The control synthesis on the discrete abstraction is
achieved in two stages: first a safety game in the target set
for the stay part of the specifications, then a reachability
game with respect to the resulting safe set for the reach-
avoid part. Both these games are solved through classical
fixed-point algorithms, outlined below and in Algorithm 2.
These algorithms are known to terminate in finite time and
reach the maximal fixed-points (Tabuada, 2009).

For the safety game (lines 1-5 in Algorithm 2), we compute
a controlled invariant subset of the set of symbols fully
included in the target interval {s € X | s € X2}. The loop
is initialized with this target set and iteratively removes
symbols which cannot be kept in the current set S. The
stay specification on the control input is achieved by
restricting this loop to inputs in U N Uﬁ The loop stops
once it reaches a fixed-point, and we can define the stay
controller K : S — UN U’f by using any valid control input
from the last iteration of the loop.

Next, the reachability game (lines 6-10) is initialized with
the set S C {s € X | s C X¢} resulting from the
safety game and iteratively expands it with all the symbols
that can be forced to reach the current set R in a single
step. The loop stops when a fixed-point is reached, and
the reach-avoid part of the controller £ : R\S — U is
defined by using any valid input from the last iteration
of the loop. Note that the avoid parts of the specification
are automatically satisfied by defining U C UE\Uj and
ensuring in Algorithm 2 that the safety and reachability
sets cannot contain the symbol Out: S C R C X\{Out}.

Data: Discrete abstraction (X,U, §), target sets X2, UE.
Safety game initialization: S « {s € X | s C X¢}
repeat

| S« {seS|JaeuUnts, és,a)C S}

until S reaches a fized-point;
Extract £: S —-UN Uf satisfying the last loop iteration.
Reachability game initialization: R + S

repeat

| R+« {sc X\{Out} |3acld, é(s,u) C R}

until R reaches a fized-point;
Extract K : R\S — U satisfying the last loop iteration.
Algorithm 2: Control synthesis for a reach-avoid-stay
game on the discrete abstraction (X,U, ).

The final step of the overall approach is to refine the
controllers K : X — U from Algorithm 2 and x : Rx R"» x
R" x R™ — R™ from Section 3 into a controller solving
Problem 1 for the concrete system (1). We first introduce
the function H : R" — X such that H(#) = s < & € s,
mapping each state of the continuous abstraction (2) to
the unique symbol of the discrete abstraction containing
it. We can then define a controller % : R x X¢ — U\U¢

for (2) as the zero-order hold version of K : X — U with
sampling period Ts. For all index k € N and time ¢t € R
such that kTs <t < (k+ 1)Ts, we have

Rt 2()) = K(H(F(RT3))). (13)
Combining (13) with the low-level controller x : R x R™» x

R" x R« — R" from (6), we obtain a controller C': R x
R™= x R™ — R™ for the concrete model defined as

Ct,z, &) = k(t,x — w(&, k(¢, £)), &, k(t, T)). (14)
Since this controller also depends on the abstract state
#(t), its use in the concrete model (1) requires the com-

putation of a trajectory of the closed-loop continuous ab-
straction, as stated in the main result of this paper below.

Theorem 10. Given Ey C R™ bounding the initial error
state (which is a design parameter in Proposition 3),
the set of winning initial states for Problem 1 is X, =
{n(&,K(H(Z))) € R"™ | H(Z) € R} + Ey. Given an initial
state 9 € Xp, let & : R — R™ be any trajectory of
the continuous abstraction (2) with controller % in (13)
initialized in {#¢ € U,cp s | w0 — m(20, K(H (Z0))) € Eo}-
Then, the closed-loop system (1) with controller (14)
satisfies the reach-avoid-stay specification from Problem 1.

Proof. By construction in Algorithm 2, the controller
K : & — U solves Problem 9 for the discrete abstraction
(X,U,0) with a winning set of initial states R C X\{Out}.

From the definition of the transition relation § in (12),
it can be shown as in Tabuada (2009) that the function
H :R™ — X is an alternating simulation relation between
the discrete abstraction (X,U,d) and the continuous ab-
straction (2). This implies that if the discrete abstraction
is controlled with L : X — U from Algorithm 2, then
the zero-order hold version of this controller (13) gives
behavior of the continuous abstraction that can all be
reproduced by the discrete abstraction. Since K solves
Problem 9 for the discrete abstraction, we can deduce that
the trajectories & of the closed-loop continuous abstraction
remain at all time within the set (J,cps C X\ X2 with

controls &(t, Z(t)) € U C US\UE. In addition, there exists
k € N such that for all ¢ > kT, we have 2(t) € |J,c.q5 C

X¢ and #(t, 2(t)) € UZ. Therefore, & solves Problem 8 with
the winning set of initial states Xo = (J,cp 5

If xo € Xy as defined in the theorem statement, then
there exists a winning state of the continuous abstraction
2o € U, e s such that xq — 7(2o, K(H (Z0))) € Eo. From
Theorem 6, we thus know that for any trajectories = of
(1) controlled with (14) and & of (2) controlled with (13),
we have e(t) = z(t) — w(Z(t),k(t,Z(t))) € [—¢,¢] for all
t > 0. Since the trajectories (Z(t), (¢, &(t))) satisfy the
reach-avoid-stay specification in Problem 8 defined by the
sets (X ¢, XF¢, X, 7€), we can deduce that the closed-loop
trajectory x(t) of system (1) satisfies the initial reach-
avoid-stay specification (X, X,, X,.) from Problem 1. O

5. CASE STUDY: MARINE VESSEL

The autonomous docking maneuver consists of four phases:
transit, transition from high speed to low speed maneuver-
ing, docking, and dockside keeping a steady contact force
with the dock. In this work we focus on the transition
phase, which is challenging due to large changes in the



ship dynamics when the speed is reduced. This means that
unlike the general Problem 1, we only consider a reach-
avoid specification to reach the area near the dock (light
blue in Figure 3) while avoiding the piers (gray areas). The
stay part of the specification is omitted as it is handled in
the later docking and dockside phases.

The ship motion at moderate speed can be modeled as
in Fossen (2011):
=R+ v, (15a)
My +CW)v+ Dv =1+ R() Twind, (15b)
where nn = [N; E; 1] are the South-North and West-East
positions and heading of the ship (¢» = 0 points North,
v = /2 points East), v = [u; v;r| are the surge and sway
velocities, and yaw rate of the ship. R(%) is a rotation
matrix,

cos(vp) —sin(¢) 0
R('I/J) = |:sin(§1b) Cosélp) (1):|

7 € R3 is the control input affecting the three acceleration
states of the ship. v, € R3 and Tying € R? are disturbances
corresponding to current velocities and wind forces. The

inertia M = [8%4 083 2.918:|, damping D = [6'5)8 307 2.%6}
0 2.48 22.2 0 2.6619.3
. . 00 0
and Coriolis matrices C'(v) = v(1) [8 0 8843} are chosen for
a 1 : 30 scale model of a platform suppfy vessel.

Using the notations from (1), we have state © = [n;v] €
RS, control input u = 7 € R3 and disturbance input
W = [Ve; Twina] € RS We constrain the inputs as u €
U =[-5,52 x [-5.1,5.1] and w € W = [—0.01,0.01]% x
[—0.05,0.05]. The chosen reach-avoid specification focuses
on the first three states with the safety constraints X =
[0,10] [0, 6.5] x [—7, ] x R3, the obstacles X, = X1 UX,2
with X,1 = [2,2.5]x[0, 3] x[—m, 7] xR3 and X42 = [5,5.5] %
[3.5,6.5] x [—m, 7] xR3 (in grey in Figure 3), and the target
set X, = [7,10] x [0,6.5] x [r/3,27/3] x R? (light blue).

The continuous abstraction is chosen as the kinematics
part of the concrete model (15):

= R0+ b (16)
where the abstract states, inputs and disturbances are
z =74 =10 and w = ¥.. The map 7w is chosen as
m(&,4) = [#;4]. However, instead of defining error as in

(3), we redefine the error state as e = ¢ - (z — 7(&,4)),
where ¢ = [R*1(¢)703X3;03X3713]. The matrix ¢ allows

to replace the trigonometric functions in 1& in the error
dynamics (4) by trigonometric functions in e(3) = (¢ —
1&), which can easily be approximated by polynomials in
certain range of e(3). The input and disturbances spaces

for the abstract model are U = [0,0.18] x [—0.05, 0.05] x

[—0.1,0.1] and W = [—0.01,0.01]3. Algorithm 1 is run with
degree-2 polynomials to characterize the storage function
V, control law x, and multipliers s,l, and terminates in
6 minutes on a computer with 3.6GHz processor and
62GB of RAM. The resulting error bounds ¢ on (N, E, )
are [—0.427,0.427] x [—0.432,0.432] x [—0.235,0.235] and
the expanded obstacles X ¢ and shrunk target set X ¢
are outlined in green in Figure 3. Due to the consider-
ation of the abstract control & = © in the error defini-
tion (3), the obtained error bounds are less conservative
than those computed using Singh et al. (2018), that is
[—0.462,0.462] x [—0.493,0.493] x [—0.339,0.339].

For the discrete abstraction as in Section 4, we take a

uniform partition of X into 50 intervals per dimension
(resulting in |X'| = 125000) and a uniform discretization

of U into 9 values per dimension (i.e. [U| = 729). To
define the transition relation § as in (12), we compute
interval over-approximations of the reachable set of the
continuous abstraction (16) using the continuous-time
mixed-monotonicity approach implemented in the tool
TIRA (Meyer et al., 2019). The choice of the partition
granularity with respect to the sampling period Ts = 3
was done so that the reachable set would jump on average
two to three partition cells away from its initial cell.
This ensures that the transitions do not jump too far,
while also avoiding self-loops which hinder the synthesis.
On a server with 24 cores at 2.5GHz and 128GB of
RAM, the abstraction is created in 10 seconds and the
control synthesis is achieved after 15 hours, resulting in
a winning set R C X covering 93% of the set of symbols
X. Although these computation times may appear to be
large, we emphasize that our whole approach is done offline
with respect to static obstacles. In addition, we highlight
the significant complexity reduction of the continuous
abstraction prior to the discrete abstraction by applying
the approach in Section 4 directly to the full model (15),
which took over a week of computation on the same server
with a coarse partition of 19 intervals per dimension and
resulting in a winning set coverage of only 0.04% of X.

The synthesized controller is then converted into the
controllers (13) and (14) for the abstract (16) and concrete
ship models (15), respectively. The initial state is chosen
as a random point in the bottom left corner of the (N, E)-
plane, and both closed-loop trajectories with random
disturbance signals are plotted in red for (16) and blue
for (15) in Figure 3. The black arrows represent the
orientation 1 of the ship at each discrete time step. We can
first note that the low-level controller (6) provides a very
efficient tracking of the abstract model’s trajectory (red)
by the concrete model (blue). Both models satisfy their
reach-avoid specifications by reaching the (shrunk) target
set in blue while avoiding the (expanded) obstacles in grey.
Once the ship has reached the desired [N; E] position (blue
set) but not the correct orientation 1, we can see it slowly
drift sideways while it turns to face East.

6. CONCLUSION

In this paper, we proposed a hierarchical framework com-
bining continuous and discrete abstraction methods for the
synthesis of correct-by-construction controllers for non-
linear control-affine systems with respect to reach-avoid-
stay specifications. In the first step, we create a low-
dimensional continuous abstraction of a system and use
Sum-of-Squares programming to obtain a low-level con-
troller enforcing a maximum error bound between the
two models. The main novelty of this contribution is that
the abstraction error is defined based on not only the
states of both models, but also the control input of the
abstract model, which offers more freedom in the choice
of the continuous abstraction model and provides lower
error bounds. The second step then creates a discrete
abstraction of the continuous abstraction (at a lower com-
putational cost than if done on the initial model) and
uses formal methods to synthesize a controller satisfying
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Fig. 3. Closed-loop trajectories of the abstract (red) and
concrete (blue) models in the (N, E)-plane with the
ship heading 1 (black arrows), the initial and shrunk
state constraints X and X ¢ (thick and thin black
lines), the target set X, (light blue), the obstacles X,
(grey) and the shrunk target set X, ¢ and expanded
obstacles X ¢ (green).

the specifications shrunk by the error bound. Combined
with the low-level controller, we finally obtain a controller
satisfying the main specifications on the initial model. This
approach is illustrated on the docking problem of a marine
vessel whose dynamics have too many state variables for
the discrete abstraction approach to be applied directly.
The next step of this work is an experimental validation
of the ship docking results in the 40 x 6.5 m basin of the
Marine Cybernetics Laboratory at NTNU.
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