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Abstract. When randomized ensemble methods such as bagging and random forests are implemented, a basic5
question arises: Is the ensemble large enough? In particular, the practitioner desires a rigorous6
guarantee that a given ensemble will perform nearly as well as an ideal infinite ensemble (trained on7
the same data). The purpose of the current paper is to develop a bootstrap method for solving this8
problem in the context of regression — which complements our companion paper in the context of9
classification (Lopes, Ann. Statist., 2019, 47(2), 1088–1112). In contrast to the classification setting,10
the current paper shows that theoretical guarantees for the proposed bootstrap can be established11
under much weaker assumptions. In addition, we illustrate the flexibility of the method by showing12
how it can be adapted to measure algorithmic convergence for variable selection. Lastly, we provide13
numerical results demonstrating that the method works well in a range of situations.14
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1. Introduction. Ensemble methods are a fundamental approach to prediction, based on17

the principle that accuracy can be enhanced by aggregating a diverse collection of prediction18

functions. Two of the most widely used methods in this class are random forests and bagging,19

which rely on randomization as a general way to diversify an ensemble [10, 11]. For these types20

of randomized ensembles, it is generally understood that the predictive accuracy improves and21

eventually stabilizes as the ensemble size becomes large. Likewise, in the theoretical analysis22

of randomized ensembles, it is common to focus on the ideal case of an infinite ensemble [14,23

28, 6, 50, 5, 55]. However, in practice, the user does not know the true relationship between24

accuracy and ensemble size. As a result, it is difficult to know if a given ensemble is large25

enough so that its accuracy will nearly match the ideal level of an infinite ensemble.26

Beyond these statistical considerations, the relationship between accuracy and ensemble27

size is important for computational reasons. Indeed, as an ensemble becomes larger, more28

resources are needed to train it, to store it in memory, and to make new predictions on29

unlabeled points — especially when large volumes of data are involved. Consequently, if it30

were possible for the user to know the true relationship between accuracy and ensemble size, it31

would be possible to do “just enough” computation to achieve a desired degree of convergence.32

Similarly, this would also make it possible to ensure that the amount of computation is adaptive33

to the unique data the user has at hand.34

The purpose of the current paper is develop a solution to the problem of measuring35

algorithmic convergence for random forests, bagging, and related methods in the context of36
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regression. More specifically, we offer a bootstrap method for estimating how far the prediction37

error of a finite ensemble is from the ideal prediction error of an infinite ensemble (trained38

on the same data). To put this into perspective for the setting of regression, it is worth39

noting that a theoretically justified method for solving this problem has not previously been40

available. In this way, our work fills a significant gap in the literature by providing users with41

a more rigorous alternative to informal rules that are used in practice for selecting ensemble42

size. Furthermore, our approach is of broader conceptual interest, because it indicates new43

possibilities for applying bootstrap methods to randomized algorithms outside the scope of44

classical statistical inference (see subsection 1.3 for additional details).45

In the remainder of the introduction, we give a precise description of the problem formu-46

lation in subsection 1.1, followed by a summary of related work and contributions in subsec-47

tion 1.2 and subsection 1.3.48

1.1. Background and setup. To fix some basic notation for the regression setting, let49

D = {(Xj , Yj)}nj=1 denote a set of training data in a space X × R, where each Yj is the50

scalar response variable associated to Xj , and the space X is arbitrary. In addition, for each51

i = 1, . . . , t, we write Ti : X → R to refer to the ith regression function in an ensemble of size52

t trained on D.53

Randomized regression ensembles. For the purpose of understanding our setup, it is helpful54

to quickly review the methods of bagging and random forests. The method of bagging works55

by generating random sets D∗1, . . . ,D∗t , each of size n, by sampling with replacement from D.56

Next, a standard “base” regression algorithm is used to train a regression function Ti on D∗i57

for each i = 1, . . . , t. For instance, it is especially common to apply a decision tree algorithm58

like CART [12] to each set D∗i . In turn, future predictions are made by using the averaged59

regression function, which is defined for each x ∈ X by60

(1.1) T̄t(x) =
1

t

t∑
i=1

Ti(x).61

Much like bagging, the method of random forests uses sampling with replacement to generate62

the same type of random sets D∗1, . . . ,D∗t . However, random forests adds an additional source63

of randomness. Namely, if the space X is (say) p-dimensional, and CART is the base regression64

algorithm, then random forests uses randomly chosen subsets of the p features when “split65

points” are selected for the CART regression trees. Apart from this distinction, random forests66

also uses the average (1.1) when making final predictions. A more detailed description may67

be found in [22].68

In order to unify the methods of bagging and random forests within a common theoretical69

framework, our analysis will consider a more general class of randomized ensembles. This70

class consists of regression functions T1, . . . , Tt that can be represented in the abstract form71

(1.2) Ti(x) = ϕ(x;D, ξi),72

where ξ1, . . . , ξt are i.i.d. “randomizing parameters” generated independently of D, and ϕ is a73

deterministic function that does not depend on n or t. In particular, the representation (1.2)74

implies that the random functions T1, . . . , Tt are conditionally i.i.d., given D. To see why75
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bagging is representable in this form, note that ξi can be viewed as a random vector that76

specifies which points in D are randomly sampled into D∗i . Similarly, in the case of random77

forests, each ξi encodes the points in D∗i , as well as randomly chosen sets of features used for78

training Ti. More generally, the representation (1.2) is relevant to other types of randomized79

ensembles, such as those based on random rotations [9], random projections [15], or posterior80

sampling [46, 17].81

Algorithmic convergence. In our analysis of algorithmic convergence, we will focus on quan-82

tifying how the mean-squared error (MSE) of an ensemble behaves as the ensemble size t be-83

comes large. To define this measure of error in more precise terms, let ξt := (ξ1, . . . , ξt) denote84

the randomizing parameters of the ensemble, and let ν = L(X,Y ) denote the joint distribu-85

tion of a test point (X,Y ) ∈ X ×R, which is drawn independently of D and ξt. Accordingly,86

we define87

(1.3) mset =

∫
X×R

(
y − T̄t(x)

)2
dν(x, y) = E

[
(Y − T̄t(X))2

∣∣∣ ξt,D],88

where the expectation on the right is only over the test point (X,Y ). In this definition,89

it is important to notice that mset is a random variable that depends on both ξt and D.90

However, due to the fact that the algorithmic fluctuations of mset arise only from ξt, we91

will view the set D as a fixed input to the training algorithm, and likewise, our analysis will92

always be conditional on D. Indeed, the conditioning on D is motivated by the fact that93

the user would like to assess convergence for the particular set D that they actually have,94

and this viewpoint has been adopted in several other analyses of algorithmic convergence for95

randomized ensembles [46, 35, 53, 15, 36].96

As a conceptual illustration, Figure 1 shows what algorithmic convergence looks like when97

random forests is applied to a fixed training set D. In detail, the left panel displays values of98

the convergence gap mset −mse∞ as decision trees are added during a single run of random99

forests, from t = 1 up to t = 2,000, where mse∞ denotes the limit of mset as t → ∞. If this100

entire process is repeated by running random forests many more times on the same set D,101

then the result is a large collection of overlapping sample paths, as shown in the right panel102

of Figure 1. (Note also that none of these sample paths are observable in practice, and that103

the figure is given only for illustration.)104

From a practical standpoint, the user would like to know the size of the convergence gap105

mset −mse∞ as a function of t. For this purpose, it is useful to consider the (1− α)-quantile106

of the random variable mset −mse∞, which is defined for any α ∈ (0, 1) by107

q1−α(t) = inf
{
q ∈ R

∣∣∣P(mset −mse∞ ≤ q
∣∣D) ≥ 1− α

}
.108

In other words, the value q1−α(t) is the tightest possible upper bound on the gap that holds109

with probability at least 1− α, conditionally on the set D. This interpretation of q1−α(t) can110

also be understood from the right panel of Figure 1, where we have plotted q1−α(t) in gray,111

with α = 1/10.112

The problem to be solved. Although it is clear that the quantile q1−α(t) represents a precise113

measure of algorithmic convergence, this function is unknown in practice. This leads to the114

problem of estimating q1−α(t), which we propose to solve.115
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Figure 1: Left Panel: A sample path of mset −mse∞ over a single run of random forests on
the ‘Housing data’ described in section 5. Right Panel: Many sample paths of mset −mse∞,
with the 90% quantile q.90(t) overlaid in gray. (The curves in these panels are not observable
to the user.)

Beyond the fact that q1−α(t) is unknown, it is also important to keep in mind that esti-116

mating q1−α(t) involves some additional constraints. First, the user would like to be able to117

assess convergence from the output a single run of the ensemble method. However, at first118

sight, it is not obvious that the output of a single run provides enough information to success-119

fully estimate q1−α(t). Second, the method for estimating q1−α(t) should be computationally120

inexpensive, so that the cost of checking convergence is manageable in comparison to the cost121

of training the ensemble itself. Accordingly, we will show that the proposed method is able122

to handle both of these constraints in section 2 and section 4 respectively.123

1.2. Related work. The general problem of measuring the algorithmic convergence of124

randomized ensembles has attracted sustained interest over the past two decades. For instance,125

there have been numerous empirical studies of algorithmic convergence for both classification126

and regression (e.g. [31, 2, 52, 48, 49]).127

With regard to the theoretical analysis of convergence, we will now review the existing128

results for classification and regression separately. In the setting of classification, much of the129

literature has studied convergence in terms of the misclassification probability for majority130

voting, denoted errt (a counterpart of mset), which is viewed as a random variable that de-131

pends on ξt and D. For this measure of error, the convergence of E[errt|D] and var(errt|D)132

as t→∞ has been analyzed in the papers [46, 35, 15], which have developed asymptotic for-133

mulas for E[errt|D], as well as bounds for var(errt|D). Related results for a different measure134

of error can also be found in [29]. More recently, our companion paper [36] has developed a135

bootstrap method for measuring the convergence of errt, which is able to circumvent some136

of the limitations of formula-based results.137

In the setting of regression, algorithmic convergence results on mset are scarce in compar-138

This manuscript is for review purposes only.



ALGORITHMIC CONVERGENCE OF RANDOMIZED ENSEMBLES 5

ison to those for errt. Instead, much more attention in the regression literature has focused139

on how the size of t influences the variance of point predictions T̄t(x), with x ∈ X held fixed,140

e.g. [56, 1, 62, 43, 53]. To the best of our knowledge, the only paper that has analyzed al-141

gorithmic convergence in terms of a prediction error measure is [53], which considers the risk142

rt := E[(T̄t(X) − µ(X))2], where µ(x) := E[Y |X = x] is the true regression function, and143

the expectation in the definition of rt is over all of the objects (X,D, ξt). In particular, the144

paper [53] develops an elegant theoretical bound on the gap between rt and the risk of an145

infinite ensemble, denoted r∞. Under the assumption of a Gaussian regression model with146

X = [0, 1]p, this bound has the form147

(1.4) rt − r∞ ≤ 8
t

(
‖µ‖2∞ + σ2(1 + 4 log(n))

)
,148

where σ2 = var(Y ), and ‖µ‖∞ = supx∈X |µ(x)|. However, due to the fact that the parameters149

σ and ‖µ‖∞ are unknown, and that ‖µ‖∞ is inherently conservative, this bound does not lend150

itself to a practical method for measuring convergence, and is primarily of theoretical interest.151

1.3. Contributions.152

Methodology. From a methodological standpoint, the approach taken here differs in sev-153

eral ways from previous works in the regression setting. Most notably, our work looks at154

algorithmic convergence in terms of an error measure that is conditional on D. (For instance,155

this differs from the analysis of rt mentioned above, which averages over D.) In more concrete156

terms, we will provide a quantile estimate q̂1−α(t), such that the bound157

mset −mse∞ ≤ q̂1−α(t)158

holds with a probability that is nearly 1−α or larger, conditionally on D. This conditioning is159

especially important from the viewpoint of the user, who is typically interested in algorithmic160

convergence with respect to the actual dataset at hand. Another distinct feature of our method161

is that it provides the user with a direct numerical estimate of convergence, whereas formula-162

based results are more likely to depend on specialized models, involve conservative constants,163

or depend on unknown parameters, such as in the bound (1.4).164

In addition, the scope of the proposed method goes beyond mset, and in subsection 2.3165

we will show how the bootstrap method is flexible enough that it can also be applied to166

variable selection. In this context, the ensemble provides a ranking of variables according to167

an “importance measure”, and this ranking typically stabilizes as t→∞. However, the notion168

of convergence is somewhat subtle, because the importance measure for some variables may169

converge more slowly than for others — which can distort the overall ranking of variables. As170

far as we know, this issue has not be addressed in the literature, and the method proposed171

in subsection 2.3 provides a way to check that convergence has been achieved uniformly172

variables, so that they can be compared fairly.173

Theory. From a theoretical standpoint, the most important aspect of our work is that it174

establishes consistency guarantees for the proposed methods under very mild assumptions. To175

place our assumptions into context, it should be emphasized that most analyses of randomized176
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ensembles deal with specialized types of prediction functions T1, . . . , Tt that are simpler than177

the ones used in practice, e.g. [34, 1, 6, 5, 55, 53, 54, 36]. By contrast, our current results for178

regression only rely on (1.2) and basic moment assumptions (to be detailed in section 3). In179

particular, the crucial ingredient that enables us to handle general types of prediction functions180

in our main result (Theorem 3.1) is a version of Rosenthal’s inequality due to Talagrand [61],181

which is applicable to sums of independent Banach-valued random variables. Moreover, this182

allows our analysis to be fully non-asymptotic.183

To make a more direct comparison with the main theoretical result in our previous paper in184

the classification setting [36], there are three points to highlight. First, the previous analysis185

requires that the classifier functions, say Q1, . . . , Qt, have a particular form, which is not186

generally satisfied by the decision tree classifiers in random forests — whereas our current187

theory is applicable to actual random forests. Second, if we let ω(x) = E[Q1(x)|D] for any188

fixed x ∈ X , then the previous analysis assumes that the distribution L(ω(X)|D) has a189

continuously differentiable density function, while the current analysis involves no analogue190

of this condition. Third, the previous result on bootstrap consistency is stated in terms of a191

distributional limit, and does not provide a rate of convergence. Instead, our current result192

avoids the reliance on such a limit, and gives a more quantitative description of coverage193

probability.194

Links between inference and computation. Traditionally, bootstrap methods have been195

viewed by statisticians as a way to use computation in the service of inference. For this196

reason, it should be emphasized that our work looks at bootstrap methods from a reciprocal197

perspective, since we aim to use inference in the service of computation (viz. using a quantile198

estimate to measure algorithmic convergence).199

More generally, this way of looking at bootstrap methods has the potential to be applied to200

the convergence analysis of other randomized algorithms. For instance, in the growing field of201

randomized numerical linear algebra (or “matrix sketching”), it turns out that convergence can202

often be framed in terms of the quantiles of certain error variables. Some specific examples203

include randomized algorithms for matrix multiplication, least-squares, and singular value204

decomposition [39, 40, 37], and we refer to the recent survey [42, pp.14-18] for related discussion205

of the potential of bootstrap methods in this context. In addition, several variants of bootstrap206

methods have attracted interest as a way to assess the quality of solutions obtained from207

stochastic gradient descent (SGD) algorithms [21, 32, 60, 20]. Likewise, given the rising use208

of randomized algorithms in data science, it seems that considerable opportunity remains for209

developing bootstrap methods along these lines.210

Outline. The remainder of the paper is organized as follows. The proposed methods are211

described in section 2, and our theoretical results on bootstrap consistency are presented212

in section 3. Next, computational cost is assessed in section 4, and numerical experiments are213

given in section 5. Finally, all proofs are given in the supplementary material.214

2. Methodology. Below, we present our core method for measuring algorithmic conver-215

gence with respect to mset in subsection 2.1. Later on, we show how this approach can be216

extended to measuring convergence with respect to variable importance in subsection 2.3.217

2.1. Measuring convergence with respect to mean-squared error. The intuition for218

the proposed method is based on two main considerations. First, the definition of mset in219
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equation (1.3) shows that it can be interpreted as a functional of T̄t. Namely, if we let220

f : X → R denote a generic function, then we define the functional ψ according to221

(2.1) ψ(f) =

∫
X×R

(y − f(x))2dν(x, y),222

and it follows that mset can be written as223

(2.2) mset = ψ(T̄t).224

Second, it is a general principle that bootstrap methods are well-suited to approximating225

distributions derived from smooth functionals of sample averages — which is precisely what226

the representation (2.2) entails.227

To make a more detailed connection between these general ideas and the problem of228

estimating q1−α(t), recall that we aim to approximate the distribution of the gap mset−mse∞,229

rather than just mset itself. Fortunately, the limiting value mse∞ can be linked with ψ through230

the function ϑ defined by231

(2.3) ϑ(x) = E[T̄t(x)|D],232

where the expectation is only over the algorithmic randomness in T̄t (i.e. over the random233

vector ξt). More specifically, when the functions T1, . . . , Tt satisfy the representation (1.2),234

the law of large numbers implies mse∞ = ψ(ϑ) under basic integrability assumptions, which235

leads to the relation236

(2.4) mset −mse∞ = ψ(T̄t)− ψ(ϑ).237

This relation is the technical foundation for the proposed method, since it suggests that in238

order to mimic the fluctuations of mset − mse∞, we can develop a bootstrap method by239

viewing the functions T1, . . . , Tt as “observations”, and viewing T̄t as an estimator of ϑ. In240

other words, if we sample t functions T ∗1 , . . . , T
∗
t with replacement from T1, . . . , Tt, then we241

can formally define a bootstrap sample of mset −mse∞ according to242

(2.5) mse∗t −mset = ψ(T̄ ∗t )− ψ(T̄t),243

where T̄ ∗t := 1
t

∑t
i=1 T

∗
i . In turn, after generating a collection of such bootstrap samples, we244

can use their empirical (1−α)-quantile as an estimate of q1−α(t). However, as a technical point,245

it should be noted that (2.5) is a “theoretical” bootstrap sample of mset−mse∞, because the246

functional ψ depends on the unknown distribution of the test point L(X,Y ). Nevertheless,247

the same reasoning can still be applied by replacing ψ with an estimate ψ̂, which will be248

explained in detail later in this subsection. Altogether, the method is summarized by the249

following algorithm.250

2.2. Using hold-out or out-of-bag samples. To complete our discussion of Algorithm 2.1,251

it remains to clarify how the functional ψ can be estimated from either hold-out samples, or252

so-called “out-of-bag” (oob) samples. With regard to the first case, suppose a set of m labeled253
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Algorithm 2.1 Bootstrap method for estimating q1−α(t)

For b = 1, . . . , B :

• Sample t functions T ∗1 , . . . , T
∗
t with replacement from T1, . . . , Tt.

• Compute the bootstrap sample zt,b := ψ̂(T̄ ∗t )− ψ̂(T̄t).

Return: the empirical (1− α)-quantile of zt,1, . . . , zt,B to estimate q1−α(t).

samples D̃ = {(X̃1, Ỹ1), . . . , (X̃m, Ỹm)} has been held out from the training set D. Using this254

set, the estimate ψ̂(T̄t) in Algorithm 2.1 can be easily obtained as255

(2.6) ψ̂(T̄t) =
1

m

m∑
j=1

(Ỹj − T̄t(X̃j))
2.256

Analogously, we may also obtain ψ̂(T̄ ∗t ) by using T̄ ∗t instead of T̄t in the formula above.257

If the regression functions T1, . . . , Tt are trained via bagging or random forests, it is possible258

to avoid the use of a hold-out set by taking advantage of oob samples, which are a unique259

attribute of these methods. To define the notion of an oob sample, recall that these methods260

train each function Ti using a random set D∗i obtained from D by sampling with replacement.261

Due to this sampling mechanism, it follows that each set D∗i is likely to exclude approximately262

(1 − 1
n)n ≈ 37% of the training points in D. So, as a matter of terminology, if a particular263

training point Xj does not appear in D∗i , we say that Xj is “out-of-bag” for the function Ti.264

Also, we write oob(Xj) ⊂ {1, . . . , t} to denote the index set corresponding to the functions265

for which Xj is oob.266

From a statistical point of view, oob samples are important because they serve as “effec-267

tive” hold-out points. (That is, if Xj is oob for Ti, then the function Ti “never touched” the268

point Xj during the training process.) Hence, it is natural to consider the following alternative269

estimate of ψ based on oob samples,270

(2.7) ψ̂o(T̄t) =
1

n

n∑
j=1

(Yj − T̄t,o(Xj))
2,271

where we define T̄t,o(Xj) to be the average over the functions for which Xj is oob,

T̄t,o(Xj) = 1
|oob(Xj)|

∑
i∈oob(Xj)

Ti(Xj),

and |·| refers to the cardinality of a set. Similarly, the quantity ψ̂o(T̄ ∗t ) may be defined in terms272

of a corresponding average with the functions T ∗1 , . . . , T
∗
t . Lastly, in the case when oob(Xj)273

is empty, we arbitrarily define T̄t,o(Xj) = Yj , but this occurs very rarely. In fact, it can be274

checked that for a given point Xj , the set oob(Xj) is empty with probability approximately275

equal to (0.63)t.276
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2.3. Measuring convergence with respect to variable importance. In addition to their277

broad application in prediction problems, randomized ensembles have been very popular for278

the task of variable selection, e.g. [18, 58, 30, 23, 41, 24, 27]. Although a variety of procedures279

have been proposed for variable selection in this context, they are generally based on a common280

approach of ranking the variables according to a measure of averaged variable importance281

(VI). Under this approach, the averaged VI assigned to each variable typically converges to a282

limiting value as the ensemble becomes large. However, in practice, the user does not know283

how this convergence depends on the ensemble size — much like we have seen already for284

mset.285

Uniform convergence across variables. Before moving on to the details of our extended286

method, it is worth mentioning an extra subtlety of measuring algorithmic convergence for287

VI. Specifically, we must keep in mind that because variable selection is based on ranking,288

it is important that algorithmic convergence is reached uniformly across variables. In other289

words, if the VI for some variables converges more slowly than for others, then the ranking of290

variables will be distorted by purely algorithmic effects. Motivated by this issue, our extended291

method will provide a way to ensure that algorithmic convergence is achieved in a uniform292

sense. As an illustration of this point, Figure 2 shows how uniform convergence of VI across293

several variables can differ considerably from the convergence of VI for a single variable.294
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Figure 2: Left Panel: 1,000 sample paths of |vit(1)−vi∞(1)|, with the true 0.9 quantile curve
in gray. Right Panel: 1,000 sample paths of the variable max1≤l≤p |vit(l)− vi∞(l)|, with the
true 0.9 quantile curve in gray. Both panels were obtained from the Music dataset described
in section 5.

Setup for variable importance. To describe algorithmic convergence for VI in detail, let295

T1, . . . , Tt be a randomized ensemble that satisfies the representation (1.2), and consider a296

situation where the space X is p-dimensional. Also, suppose that for each function Ti, we297

have a rule for computing an associated value, say vii(l), to each variable l ∈ {1, . . . , p}.298

(Note that since Ti is a random function, it follows that vii(l) is random as well.) Likewise,299

the vector of such values associated with Ti is denoted vii = (vii(1), . . . ,vii(p)), and the300
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average over i = 1, . . . , t is denoted as301

(2.8) vit =
1

t

t∑
i=1

vii.302

Hence, by comparing the entries of this vector, i.e. (vit(1), . . . ,vit(p)), the user is able to rank303

the variables, and this is commonly done using a built-in option from the standard random304

forests software package [33].305

Up to this point, we have not specified a particular rule for computing the values vii(l),306

but several choices are available. For instance, two of the standard choices are based on307

the notions of “node impurity” (for regression trees) or “random permutations” (for general308

regression functions). However, from an abstract point of view, our proposed method does not309

depend on the underlying details of these rules, and so we refer to the book [22, §15.3.2] for310

additional background. Indeed, our proposed method is applicable to any VI rule, provided311

that the random vectors vi1, . . . ,vit are conditionally i.i.d. given D — and this is satisfied312

by both of the standard rules when T1, . . . , Tt follow the representation (1.2). Also, it should313

be mentioned that a considerable literature has investigated limitations and improvements of314

the standard VI rules, e.g. [59, 51, 58, 47, 45], and the study of variable importance in this315

context continues to be an open direction of research.316

When the vectors vi1, . . . ,vit are conditionally i.i.d. given D, the vector vit will typically317

converge to a limit, say vi∞ ∈ Rp, as t → ∞ and D is held fixed. In order to measure318

this convergence uniformly across l ∈ {1, . . . , p}, we will focus on the (unobserved) random319

variable defined by320

(2.9) εt := max
1≤l≤p

|vit(l)− vi∞(l)|,321

and our goal will be to estimate its (1− α)-quantile, denoted as322

(2.10) q1−α(t) := inf
{
q ∈ [0,∞)

∣∣∣∣ P(εt ≤ q ∣∣D) ≥ 1− α
}
.323

The bootstrap method for variable importance. By analogy with our method for estimating324

the quantiles of mset−mse∞, we propose to construct bootstrap samples of εt by resampling325

the vectors vi1, . . . ,vit, and then estimating q1−α(t) with the empirical (1 − α)-quantile. In326

algorithmic form, the procedure works as follows.327

Algorithm 2.2 Bootstrap method for estimating q1−α(t)

For b = 1, . . . , B :
• Sample t vectors (vi∗1, . . . ,vi∗t ) with replacement from (vi1, . . . ,vit), and let

vi∗t = 1
t

∑t
i=1 vi∗i .

• Compute the bootstrap sample

(2.11) ε∗t,b := max
1≤l≤p

|vi∗t (l)− vit(l)|.

Return: the empirical (1− α)-quantile of ε∗t,1, . . . , ε
∗
t,B to estimate q1−α(t).

This manuscript is for review purposes only.



ALGORITHMIC CONVERGENCE OF RANDOMIZED ENSEMBLES 11

Numerical results illustrating the performance of this algorithm, as well as Algorithm 2.1,328

are given section 5. Also, in Appendix F of the supplementary material, we show how Al-329

gorithm 2.2 can be adapted to the situation where convergence is measured in terms of the330

relative error variable max1≤l≤p |vit(l)− vi∞(l)|/|vi∞|. Numerical results for the case of rela-331

tive error are provided there as well.332

3. Main result. In this section, we develop the main theoretical result of the paper (The-333

orem 3.1), which quantifies the coverage probability of the bootstrap estimate q̂1−α(t) for334

q1−α(t). Namely, we will show that for a fixed set D, the inequality335

(3.1) mset −mse∞ ≤ q̂1−α(t)336

holds with a probability that is not much less than 1 − α. Later on, we will also show that337

a corresponding result holds for estimating the quantile q1−α(t) in the context of variable338

importance (cf. subsection 3.1).339

To establish the main result, we will rely on a common type of simplification, which is340

to exclude sources of error beyond the resampling process itself. More specifically, we will341

focus on bootstrap samples of the form mse∗t −mset, defined in equation (2.5), since these are342

not affected by the extraneous error from estimating the functional ψ. (In other words, these343

samples are different from those of the form ψ̂(T̄ ∗t ) − ψ̂(T̄t) and ψ̂o(T̄ ∗t ) − ψ̂o(T̄t) described344

in subsection 2.2.) Meanwhile, even with such a simplification, the proof of the result is still345

quite involved. Also, this same choice was used in our previous analysis of the classification346

setting for the same reasons [36], but apart from this detail, the analysis in the current paper347

is entirely different.348

With regard to the ensemble, it will only be assumed to satisfy the representation (1.2)349

and a basic moment condition in Theorem 3.1. From the standpoint of existing theory for350

randomized ensembles, these assumptions are very mild — because the representation (1.2) is351

always satisfied by bagging and random forests. By contrast, it is much more common in the352

theoretical literature to work with ensembles that are simpler than the ones used in practice,353

and similarly, our previous work in the classification setting relied on a specialized type of354

ensemble. Finally, it is notable that our result is fully non-asymptotic, whereas much existing355

work on the convergence of randomized ensembles has taken an asymptotic approach that356

does not always provide explicit rates of convergence.357

Notation. If g and h are real-valued functions on X × R, we denote their inner product
with respect to the test point distribution ν = L(X,Y ) as

〈g, h〉 =

∫
X×R

g(x, y)h(x, y) dν(x, y),

and accordingly, we write ‖g‖L2 =
√
〈g, g〉. In addition, recall the function ϑ(x) = E[T1(x)|D]358

from equation (2.3), and define the random variable359

ζ = 2 〈ϑ− y, T1 − ϑ〉,360

where ϑ − y is understood as the function that sends (x, y) to ϑ(x) − y. When the random
variable ζ is conditioned on D, we denote its standard deviation by

σ(D) =
√

var(ζ|D),
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and the finiteness of this quantity will follow from assumption A2 below. Also, all expressions361

involving 1/σ(D) will be understood as ∞ in the exceptional case when σ(D) = 0. Lastly, for362

each positive integer k, we define the moment parameter363

(3.2) γk(D) =
(
E
[
‖T1 − y‖2kL2

∣∣D])1/k.364

To interpret the role of this parameter, note that the random variable mset can be written as365

‖1t
∑t

i=1(Ti − y)‖2L2
. Hence, the fluctuations of mset are determined by the tail behavior of366

the summands Ti − y, and the parameter γk(D) describes the tails of the summands through367

their moments.368

Assumptions. With the above notation in place, the two assumptions for our main result369

may be stated as follows.370

371

A1. The ensemble T1, . . . , Tt can be represented in the form (1.2).372

A2. There is at least one integer k ≥ 2 such that γ3k(D) <∞.373

374

Regarding the finiteness of γ3k(D) in A2, it is noteworthy that this condition is satisfied375

for any k whenever the regression functions T1, . . . , Tt are trained by the standard method376

of CART and the test label distribution has moments of all orders. This is because the377

regression trees trained by CART have a range that is determined by the training labels378

Y1, . . . , Yn. In particular, if we define M(D) = max1≤i≤n |Yi|, then every tree Ti satisfies379

supx∈X |Ti(x)| ≤ M(D). The same reasoning also applies beyond CART to any other method380

whose predictions are obtained as local averages of training labels.381

We now state the main result of the paper.382

Theorem 3.1. Suppose that A1 and A2 hold. In addition, fix any small constant α ∈ (0, 1)383

and let k ≥ 2 be as in A2. Lastly, let q̂1−α(t) denote the empirical (1 − α)-quantile of B384

bootstrap samples of the form (2.5). and define the quantity385

(3.3) δ(D) = k2√
t

(
γ3k(D)
σ(D)

)3
+ e−k/2 +

√
log(B)
B .386

Then, there is an absolute constant c0 > 0 such that q̂1−α(t) satisfies387

(3.4) P
(
mset −mse∞ ≤ q̂1−α(t)

∣∣∣D) ≥ 1− α− c0 δ(D).388

Remarks. In essence, the result shows that q̂1−α(t) bounds the unknown convergence gap389

mset−mse∞ with a probability that is not much less than the ideal value of 1−α. To comment390

on some further aspects of the result, note that the inequality (3.4) has the desirable property391

of being scale-invariant with respect to the labels Y1, . . . , Yn and the functions T1, . . . , Tt.392

More precisely, if we were to change the units of the labels and functions by a common scale393

factor, it can be checked that both sides of (3.4) would remain unchanged.394

Another important aspect of Theorem 3.1 deals with the dependence of δ(D) on the value395

of k, and it is of interest to develop a bound on δ(D) that simplifies this dependence. To do396
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this, we can look at a basic situation where the regression functions are trained by CART and397

the test label variable is bounded. In addition, we may consider the particular choice398

(3.5) k = dlog(t)− 4 log log(t)e,399

which leads to the following bounds,

e−k/2 ≤ log(t)2√
t

and
k2√
t
≤ c1 log(t)2√

t
,

for some absolute constant c1 > 0 and all t ≥ 2. In turn, it follows that there is a number400

c(D) > 0 not depending on t, k, or B, such that401

(3.6) δ(D) ≤ c(D) log(t)2√
t

+

√
log(B)
B ,402

which provides a considerable simplification. Hence, under the conditions just mentioned, and403

with D held fixed, the quantity δ(D) converges to 0 at nearly parametric rates with respect404

to t and B.405

3.1. Bootstrap consistency in the context of variable importance. Having developed406

our main result as a consistency guarantee for Algorithm 2.1 in the context of mean-squared407

error, we now aim to establish a corresponding result for Algorithm 2.2 in the context of408

variable importance, which is given as Theorem 3.2 below.409

Setting and assumptions. In order to formulate this result, we will proceed along the lines410

of the setup described in subsection 2.3. Recall that for each random function Ti with411

i ∈ {1, . . . , t}, there is an associated random vector vii = (vii(1), . . . ,vii(p)) ∈ Rp, where412

vii(l) refers to the importance assigned to the variable l by the function Ti, and the sample413

average is denoted vit = 1
t

∑t
i=1 vii. The only two conditions required of vi1, . . . ,vit are as414

follows.415
416

A3. The random vectors vi1, . . . ,vit ∈ Rp are conditionally i.i.d. given D.417

A4. There are positive numbers b(D) and b′(D) such that the following inequalities hold418

almost surely for all l ∈ {1, . . . , p},419

(3.7) b(D) ≤
√

var(vi1(l)|D) and vi1(l) ≤ b′(D).420

Perhaps the most important point to emphasize about A3 is that it is automatically421

satisfied by two of the standard variable importance measures used within random forests,422

namely the “node impurity” measure and the “random permutations” measure [33]. More423

generally, as long as each vector vii can be computed as a function of Ti, and as long as Ti424

can be represented in the abstract form (1.2), then A3 will hold. With regard to the first425

inequality in A4, this is simply a non-degeneracy condition, which rules out situations where426

vii(l) has no algorithmic fluctuations. Meanwhile, the second inequality in A4 is always427

satisfied by the two standard variable importance measures in random forests when each Ti428

is trained via CART. Lastly, the condition A4 ensures that vit has a limit as t→∞ with D429

held fixed, which is given by vi∞ = E[vi1|D].430

The gist of Theorem 3.2 below is that the output q̂1−α(t) of Algorithm 2.2 has reliable431

coverage probability when it is used as an upper bound on max1≤l≤p |vit(l)− vi∞(l)|.432
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Theorem 3.2. Suppose that A3 and A4 hold, and fix any small constants α, η ∈ (0, 1).433

In addition, let q̂1−α(t) denote the empirical (1 − α)-quantile of B bootstrap samples of the434

form (2.11), and define the quantity435

(3.8) δ̃ =

√
log(2pt)3

t +

√
log(B)
B .436

Then, there is a number c̃(D) > 0 depending only on the triple (η, b(D), b′(D)) such that437

q̂1−α(t) satisfies438

(3.9) P
(

max
1≤l≤p

|vit(l)− vi∞(l)| ≤ q̂1−α(t) + η

∣∣∣∣D) ≥ 1− α− c̃(D) δ̃.439

Remarks. Just like Theorem 3.1 given earlier, this result quantifies coverage probability in440

a non-asymptotic manner. On the other hand, one small point of contrast with Theorem 3.1441

is the constant η ∈ (0, 1) in the present result, which serves only as a theoretical expedient,442

and can be fixed at an arbitrarily small value. Concerning the proof, it leverages recent443

advances on bootstrap methods for “max statistics” [16]. Furthermore, under some extra444

structural assumptions on the covariance matrix of vi1, it is possible to replace the error445

term log(2pt)3/2t−1/2 in equation (3.8) with a dimension-free term of the form t−1/2+ε0 , for446

an arbitrarily small constant ε0 > 0 [38].447

4. Computation and speedups. In order for the proposed method to be a practical a448

tool for checking algorithmic convergence, its computational cost should be manageable in449

comparison to training the ensemble itself. Below, in subsection 4.1, we offer a quantitative450

comparison, showing that under simple conditions, Algorithm 2.1 and Algorithm 2.2 are not451

a bottleneck in relation to training t regression functions with CART. Additionally, we show452

in subsection 4.2 how an extrapolation technique from our previous work on classification can453

be improved in our current setting with a bias correction rule.454

4.1. Cost comparison. Since the CART method is based on a greedy iterative algorithm,455

the exact computational cost of training a regression tree is difficult to describe analytically.456

Due to this difficulty, the authors of CART studied its cost in the simplified situation where457

each node of a regression tree is split into exactly 2 child nodes (except for the leaves). To be458

more precise, suppose X ⊂ Rp, and let d ≥ 2 denote the “depth” of the tree, so that there are459

2d leaves. In addition, suppose that when the algorithm splits a given node, it searches over460

dp/3e candidate variables that are randomly chosen from {1, . . . , p}, which is the default rule461

when CART is used by random forests [33]. Based on these assumptions, the analysis in the462

book [12, p.166] shows that the number of operations involved in training t such trees is at463

least of order Ω(t · p · d · n).1464

The cost of Algorithm 2.1. To determine the cost of Algorithm 2.1, it is important to clarify465

that when bagging and random forests are used in practice, the prediction error of the ensemble466

is typically estimated automatically using either hold-out or oob samples. As a result, the467

predicted values of each tree on these samples can be regarded as being pre-computed by the468

1We use Ω(·) and O(·) in the conventional way, so that they respectively refer to lower and upper bounds
that hold up to constants [26, §9.2].
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ensemble method. Once these values are available, the subsequent cost of Algorithm 2.1 is469

simple to measure. Specifically, in the case of hold-out samples, equation (2.6) shows that the470

cost to obtain ψ̂(T̄t)− ψ̂(T̄ ∗t ) for each bootstrap sample is O(t ·m), which leads to an overall471

cost that is O(B · t ·m). Similarly, for the case of oob samples, the overall cost is O(B · t ·n).472

Altogether, this leads to the conclusion that the cost of Algorithm 2.1 does not exceed that473

of training the ensemble if the number of bootstrap samples satisfies the very mild condition474

(4.1) B = O(p · d),475

and this applies to either the hold-out or oob cases, provided m = O(n). Moreover, our476

discussion in subsection 4.2 will show that the condition (4.1) can be relaxed even further via477

extrapolation.478

Beyond the fact that Algorithm 2.1 compares well with the cost of training an ensemble,479

there are several other favorable aspects to mention. First, the algorithm only relies on480

predicted labels for its input, and it never needs to access any points in the space X . In481

particular, this means that the cost of the algorithm is independent of the dimension of X .482

Second, the bootstrap samples in Algorithm 2.1 are simple to compute in parallel, which483

means that the runtime of the algorithm can essentially be reduced by a factor of B.484

The cost of Algorithm 2.2. Many of the previous considerations for Algorithm 2.1 also
apply to Algorithm 2.2, but it turns out that the cost of Algorithm 2.2 can be much less when
n is large. Because each bootstrap sample in Algorithm 2.2 requires forming an average of t
vectors in Rp, it is straightforward to check that the overall cost is O(B · t · p), where we view
the vectors vi1, . . . ,vit as being pre-computed by the ensemble method. Consequently, the
cost is independent of n, and the algorithm is thus highly scalable. Furthermore, under the
setup of our earlier cost comparison with CART, the cost of Algorithm 2.2 does not exceed
the cost of training the ensemble if

B = O(n · d),

which allows for plenty of bootstrap samples in practice. Better still, our numerical experi-485

ments show that just a few dozen bootstrap samples can be sufficient when n is on the order486

of 104, indicating that Algorithm 2.2 is quite inexpensive in comparison to training.487

4.2. Further reduction of cost by extrapolation. The basic idea of extrapolation is to488

check algorithmic convergence for a small “initial” ensemble, say of size t0, and then use this489

information to “look ahead” and predict convergence for a larger ensemble of size t > t0. This490

general technique has a long history in the development of resampling methods and numerical491

algorithms, and further background can be found in [8, 3, 4, 7, 13, 57] among others. In the492

remainder of this section, we first summarize how extrapolation was previously developed in493

our companion paper [36], and then explain how that approach can be improved in the present494

context with a bias correction rule for oob samples.495

A basic version of extrapolation. At a technical level, our use of extrapolation is based on
the central limit theorem, which suggests that the fluctuations of mset −mse∞ should scale
like 1/

√
t as a function of t. As a result, we expect that the quantile q1−α(t) should behave

like

q1−α(t) ≈ κ√
t
,
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for some quantity κ that may depend on all problem parameters except t.496

To take advantage of this heuristic scaling property, suppose that we train an initial
ensemble of size t0, and run Algorithm 2.1 to obtain an estimate q̂1−α(t0). We can then
extract an estimate of κ by defining

κ̂ =
√
t0 q̂1−α(t0).

Next, we can rapidly estimate q1−α(t) for all subsequent t ≥ t0 by defining the extrapolated497

estimate498

(4.2) q̂ ext
1−α(t) = κ̂√

t
=
√
t0q̂1−α(t0)√

t
.499

In particular, there are two crucial benefits of this estimate: (1) It is much faster to apply Al-
gorithm 2.1 to a small initial ensemble of size t0 than to a large one of size t. (2) If we would
like mset to be within some tolerance ε > 0 of the limit mse∞, then we can use the condition

q̂ ext
1−α(t) ≤ ε

to dynamically predict how large t must be chosen to reach that tolerance, namely t ≥500

(
√
t0q̂1−α(t0)/ε)

2.501

Bias-corrected extrapolation. If the initial estimate q̂1−α(t0) is obtained by implement-502

ing Algorithm 2.1 with oob samples, it turns out to be a biased estimate of q1−α(t0). Fortu-503

nately however, it is possible to correct for this bias in a simple way, as we now explain.504

To understand the source of the bias, consider a particular training point Xj and note505

that for an initial ensemble of size t0, the expected number of functions for which Xj is oob is506

given by507

(4.3) τn(t0) = (1− 1/n)n · t0.508

In other words, this means that when an ensemble of size t0 makes a prediction on an509

oob point, the “effective” size of the ensemble is τn(t0), rather than t0. As a result, if510

we implement Algorithm 2.1 using oob samples with an initial ensemble of size t0, then the511

output q̂1−α(t0) should really be viewed as an estimate of q1−α(τn(t0)), rather than q1−α(t0).512

Based on this reasoning, we can adjust our previous definition of the estimate q̂ ext
1−α(t)513

in (4.2) by using514

(4.4) q̂ ext,o
1−α (t) =

√
τn(t0)q̂1−α(t0)√

t
for t ≥ τn(t0).515

Later on, in section 5 we will demonstrate that this simple adjustment works well in practice.516

Remark. As a clarification, it should be noted that the definition (4.4) is only to be used517

when Algorithm 2.1 is implemented with oob samples, and the basic rule (4.2) should be used518

in the case of hold-out samples. Also, the basic rule (4.2) can be easily adapted to extrapolate519

the estimate produced by Algorithm 2.2, and so we omit the details in the interest of brevity.520

5. Numerical results. We now demonstrate the bootstrap’s numerical accuracy in the521

tasks of measuring algorithmic convergence with respect to both mean-squared error and522

variable importance. Overall, our results show that the extrapolated oob estimate is accurate523

at predicting the effect of increasing t. In fact, the results show that extrapolation succeeds524

at predicting what will happen when t is increased by a factor of 4 beyond t0, and possibly525

much farther.526
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5.1. Organization of experiments.527

Data preparation. Our experiments were based on several natural datasets that were each528

randomly partitioned in the following way. Letting F denote the full set of observation pairs529

(X1, Y1), (X2, Y2), . . . for a given dataset, we evenly split F into a disjoint union F = D t T ,530

where D was used as a training set, and T was used as a “ground truth set” to approximate531

the true quantile curves q1−α(t) and q1−α(t).532

Since Algorithm 2.1 relies on a hold-out set, we also used a relatively small subset H ⊂ T533

for that purpose. Specifically, the hold-out set H was chosen so that its cardinality satisfied534

|H|/(|H|+ |D|) = 1/6, up to rounding error. This reflects a practical situation where the user535

can only afford to allocate 1/6 of the available data for the hold-out set. In other words, the536

idea is to think of the user as only having access to D tH, while the set T is used externally537

to determine q1−α(t) and q1−α(t).538

Each of the full datasets are briefly summarized below.539
540

• Housing : This dataset originates from 1990 California census and is available as part541

of the online supplement to the book [25]. The observations correspond to different542

housing districts, and for each one, there are 9 features for predicting the median home543

price in that district. (|F| = 20,640, |D| = |T | = 10,320, |H| = 4,128).544
545

• Protein: This is dataset was collected from the fifth through ninth series of CASP546

experiments [44], and is available at the UCI repository [19] under the title Physico-547

chemical Properties of Protein Tertiary Structure Data Set. The observations corre-548

spond to artificially generated conformations of proteins (known as decoys) that are549

described by 9 biophysical features. Each decoy can be thought of as a perturbation of550

an associated “target” protein, and the features are used to predict how far the decoy551

is from its target. (|F| = 45,730, |D| = |T | = 22,865, |H| = 4,573)552
553

• Music: This dataset consists of audio recordings (observations) described by 68 fea-554

tures that are used to predict the geographic latitude of the recording, as described555

in [64]. The dataset is available at the UCI repository [19] under the title Geographical556

Origin of Music Data Set. (|F| = 1,059, |D| = |T | = 530, |H| = 106)557
558

• Diamond : This dataset arises from a collection of diamonds, each described by 9559

features that are used to predict the diamond’s price. The dataset was obtained as560

a downsampled version of diamonds in the package ggplot2 [63]. (|F| = 10,000,561

|D| = |T | = 5,000, |H| = 1,000)562
563

Computing the true quantile curves q1−α(t) and q1−α(t). Once a full dataset F was parti-564

tioned as above, we ran the random forests algorithm 1,000 times on the associated set D,565

using the R package randomForest [33]. The overall process was a serious computational566

undertaking, because 2,000 regression trees were trained during every run, and hence a total567

of 2× 106 trees were trained on each dataset.568

During each run, as the ensemble size increased from t = 1 up to t = 2,000, the corre-569

sponding true values of mset were approximated with the ensemble’s error rate on T . Also,570

the true value of mse∞ was approximated with the average of the 1,000 approximate values571

of mse2,000. In this way, the collection of runs produced 1,000 approximate sample paths of572
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mset −mse∞, similar to those illustrated in the right panel of Figure 1. Finally, the quantile573

curve q.90(t) was approximated by using the empirical 90% quantile of the sample paths at574

each t ∈ {1, . . . , 2,000}.575

To handle the setting of variable importance, essentially the same steps were used. Specifi-576

cally, we measured variable importance in terms of node impurity to compute vit ∈ Rp at every577

value t ∈ {1, . . . , 2,000}, for each of the 1,000 runs mentioned above. In addition, we approxi-578

mated vi∞ ∈ Rp with the average of the 1,000 realizations of vi2,000. Altogether, these compu-579

tations provided us with 1,000 approximate sample paths of εt = max1≤l≤p |vit(l)− vi∞(l))|,580

and then we used the empirical 90% quantile at each t ∈ {1, . . . , 2,000} as an approximation581

to q.90(t).582

Applying the bootstrap algorithms with extrapolation. For each of the described 1,000 runs of583

random forests, we applied the extrapolated versions of Algorithm 2.1 and Algorithm 2.2 at the584

initial ensemble size of t0 = 500, using a choice of B ∈ {25, 50, 100} bootstrap samples. (The585

extrapolation was carried out to a final ensemble size of t = 2,000.) Also, for Algorithm 2.1,586

we implemented both the hold-out and oob versions, including the bias correction for the587

oob samples described in equation (4.4). Hence, this provided us with 1,000 realizations of588

each type of estimate, allowing for an assessment of their variability.589

5.2. Numerical results for mean-squared error.590

Organization of the plots. The hold-out and oob estimates for q.90(t) are illustrated in591

Figures 3 through 6. For each choice of B ∈ {25, 50, 100}, the colored curves represent the592

averages of the estimates over the 1,000 runs described previously, and the error bars display593

the fluctuations of the estimates over repeated runs — corresponding to the 10th and 90th594

percentiles of the estimates. (For the values of t between the endpoints, we omit the error bars595

for clarity. Also, the error bars should not be interpreted as confidence intervals for q.90(t),596

and they are only intended to illustrate the variability of the estimates.)597

With regard to computation, another point to mention is that the estimates were only598

computed for the initial ensemble size t0 = 500, and the rest of the estimated curves were599

obtained essentially for free by extrapolation. Lastly, as a clarification, it should be noted600

that the oob curves are shifted to the left of the hold-out curves because of the bias correction601

rule (4.4) for oob samples.602

Remarks on performance. The main point to take away from the plots is that the oob es-603

timate performs well overall, and can be noticeably more accurate than the hold-out estimate604

(cf. Figures 3, 5, and 6). Furthermore, the oob estimate has an extra advantage because605

it does not require the user to hold out any data. For these reasons, we recommend the606

oob estimate in practice.607

Concerning the number of bootstrap samples, we see the expected pattern that larger608

values of B reduce the fluctuations of the estimates. Nevertheless, even at B = 25, the609

fluctuations are well-behaved. So, for practical purposes, this indicates that the speedup from610

a small choice of B may outweigh a relatively minor reduction in variance.611

Another conclusion to draw from the plots is that the bias correction plays a significant role612

in the extrapolation of the oob estimate. To see this, note that if the bias correction were not613

used, this would be equivalent to shifting the blue curves so that they start at the same point614

as the green curves, which would clearly lead to a loss in accuracy. Also, it is remarkable that615
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the extrapolated oob estimate continues to be accurate at a final ensemble size of t = 2,000616

that is 4 times larger than the initial ensemble size t0 = 500. Hence, this provides the user617

with a very inexpensive way to predict how quickly the ensemble will converge.618

To explain the inferior performance of the hold-out estimate, recall that it uses the small619

set H in order to estimate mset. As a result of the small size of H, the estimate of mset has620

high variability, which inflates the upper extremes and ultimately leads to a larger estimate621

of q.90(t). On the other hand, the oob estimate is able to take advantage of the oob samples622

in the much larger set D, which reduces this detrimental effect.623
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5.3. Numerical results for variable importance. The results in the setting of variable624

importance are simpler to describe, since there is only one type of estimate for q.90(t). Figures 7625
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through 10 display the average of the 1,000 realizations of the estimate using a blue curve626

(corresponding to B = 50), and as before, the error bars at the endpoints represent the627

10th and 90th percentiles. Also, the extrapolation procedure was performed using an initial628

ensemble size of t0 = 500, as in the previous subsection. From the four plots, it is clear that629

the extrapolated estimate displays excellent overall performance, with its bias and variance630

both being very small.631
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6. Conclusion. In this paper, we have developed a bootstrap method that allows users to632

measure the algorithmic convergence of regression ensembles with a level of precision that has633

not previously been available. In particular, the method provides users with a systematic way634

This manuscript is for review purposes only.



ALGORITHMIC CONVERGENCE OF RANDOMIZED ENSEMBLES 21

to determine when the ensemble is large enough so that it will perform nearly as well as an635

ideal infinite ensemble — with respect to either mean-squared error or variable importance.636

With regard to theory, our approach is supported by guarantees in Theorems 3.1 and 3.2637

that quantify the coverage probabilities of the quantile estimates produced by Algorithms 2.1638

and 2.2. Computationally, the method incurs only modest cost in comparison to training639

the ensemble itself, and furthermore, the method naturally lends itself to speedups via par-640

allel computing and extrapolation. Lastly, we have shown empirically that the method has641

encouraging finite-sample performance in a range of situations.642
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[25] A. Géron, Hands-on machine learning with Scikit-Learn and TensorFlow, O’Reilly Media, 2017, https:688

//github.com/ageron/handson-ml/tree/master/datasets.689
[26] R. L. Graham, D. E. Knuth, O. Patashnik, and S. Liu, Concrete Mathematics: A Foundation for690

Computer Science, Addison & Wesley, 1994.691
[27] B. Gregorutti, B. Michel, and P. Saint-Pierre, Correlation and variable importance in random692

forests, Statistics and Computing, 27 (2017), pp. 659–678.693
[28] P. Hall and R. J. Samworth, Properties of bagged nearest neighbour classifiers, Journal of the Royal694

Statistical Society: Series B, 67 (2005), pp. 363–379.695
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