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Abstract 
Randomized Newton methods have recently be-
come the focus of intense research activity in 
large-scale and distributed optimization. In gen-
eral, these methods are based on a “computation-
accuracy trade-off”, which allows the user to gain 
scalability in exchange for error in the solution. 
However, the user does not know how much er-
ror is created by the randomized approximation, 
which can be detrimental in two ways: On one 
hand, the user may try to assess the unknown error 
with theoretical worst-case error bounds, but this 
approach is impractical when the bounds involve 
unknown constants, and it often leads to exces-
sive computation. On the other hand, the user 
may select the “sketch size” and stopping criteria 
in a heuristic manner, but this can lead to unreli-
able results. Motivated by these difficulties, we 
show how bootstrapping can be used to directly 
estimate the unknown error, which prevents ex-
cessive computation, and offers more confidence 
about the quality of a randomized solution. Fur-
thermore, we show that the error estimation adds 
little computational cost to existing randomized 
Newton methods (e.g. NEWTON SKETCH and GI-
ANT), and it performs well empirically. 

1. Introduction 
In recent years, there has been a surge of interest in using 
randomized approximations to accelerate Newton methods 
in large-scale and distributed optimization (e.g. Shamir et al., 
2014; Erdogdu & Montanari, 2015; Zhang & Lin, 2015; 
Byrd et al., 2016; Pilanci & Wainwright, 2016; Reddi et al., 
2016; Xu et al., 2016; Pilanci & Wainwright, 2017b; Wang 
et al., 2017; 2018; Dünner et al., 2018; Gupta et al., 2019; 
Li et al., 2019; Roosta-Khorasani & Mahoney, 2019, among 
many others). At a high level, this rapid development of 
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research has been driven by the fact that computing an 
inverse Hessian to machine precision can be very costly 
or infeasible in large-scale problems. Instead, randomized 
approaches make it possible to overcome this challenge by 
exchanging some degree of accuracy in return for substantial 
reductions in both processing and communication costs. 
However, one of the common difficulties faced by users in 
applying randomized Newton methods is that they do not 
know how far a randomized Newton step might stray from 
an exact one. 

To deal with the uncertainty in the quality of a random-
ized solution, users have generally relied on two strategies, 
which are to (1) assess the unknown error with theoretical 
worst-case error bounds, or (2) use heuristic rules to select 
the “sketch size” or number of iterations. But unfortunately, 
both of these options can be detrimental to the overall per-
formance of randomized algorithms. Indeed, the first option 
of worst-case analysis is typically inefficient from a compu-
tational standpoint, because it can substantially overestimate 
the actual error of a solution — and hence mislead the user 
to select an excessive sketch size or number of iterations. 
Also, this option is limited by the fact that theoretical error 
bounds often involve unspecified constants or unknown pa-
rameters that make it difficult to extract a numerical error 
bound. Meanwhile, the use of heuristics is undesirable from 
the standpoint of reliability, and it can create difficulty in 
tuning downstream elements of computational pipeline. 

As a way of handling these difficulties, we apply the sta-
tistical technique of bootstrapping to estimate the errors of 
randomized Newton methods. In particular, this approach 
avoids the conservativeness of worst-case analysis by di-
rectly estimating the actual error of a given randomized 
solution. In addition, the bootstrap provides the user with 
more flexibility in the choice of error metric than is typically 
available with worst-case error bounds. Next, in comparison 
to heuristic rules, this approach offers more reliability, by 
giving the user a systematic procedure that is theoretically 
justified. Furthermore, the bootstrap is highly scalable in 
this context (due to its embarrassingly parallel structure), 
and it is promising from an empirical standpoint as well. 
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1.1. Background and Setting 

Let a1, . . . , an ∈ Rd be the rows of a matrix A ∈ Rn×d 

with n � d, and let b1, . . . , bn be the entries of a vector 
b ∈ Rn . Consider the problem of minimizing an objective 
function f : Rd → R of the form 

1 Pn >f(w) = ϕ(a w, bi) + r(w), (1)n i=1 i 

where the functions ϕ : R2 → R and r : Rd → R are 
twice differentiable, and ϕ is convex in its first argument. 
Objective functions of the form (1) are ubiquitous in ma-
chine learning, where the points {(ai, bi)}n typically play i=1 
the role of n observations, and f is viewed as a measure 
of empirical risk. Some of the most well known examples 
occur in the fitting of regularized generalized linear mod-
els and support vector machines, where ϕ corresponds to 
a loss function, and r(w) is a regularization function (cf. 
McCullagh & Nelder, 1989; Chapelle, 2007). Another im-
portant class of examples arises in solving linear programs 

>of the form min{c w | Aw ≤ b} by interior point meth-
>ods, where r(w) = c w for some cost vector c ∈ Rd , 

and ϕ corresponds to a logarithmic barrier function. (We 
refer to (Pilanci & Wainwright, 2017b) for more detailed 
examples along these lines.) 

Classical Netwon method. When a classical version of 
Newton’s method is applied to minimize (1), the k-th iterate 
wk ∈ Rd is computed using the gradient, denoted 

gk = rf(wk) P
1 n >= ∂1ϕ(a wk, bi)ai + rr(wk),n i=1 i 

as well as the Hessian, denoted 

Hk = r 2f(wk) 

n1 P 
∂2 > > 2= 1 ϕ(a wk, bi)aia + r r(wk),n i=1 i i 

where ∂1 is the partial derivative with respect to the first 
argument. More specifically, if ηk is a step size parameter, 
then the update rule is 

wk+1 = wk − ηkH
−1 gk.k 

However, in many cases, it is prohibitive to implement 
this update rule to machine precision, either because n is 
very large, or because the observations {(ai, bi)}ni=1 may 
be stored in a distributed manner, which can lead to high 
communication costs. 

In order to overcome these bottlenecks, randomized New-
ton methods seek to compute efficient approximations of 
H−1 gk. In particular, these approximations are able to lever-k 
age the fact that the function (1) has a Hessian that can be 
theoretically decomposed as 

2Hk = Ck 
>Ck + r r(wk), (2) 

where Ck ∈ Rn×d is a matrix given by 

1 >Ck = √ DkA with Dk = diag{
p
∂2ϕ(a wk, bi)}n 

n 1 i i=1. 

Below, we briefly review two well-known examples of such 
randomized algorithms, called NEWTON SKETCH (Pilanci 
& Wainwright, 2017b) and GIANT (Wang et al., 2018), since 
they will be the focus of our work later on. 

The NEWTON SKETCH algorithm. The core idea of the 
NEWTON SKETCH algorithm is to randomly transform the 
matrix Ck into a much shorter version C̃k ∈ Rt×d that can 
be handled more efficiently, where t � n. As a matter of 
terminology, the matrix C̃ 

k is referred to as a “sketch” of Ck, 
and t is known as the “sketch size”. In detail, the random 
transformation is implemented with a random “sketching 
matrix” Sk ∈ Rt×n so that C̃ 

k = SkCk, and in turn, this 
leads to a sketched Hessian matrix defined as e C̃> ˜ 2Hk = Ck + r r(wk). (3)k 

Accordingly, this algorithm revises the classical Newton 
method by using the following randomized Newton step,1 

wk+1 = wk − ηk(Hek)
−1 gk. (4) 

In order to ensure that H̃ 
k provides an effective approxima-

tion to Hk, the sketching matrix Sk is commonly generated 
so that it has i.i.d. rows and satisfies the relation E[S>Sk] = k 
In. For example, when Sk is a uniform sampling matrix, the 
rows of Sk are generated as i.i.d. samples from the uniform 
distribution on the set {

p
n/t e1, . . . , 

p
n/t en} ⊂ ,Rn 

where e1, . . . , en are the canonical basis vectors. 

The GIANT algorithm. When data are stored on a dis-
tributed system, controlling the communication cost be-
tween different machines (workers) is often of paramount 
importance. As a way of reducing the communication in-
volved in computing a Newton step, the GIANT algorithm 
uses an approximation to H−1 derived from the harmonic k 
mean of local Hessian matrices. 

To be more specific, suppose random samples from 
{(ai, bi)}n are evenly distributed across m different work-i=1 
ers, and the j-th worker holds samples indexed by Ij . Also, 
in this context, we will denote the “local sample size” as 
t = |Ij | = n/m, since it plays a role that is analogous to 
the sketch size in the NEWTON SKETCH algorithm. Next, 
if the matrix C̃k,j ∈ Rt×d is defined to have rows given 
by the set of vectors { √1 [Dk]iiai}i∈Ij , then the j-th local 

t 
approximate Hessian matrix at the k-th iteration is defined 
by 

Hek,j = C̃> C̃k,j + r2r(wk). (5)k,j 

1We will follow the convention that if M is a singular square 
matrix, then M−1 refers to the pseudoinverse. Nevertheless, the 
approximate Hessian matrices under consideration will typically 
be invertible in our settings of interest. 
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Once these local Hessians have been computed, they are 
aggregated in the update rule Pηk m 

wk+1 = wk − m j=1(H
e 
k,j )

−1gk, (6) 

which can be (conceptually) interpreted in terms of the� P 
inverse of the harmonic mean Hek = 1 m 

He −1
�−1 

of m j=1 k,j 
the local Hessians. 

1.2. Problem Formulation 

In order to study the algorithmic error of randomized New-
ton methods, our work will focus entirely on the randomness 
that comes from within the algorithms, and we will always 
treat the points {(ai, bi)}n and the function f as being de-i=1 
terministic. From this perspective, it is important to clarify 
that an iterate wk of such algorithms is a random vector, but 
the exact optimal solution 

wopt = argmin f(w) 
w∈Rd 

is deterministic. Also, it should be noted that gk, Ck, and 
Hk are random in general, as they depend on wk. 

Estimating error with respect to Newton step. Let the 
exact Newton step and its sketched version be denoted as 

Δk = H−1 gk and Δe 
k = (Hek)

−1 gk. (7)k 

To measure the quality of an iterate wk+1, we may consider 
the (random) error of Δ̃ 

k, denoted as 

�k = ρ(Δe 
k, Δk), (8) 

where ρ(·, ·) is a generic non-negative measure of error 
that is chosen by the user. For example, if k · k� is 
some norm on Rd , then we can take ρ to be the abso-

0lute error ρ(w , w) = kw0 − wk�, or the relative error 
0ρ(w , w) = kw0 − wk�/kwk�. The error in the Newton 

step is of particular interest for functions that are locally 
quadratic near wopt, because the exact Newton method mini-
mizes quadratic functions in a single step. 

Due to the fact that the error �k in the Newton step is a 
random variable, it is of interest to study its (1−α)-quantile, 
which is defined as the tighest possible upper bound on �k 

that holds with probability at least 1 − α, n o� � 
qα,k = inf q ∈ [0, ∞) P �k ≤ q ≥ 1 − α . 

Since the quantile qα,k is unknown in practice, we aim to 
construct an estimate qbα,k, which is intended to satisfy the 
bound 

�k ≤ qbα,k (9) 

with probability nearly equal to, or greater than, 1 − α. 

Estimating error with respect to Newton decrement. 
Another way to measure the quality of an iterate wk is 
through its optimality gap f(wk) − f(wopt). To derive a 
bound on the optimality gap, it is convenient to consider the 
squared Newton decrement 

>δ2 = gk H
−1 gk. (10)k k 

This quantity has special significance when f is an objective 
function that satisfies the condition of self-concordance 
— which commonly arises in the context of interior point 
methods (cf. Nesterov & Nemirovskii, 1994). In fact, some 
of the most widely studied instances of the function (1) 
are known to be self-concordant, including those arising 
from ridge regression, regularized logistic regression, and 
smoothed hinge loss functions (cf. Zhang & Lin, 2015). 

When the function f is self-concordant, it is a classical fact 
that if wk is any point in the function’s domain, then the 
optimality gap is bounded according to 

f(wk) − f(wopt) ≤ δk 
2 , (11) 

provided that δk ≤ 0.68 (Nesterov & Nemirovskii, 1994). 
However, because the exact quantity δ2 is unknown, it is of k 
interest to measure the error of the approximate (random-

δ2 >H̃ −1ized) decrement e = g gk. This error is denoted ask k k 

εk = %(δe 
k 
2, δk 

2), (12) 

where %(·, ·) is another non-negative error measure of the 
user’s choice. By analogy with the earlier definition of qα,k, 
the (1−α)-quantile of εk is defined as n o 

= inf q ∈ [0, ∞) P(εk ≤ q) ≥ 1 − α .qα,k 

Furthermore, since this parameter is unknown, we seek to 
construct an estimate bqα,k such that the following bound 
holds with probability not much less than 1 − α, 

εk ≤ bqα,k. (13) 

In turn, this will provide a high probability bound on the 
optimality gap. For example, when % is chosen to be the 
relative error %(x, xe ) = |xe − x|/|x|, the estimate bqα,k will 
satisfy 

˜f(wk) − f(wopt) ≤ δk 
2 (1 − bqα,k)−1 

when (13) holds. 

1.3. Related Work and Contributions 

For handling error estimation problems that arise in statis-
tical contexts, bootstrap methods provide a very general 
framework that is broadly applicable and supported by an 
extensive literature (e.g. Efron, 1979; 1982; Shao & Tu, 
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2012; Davison & Hinkley, 1997; Chernick, 2011). (See also 
the beginning of Section 2.1 for a brief description of the 
basic principle of bootstrap methods.) 

However, in the context of randomized sketching algorithms, 
only a small subset of the literature has given attention to the 
problem of estimating error, and likewise, error estimation 
methods have only been developed for a limited number of 
these algorithms. Up to now, the existing work has dealt 
primarily with low-rank matrix approximation or matrix 
multiplication (e.g. Liberty et al., 2007; Woolfe et al., 2008; 
Halko et al., 2011; Martinsson & Voronin, 2016; Sorensen 
& Embree, 2016; Duersch & Gu, 2017; Lopes et al., 2019b; 
2018; Yu et al., 2018; Lopes et al., 2019a; Tropp et al., 2019; 
Lopes et al., 2020). (For further discussion of error esti-
mation in randomized numerical linear algebra, as well as 
connections to bootstrapping, we refer to the forthcoming 
survey (Martinsson & Tropp, 2020, §4.5-4.6).) Meanwhile, 
in the very large literature on stochastic optimization algo-
rithms, there are not many papers that address error esti-
mation, with most of them focusing on stochastic gradient 
descent (e.g. Fang et al., 2018; Fang, 2019; Su & Zhu, 2018; 
Li et al., 2018; Anastasiou et al., 2019). 

With regard to randomized second-order methods, the pa-
per (Lopes et al., 2018) took an initial step in this direction 
by studying bootstrap error estimation for randomized least-
squares algorithms. However, that work focuses only on 
ordinary least-squares problems, and does not address non-
quadratic objective functions or distributed optimization. 
By contrast, our work applies bootstrap error estimation to 
a more general class of twice-differentiable (possibly non-
convex) objective functions, and allows for error estimation 
with respect to both the Newton step and Newton decrement. 
Furthermore, whereas the analysis in (Lopes et al., 2018) is 
asymptotic, we develop non-asymptotic theory in the cases 
of the NEWTON SKETCH and GIANT algorithms — which 
has the benefit that it explicitly quantifies how performance 
of the bootstrap depends on the “effective dimension” of 
the problem (cf. the definition (17)). Lastly, it should be 
noted that the distributed setting introduces a significant 
extra theoretical challenge, which is to show that bootstrap 
error estimation can account for the accumulation of bias in 
the approximations of several worker machines. 

Notation. The d × d identity matrix is denoted as Id, 
and if A is a matrix of a complicated form, its ij entry 
is sometimes denoted as [A]ij . The norms k · k2 and 
k · k∞ refer to the vector ` 2-norm and ` ∞-norms on Eu-
clidean space, while k · k� refers to an arbitrary norm. 
The singular values of a generic real matrix A are denoted 
σj (A) ≥ σj+1(A), with the largest and smallest respec-
tively denoted as σmax(A) and σmin(A). For a list of 
real numbers x1, . . . , xB , their empirical (1−α)-quantile 
is written as quantile(x1, . . . , xB ; 1−α). More precisely, 

this quantity is defined as inf{q ∈ R | FB (q) ≥ 1 − α}, 
where FB (q) is the empirical distribution function FB (q) = 
1 PB 

1{xb ≤ q}. Symbols such as c, c0, c1, . . . , areB b=1 
used to denote absolute constants whose value may change 
from line to line. Lastly, the maximum of two real numbers 
a and b is denoted a ∨ b. 

2. Methods 
In this section, we describe two methods for constructing 
quantile estimates that satisfy the conditions (9) and (13). 
Sections 2.2 and 2.3 present the error estimation methods 
corresponding to NEWTON SKETCH and GIANT respec-
tively. Later on, we discuss the computational cost of error 
estimation in Section 2.4. 

2.1. Bootstrap Methods in a Nutshell 

Bootstrap methods are commonly used for error estimation 
in the following way. Consider an unknown parameter θ 
that is to be estimated with a statistic θb that is computed as a 
function of i.i.d. data X1, . . . , Xt, say θb = h(X1, . . . , Xt). 
In order to assess the accuracy of θb, it is desirable to es-
timate the quantiles of the random variable e = |θb − θ|. 
However, since the distribution of e is unknown, its quan-
tiles can be numerically estimated by generating a collection 

∗ ∗of “approximate samples”, say e1, . . . , eB , and then using 
the empirical quantiles of these values. 

In this way, the problem of error estimation is reduced 
to finding a way to generate the approximate samples 
∗ ∗ e1, . . . , eB , and many ways of doing this have been pro-

posed in the bootstrap literature. The most basic version of 
these methods is to sample t values, say X1 

∗ , . . . , X∗, with t 
∗replacement from X1, . . . , Xt, and define e = |θb∗ − θb|,1 

where θb∗ = h(X1 
∗ , . . . , X∗). Likewise, this process is re-t 

∗ ∗peated independently to obtain e2, . . . , eB . Roughly speak-
ing, this procedure can be understood as generating θb∗ so 
that its fluctuations around θb are statistically similar to the 
fluctuations of θb around θ. In the next two subsections, we 
show how this general idea can be adapted to the contexts 
of NEWTON SKETCH and GIANT. 

2.2. Bootstrap Error Estimation for NEWTON SKETCH 

Based on the preceding discussion, we aim to generate ap-
proximate samples of the error variables �k and εk for NEW-
TON SKETCH. Given that the t rows of the sketching matrix 
Sk ∈ Rt×n are commonly generated to be i.i.d. random vec-
tors, it is helpful to think of them as being i.i.d. data points, 
analogous to X1, . . . , Xt described in Section 2.1. Like-
wise, the sketched Newton step Δ̃ 

k and decrement δ̃2 can be k 
loosely interpreted as “statistics” that are functions of these 
i.i.d. data. Therefore, it is natural to consider generating 
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bootstrapped versions Δ̃ ∗ and δ̃∗2 by uniformly sampling k k 
t rows from Sk (i.e. with replacement), and then perform-
ing the same computations as for Δ̃ 

k and δ̃  
k 
2 . Then, boot-

strapped error variables can be formed as ε∗ = ρ(Δ̃ ∗ 
k, Δ̃ 

k)k 

and �∗ = %(δ̃∗2 , δ̃2). In essence, Algorithm 1 below isk k k 
simply a computationally efficient implementation of this 
idea. 

Algorithm 1 Error estimation for NEWTON SKETCH 

Input: The iterate wk, the sketched Newton step Δ̃ 
k, the 

sketch C̃k, the sketched decrement δe2, as well as the k 
2gradient gk and the Hessian r r(wk). 

for b = 1 to B do in parallel 
• Construct a matrix C̃∗ ∈ Rt×d whose rows are sam-k 

pled uniformly from the rows of C̃ 
k. 

• Compute the following in succession: 

H̃ ∗ = (C̃ 
k 
∗ )>(C̃∗ 2 

k ) + r r(wk)k 

Δ̃ ∗ = (H̃ 
k 
∗ )−1 gk 

δe∗2 >Δ̃ ∗ 

k 

= gk k k 

�̃  ∗ = ρ(Δ̃ 
k 
∗ , Δ̃ 

k)k,b 

ε̃  ∗ = %(δ̃∗2 , δ̃  
k 
2).k,b k 

Return: qbα,k = quantile(�∗ 
k,1, . . . , �

∗ ; 1−α),k,B bqα,k = quantile(ε∗ 
k,B ; 1−α).k,1, . . . , ε
∗ 

Remark. As a clarification, the intermediate objects H̃ 
k 
∗ , 

Δ∗ 
k, and δ∗2 are not indexed by b, since they need not be k 

saved. The only essential quantities to save at each iteration 
are �∗ and ε∗ 

k,b. Similar considerations will also apply to k,b 
Algorithm 2. 

2.3. Bootstrap Error Estimation for GIANT 

Recall that in the setting of the GIANT algorithm, there are 
m workers indexed by j = 1, . . . ,m, and the j-th worker 
holds randomly drawn points from {(ai, bi)}n that arei=1 
indexed by a set Ij with cardinality t = |Ij | = n/m. Each 
worker computes a local approximate Newton step e He −1Δk,j = k,j gk, 

where the local approximate Hessian is given by 

˜ C̃> ˜ 2Hk,j = k,j Ck,j + r r(wk). (14) 

The globally improved approximate Newton (GIANT) step eΔk is then computed by averaging the local steps Δe 
k,j over 

j = 1, . . . ,m, and the current iterate is updated using Δ̃ 
k. 

By comparing the above expression (14) for H̃ 
k,j with the 

expression (3) for H̃k in the case of NEWTON SKETCH, there 

is a natural way to extend the previous error estimation algo-
rithm for NEWTON SKETCH to handle GIANT. Namely, each 
worker uniformly samples t rows from C̃ 

k,j (with replace-
ment) to form a matrix C∗ ∈ Rt×d , and the resampled k,j 
matrix C∗ is used to compute a resampled version of the k,j 
local Newton step (and decrement). Then, the local resam-
pled Newton steps (and decrements) will be communicated 
to a central processor and averaged over j = 1, . . . ,m to 
form a resampled GIANT step (and decrement). The specific 
details are listed in Algorithm 2. 

Algorithm 2 Error estimation for GIANT 

Input: The iterate wk, the GIANT step Δ̃ 
k, the matrices 

C̃ 
k,1, . . . , C̃ 

k,m, the approximate decrement δe 
k 
2 , as 

2well as the gradient gk and the Hessian r r(wk). 

for j = 1 to m do in parallel 

for b = 1 to B do in parallel 

C̃∗ Rt×d• Construct a matrix ∈ whose rows arek,j 

sampled uniformly from the rows of C̃k,j . 

• Compute 
˜ ∗ C ∗ (C̃∗ 2Hk,j = ( ˜ 

k,j )
> 

k,j ) + r r(wk). 

Δ ∗ = (H̃ ∗ • Compute ˜ 
k,j,b k,j )

−1 gk . 

• Compute δ̃∗2 = g >Δ̃ 
k,j,b 
∗ .k,j,b k 

Δ∗ Δ̃ ∗• Send the vectors ˜ and scalars k,j,1, . . . , k,j,B 

δ̃∗2 δ̃∗2 to the central processor. k,j,1, . . . , k,j,B 

for b = 1 to B do P 
Δ ∗ 1 m Δ̃ ∗ • Aggregate local ∗-steps ˜ 

k,b = k,j,b. 
m j=1 

δ ∗2 1 m δ̃∗2• Aggregate local ∗-decrements ˜ 
k,b = 

m 

P 
j=1 k,j,b. 

• Compute ∗-step error � ∗ = ρ(Δ̃ ∗ Δ̃ 
k).k,b k,b, 

• Compute ∗-decrement error ε ∗ = %(δ̃∗2 δ̃  
k 
2).k,b k,b, 

Return: qbα,k = quantile(�∗ ; 1−α),k,1, . . . , �
∗ 
k,B bqα,k = quantile(ε∗ 
k,B ; 1−α).k,1, . . . , ε
∗ 

Remark. Note that each worker j = 1, . . . ,m performs its 
own for-loop over b = 1, . . . , B, and each worker may do 
this in parallel by calling upon several of its own processors 
(if available). After the loop over j = 1, . . . ,m is completed 
by the m workers, the second loop over b = 1, . . . , B occurs 
at the central processor. The computations at the central 
processor consist mostly of inexpensive vector and scalar 
addition, whereas more substantial matrix computations are 
done by the workers. 
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2.4. Computational Cost 

We now discuss the computational costs of Algorithms 1 and 
2 for error estimation in the respective contexts of NEWTON 
SKETCH and GIANT. Most importantly, it should be empha-
sized that these algorithms do not require any access to the 
points {(ai, bi)}n , which keeps communication costs low. i=1 

Cost of Algorithm 1 for NEWTON SKETCH. Given that 
the loop over b = 1, . . . , B is embarrassingly parallel, it is 
natural to evaluate the processing cost of Algorithm 1 on 
a per-iteration basis. For common choices of ρ and %, it 
is straightforward to check that the processing cost at each 
iteration is O((t + d)d2). In particular, it is notable that 
this cost is independent of the large dimension n, which 
allows Algorithm 1 to be highly scalable. Also, to help put 
this into perspective, it should be noted that the cost of the 
NEWTON SKETCH algorithm typically scales linearly in n. 
With regard to the number of bootstrap samples B, it turns 
out that Algorithm 1 can perform well with surprisingly 
small choices of B, as will be illustrated by our experiments 
in Section 4. 

Cost of error estimation for GIANT. The processing cost 
for each worker j = 1, . . . ,m in Algorithm 2 is analogous 
to the processing cost of Algorithm 1 described previously. 
Also, Algorithm 2 is well-suited to distributed computation, 
since its loops can be implemented in parallel. On the other 
hand, a distinct aspect of Algorithm 2 is that it involves 
an aggregation step after the workers have finished their 
computations. Nevertheless, this step involves a modest 
overall communication cost of order O(Bmd), which is 
independent of n. 

3. Theory 
In this section, we analyze Algorithms 1 and 2 in the context 
of objective functions having the form (1) with r(w) = 
γ kwk2 

2. Also, we will focus on the case of relative error, 2 

where the error variable is given by εk = %(δ̃2, δ2) withk k 
0%(x , x) = |x0 −x|/|x|. Our goal is to show that the estimate bqα,k produced by either algorithm satisfies εk ≤ bqα,k with 

probability not much less than 1 − α. 

Theoretical setup. In order to unify our analysis for 
both NEWTON SKETCH and GIANT, we will work under the 
following setup, since it allows the matrix H̃ 

k defined in (3) 
for NEWTON SKETCH, and the matrix H̃k,j defined in (5) 
for GIANT, to be regarded as equivalent. Namely, this occurs 
when the sketching matrix Sk in NEWTON SKETCH is gener-
ated by uniform sampling from {

p
n/t e1, . . . , 

p
n/t en}, 

and when the t points held by each worker in GIANT are 
drawn by uniform sampling from {(ai, bi)}ni=1. (This type 
of sampling was also studied by the authors of GIANT (Wang 
et al., 2018).) In addition, we will assume that the workers 
in GIANT independently sample a fresh set of points at each 

iteration, and that a fresh sketching matrix Sk in NEWTON 
SKETCH is generated independently at each iteration (as 
proposed by the authors of NEWTON SKETCH (Pilanci & 
Wainwright, 2017a)). 

Within this setup, it should be noted that in the case of 
GIANT, the three numbers (n, m, t) satisfy the relation 
t = n/m, whereas in the case of NEWTON SKETCH, these 
numbers satisfy m = 1 and t ≤ n. Hence, both algorithms 
may be analyzed simultaneously under the basic condition 
that t ≤ n/m. In addition, we will assume that there is an 
absolute constant c1 > 0, such that m ≤ c1t, which is a 
mild assumption from a practical standpoint, and will help 
to simplify the form of our main result. 

Notation and definitions. For the regularization function 
γ r(w) = kwk22 , observe that the Hessian Hk of f at the2 

k-th iteration has the form 

Hk = Ck 
>Ck + γId. (15) 

For each i = 1, . . . , n, we define the i-th ridge leverage 
score as 

γ � � 
` = Ck(Ck 

>Ck + γId)
−1C> (16)i,k k ii 

When γ = 0, this coincides with the standard leverage score. 
Next, the effective dimension dγ is defined as ask Pd σ2(Ck )jdγ = `γ + · · · + `γ = , (17)k 1,k n,k j=1 σj 

2(Ck )+γ 

which can be much smaller than d when Ck has only a few 
dominant singular values (cf. Li et al., 2019). We also use 
γ γ µ = µ (Ck) to refer to the ridge coherence, defined as k k 

γn`γ i,kµ = max γ . (18)k d1≤i≤n k 

γIn the case when γ is set to 0, the quantity µ reduces to the k 
ordinary matrix coherence (cf. Candès & Recht, 2009), but it 
should be noted that γ will be taken as positive in our work. 

γRoughly speaking, the ridge coherence µ measures how k 
evenly information is spread among the rows of matrix Ck.� �log(n)Also, it turns out that this quantity is of order O ∨ 1d 
in a generic sense, and this will be addressed in Proposition 1 
later on. 

Assumption 1. Let xk ∈ Rn denote the random vector 
1given by xk = δk 
CkHk 

−1 gk, and let s ∈ Rn be a random √ √ 
vector sampled uniformly from the set { ne1, . . . , nen}, 
independently of xk. Then there is an absolute constant 
c0 > 0 such that the following bound holds for any γ > 0 
when xk 6= 0, � � > 1 var (s xk)

2 xk ≥ (19)c0(1+γ)2 

Remarks. To provide some intuition for the condition (1), 
it arises from the fact that our analysis is based on showing 
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that the distribution of the random variable (δ̃2 − δ2)/δ2 
k k k 

is approximately Gaussian. To establish such a Gaussian 
approximation using non-asymptotic tools like the Berry-
Esseen theorem, it is important to ensure that the variance of 
this random variable does not become too small. However, 
there are certain collections of points {(ai, bi)}n that cani=1 
cause the variance to be arbitrarily small, or even zero. As a 
basic example, consider a case where all the observations are 
the same, (a1, b1) = · · · = (an, bn), and where the function 
f corresponds to ridge regression — for which it can be 
checked that Ck = 2n

−1/2A. In this case, when NEWTON 
SKETCH or GIANT use uniform sampling to construct C̃k or 
C̃ 

k,j , it follows that every realization of these matrices must 
be the same, which causes the variance of (δ̃2 −δ2)/δ2 to be k k k 
zero. Similarly, in this case, it can also be checked that the 
quantity var((s xk)

2|xk) in (19) is equal to zero as well. 
So, roughly speaking, the condition (19) can be interpreted 
as a way of ruling out “degenerate” cases. 

The following theorem is our main theoretical result. 

Theorem 1. Suppose that Assumption 1 holds within the 
setup described above, and let bqα,k denote the second output 
of Algorithm 1 or 2. Then, there is an absolute constant 
c > 0 such that the bound � � 

|δ̃2 −δ2 
k 

2δk 

> 

k | result.≤ bqα,k ≥ 1 − α − c ω P 

Remarks. In addition to being fully non-asymptotic, this 
result has the interesting property that it does not depend 
explicitly on the ambient dimension d, but rather, on the 

γeffective dimension dk . With regard to the proof, the essen-
tial task is to show that the random variable (δ̃2 − δ2)/δ2 

k k k 
has a distribution that is approximately Gaussian. In devel-
oping such an approximation, one of the key challenges is 
to handle the accumulation of bias across the m workers. 
More specifically, each approximate inverse Hessian ma-
trix (H̃k,j )

−1 creates bias in the local approximate Newton 
steps, and in order to show that the bootstrap works, it is 
necessary to keep track of the cumulative effect of these 
local biases. 

Validating Assumption 1 for generic matrices. The col-
lection of matrices in Rn×d with orthornormal columns, 
denoted as Stief(n, d), is known to possess a natural uni-
form probability distribution, called the Haar distribu-
tion (Meckes, 2019). From a conceptual point of view, 
a random matrix Q ∈ Stief(n, d) generated from this dis-
tribution may be regarded as “generic”. Accordingly, we 
can investigate the condition (19), as well as the size of the 

γquantity µk , in a generic sense by considering a situation 

where the Q factor in the QR-decomposition of Ck is drawn 
from the Haar distribution. In this way, the following propo-
sition provides a kind of validation for Assumption 1, as 

γwell a reference point for the size of µk . 

To provide a more detailed interpretation for how the condi-
tion (19) can be described as holding with high probability, 
first note that if Ck = QR is a QR-decomposition, then the 
left side of (19) can be explicitly written as a function φ of 

1Q, R, and the unit vector u = H
−1/2 

gk. Namely, weδk k 
have 

>var((s xk)
2|xk) = φ(Q, R, u), 

where P � �21 n > >φ(Q, R, u)= u M (R)>Q>(neiei −In)QM(R)u ,
n i=1 

and M(R) = R(R>R + γId)−1/2 . Similarly, the ridge
γcoherence µ can be expressed as a function ψ of Q and R.k

That is, 

Q> 
γ nkM(R)> eik22 

µk = ψ(Q, R) = max . 
1≤i≤n kM(R)k2 

F 

With this notation in place, we may now state the following 

Proposition 1. Let u ∈ Rd be any fixed unit vector, and let 
holds for some positive number ω satisfying R ∈ Rd×d be any fixed upper-triangular matrix satisfying 

√ 
(1+γ)3E[(µ d )3] log(n)c 

√ 
γ
k 

γ
k

log(B)√ 1 ≤ σmin(R) ≤ σmax(R) ≤ c c ω ≤ + . 
t B 

for some absolute constant c ≥ 1. Also, let Q ∈ Rn×d be 
a random matrix drawn from the uniform distribution on 
Stief(n, d). Under these conditions, there exists an absolute 
constant c0 > 0, such that the inequality 

1φ(Q, R, u) ≥ (20)c0(1+γ)2 

holds with probability at least 1 − c0 (d ∨ log n)2(1 + γ)2 ,n 

and the inequality � �log(n)ψ(Q, R) ≤ c0 ∨ 1 (21)d 

holds with probability at least 1 − c0/n. 

Remarks. Since the columns of a random matrix Q drawn 
uniformly from Stief(n, d) are not independent, it is neces-
sary in the proof of this result to make use of non-asymptotic 
tools that can allow for such dependence. Specifically, the 
proof hinges on the fact that if Ψ : Stief(n, d) → R is a 
Lipschitz function with respect to the Frobenius norm, then 
the random variable Ψ(Q) has strong concentration proper-
ties (cf. Milman & Schechtman, 2009, p.29). 
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Figure 1. Numerical results on dataset SUSY (n = 5,000,000, d = 18). The plots illustrate the performance of Algorithms 1 and 2 in the 
task of estimating the quantiles of the three errors |˜ 

k − δk 
2|, kΔ̃ 

k − Δkk2, and kΔ̃ 
k − Δk k∞. The blue curves represent the ground δ2 

truth for the 0.95-quantiles of the errors, as described in the main text. The red curves (which are mostly covered by the blue curves) 
represent the average of the bootstrap estimates, with the yellow curves being three standard deviations away. 

4. Experiments 
In this section, we present a collection of experiments that 
study how well Algorithms 1 and 2 can estimate the er-
rors of NEWTON SKETCH and GIANT in the context of ` 2 -
regularized logistic regression. Accordingly, the objective 
function has the form 

1 Pn >f(w) = log(1 + exp(−(a w)bi)) + γ kwk22,n i=1 i 2 

where the observations satisfy (ai, bi) ∈ Rd × {±1} for all 
i ∈ {1, . . . , n}. 

Experimental setup. We used the SUSY regression dataset 
of size (n = 5,000,000, d = 18), which can be ob-
tained from LIBSVM (Chang & Lin, 2011). For all the 
experiments, the regularization parameter was chosen as 
γ = 10−3, and the number of bootstrap samples was chosen 
as B = 12. The step size ηk at each iteration of NEWTON 
SKETCH and GIANT was determined by the Armijo line 
search so that 

f(wk + ηkΔe 
k) ≤ f(wk) + ηkβhΔe 

k, gki. 

Specifically, the control parameter β was set to β = 0.1, 
and the search for the step size was restricted to a grid of 
values ηk ∈ {20 , 2−1 , . . . , 2−10}. 

We studied the quantiles of six different kinds of error vari-
ables: the absolute error with respect to (1) the Newton 

decrement, (2) the ` 2-norm for the Newton step, and (3) the 
` ∞-norm for the Newton step, as well as the relative error 
versions of these three. The results are shown in Figures 1 
and 2. 

Below, we detail the aspects of the experiments pertaining 
specifically to Algorithm 1 (for NEWTON SKETCH) and 
Algorithm 2 (for GIANT). 

Experiments for NEWTON SKETCH. The sketched New-
ton update defined in (4) was independently run 300 times, 
with 6 iterations k = 1, . . . , 6 in each run. At each iteration, 
a fresh sketching matrix Sk was generated via uniform sam-
pling, with a sketch size of t = n/32. For each realization 
of Sk, we computed the (true) values of the six error vari-
ables mentioned above. This gave 300 total realizations of 
each type of error variable at each k = 1, . . . , 6. In turn, we 
used these 300 realizations to compute the empirical 0.95 
quantile for each type of error variable, and these quantiles 
were treated as ground truth for q.05,k and q.05,k. These 
ground truth values are plotted in blue in Figures 1 and 2. 
Next, we ran Algorithm 1 on the output associated with each 
Sk, giving 300 realizations of the bootstrap estimates at each 
k = 1, . . . , 6 (for each of the six types of 0.95-quantiles). 
The averages of the bootstrap estimates are plotted in red, 
with the yellow curves being three standard deviations away. 
(Note that the red curves are mostly covered by the blue 
curves in Figure 1.) 
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Figure 2. Numerical results on dataset SUSY (n = 5,000,000, d = 18). The plots illustrate the performance Algorithms 1 and 2 in the 
δ2task of estimating the quantiles of three relative errors |˜ 
k − δk 

2|/δk 
2 , kΔ̃ 

k − Δkk2/kΔkk2, and kΔ̃ 
k − Δkk∞/kΔkk∞. The labelling 

scheme for the curves is the same as that used in Figure 1. 

Experiments for GIANT. The experiments for GIANT were 
conducted in a similar way to those for NEWTON SKETCH. 
We ran the GIANT algorithm 300 times, each time with 6 
iterations using the update rule (6). We randomly sampled t 
data points for each of the m workers before each run, and 
the data points stayed unchanged on each worker throughout 
the iterations. We chose the number of machines to be m = 
32 for all datasets, in correspondence with the sketch size 
used in NEWTON SKETCH. The true error variables were 
computed at each iteration (giving 300 realizations of each), 
and the empirical 0.95-quantiles of these realizations were 
treated as ground truth for q.05,k and q.05,k. We also ran 
Algorithm 2 for each run of GIANT, yielding 300 bootstrap 
estimates for each type of error variable at each iteration. 
The results are plotted in Figures 1 and 2 using the same 
scheme as that described above in the context of NEWTON 
SKETCH. 

Remarks. Our experiments show that Algorithms 1 and 2 
perform reliably for each of the six types of error variables 
considered. In particular, the red lines are well aligned with 
the blue lines in all of the plots, indicating that the bootstrap 
estimates are nearly unbiased. The small gap between the 
yellow curves also shows that the bootstrap estimates have 
fairly low variance — which is encouraging in light of the 
fact that the estimates were computed using only B = 12 
bootstrap samples. Furthermore, this performance with a 
small choice of B also demonstrates that error estimation 
need not add much cost to the underlying optimization algo-

rithm. 
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