Nearly Optimal Embeddings of Flat Tori

Ishan Agarwal
Courant Institute of Mathematical Sciences, New York University, USA
ia1020@nyu.edu

Oded Regev
Courant Institute of Mathematical Sciences, New York University, USA

Yi Tang
Courant Institute of Mathematical Sciences, New York University, USA
yt1433@nyu.edu

—— Abstract

We show that for any n-dimensional lattice £ C R"™, the torus R"/L can be embedded into Hilbert
space with O(y/nlogn) distortion. This improves the previously best known upper bound of
O(n+/logn) shown by Haviv and Regev (APPROX 2010, J. Topol. Anal. 2013) and approaches the
lower bound of Q(y/n) due to Khot and Naor (FOCS 2005, Math. Ann. 2006).
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1 Introduction

Low distortion embeddings play an important role in many approximation algorithms,
allowing one to map points in a “difficult” metric space into another simpler metric space
(such as Hilbert space), in a way that approximately preserves distances. See the survey by
Indyk [2] for many examples of algorithmic applications. One interesting family of difficult
metric spaces is given by flat tori. These are defined as quotients of Euclidean space by a
lattice, and play an important role in lattice problems and algorithms.

In more detail, an n-dimensional lattice £ C R™ is defined as the set of all integer linear
combinations of some n linearly independent vectors in R™. The torus R™/L is the quotient
space obtained by identifying points in R™ with each other if their difference is a lattice
vector. The torus has a natural metric associated to it; namely, the distance between any
two elements of the torus is defined as the minimum distance between any representative of
these elements. So for instance, in the one-dimensional case R/Z, the distance between 0.1
and 0.9 is 0.2.

Khot and Naor [3] considered the question of how well one can embed flat tori R™/L
into Hilbert space. They proved that for any £ and any embedding of R"/L into Hilbert
space, the distortion must be at least Q(i‘j((f:)) v/n). Here, £* is the dual lattice of £ and
A1(£) and p(L) represent the length of the shortest nonzero vector and the covering radius
of L respectively. It is known by a result of Conway and Thompson (see [4, Page 46]) that,
for large enough n, there exist lattices £ where A;(£) = pu(£). Thus the lower bound of
Khot and Naor shows that there are n-dimensional lattices whose torus requires distortion
Q(y/n) in any embedding into Hilbert space. In the same paper, they also present an
embedding that achieves a distortion of O(n"/?) for any lattice £. While the distortion of
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their embedding might be better than this upper bound, it is known that for some lattices it
is super-polynomial [1, Section 7].

In [1] an O(n+/logn) distortion metric embedding is constructed, significantly reducing
the gap between the upper and lower bounds. They also provide an alternative upper bound
of O(y/nlog(u(£)/ A1(L)). For lattices with good geometric structure (specifically, where
the ratio u(L£)/ A1(£) is only polynomial) this gives an O(y/nlogn) upper bound. However,
in general, the ratio p(£)/ A1(£) can be arbitrarily big, in which case this alternative bound
is not useful.

Our result is a nearly tight embedding of flat tori, essentially resolving the question of
Khot and Naor up to a v/logn factor.

» Theorem 1.1. For any lattice L C R™ there exists a metric embedding of R™/L into
Hilbert space with distortion O(y/nlogn).

1.1 Proof Overview

Our starting point is the embedding by Haviv and Regev [1], which is based on Gaussian
measures. Their embedding achieves a distortion of O(y/nlogn) assuming that the lattice
L has poly(n) “aspect ratio,” i.e., the ratio between p(L) (the diameter of the torus, or
equivalently, the covering radius of the lattice) and A\ (L) (the length of the shortest nonzero
vector in the lattice) is polynomial in the dimension n. Their embedding can also be applied
to arbitrary lattices; the only issue is that it “saturates” at distance poly(n)A; (L) — points
at greater distance will be contracted by the embedding. See Section 3 for the details.

A natural way to address this issue is to first partition the lattice into scales, and to
then embed each scale separately. Specifically, one can define a filtration of sublattices
{0} =Ly C Ly C--- C Ly =L with each £; capturing a different scale of the lattice. Then,
for each j = 1,...,m, we project the torus on the space orthogonal to £;_;, and embed
each projection in Hilbert space separately. Our embedding is then the direct sum of the m
individual embeddings.

This approach does work, and is used as part of the construction in [1]. The difficulty is
that it introduces an additional y/m loss in the distortion, which at worst can be O(y/n) and
is the reason they only achieved an overall distortion of O(ny/logn). To see where this loss
comes from, consider a short vector inside the span of L£;; this vector only contributes to
the first embedding (because it becomes zero in the other m — 1 projections). On the other
hand, a short vector orthogonal to L,,—1 gets accounted for in all m projections, leading to
an expansion of \/m (the square root due to the Ly norm in the target Hilbert space).

In order to avoid this loss and achieve a O(y/nlogn) distortion, it is tempting to decompose
space into orthogonal subspaces (and not nested subspaces as in the above). So instead of
projecting on the subspace orthogonal to £;_1, we would like to only project on the subspace
of £; that is orthogonal to £;_1 (i.e., on the span of £;/L£,_1). This, however, is impossible;
projecting a lattice in such a way in general gives a dense set, and not a lattice.!

Our novel contribution is to replace this “harsh” two-sided projection (which is in general
impossible) by a more gentle “compressed projection.” Namely, we first project orthogonally
to L£;_1, and then scale down the subspace orthogonal to £;. Returning to the example above,
a short vector orthogonal to L,,_1 is still accounted for in all m “compressed projections,”
but the scaling factors are such that its contributions form a geometric series, so the overall

1 To see why, consider the two-dimensional lattice generated by (1,0) and (,1); its projection on the
first coordinate is a dense set.
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expansion is only a constant instead of y/m. The technical effort is in showing that these
compressions do not distort the geometry by too much; see Section 4 for details. We
remark that this “compressed projection” idea might find applications in other cases where
decomposing a lattice into scales is desirable.

2 Preliminaries

2.1 Embeddings and Distortion

A metric space is a tuple (M, distpq) where M is a set and distyq : M x M — R is a
function such that the following hold for all z,y, z € M:

distpq(z,y) > 0, and the equality holds if and only if x = y,

dist pq (2, y) = dist pm(y, @),

dist v (z, y) + distaq(y, 2) > distpm (2, 2).
For simplicity, we often write metric space M for (M, dist (). We also use dist without the
subscript to represent the standard Euclidean metric over R™ (for some n that is clear from
the context). A (metric) embedding is a mapping from one metric space to another.

» Definition 2.1. Suppose F': My — My is an embedding of metric space My into Ma.
The distortion of F' is defined by

lnf{% :Vx,y € Ml; (& diSt/\/h(z?y) < dlStMQ(F(x)ﬂF(y)) <cy- diStMl(Iay)} .

2.2 Lattices

We now recall some standard definitions and notations regarding lattices. A (full-rank) lattice
L C R" is the set of all integer linear combinations of n linearly independent vectors. This
set of vectors is called a basis of the lattice. Equivalently, a lattice is a discrete subgroup of
the additive group R™. The dual lattice L* of L is defined as the set of all vectors y € span(L)
such that (z,y) is an integer for all vectors x € L. A sublattice L C L is an additive
subgroup of £. We say that a sublattice £’ C L is primitive if £ = £ Nspan(L£’). All
sublattices in this paper will be primitive. For a lattice £ and a primitive sublattice £ C L,
the quotient lattice L/L' is defined as the projection of £ onto the subspace orthogonal to
span(L’). Sublattices and quotient lattices can be thought of as full rank while sitting inside
some lower-dimensional space. For lattice £ C R"™, the torus R™/L is naturally associated
with the quotient metric, defined as

distgn /2 (x,y) = dist(x —y, L) = mi? dist(x —y,v) .
ve

The length of the shortest vector of a lattice £, denoted by A;(L), is defined as the
minimum length of a non-zero vector in £. Note that here and elsewhere, length refers to
the Euclidean norm. The covering radius of a lattice £, denoted by u(L), is defined as the
maximum (Euclidean) distance from any vector in span(L) to £. Equivalently, as its name
suggests, it is the minimum radius such that balls of that radius centered at all lattice points
cover the entire span(L).

We end with two simple technical lemmas, where we denote by 7y the orthogonal
projection onto subspace V.

» Lemma 2.2. For any n > 1, lattice L C R", vectors x € R™, v € L such that ||x — v| =
dist(x, £), and sublattice L C L,

I Tspan(ery (x = V)1l < (L) .

43:3
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Proof. Suppose towards contradiction that |[7gpan(zy(x — v)|| > (£’). Then consider the
lattice point u € £’ that is a closest lattice point to Tgpan(z/)(x — v) in £'. By definition
| Tspan(cry (x — v) —ul| < pu(L'). Observe that

HX - (V + u)”2 = ||7Tspan(£’)(x - V- u)”2 + ”ﬂ-span(ﬁ/ﬁ’)(x - V- u)Hz
= [ span(ery (% = v) = ull® + [ Tgpan(e/ e (x = )|
< ||7rspan([/)(x - V)||2 + ||7rspan([,/[,’)(x - V)H2
= ||X - VH2 ’
which contradicts with the fact that ||x — v|| = dist(x, £) = minyez [|x — v/ <
» Lemma 2.3. For any lattice £ and sublattice L C L,
WL)? < p(L)? + p(L/ L) .
Proof. For any x € span(L), let v € £ be a lattice point such that

Hﬂ-span(ﬁ/ﬁ’)(x — V)H = diSt(’]TSpan(L‘/L/)(X), E/El) .

Without loss of generality it can be assumed that ||7gpan(z) (X — v)|| < u(L') (since otherwise,
we can use v + u instead of v, where u is a closest lattice point to mgpan(zr)(x — V) in £).
Then

dist(x, £)? < [|x — v||?
= ||7rspan(£’)(x - V)H2 + ||7TSPan(£/£l)(X - V)
< (L + plL/ L)
The bound holds for any vector x. Hence u(£)? < pu(L")? + p(L/L")?, as desired. <

I?

3 Embedding Tori into Hilbert Space

The goal of this section is to prove Lemma 3.6, which summarizes the properties of the
Gaussian embedding from [1], including a modified contraction property which we make
explicit (see left-hand side of (1)). The proof closely follows that of [1, Theorem 1.4]. We
start with some preliminary definitions and results from [1].

For s > 0 and x € R™ we define py(x) = exp(—n||x/s||?). For any discrete set A, its
Gaussian mass p,(A) is defined as ), . 4 ps(x). The smoothing parameter of a lattice L is
defined with respect to an € > 0 and is given by

n.(L£) = min{s : py /(L") <1+¢}.

» Lemma 3.1 ([1, Lemma 2.5]). For any n > 1 and lattice L C R™, n (L*) < )\21‘(/2) where
€ = 9—10n

Consider the function
ps(L —x)
ps(L)

Below we list some basic properties of this function, which ideally we would like to be

h/v‘)s(X) =1-

proportional to the squared distance from the lattice. This is indeed the case, assuming the
distance is not too large compared to s, and that s itself is small compared to the geometry
of the lattice. The upper bound is shown in Item 1, and the lower bound is established in
Items 2 and 3 (which give very similar bounds). When the distance is sufficiently larger than
s, the function reaches saturation, as shown in Item 4.
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» Lemma 3.2 ([1, Lemmas 3.1 and 3.2]). For any n > 1, lattice L CR", s > 0, and vector

x € R",

1. 8% he s(x) < - dist(x, £)?,

2. 8% hes(x) > c-dist(x,£)? if s < m for some 0 < & < g5 and dist(x, £) < 75
where ¢ is an absolute constant,

3. hpg(x) > 1 — e mdist(a0)?/s* _o=lln e\ (£) >4\ /0 - s,

4. hes(x) >1—271" 4f dist(x, L) > 2¢/n - s.

» Definition 3.3 ([1, Section 5]). For lattice L C R™ and s > 0, the embedding H. s :
R"™/L — Lo(R™/L) maps vector x € R™ to the function Hy s(x) € Lo(R™/L) given by

s n/2
Heo(x)(y) = \/ﬁ <§) P%(L‘ +y—x).

» Lemma 3.4 ([1, Proposition 5.1]). For any n > 1, lattice L C R"™, s > 0, and vectors

x,y € R™, disty,gn/c)(He s(x), He s(y))? = 5% - he s(x — y).
» Definition 3.5 ([1, Section 5.1]). For lattice L CR", s >0, and k > 1, the embedding chz

is defined by H[(:k; = (Hgs,,. .-, Hes,) where s; =207 1s. We often take s = M\ (L)/(4y/n),

in which case we omit the subscript s and simply write Hék).

» Lemma 3.6. For any n > 1, lattice L CR", k > 1, and vectors x,y € R",

c . . _ . .
f -mmin(distgn /2 (%, y), 287N A (£))? < distp, @ o (He (x), He (y))? < 7k - distan 2 (%, ¥)?
(1)
where cg > 0 is an absolute constant.
Proof. By Lemma 3.4, and recalling the notation s; = 2~ !s where s = ’\41\(/?,
k
. k k .
dist gz oy (Hp (), HEP (9))? = D distryen ) (He,s, (%), He oo, ()
i=1

k
= 2312 hes,(x—y).
i=1

Noting that distg»,.(x,y) = dist(x —y, £), the upper bound in (1) follows from Item 1 in
Lemma 3.2:

k k
Z s2 - hee(x—y) < Z 7 -dist(x —y, £)? = nk - dist(x — y, £)? .
i=1 i=1

For the lower bound in (1), we will show that for any x,y € R", there exists i € {1,...,k}
such that

sf ches,(x—y) > %{ - min(dist(x — y, £), ok—1 )\1(£))2 . (2)

We consider three cases.
1. dist(x—y, L) < M(E) ~5- Note that according to Lemma 3.1, s < 271;('6) for some

= 4v2n
O0<e< ﬁ Then by Item 2 of Lemma 3.2,
s? hes(x—y) > c-dist(x —y, £)* > % ~dist(x —y, £)?,

which proves (2) with ¢ = 1.

APPROX/RANDOM 2020
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2. &< dist(x —y, L) < A1 (L) =44y/n - s. By Item 3 of Lemma 3.2,

32 . hL7S(X — y) > 52 . (1 _ 67’”/2 _ 2*1171)
1-— 6771-/2 —9-1in

- A (£)?
16m 1(£)
1— —m/2 _ 271171
> < 16n ! diSt(X -Y ‘c)2 5

which again proves (2) with ¢ = 1.

3. dist(x —y,L) > 4y/n-s. Let j € {2,...,k} be the largest index such that 2\/n - s; <
dist(x —y, £). Notice that if j < k then 4\/n-s; = 2/n-s;11 > dist(x —y, £), and that
if j =k, then 4y/n - s; = 2*"1 \;(L). Then by Item 4 of Lemma 3.2,

5]2- ches,(x—y) > s? -(1- 2*11")

1— 2—11n )
= BT (4\/,; . sj)
1— 2—11n
> BT min(dist(x — y, £), 2" "1 A\ (£))?,
which proves (2) with i = j. <

4 Embedding into Tori

The goal of this section is to prove Lemma 4.13, which shows that there exists an embedding
from an arbitrary torus into a tuple of tori with good geometry. The embedding is constructed
based on “good filtrations,” which we define and instantiate in Section 4.1. The definition
of the embedding is given in Section 4.2, and its expansion and contraction properties are
shown in Section 4.3 and Section 4.4 respectively. The contraction property matches the
modified notion of contraction used in Lemma 3.6.

4.1 Good Filtrations

In this section we define the notion of a (q,~)-filtration (Definition 4.1) and show how to
construct a good one for every lattice (Lemma 4.3). We also include a small technical lemma
that will be useful later (Lemma 4.4).

A filtration of a lattice L is a chain of sublattices {0} = Lo C L1 C--- C Ly, = L. We
call m the size of the filtration.

» Definition 4.1. For g > 1, v > 1, we say that a filtration {0} =Ly C Ly C--- C Ly =L
is a (g,~)-filtration if it satisfies both

1. M(ﬁj/ﬁjfl) < q)\l(,Cj/,ijl)/Q f07" all 1 S] < m, and

2. A1(£j+1/ﬁj) > ’}/)\1(,63'/,6]',1) fO’I“ all 1 <j<m.

Our construction of good filtrations is based on Korkine-Zolotarev bases, defined next.
Recall first that for a sequence of vectors (by,...,b,), its Gram-Schmidt orthogonalization
(b},...,bl) is defined by

i—1 /
<bi7b‘>
b; = bl — E /J,Z,Jb; y where Hig = W y
j:l J J

i.e., b} is the projection of b; on the space orthogonal to span(by,...,b;_1).
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» Definition 4.2. A basis (b1,...,by,) for a lattice L C R™ is called a Korkine-Zolotarev
basis if

b’ is a shortest vector of L/L;—1 for all1 <i<n, and

|| <1/2 foralll1 < j<i<n,
where (b7, ...,bl,) is the Gram-Schmidt orthogonalization of (b1,...,by), w;; are the corre-
sponding coefficients, and L; is the lattice generated by (by,...,b;) (with Lo = {0}).

It is easy to prove that a Korkine-Zolotarev basis exists for any lattice. We remark that
the second property above will not be used in this paper.

» Lemma 4.3. For any n > 1, lattice L CR", and v > 1, there exists a (y\/n,7)-filtration
of L.

Proof. Let (by,...,b,) be a Korkine-Zolotarev basis of £. Let (bf,...,b},) be its Gram-
Schmidt orthogonalization, and consider the filtration {0} = Lo C £y C --- C L,, = L where
L; is the lattice generated by (by,...,b;). From Definition 4.2 we know that A\ (L/L;_1) =
il = A(Lx/Liz1), for all 1 < i < k < n. Construct a coarsening of this filtration,
{0} =L, C Ly, C---CL;, =L, asfollows. Let i =0 and for j > 1,4; € {i;—1+1,...,n}
be the largest index such that [[by[| < ~[/b; _ [ for all k € {i;_1 +1,...,i;}. Finally, stop
when 4, = n. We are going to show that this coarser filtration is a (y+/n,y)-filtration.
We observe that for all 1 < j < m,

Al(cij/ﬁij—l) = ||b;j,1+1H .
Then, by construction of the coarsening, for all 1 < j < m,
)‘1('61']‘+1/'Cij) = ||b;]+1|| > ’VHb;j_lJrl” = ’7)‘1('61']‘ /‘Cij—1) .

This proves the second property of a (y+/n,y)-filtration. Moreover,

25

/’L(‘Cij/cij—l)z < Z :u(‘ck/‘ckfl)Q

= > bkl

< Z ’Y2||b§j_1+1”2/4

k=ij_1+1
<y M(Liy /Lo )2 /4

where the first inequality is by Lemma 2.3 and the second inequality is by construction of
the coarsening. This proves the first property of a (y+/n,y)-filtration. <

We end by proving a small property of (g,~)-filtrations.

» Lemma 4.4. For any (q,7)-filtration {0} = Lo C L C--- C Ly =L and 1 < j<m,

(Ly) <~ N (L5/L5-1))2

VI—1/77

Consequently, if v > 2, then pu(L;) < g i(L;/L;-1).

43:7
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Proof. The inequality can be proved as follows:

pA(L5) < Y uP(Li/Limn)

e

@
Il
-

P A(Li/Lio1)/4

e

@
Il
-

q-2 (L5 /L5-1)/4

M-

2(5—1
= Y (3—1)
7 2

where the first inequality uses Lemma 2.3, the second inequality uses the first property in
Definition 4.1, and the third inequality uses the second property in Definition 4.1. |

4.2 The Embedding

Let F be a filtration {0} = Lo C L1 C --- C L,,, = L of a lattice £ C R™. The filtration nat-
urally induces an orthogonal decomposition of R™ into m subspaces, namely, span(L;/L;_1)
for j=1,...,m. We use mx ; to denote Tspan(c,;/c,_,), the projection on the j-th subspace.

. .. > < > < . .
We will similarly use TE i TF js TF js and iz ; to denote projections on the span of prefixes

and suffixes of this decomposition. Specifically, for 1 < j < m we have 71'; ;= Tspan(£/L;_1)»
<
7T]<-‘7j = Tspan(Lj_1)» ’/T]>_—J = Tspan(L/L;)» and TF,; = Tspan(L;)-

» Definition 4.5. For filtration F of size m, 0 < a < 1, and 1 < j < m, the embedding
Er o ; is defined by

Era;(x)= Zai_jﬁf,i(x) :
=

Note that since Er ,; is linear, for any lattice £ C R™ and vector x € R", Er o j(x+L) =
Er o ;(xX)+ Erqa,;(L), and thus Er , ; is a well-defined embedding from the torus R™/L to
the torus Er o ;(R"/L).

» Definition 4.6. For a filtration F of size m and 0 < o < 1, the embedding Er o is defined
by Era = (Erai;.--,Eram) with the metric being {y of the tori metrics.

4.3 Expansion of the Embedding

» Definition 4.7 (Realization of distance in torus). For any n > 1, lattice L C R™, and vector
x € R, since dist(x, £) = minyer ||x — v||, there always exists v € L such that dist(x, L) =
lx — v||. We say such minimizer v realizes the distance dist(x, L). Similarly, for vectors
x,y € R", we say v realizes the distance distgn /. (x,y) if distgn ) 2(x,y) =[x =y — V||.

» Lemma 4.8 (Expansion of the embedding). For any n > 1, lattice L C R™ with filtration
F,0< a<1, and vectors x,y € R”,

diStEF,a(R”/ﬁ) (E]:,Ot (X)7 Er.o (y))2 = Z diStEf,a,j (R™/L) (E]:7Ot7j (X)v Er a, (Y)>2
=1

< 5 - distrn 2 (%, )%

11—«
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Proof. Let m be the size of F. For all v € £, the embedded distance can be bounded from
above by

m m
> distg, @) (Era;(%), Erai(¥)* <D |Erax—y—v)|?

j=1 j=1

m
Y X rrix—y — V)|

1i=3

E'qs

J

1
SiTa Z Irri(x—y—v)|?
=1

1
T 1-—a2

which, for v realizing distgn /. (x,y), gives ﬁ - distgn /2 (X, y)? as desired. <

4.4 Contraction of the Embedding

» Lemma 4.9. For any n > 1, lattice L C R", lattice point v/ € L realizing dist(x, L), and
lattice point v € L,

1
e =il = Slv =V
Consequently, if v does not realize dist(x, L), then v # v’ and
1
= vl > 5 (L)

Proof. By definition, ||x —v’|| < ||lx —v||. Then by the triangle inequality, ||v —v'|] <
|lx —v||+ ||x — V|| < 2||x — V||, as desired. <

» Lemma 4.10. For any (q,7)-filtration F given by {0} = Lo C L1 C - C Ly =L, 1/y <
o < 1, and 1 < _] <m, Al(Ef,a,j(E)) = Al(ﬁj/ﬁj—l)-

Proof. We prove the claim by induction on j. When j =m, Er 4 m(L) = Ly/Lim—1, and
thus the claim holds trivially.

Suppose the claim holds for j + 1. Then for j, note that £;/L;_1 € Er o ;(£). Therefore
M (EF,q,;(L£)) is the minimum of A;(£;/L£;_1) and the minimum length of vectors in the
set Ex o (L) \ (L;/L;-1). Since Er o ; = Trj + @EF o j+1, the length of any vector in
Ero;(L)\ (L;/L;-1) is bounded from below by

a X (Er,a,+1(L)) = aAdi(Ljp1/L;)
= oy M(L;/L5-1)
> M(L;/L5-1)

where the equality is the induction assumption and the first inequality uses the second
property in Definition 4.1. Hence A\ (Er o, ;(L)) = M (L;/L;-1), as desired. <

Combining Lemma 4.10 with Lemma 4.4 as well as Definition 4.1, we immediately get
the following corollary.

» Corollary 4.11. For any (q,~)-filtration F given by {0} = Lo C L1 C -+ C Ly, = L with
y>2and 1/y<a<l,

43:9
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1. (L) < qM(Er,ai(L)) foralll <j<m, and
2. )\1(E}"a’j+1(£)) > ’7)\1(E]:’a’j(£)) foralll<j<m.

» Lemma 4.12 (Contraction of the embedding). For any n > 1, lattice £ C R™ with (q,7)-
filtration F of size m satisfying v > 2 and q < v?/32, % < a < 1, and vectors x,y € R",

AN 2 .
Zmln(dlstEf,a_j(Rn/a) (EFa,;(X), EFa;(¥), ¢ M(EF.a;(L))” > cg-distpn 2(x,y)?
=1

(3)
where cg > 0 is an absolute constant.

Proof. For simplicity, we omit the subscript F in the notations 7z j, W_;,j, TF 5 TF s 7r]§_-7j,
Er . ; and Er . in this proof.

Let v € L be a lattice point that realizes distgn,.(x,y). Then distgn,-(Xx,y) =
|lx —y — v||. Hence our goal is equivalently to show that the left-hand side of (3) sat-
isfies

o 2

> min(distp, ;@) (Fayj (%) Fa,j (7)), 6 M (Eaj (£)" 2 e - [lx —y = V| . (4)

j=1

Let j; € {0,1,...,m} be the smallest index satisfying that for all j € {j; + 1,...,m},
E, j(v) realizes distg, (rn/c)(Fa,j(X); Ea,j(y)). Then for all j € {ji +1,...,m},

distp, ;& /c)(Baj (%) Eaj(y)) = [[Eaj(x —y = V)|

()
z|lmix—y =V
Moreover, according to Lemma 2.2 and Corollary 4.11,
I (x =y = VIl < Il (x =y = V)|l < p(L)) < ¢M(Bay(L)) < @ M(Eay(L) . (6)
Combining (5) and (6), the left-hand side of (4) is bounded from below by
Yo lmx =y =P =lr; (x—y = v)|I* . (7)
Jj=j1+1
If it is the case that
1
77, (x =y = I = Slx -y = VI,
then (7) clearly suffices to prove (4). So from now on we assume that
> 2 _ 1 2
73—y~ WIP < lx —y VI
. 1
e, |75 (x—y = v)|* > gl =y =vI*. (®)

In particular, this implies j1 > 0. Then, by definition of j;, E, j, (v) does not realize
distg, ; (/) (Eq.j, (x), Eq,j, (y)), which, by using Lemma 4.9 with lattice E, j, (£), implies

1oy (6~ y =) 2 5 M(Bas, (£)) 9)
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Under assumption (8), it suffices to prove that there exists an index jo € {1,...,m} such
that

. 2
mm(dlstEW_U ®n /L) (Ba,jo (%), Ea,jo (¥)), M (Eaj, (L) >c- ||7r]51 (x—y—v)|?,
or equivalently,
1Bago(x =y = V)| = ¢ |75, (x —y = v)[I* , and (10)
¢* X (Bajo(£) > - |75 (x—y = V)|, (11)

where v’ € £ is a lattice point such that E, ;,(v') realizes distg, ; (rn/c)(Ea,jo(X); Ea,jo(¥));
and c is some absolute constant. Note that, without loss of generality, it can be assumed
that

I35 (x =y = VIl < p(Ljo—1) (12)

(since otherwise, we can use v’ 4 u instead of v/, where u € L, realizes dist(r; (x —y —

V,)a‘cjo—l))'
We choose jg = j1 if

W(Ls 1) < 3 M(Eay (L)

and otherwise jo = j; — 1. By Corollary 4.11 and the condition ¢ < v2/32, we know that

L M (Fa (L)) -

H(Li-2) < 5 - Mi(Bayi (£) < o5

Moreover, as L, /L;,—1 is both a quotient of £;, and a sublattice of E, ;, (£),

—_

:U'(’Ch) > /1'([’]'1/‘6]'1*1) > %)‘1(’6]’1/’6]'1*1) > )‘1<Ea,j1 ('C))

2
(and the last inequality is actually an equality due to Lemma 4.10). Therefore j, satisfies

M (Ea,j, (£)) , and (13)
M (Ea,jy (£)) - (14)

We first prove (11) for this choice of jo:

q2 >‘1(E047j0 (‘C)) > q:ul(ﬂjo)
> 1 M (Ba ()
1
> 1 M(‘le)
1
2 ZH%‘%(X*Y*V)H ;

where the first and third inequalities use Corollary 4.11, the second inequality follows from
(14), and the last inequality uses Lemma 2.2.
We next prove (10) for this choice of jo. We begin with showing that

(V) =75 (v), (15)

J2 J2
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where j, = min(j; + 1, m). Suppose towards contradiction that ; ( " #£ 7r]2( v) (implying
J2 < m, and thus jo = j; + 1). Then, by definition, ||Eq j,+2(v — V)| > Ai(Eq ji4+2(L)).
Hence
< 1
75 (x =y =) > Slx—y = vl
1
> By —y — V)]
1
> 11Ba (v =Vl

Lo >
> 217 2 (Fago (v = V)

aJr1—Jo+2 ,
= B sy V)
aJ1—Jo+2
22—y M (Ea,ji+2(L))

where the first inequality follows from (8) and the third inequality uses Lemma 4.9 with
lattice Ey j,(£). On the other hand, we know that ||7T]S1 (x—y —v)| < p(L,,) according to
Lemma 2.2. Then we have

QJ1—Jo+2 q

1 MBagin(L) < plli) < 75 M (Fajira (L)) (16)
where the last inequality uses Corollary 4.11. Since a/1=9%0%2 > o3 > 1/8, (16) contradicts
the condition ¢ < v2/32.

Based on (15), we continue to prove (10) with the following observation:

[ Bajo(x =y = V)| = Za i (x —y = V)P
i=Jo
J2
> o207 3 fmi(x —y = V)|
i=jo

= 202 =y = V| = w55 (x =y = V) = 173, (x =y = V) )
> o207 (o —y = [P = iy 1) = 75, =y =)D, (17)

where the last inequality uses the following three facts: (i) as v realizes distgn /. (X,y),
[x —y = V|| > lx =y — vl|; (ii) the term |7 (x —y — v')| is bounded from above by (12);

and (iii) 77 (x —y = V) =7, (x —y — V) due to (15). Moreover, according to (13) and (9),
1
M(‘CJO*l) < 4 )‘1(E0¢’j1 (‘C))

1
< B (x—y V)]
1
< Loyl
and according to (8),
|75, (x =y = v)II* < |77, (x =y = V)|

1
<Slx—y v
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Hence (17) is further bounded from below by

1 1 4

2(j2*j0)( ,,,,) v — 2>Oé7 _ v —v]?
@203 (1% = -y —vl? 2 & x—y —v]
o <
> s -y VI
This completes the proof of (10), and the proof of the lemma. <

4.5 Summary of Embedding into Tori

By Lemma 4.3, for any lattice £, there exists an (n+/n,n)-filtration?> F of £. Applying
Lemmas 4.8 and 4.12 to the embedding Er , with o = 1/2, we have the following.

» Lemma 4.13. For any sufficiently large n > 1 and lattice L C R"™, there exists m > 1 and
embedding Fr = (Fra,...,Fcm) such that each Fr ; maps the torus R™/L to some other
torus, and Fr satisfies

m

> distr, [ @e /o) (Fej (%), Fej())? < cp - distge2(x,y)? , and
j=1

Zmin(diSth,j(R”/[ﬁ)(Fﬁ,j(x)>FL,j(Y))vp(n) /\1(Fa,j(/3)))2 > cpy - distrn 2 (x,y)?

j=1

where cg,, and cg are positive absolute constants and p(n) is a fized polynomial.

5 Putting it All Together

» Theorem 1.1. For any lattice L C R™ there exists a metric embedding of R™/L into
Hilbert space with distortion O(y/nlogn).

Proof. It suffices to show the embedding for sufficiently large n (by, say, using the embedding
from [3] for small n). Consider the composition

(k) (k)
(HFM(L) o Fpa... HY o FLM) ,

where (Fz1,...,Fzm) is the embedding provided by Lemma 4.13. Let k = [logy p(n)] + 1
(where p(n) is the fixed polynomial in Lemma 4.13). By Lemma 3.6 and Lemma 4.13, noting
that the modified contraction properties in both match, it follows immediately that the
composed embedding has distortion at most

Tkn - cg
b
CH ' CE,l

where cq, ¢g, and cg, are all absolute constants. Note that k = ©(logn). Hence the
distortion of the composed embedding is O(y/nlogn). <

2 This choice of filtration actually only shows the Lemma 4.13 for sufficiently large n. Choosing a
(32n+/n, 32n)-filtration gives us the lemma for all n > 1.
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