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Abstract
We show that for any n-dimensional lattice L ⊆ Rn, the torus Rn/L can be embedded into Hilbert
space with O(

√
n log n) distortion. This improves the previously best known upper bound of

O(n
√

log n) shown by Haviv and Regev (APPROX 2010, J. Topol. Anal. 2013) and approaches the
lower bound of Ω(

√
n) due to Khot and Naor (FOCS 2005, Math. Ann. 2006).
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1 Introduction

Low distortion embeddings play an important role in many approximation algorithms,
allowing one to map points in a “difficult” metric space into another simpler metric space
(such as Hilbert space), in a way that approximately preserves distances. See the survey by
Indyk [2] for many examples of algorithmic applications. One interesting family of difficult
metric spaces is given by flat tori. These are defined as quotients of Euclidean space by a
lattice, and play an important role in lattice problems and algorithms.

In more detail, an n-dimensional lattice L ⊆ Rn is defined as the set of all integer linear
combinations of some n linearly independent vectors in Rn. The torus Rn/L is the quotient
space obtained by identifying points in Rn with each other if their difference is a lattice
vector. The torus has a natural metric associated to it; namely, the distance between any
two elements of the torus is defined as the minimum distance between any representative of
these elements. So for instance, in the one-dimensional case R/Z, the distance between 0.1
and 0.9 is 0.2.

Khot and Naor [3] considered the question of how well one can embed flat tori Rn/L
into Hilbert space. They proved that for any L and any embedding of Rn/L into Hilbert
space, the distortion must be at least Ω(λ1(L∗)

µ(L∗)
√

n). Here, L∗ is the dual lattice of L and
λ1(L) and µ(L) represent the length of the shortest nonzero vector and the covering radius
of L respectively. It is known by a result of Conway and Thompson (see [4, Page 46]) that,
for large enough n, there exist lattices L where λ1(L) = µ(L). Thus the lower bound of
Khot and Naor shows that there are n-dimensional lattices whose torus requires distortion
Ω(

√
n) in any embedding into Hilbert space. In the same paper, they also present an

embedding that achieves a distortion of O(n3n/2) for any lattice L. While the distortion of
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43:2 Nearly Optimal Embeddings of Flat Tori

their embedding might be better than this upper bound, it is known that for some lattices it
is super-polynomial [1, Section 7].

In [1] an O(n
√

log n) distortion metric embedding is constructed, significantly reducing
the gap between the upper and lower bounds. They also provide an alternative upper bound
of O(

√︁
n log(µ(L)/ λ1(L)). For lattices with good geometric structure (specifically, where

the ratio µ(L)/ λ1(L) is only polynomial) this gives an O(
√

n log n) upper bound. However,
in general, the ratio µ(L)/ λ1(L) can be arbitrarily big, in which case this alternative bound
is not useful.

Our result is a nearly tight embedding of flat tori, essentially resolving the question of
Khot and Naor up to a

√
log n factor.

▶ Theorem 1.1. For any lattice L ⊆ Rn there exists a metric embedding of Rn/L into
Hilbert space with distortion O(

√
n log n).

1.1 Proof Overview
Our starting point is the embedding by Haviv and Regev [1], which is based on Gaussian
measures. Their embedding achieves a distortion of O(

√
n log n) assuming that the lattice

L has poly(n) “aspect ratio,” i.e., the ratio between µ(L) (the diameter of the torus, or
equivalently, the covering radius of the lattice) and λ1(L) (the length of the shortest nonzero
vector in the lattice) is polynomial in the dimension n. Their embedding can also be applied
to arbitrary lattices; the only issue is that it “saturates” at distance poly(n)λ1(L) — points
at greater distance will be contracted by the embedding. See Section 3 for the details.

A natural way to address this issue is to first partition the lattice into scales, and to
then embed each scale separately. Specifically, one can define a filtration of sublattices
{0} = L0 ⊂ L1 ⊂ · · · ⊂ Lm = L with each Lj capturing a different scale of the lattice. Then,
for each j = 1, . . . , m, we project the torus on the space orthogonal to Lj−1, and embed
each projection in Hilbert space separately. Our embedding is then the direct sum of the m

individual embeddings.
This approach does work, and is used as part of the construction in [1]. The difficulty is

that it introduces an additional
√

m loss in the distortion, which at worst can be O(
√

n) and
is the reason they only achieved an overall distortion of O(n

√
log n). To see where this loss

comes from, consider a short vector inside the span of L1; this vector only contributes to
the first embedding (because it becomes zero in the other m − 1 projections). On the other
hand, a short vector orthogonal to Lm−1 gets accounted for in all m projections, leading to
an expansion of

√
m (the square root due to the L2 norm in the target Hilbert space).

In order to avoid this loss and achieve a O(
√

n log n) distortion, it is tempting to decompose
space into orthogonal subspaces (and not nested subspaces as in the above). So instead of
projecting on the subspace orthogonal to Lj−1, we would like to only project on the subspace
of Lj that is orthogonal to Lj−1 (i.e., on the span of Lj/Lj−1). This, however, is impossible;
projecting a lattice in such a way in general gives a dense set, and not a lattice.1

Our novel contribution is to replace this “harsh” two-sided projection (which is in general
impossible) by a more gentle “compressed projection.” Namely, we first project orthogonally
to Lj−1, and then scale down the subspace orthogonal to Lj . Returning to the example above,
a short vector orthogonal to Lm−1 is still accounted for in all m “compressed projections,”
but the scaling factors are such that its contributions form a geometric series, so the overall

1 To see why, consider the two-dimensional lattice generated by (1, 0) and (π, 1); its projection on the
first coordinate is a dense set.
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expansion is only a constant instead of
√

m. The technical effort is in showing that these
compressions do not distort the geometry by too much; see Section 4 for details. We
remark that this “compressed projection” idea might find applications in other cases where
decomposing a lattice into scales is desirable.

2 Preliminaries

2.1 Embeddings and Distortion
A metric space is a tuple (M, distM) where M is a set and distM : M × M → R is a
function such that the following hold for all x, y, z ∈ M:

distM(x, y) ≥ 0, and the equality holds if and only if x = y,
distM(x, y) = distM(y, x),
distM(x, y) + distM(y, z) ≥ distM(x, z).

For simplicity, we often write metric space M for (M, distM). We also use dist without the
subscript to represent the standard Euclidean metric over Rn (for some n that is clear from
the context). A (metric) embedding is a mapping from one metric space to another.

▶ Definition 2.1. Suppose F : M1 → M2 is an embedding of metric space M1 into M2.
The distortion of F is defined by

inf
{︂cu

cl
: ∀x, y ∈ M1, cl · distM1(x, y) ≤ distM2(F (x), F (y)) ≤ cu · distM1(x, y)

}︂
.

2.2 Lattices
We now recall some standard definitions and notations regarding lattices. A (full-rank) lattice
L ⊆ Rn is the set of all integer linear combinations of n linearly independent vectors. This
set of vectors is called a basis of the lattice. Equivalently, a lattice is a discrete subgroup of
the additive group Rn. The dual lattice L∗ of L is defined as the set of all vectors y ∈ span(L)
such that ⟨x, y⟩ is an integer for all vectors x ∈ L. A sublattice L′ ⊆ L is an additive
subgroup of L. We say that a sublattice L′ ⊆ L is primitive if L′ = L ∩ span(L′). All
sublattices in this paper will be primitive. For a lattice L and a primitive sublattice L′ ⊆ L,
the quotient lattice L/L′ is defined as the projection of L onto the subspace orthogonal to
span(L′). Sublattices and quotient lattices can be thought of as full rank while sitting inside
some lower-dimensional space. For lattice L ⊆ Rn, the torus Rn/L is naturally associated
with the quotient metric, defined as

distRn/L(x, y) = dist(x − y, L) = min
v∈L

dist(x − y, v) .

The length of the shortest vector of a lattice L, denoted by λ1(L), is defined as the
minimum length of a non-zero vector in L. Note that here and elsewhere, length refers to
the Euclidean norm. The covering radius of a lattice L, denoted by µ(L), is defined as the
maximum (Euclidean) distance from any vector in span(L) to L. Equivalently, as its name
suggests, it is the minimum radius such that balls of that radius centered at all lattice points
cover the entire span(L).

We end with two simple technical lemmas, where we denote by πV the orthogonal
projection onto subspace V .

▶ Lemma 2.2. For any n ≥ 1, lattice L ⊆ Rn, vectors x ∈ Rn, v ∈ L such that ∥x − v∥ =
dist(x, L), and sublattice L′ ⊆ L,

∥πspan(L′)(x − v)∥ ≤ µ(L′) .

APPROX/RANDOM 2020



43:4 Nearly Optimal Embeddings of Flat Tori

Proof. Suppose towards contradiction that ∥πspan(L′)(x − v)∥ > µ(L′). Then consider the
lattice point u ∈ L′ that is a closest lattice point to πspan(L′)(x − v) in L′. By definition
∥πspan(L′)(x − v) − u∥ ≤ µ(L′). Observe that

∥x − (v + u)∥2 = ∥πspan(L′)(x − v − u)∥2 + ∥πspan(L/L′)(x − v − u)∥2

= ∥πspan(L′)(x − v) − u∥2 + ∥πspan(L/L′)(x − v)∥2

< ∥πspan(L′)(x − v)∥2 + ∥πspan(L/L′)(x − v)∥2

= ∥x − v∥2 ,

which contradicts with the fact that ∥x − v∥ = dist(x, L) = minv′∈L ∥x − v′∥. ◀

▶ Lemma 2.3. For any lattice L and sublattice L′ ⊆ L,

µ(L)2 ≤ µ(L′)2 + µ(L/L′)2 .

Proof. For any x ∈ span(L), let v ∈ L be a lattice point such that

∥πspan(L/L′)(x − v)∥ = dist(πspan(L/L′)(x), L/L′) .

Without loss of generality it can be assumed that ∥πspan(L′)(x − v)∥ ≤ µ(L′) (since otherwise,
we can use v + u instead of v, where u is a closest lattice point to πspan(L′)(x − v) in L′).
Then

dist(x, L)2 ≤ ∥x − v∥2

= ∥πspan(L′)(x − v)∥2 + ∥πspan(L/L′)(x − v)∥2

≤ µ(L′)2 + µ(L/L′)2 .

The bound holds for any vector x. Hence µ(L)2 ≤ µ(L′)2 + µ(L/L′)2, as desired. ◀

3 Embedding Tori into Hilbert Space

The goal of this section is to prove Lemma 3.6, which summarizes the properties of the
Gaussian embedding from [1], including a modified contraction property which we make
explicit (see left-hand side of (1)). The proof closely follows that of [1, Theorem 1.4]. We
start with some preliminary definitions and results from [1].

For s > 0 and x ∈ Rn we define ρs(x) = exp(−π∥x/s∥2). For any discrete set A, its
Gaussian mass ρs(A) is defined as

∑︁
x∈A ρs(x). The smoothing parameter of a lattice L is

defined with respect to an ε > 0 and is given by

ηε(L) = min{s : ρ1/s(L∗) ≤ 1 + ε} .

▶ Lemma 3.1 ([1, Lemma 2.5]). For any n ≥ 1 and lattice L ⊆ Rn, ηε(L∗) ≤ 2
√

n
λ1(L) where

ε = 2−10n.

Consider the function

hL,s(x) = 1 − ρs(L − x)
ρs(L) .

Below we list some basic properties of this function, which ideally we would like to be
proportional to the squared distance from the lattice. This is indeed the case, assuming the
distance is not too large compared to s, and that s itself is small compared to the geometry
of the lattice. The upper bound is shown in Item 1, and the lower bound is established in
Items 2 and 3 (which give very similar bounds). When the distance is sufficiently larger than
s, the function reaches saturation, as shown in Item 4.
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▶ Lemma 3.2 ([1, Lemmas 3.1 and 3.2]). For any n ≥ 1, lattice L ⊆ Rn, s > 0, and vector
x ∈ Rn,
1. s2 · hL,s(x) ≤ π · dist(x, L)2,
2. s2 · hL,s(x) ≥ c · dist(x, L)2 if s ≤ 1

2 ηε(L∗) for some 0 < ε ≤ 1
1000 and dist(x, L) ≤ s√

2 ,
where c is an absolute constant,

3. hL,s(x) ≥ 1 − e−π dist(x,L)2/s2 − 2−11n if λ1(L) ≥ 4
√

n · s,
4. hL,s(x) ≥ 1 − 2−11n if dist(x, L) > 2

√
n · s.

▶ Definition 3.3 ([1, Section 5]). For lattice L ⊆ Rn and s > 0, the embedding HL,s :
Rn/L → L2(Rn/L) maps vector x ∈ Rn to the function HL,s(x) ∈ L2(Rn/L) given by

HL,s(x)(y) = s√︁
2ρs(L)

(︃
2
s

)︃n/2
ρ s√

2
(L + y − x) .

▶ Lemma 3.4 ([1, Proposition 5.1]). For any n ≥ 1, lattice L ⊆ Rn, s > 0, and vectors
x, y ∈ Rn, distL2(Rn/L)(HL,s(x), HL,s(y))2 = s2 · hL,s(x − y).

▶ Definition 3.5 ([1, Section 5.1]). For lattice L ⊆ Rn, s > 0, and k ≥ 1, the embedding H
(k)
L,s

is defined by H
(k)
L,s = (HL,s1 , . . . , HL,sk

) where si = 2i−1s. We often take s = λ1(L)/(4
√

n),
in which case we omit the subscript s and simply write H

(k)
L .

▶ Lemma 3.6. For any n ≥ 1, lattice L ⊆ Rn, k ≥ 1, and vectors x, y ∈ Rn,
cH

n
· min(distRn/L(x, y), 2k−1 λ1(L))2 ≤ distL2(Rn/L)k (H(k)

L (x), H
(k)
L (y))2 ≤ πk · distRn/L(x, y)2 ,

(1)

where cH > 0 is an absolute constant.

Proof. By Lemma 3.4, and recalling the notation si = 2i−1s where s = λ1(L)
4

√
n

,

distL2(Rn/L)k (H(k)
L (x), H

(k)
L (y))2 =

k∑︂
i=1

distL2(Rn/L)(HL,si(x), HL,si(y))2

=
k∑︂

i=1
s2

i · hL,si
(x − y) .

Noting that distRn/L(x, y) = dist(x − y, L), the upper bound in (1) follows from Item 1 in
Lemma 3.2:

k∑︂
i=1

s2
i · hL,si

(x − y) ≤
k∑︂

i=1
π · dist(x − y, L)2 = πk · dist(x − y, L)2 .

For the lower bound in (1), we will show that for any x, y ∈ Rn, there exists i ∈ {1, . . . , k}
such that

s2
i · hL,si

(x − y) ≥ cH

n
· min(dist(x − y, L), 2k−1 λ1(L))2 . (2)

We consider three cases.
1. dist(x − y, L) ≤ λ1(L)

4
√

2n
= s√

2 . Note that according to Lemma 3.1, s ≤ 1
2 ηε(L∗) for some

0 < ε ≤ 1
1000 . Then by Item 2 of Lemma 3.2,

s2 · hL,s(x − y) ≥ c · dist(x − y, L)2 ≥ c

n
· dist(x − y, L)2 ,

which proves (2) with i = 1.

APPROX/RANDOM 2020



43:6 Nearly Optimal Embeddings of Flat Tori

2. s√
2 < dist(x − y, L) ≤ λ1(L) = 4

√
n · s. By Item 3 of Lemma 3.2,

s2 · hL,s(x − y) ≥ s2 · (1 − e−π/2 − 2−11n)

= 1 − e−π/2 − 2−11n

16n
· λ1(L)2

≥ 1 − e−π/2 − 2−11n

16n
· dist(x − y, L)2 ,

which again proves (2) with i = 1.
3. dist(x − y, L) > 4

√
n · s. Let j ∈ {2, . . . , k} be the largest index such that 2

√
n · sj <

dist(x − y, L). Notice that if j < k then 4
√

n · sj = 2
√

n · sj+1 ≥ dist(x − y, L), and that
if j = k, then 4

√
n · sj = 2k−1 λ1(L). Then by Item 4 of Lemma 3.2,

s2
j · hL,sj

(x − y) ≥ s2
j · (1 − 2−11n)

= 1 − 2−11n

16n
· (4

√
n · sj)2

≥ 1 − 2−11n

16n
· min(dist(x − y, L), 2k−1 λ1(L))2 ,

which proves (2) with i = j. ◀

4 Embedding into Tori

The goal of this section is to prove Lemma 4.13, which shows that there exists an embedding
from an arbitrary torus into a tuple of tori with good geometry. The embedding is constructed
based on “good filtrations,” which we define and instantiate in Section 4.1. The definition
of the embedding is given in Section 4.2, and its expansion and contraction properties are
shown in Section 4.3 and Section 4.4 respectively. The contraction property matches the
modified notion of contraction used in Lemma 3.6.

4.1 Good Filtrations
In this section we define the notion of a (q, γ)-filtration (Definition 4.1) and show how to
construct a good one for every lattice (Lemma 4.3). We also include a small technical lemma
that will be useful later (Lemma 4.4).

A filtration of a lattice L is a chain of sublattices {0} = L0 ⊂ L1 ⊂ · · · ⊂ Lm = L. We
call m the size of the filtration.

▶ Definition 4.1. For q ≥ 1, γ > 1, we say that a filtration {0} = L0 ⊂ L1 ⊂ · · · ⊂ Lm = L
is a (q, γ)-filtration if it satisfies both
1. µ(Lj/Lj−1) ≤ q λ1(Lj/Lj−1)/2 for all 1 ≤ j ≤ m, and
2. λ1(Lj+1/Lj) ≥ γ λ1(Lj/Lj−1) for all 1 ≤ j < m.

Our construction of good filtrations is based on Korkine-Zolotarev bases, defined next.
Recall first that for a sequence of vectors (b1, . . . , bn), its Gram-Schmidt orthogonalization
(b′

1, . . . , b′
n) is defined by

b′
i = bi −

i−1∑︂
j=1

µi,jb′
j , where µi,j =

⟨bi, b′
j⟩

⟨b′
j , b′

j⟩
,

i.e., b′
i is the projection of bi on the space orthogonal to span(b1, . . . , bi−1).
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▶ Definition 4.2. A basis (b1, . . . , bn) for a lattice L ⊆ Rn is called a Korkine-Zolotarev
basis if

b′
i is a shortest vector of L/Li−1 for all 1 ≤ i ≤ n, and

|µi,j | ≤ 1/2 for all 1 ≤ j < i ≤ n,
where (b′

1, . . . , b′
n) is the Gram-Schmidt orthogonalization of (b1, . . . , bn), µi,j are the corre-

sponding coefficients, and Li is the lattice generated by (b1, . . . , bi) (with L0 = {0}).

It is easy to prove that a Korkine-Zolotarev basis exists for any lattice. We remark that
the second property above will not be used in this paper.

▶ Lemma 4.3. For any n ≥ 1, lattice L ⊆ Rn, and γ > 1, there exists a (γ
√

n, γ)-filtration
of L.

Proof. Let (b1, . . . , bn) be a Korkine-Zolotarev basis of L. Let (b′
1, . . . , b′

n) be its Gram-
Schmidt orthogonalization, and consider the filtration {0} = L0 ⊂ L1 ⊂ · · · ⊂ Ln = L where
Li is the lattice generated by (b1, . . . , bi). From Definition 4.2 we know that λ1(L/Li−1) =
∥b′

i∥ = λ1(Lk/Li−1), for all 1 ≤ i ≤ k ≤ n. Construct a coarsening of this filtration,
{0} = Li0 ⊂ Li1 ⊂ · · · ⊂ Lim

= L, as follows. Let i0 = 0 and for j ≥ 1, ij ∈ {ij−1 +1, . . . , n}
be the largest index such that ∥b′

k∥ ≤ γ∥b′
ij−1+1∥ for all k ∈ {ij−1 + 1, . . . , ij}. Finally, stop

when im = n. We are going to show that this coarser filtration is a (γ
√

n, γ)-filtration.
We observe that for all 1 ≤ j ≤ m,

λ1(Lij
/Lij−1) = ∥b′

ij−1+1∥ .

Then, by construction of the coarsening, for all 1 ≤ j < m,

λ1(Lij+1/Lij
) = ∥b′

ij+1∥ > γ∥b′
ij−1+1∥ = γ λ1(Lij

/Lij−1) .

This proves the second property of a (γ
√

n, γ)-filtration. Moreover,

µ(Lij /Lij−1)2 ≤
ij∑︂

k=ij−1+1
µ(Lk/Lk−1)2

=
ij∑︂

k=ij−1+1
∥b′

k∥2/4

≤
ij∑︂

k=ij−1+1
γ2∥b′

ij−1+1∥2/4

≤ γ2n · λ1(Lij /Lij−1)2/4 ,

where the first inequality is by Lemma 2.3 and the second inequality is by construction of
the coarsening. This proves the first property of a (γ

√
n, γ)-filtration. ◀

We end by proving a small property of (q, γ)-filtrations.

▶ Lemma 4.4. For any (q, γ)-filtration {0} = L0 ⊂ L1 ⊂ · · · ⊂ Lm = L and 1 ≤ j ≤ m,

µ(Lj) ≤ q√︁
1 − 1/γ2

· λ1(Lj/Lj−1)/2 .

Consequently, if γ ≥ 2, then µ(Lj) ≤ q λ1(Lj/Lj−1).

APPROX/RANDOM 2020



43:8 Nearly Optimal Embeddings of Flat Tori

Proof. The inequality can be proved as follows:

µ2(Lj) ≤
j∑︂

i=1
µ2(Li/Li−1)

≤
j∑︂

i=1
q2 λ2

1(Li/Li−1)/4

≤
j∑︂

i=1

q2

γ2(j−i) · λ2
1(Lj/Lj−1)/4

≤ q2

1 − 1/γ2 · λ2
1(Lj/Lj−1)/4 ,

where the first inequality uses Lemma 2.3, the second inequality uses the first property in
Definition 4.1, and the third inequality uses the second property in Definition 4.1. ◀

4.2 The Embedding
Let F be a filtration {0} = L0 ⊂ L1 ⊂ · · · ⊂ Lm = L of a lattice L ⊆ Rn. The filtration nat-
urally induces an orthogonal decomposition of Rn into m subspaces, namely, span(Lj/Lj−1)
for j = 1, . . . , m. We use πF,j to denote πspan(Lj/Lj−1), the projection on the j-th subspace.
We will similarly use π≥

F,j , π<
F,j , π>

F,j , and π≤
F,j to denote projections on the span of prefixes

and suffixes of this decomposition. Specifically, for 1 ≤ j ≤ m we have π≥
F,j = πspan(L/Lj−1),

π<
F,j = πspan(Lj−1), π>

F,j = πspan(L/Lj), and π≤
F,j = πspan(Lj).

▶ Definition 4.5. For filtration F of size m, 0 < α < 1, and 1 ≤ j ≤ m, the embedding
EF,α,j is defined by

EF,α,j(x) =
m∑︂

i=j

αi−jπF,i(x) .

Note that since EF,α,j is linear, for any lattice L ⊆ Rn and vector x ∈ Rn, EF,α,j(x+L) =
EF,α,j(x) + EF,α,j(L), and thus EF,α,j is a well-defined embedding from the torus Rn/L to
the torus EF,α,j(Rn/L).

▶ Definition 4.6. For a filtration F of size m and 0 < α < 1, the embedding EF,α is defined
by EF,α = (EF,α,1, . . . , EF,α,m) with the metric being ℓ2 of the tori metrics.

4.3 Expansion of the Embedding
▶ Definition 4.7 (Realization of distance in torus). For any n ≥ 1, lattice L ⊆ Rn, and vector
x ∈ Rn, since dist(x, L) = minv∈L ∥x − v∥, there always exists v ∈ L such that dist(x, L) =
∥x − v∥. We say such minimizer v realizes the distance dist(x, L). Similarly, for vectors
x, y ∈ Rn, we say v realizes the distance distRn/L(x, y) if distRn/L(x, y) = ∥x − y − v∥.

▶ Lemma 4.8 (Expansion of the embedding). For any n ≥ 1, lattice L ⊆ Rn with filtration
F , 0 < α < 1, and vectors x, y ∈ Rn,

distEF,α(Rn/L)(EF,α(x), EF,α(y))2 :=
m∑︂

j=1
distEF,α,j(Rn/L)(EF,α,j(x), EF,α,j(y))2

≤ 1
1 − α2 · distRn/L(x, y)2 .
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Proof. Let m be the size of F . For all v ∈ L, the embedded distance can be bounded from
above by

m∑︂
j=1

distEF,α,j(Rn/L)(EF,α,j(x), EF,α,j(y))2 ≤
m∑︂

j=1
∥EF,α,j(x − y − v)∥2

=
m∑︂

j=1

m∑︂
i=j

α2(i−j)∥πF,i(x − y − v)∥2

≤ 1
1 − α2 ·

m∑︂
i=1

∥πF,i(x − y − v)∥2

= 1
1 − α2 · ∥x − y − v∥2 ,

which, for v realizing distRn/L(x, y), gives 1
1−α2 · distRn/L(x, y)2 as desired. ◀

4.4 Contraction of the Embedding
▶ Lemma 4.9. For any n ≥ 1, lattice L ⊆ Rn, lattice point v′ ∈ L realizing dist(x, L), and
lattice point v ∈ L,

∥x − v∥ ≥ 1
2∥v − v′∥ .

Consequently, if v does not realize dist(x, L), then v ̸= v′ and

∥x − v∥ ≥ 1
2 λ1(L) .

Proof. By definition, ∥x − v′∥ ≤ ∥x − v∥. Then by the triangle inequality, ∥v − v′∥ ≤
∥x − v∥ + ∥x − v′∥ ≤ 2∥x − v∥, as desired. ◀

▶ Lemma 4.10. For any (q, γ)-filtration F given by {0} = L0 ⊂ L1 ⊂ · · · ⊂ Lm = L, 1/γ ≤
α < 1, and 1 ≤ j ≤ m, λ1(EF,α,j(L)) = λ1(Lj/Lj−1).

Proof. We prove the claim by induction on j. When j = m, EF,α,m(L) = Lm/Lm−1, and
thus the claim holds trivially.

Suppose the claim holds for j + 1. Then for j, note that Lj/Lj−1 ⊆ EF,α,j(L). Therefore
λ1(EF,α,j(L)) is the minimum of λ1(Lj/Lj−1) and the minimum length of vectors in the
set EF,α,j(L) \ (Lj/Lj−1). Since EF,α,j = πF,j + αEF,α,j+1, the length of any vector in
EF,α,j(L) \ (Lj/Lj−1) is bounded from below by

α λ1(EF,α,j+1(L)) = α λ1(Lj+1/Lj)
≥ αγ λ1(Lj/Lj−1)
≥ λ1(Lj/Lj−1) ,

where the equality is the induction assumption and the first inequality uses the second
property in Definition 4.1. Hence λ1(EF,α,j(L)) = λ1(Lj/Lj−1), as desired. ◀

Combining Lemma 4.10 with Lemma 4.4 as well as Definition 4.1, we immediately get
the following corollary.

▶ Corollary 4.11. For any (q, γ)-filtration F given by {0} = L0 ⊂ L1 ⊂ · · · ⊂ Lm = L with
γ ≥ 2 and 1/γ ≤ α < 1,

APPROX/RANDOM 2020
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1. µ(Lj) ≤ q λ1(EF,α,j(L)) for all 1 ≤ j ≤ m, and
2. λ1(EF,α,j+1(L)) ≥ γ λ1(EF,α,j(L)) for all 1 ≤ j < m.

▶ Lemma 4.12 (Contraction of the embedding). For any n ≥ 1, lattice L ⊆ Rn with (q, γ)-
filtration F of size m satisfying γ ≥ 2 and q ≤ γ2/32, 1

2 ≤ α < 1, and vectors x, y ∈ Rn,

m∑︂
j=1

min
(︁
distEF,α,j(Rn/L)(EF,α,j(x), EF,α,j(y)), q2 λ1(EF,α,j(L))

)︁2 ≥ cE · distRn/L(x, y)2 ,

(3)

where cE > 0 is an absolute constant.

Proof. For simplicity, we omit the subscript F in the notations πF,j , π≥
F,j , π<

F,j , π>
F,j , π≤

F,j ,
EF,α,j and EF,α in this proof.

Let v ∈ L be a lattice point that realizes distRn/L(x, y). Then distRn/L(x, y) =
∥x − y − v∥. Hence our goal is equivalently to show that the left-hand side of (3) sat-
isfies

m∑︂
j=1

min
(︁
distEα,j(Rn/L)(Eα,j(x), Eα,j(y)), q2 λ1(Eα,j(L))

)︁2 ≥ cE · ∥x − y − v∥2 . (4)

Let j1 ∈ {0, 1, . . . , m} be the smallest index satisfying that for all j ∈ {j1 + 1, . . . , m},
Eα,j(v) realizes distEα,j(Rn/L)(Eα,j(x), Eα,j(y)). Then for all j ∈ {j1 + 1, . . . , m},

distEα,j(Rn/L)(Eα,j(x), Eα,j(y)) = ∥Eα,j(x − y − v)∥
≥ ∥πj(x − y − v)∥ .

(5)

Moreover, according to Lemma 2.2 and Corollary 4.11,

∥πj(x − y − v)∥ ≤ ∥π≤
j (x − y − v)∥ ≤ µ(Lj) ≤ q λ1(Eα,j(L)) ≤ q2 λ1(Eα,j(L)) . (6)

Combining (5) and (6), the left-hand side of (4) is bounded from below by
m∑︂

j=j1+1
∥πj(x − y − v)∥2 = ∥π>

j1
(x − y − v)∥2 . (7)

If it is the case that

∥π>
j1

(x − y − v)∥2 ≥ 1
2∥x − y − v∥2 ,

then (7) clearly suffices to prove (4). So from now on we assume that

∥π>
j1

(x − y − v)∥2 <
1
2∥x − y − v∥2 ,

i.e., ∥π≤
j1

(x − y − v)∥2 >
1
2∥x − y − v∥2 . (8)

In particular, this implies j1 > 0. Then, by definition of j1, Eα,j1(v) does not realize
distEα,j1 (Rn/L)(Eα,j1(x), Eα,j1(y)), which, by using Lemma 4.9 with lattice Eα,j1(L), implies

∥Eα,j1(x − y − v)∥ ≥ 1
2 λ1(Eα,j1(L)) . (9)
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Under assumption (8), it suffices to prove that there exists an index j0 ∈ {1, . . . , m} such
that

min
(︁
distEα,j0 (Rn/L)(Eα,j0(x), Eα,j0(y)), q2 λ1(Eα,j0(L))

)︁2 ≥ c · ∥π≤
j1

(x − y − v)∥2 ,

or equivalently,

∥Eα,j0(x − y − v′)∥2 ≥ c · ∥π≤
j1

(x − y − v)∥2 , and (10)

q4 λ2
1(Eα,j0(L)) ≥ c · ∥π≤

j1
(x − y − v)∥2 , (11)

where v′ ∈ L is a lattice point such that Eα,j0(v′) realizes distEα,j0 (Rn/L)(Eα,j0(x), Eα,j0(y)),
and c is some absolute constant. Note that, without loss of generality, it can be assumed
that

∥π<
j0

(x − y − v′)∥ ≤ µ(Lj0−1) (12)

(since otherwise, we can use v′ + u instead of v′, where u ∈ Lj0−1 realizes dist(π<
j0

(x − y −
v′), Lj0−1)).

We choose j0 = j1 if

µ(Lj1−1) ≤ 1
4 λ1(Eα,j1(L)) ,

and otherwise j0 = j1 − 1. By Corollary 4.11 and the condition q ≤ γ2/32, we know that

µ(Lj1−2) ≤ q

γ2 · λ1(Eα,j1(L)) ≤ 1
32 λ1(Eα,j1(L)) .

Moreover, as Lj1/Lj1−1 is both a quotient of Lj1 and a sublattice of Eα,j1(L),

µ(Lj1) ≥ µ(Lj1/Lj1−1) ≥ 1
2 λ1(Lj1/Lj1−1) ≥ 1

2 λ1(Eα,j1(L))

(and the last inequality is actually an equality due to Lemma 4.10). Therefore j0 satisfies

µ(Lj0−1) ≤ 1
4 λ1(Eα,j1(L)) , and (13)

µ(Lj0) >
1
4 λ1(Eα,j1(L)) . (14)

We first prove (11) for this choice of j0:

q2 λ1(Eα,j0(L)) ≥ q µ(Lj0)

>
q

4 · λ1(Eα,j1(L))

≥ 1
4 µ(Lj1)

≥ 1
4∥π≤

j1
(x − y − v)∥ ,

where the first and third inequalities use Corollary 4.11, the second inequality follows from
(14), and the last inequality uses Lemma 2.2.

We next prove (10) for this choice of j0. We begin with showing that

π>
j2

(v′) = π>
j2

(v) , (15)
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where j2 = min(j1 + 1, m). Suppose towards contradiction that π>
j2

(v′) ̸= π>
j2

(v) (implying
j2 < m, and thus j2 = j1 + 1). Then, by definition, ∥Eα,j1+2(v − v′)∥ ≥ λ1(Eα,j1+2(L)).
Hence

∥π≤
j1

(x − y − v)∥ >
1
2∥x − y − v∥

≥ 1
2∥Eα,j0(x − y − v)∥

≥ 1
4∥Eα,j0(v − v′)∥

≥ 1
4∥π≥

j1+2(Eα,j0(v − v′))∥

= αj1−j0+2

4 ∥Eα,j1+2(v − v′)∥

≥ αj1−j0+2

4 λ1(Eα,j1+2(L)) ,

where the first inequality follows from (8) and the third inequality uses Lemma 4.9 with
lattice Eα,j0(L). On the other hand, we know that ∥π≤

j1
(x − y − v)∥ ≤ µ(Lj1) according to

Lemma 2.2. Then we have

αj1−j0+2

4 λ1(Eα,j1+2(L)) < µ(Lj1) ≤ q

γ2 λ1(Eα,j1+2(L)) , (16)

where the last inequality uses Corollary 4.11. Since αj1−j0+2 ≥ α3 ≥ 1/8, (16) contradicts
the condition q ≤ γ2/32.

Based on (15), we continue to prove (10) with the following observation:

∥Eα,j0(x − y − v′)∥2 =
m∑︂

i=j0

α2(i−j0)∥πi(x − y − v′)∥2

≥ α2(j2−j0)
j2∑︂

i=j0

∥πi(x − y − v′)∥2

= α2(j2−j0)(∥x − y − v′∥2 − ∥π<
j0

(x − y − v′)∥2 − ∥π>
j2

(x − y − v′)∥2)

≥ α2(j2−j0)(∥x − y − v∥2 − µ2(Lj0−1) − ∥π>
j2

(x − y − v)∥2) , (17)

where the last inequality uses the following three facts: (i) as v realizes distRn/L(x, y),
∥x − y − v′∥ ≥ ∥x − y − v∥; (ii) the term ∥π<

j0
(x − y − v′)∥ is bounded from above by (12);

and (iii) π>
j2

(x − y − v′) = π>
j2

(x − y − v) due to (15). Moreover, according to (13) and (9),

µ(Lj0−1) ≤ 1
4 λ1(Eα,j1(L))

≤ 1
2∥Eα,j1(x − y − v)∥

≤ 1
2∥x − y − v∥ ,

and according to (8),

∥π>
j2

(x − y − v)∥2 ≤ ∥π>
j1

(x − y − v)∥2

<
1
2∥x − y − v∥2 .
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Hence (17) is further bounded from below by

α2(j2−j0)
(︂

1 − 1
4 − 1

2

)︂
∥x − y − v∥2 ≥ α4

4 ∥x − y − v∥2

≥ α4

4 ∥π≤
j1

(x − y − v)∥2 .

This completes the proof of (10), and the proof of the lemma. ◀

4.5 Summary of Embedding into Tori

By Lemma 4.3, for any lattice L, there exists an (n
√

n, n)-filtration2 F of L. Applying
Lemmas 4.8 and 4.12 to the embedding EF,α with α = 1/2, we have the following.

▶ Lemma 4.13. For any sufficiently large n ≥ 1 and lattice L ⊆ Rn, there exists m ≥ 1 and
embedding FL = (FL,1, . . . , FL,m) such that each FL,j maps the torus Rn/L to some other
torus, and FL satisfies

m∑︂
j=1

distFL,j(Rn/L)(FL,j(x), FL,j(y))2 ≤ cE,u · distRn/L(x, y)2 , and

m∑︂
j=1

min
(︁
distFL,j(Rn/L)(FL,j(x), FL,j(y)), p(n) λ1(FL,j(L))

)︁2 ≥ cE,l · distRn/L(x, y)2 ,

where cE,u and cE,l are positive absolute constants and p(n) is a fixed polynomial.

5 Putting it All Together

▶ Theorem 1.1. For any lattice L ⊆ Rn there exists a metric embedding of Rn/L into
Hilbert space with distortion O(

√
n log n).

Proof. It suffices to show the embedding for sufficiently large n (by, say, using the embedding
from [3] for small n). Consider the composition(︂

H
(k)
FL,1(L) ◦ FL,1, . . . , H

(k)
FL,m(L) ◦ FL,m

)︂
,

where (FL,1, . . . , FL,m) is the embedding provided by Lemma 4.13. Let k = ⌈log2 p(n)⌉ + 1
(where p(n) is the fixed polynomial in Lemma 4.13). By Lemma 3.6 and Lemma 4.13, noting
that the modified contraction properties in both match, it follows immediately that the
composed embedding has distortion at most√︄

πkn · cE,u

cH · cE,l
,

where cH , cE,u and cE,l are all absolute constants. Note that k = Θ(log n). Hence the
distortion of the composed embedding is O(

√
n log n). ◀

2 This choice of filtration actually only shows the Lemma 4.13 for sufficiently large n. Choosing a
(32n

√
n, 32n)-filtration gives us the lemma for all n ≥ 1.
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