
 

 

 

 

 

 

Machine Coding with the Institutional Grammar 
 
 
 

 
 

The Institutional Grammar (IG) is used to analyze the syntactic structure of statements             
constituting institutions (e.g., public policy and social norms) that indicate behavioral           
constraints. Significant progress has been made in methodologically developing the IG in recent             
years. Scholars have offered increasingly clear guidelines for IG-based coding, identified unique            
considerations for applying the IG to different types of institutions, and even expanded its              
syntactic scope. However, while validated as a robust institutional analysis approach, the            
resource and time commitment associated with its application has precipitated concerns over            
whether the IG might ever enjoy widespread use. Needed now in the methodological             
development of the IG are reliable and accessible (i.e., open source) approaches that reduce the               
costs associated with its application. We propose an automated approach leveraging           
computational text analysis and natural language processing. We then present results from an             
evaluation in the context of food system regulations.  

 

 

 

 

Keywords​: institutional analysis, institutional analysis and development framework, natural         
language processing, computational linguistics, food policy 

 

 
 
 
 
 
 
 



I. Introduction 
 

In 1995, Sue Crawford and Elinor Ostrom introduced an approach for analyzing the language 

of institutions that govern behavior (e.g., public policies and social norms), called “A Grammar of 

Institutions” (Crawford and Ostrom, 1995). A primary motivation for the Grammar of Institutions, 

referred to hereafter as the Institutional Grammar, was to offer a systematic basis for defining 

different types of institutions that institutional analysts had been investigating in the context of 

laboratory (e.g., game theoretic) and field settings; namely, strategies, norms, and rules (North, 

1990). Crawford and Ostrom argued that institutions of different types have qualitative differences 

that can be discerned through examinations of the language through which they are expressed. 

That is, when strategies, norms, and rules are communicated, either orally or in written form, they 

convey distinct sets of linguistic elements. Based on this observation, Crawford and Ostrom 

constructed the Institutional Grammar around a set of syntactic elements common to institutions, 

with each element conveying a distinct type of behaviorally relevant semantic meaning. ​Strategies​, 
they posit, convey actions, actors associated with those actions, and temporal, spatial, and 

procedural conditions of actions. ​Norms ​, convey all of this information, as well as indicate whether 

actions are required, allowed, or forbidden. ​Rules​, convey all of the same information as norms, 

but also specify incentives for action/inaction. Rooting institutional variation in parameters and 

incentives of action not only provided a basis for differentiating strategies, norms, and rules, it also 

offered a nuanced approach for specific assessments of how institutions are intended to affect 

behavior.  

The IG received little scholarly attention immediately following its introduction, but interest 

in it has burgeoned over the last ten years (see Siddiki et al. (2019) for a meta-review of published 



IG research). Scholars from around the world have applied the IG in a variety of institutional 

settings (Basurto et al., 2010; Feiock et al., 2016; Roditis et al., 2015); demonstrating its utility in 

differentiating types of institutions, as well as for gaining systematic and comprehensive 

understanding of institutional design. They have also demonstrated how the IG can be leveraged to 

operationalize key concepts relating to governance, such as institutional coerciveness and 

institutional change (Siddiki, 2014; Weible and Carter, 2015). Finally, through various 

applications, scholars have showcased the theoretical and methodological versatility of the IG. 

They have shown, for example, that the Institutional Grammar can be effectively paired with 

various concepts, theories, and methods in the study of governance phenomena. The IG has been 

used to operationalize concepts and theories relating to polycentricity (Heikkila and Weible, 2018), 

policy design (Siddiki et al., 2011), policy implementation (Carter et al., 2015), nonprofit 

management (Siddiki & Lupton, 2016), and a host of other domains of study (Clement et al., 

2015). Methodologically, the IG has been coupled with interviews and surveys (Siddiki et al., 

2012), as well as used in the context of computational simulations to understand behavioral 

outcomes linked to policy design (Frantz et al., 2015; Ghorbani and Bravo, 2016). In all, the IG 

has enjoyed a robust revival in the last decade.  

In most of this existing research applying the IG, scholars have used it to study the 

design, and related impacts, of institutions codified in written form; in particular, institutions 

taking the form of public policy (Basurto et al., 2010; Carter et al., 2016; Feiock et al., 2016). This 

line of research was initiated by Basurto et al. (2010), who used the IG to study the design of 

abortion and transportation policies in the U.S. state of Georgia. Importantly, in addition to 

providing the first empirical application of the IG to study public policies, Basurto et al. presented 



the first set of coding guidelines for utilizing the IG for this purpose. Others have added to their 

effort by contributing additional coding guidance (Siddiki et al., 2011; Carter et al., 2015).  

The coding guidance offered by Basurto et al. and others was critical for the 

methodological development of the IG. This coding guidance laid out clear practical steps for 

applying the IG, and in so doing, contributed to greater validity and reliability in IG-based coding 

of formal institutions, such as public policies. Yet other methodological challenges associated with 

applying the IG remain that have yet to be fully resolved. Among the steepest is the significant 

capital investment associated with applying it. With the exception of Heikkila and Weible (2018), 

all published applications of the IG involving the study of public policy rely on fully manual (i.e., 

human) coding of policy text. Manually parsing public policies into individual directives (referred 

to as institutional statements in the IG parlance), and then further classifying the language of these 

directives along the IG’s syntactic elements requires a significant amount of time and resources. 

The implication of this is two-fold. First, it limits the amount of data that analysts can collect. Most 

studies using the IG report analyses of a single policy or a limited number of policies, which 

inherently raises concerns about the generalizability of findings emerging therefrom. A second 

implication is that it inhibits the widespread uptake of the IG; one confronts a steep learning curve 

to understand coding the IG, then must actualize that in parsing individual documents passage by 

passage. 

One way to overcome the resource constraints of applying the IG is to automate the 

coding process. Machine-coding policy texts can vastly reduce the amount of human effort and 

time commitment associated with applying the IG, thus enabling the study of large quantities of 

public policies from which generalizable insights relating to policy design can be derived. Recent 



advancements in computational linguistics, and related natural language processing and machine 

learning techniques, can be effectively leveraged in the effort to automate the IG coding process. 

In this paper, we report evidence of the effectiveness of this approach, and present the findings 

from a pilot study focused on developing an automated approach for coding public policies based 

on the IG using natural language processing. Findings from the pilot study show that: (i) 

automated coding achieves coding accuracy values on individual IG syntactic elements that are 

comparable to those achieved through manual coding; (ii) automated coding can be effectively 

applied to policies of various types (e.g., statutes, regulations, executive orders) and with variable 

foci and structural characteristics; and (iii) preprocessing of original policy texts improves 

accuracy of automated coding.  

          This paper proceeds as follows. Part 2 provides an elaborated description of the IG and its 

main elements. This description is followed in Part 3 by an overview of applications of the IG. 

This overview highlights the challenges associated with manual applications of the IG. Part 4 

introduces natural language processing and automated coding. Part 5 describes how we prepare 

policy texts for analysis. Part 6 describes how we leverage NLP techniques to build an automated 

IG classifier. In Part 7, we present and discuss the results of  our pilot study on food system 

regulations. Part 8 concludes the paper. 

 

II. Introduction to the Institutional Grammar 
 

The focal unit of analysis under the IG is the institutional statement, which is parsed along 

six syntactic elements. According to Crawford and Ostrom (1995, 583):  



The term institutional statement refers to a shared linguistic constraint or opportunity that 

prescribes, permits, or advises actions or outcomes for actors (both individual and 

corporate). Institutional statements are spoken, written, or tacitly understood in a form 

intelligible to actors in a corporate setting. 

 
Within the context of written institutions, like public policies, institutional statements are often 

coterminous with sentences, but not always. If a sentence addresses multiple actors or actions, it 

may contain multiple institutional statements, which is defined based on the presence of specific 

syntactic elements, as explained in more detail below. The following is an example of an 

institutional statement: “Operations certified as organic under the U.S. National Organic Program 

must submit an organic system plan annually or face certification revocation.”  

The six syntactic elements comprising the IG, along which statements are parsed, include 

the following: (1) ​Attribute​ [A], the actor to whom an institutional statement applies; (2) ​Aim ​[I], 
the action of the statement; (3) ​Deontic ​[D], the prescriptive operator that indicates whether the 

Attribute is required, forbidden, or permitted to perform the focal action of the statement; (4) 

Object [B], the animate or inanimate receiver of the focal action; (5) ​Condition ​[C], the temporal, 1

spatial or procedural boundary (or boundaries) in which the action of statement may, must, or must 

not be performed; and (6) ​Or else ​[O], incentives for performing/failing to perform the focal action 

(e.g., the punitive sanction associated with not carrying out the focal action as prescribed). 

Syntactic elements are sometimes summarized with the acronym “ABDICO.” The following 

shows how the example institutional statement offered above—“Operations certified as organic 

under the U.S. National Organic Program must submit an organic system plan annually or face 

1 The Object was introduced by Siddiki et al. (2011).  



certification revocation”—would be deconstructed along Institutional Grammar syntactic 

elements: ​Attribute​ = “operations certified as organic under the U.S. National Organic Program”; 

Deontic​ = “must”; ​Aim ​= “submit”; ​Object​ = “organic systems plan”; ​Condition​ = “annually”; ​Or 

else​ = “or face certification revocation.” 

At a minimum, institutional statements contain an Attribute, Aim, and Condition. 

Consistent with their objective of offering a way for differentiating between types of institutional 

statements based on linguistic elements—rather, the presence or absence of different 

elements—Crawford and Ostrom characterize an institutional statement containing an Aim, 

Attribute, and Condition as a ​Strategy​, an institutional statement containing an Aim, Attribute, 

Condition, and Deontic as a ​Norm ​, and an institutional statement containing all syntactic elements 

as a ​Rule​. An Object may be present in any type of statement. Deontics and Or else clauses are the 

key elements for distinguishing rules from norms from strategies.  

 

III. Applications and Challenges in Manually Coding the IG 
 

Though Crawford and Ostrom introduced the IG in 1995, it wasn’t until 2008 that the 

first journal article that addressed it was published. Between 2008 and 2019, twenty-one journal 

articles have been published that address the IG. Substantively, extant research can be grouped 

according to four, sometimes overlapping, thematic foci. One set of articles is focused on the 

behavioral assumptions and ontological logic underlying the IG syntax (e.g., Schlüter & 

Theesfeld, 2010). Another set of articles focuses on leveraging the IG within the context of 

computational simulation; specifically, within agent-based models, with the objective of 

assessing endogenous emergence of institutions (e.g., Frantz et al., 2015; Ghorbani & Bravo, 



2016). In these studies, the IG is used in the parametrization of models. The IG interfaces 

naturally with agent-based modeling since many of the syntactic elements correspond to key 

modeling parameters. For example, agent and agent roles are reflected in Attribute data. Agent 

activities are captured in Aims, and the Conditions specify the parameters that define 

when/where/how these activities occur. A third set of articles focus on the IG as a 

methodological tool and offer suggestions for its methodological refinement (Basurto et al., 

2010; Carter et al., 2015; Siddiki et al., 2011). These articles also often contain “proof of 

concept” empirical applications. Finally, but most relevant to the exercise reported in this paper, 

a fourth set of articles focuses on applying the IG to study the design of policies, such as laws, 

regulations, and city charters, and implications thereof (e.g., Basurto et al., 2010; Siddiki, 2014; 

Feiock et al., 2014).  

In studies that apply the IG to evaluate policy design, authors typically dissect policy 

texts manually into institutional statements and then further along IG syntactic categories. These 

hand-coded data are then analyzed in accordance with the authors’ research objectives. Authors 

of such studies often report on the laborious and time-consuming nature of manual coding 

(Siddiki et al., 2019). As noted previously, this reality limits the amount of data that can be 

collected, and can also dissuade scholars from embarking on research that employs the IG.  

One resolution to the posited problem is to automate the coding process; that is, rely on 

computers to code policy texts in line with the IG syntax. ​One of the first published efforts in this 

area used a semi-automated approach that adapted and applied the ​IG ​ to analyze thousands of 

institutional statements and categorize them by institutional types for describing polycentricity 

(Heikkila & Weible, 2018). Recent advances in machine learning and natural language 



processing platforms offer great promise in facilitating automated coding. We turn to an 

overview of these now. 

 

IV. Natural Language Processing (NLP) and Automated Coding 
 
NLP is a subfield of artificial intelligence (AI) and linguistics that engages computers to 

understand human language. It primarily utilizes two groups of techniques to interpret human 

language data: syntactic and semantic analysis. Syntactic analysis pertains to evaluating natural 

language in relation to structural elements and grammatical rules. Key analytical tasks associated 

with syntactic analysis include tokenization, lemmatization, stemming, and part-of-speech 

tagging. Tokenization involves splitting a large set of texts into tokens, a sequence of characters 

that are grouped together in a useful way—often individual words. Both lemmatization and 

stemming reduce various inflected forms of a word into a single form. For example, a group of 

inflected words “am, is, are” will be replaced by “be”. Part-of-speech tagging identifies the 

part-of-speech for every token.  

Semantic analysis is focused on understanding context-relevant meaning and 

interpretation of words. A number of more or less guided techniques can be engaged in semantic 

analysis. A more guided technique is Named Entity Recognition (NER), which is 

characteristically used to identify names of people, organizations, and places from text. A less 

guided approach is to employ machine learning techniques to inductively derive semantic 

meaning. Through this approach, the meaning of particular words is derived based on 

algorithmically “learned” semantic patterns among surrounding words, as well as syntactic 

dependencies between words.  



To overcome the challenges associated with manual coding of policy documents in 

accordance with the IG, we employ a variety of NLP techniques in conjunction with methods 

from machine learning to automatically code policies in terms of the IG. As an overview, Figure 

1 outlines the general process of automated coding relating to our exercise. First, a set of raw 

texts (e.g., policy documents) are “preprocessed.” The preprocessed data are then annotated 

using the NLP program. The program then maps the annotations to IG syntactic elements, based 

on a supervised learning program trained using a large amount of human-coded data employed in 

prior published work. After learning is complete, the program filters institutional statements. The 

resulting output is a simple, standard csv (“comma separated value”) format data file that maps 

institutional statements to their elements in the IG. In the remainder of the paper, we detail each 

of these steps, then provide some initial evidence of validity as well as discussions of future 

directions. 

 
Insert Figure 1 about here 

 
 
 

V. Preprocessing  

In general, text must undergo preprocessing so that it is suitable for downstream analyses. 

While standard text pre-processing often focuses on elements such as stop word removal or 

removing punctuation, here we are particularly concerned with issues related to the formatting of 

policy documents. Specifically, for purposes of Grammar-style analyses, many policy documents 

present challenges as they consist of sentence styles that differ from the typical prose utilized in 

many other written contexts; frequently, policy documents contain, for example, various types of 

outline headers, fragmented clauses, and uncommon punctuation.  



Thus, the first step is a preprocessing approach suitable for an automated IG application. 

During the preprocessing stage, we remove any special characters or text formatting styles that 

may be problematic for automated coding. We also restructure certain text structures to facilitate 

downstream NLP tasks. Consider a long, multi-clause statement structured as a bulleted list. 

Such statements are often difficult for NLP programs to interpret, as their clauses are long and 

complex, and separated syntactically by non-syntactic (even non-linguistic) document features 

such as special characters (e.g. bullets) and line-breaks. The clauses of a bulleted statement can 

serve very different functions: establishing context for subsequent clauses, detailing steps of a 

sequence, aspects of a requirement, or standing independently as self-contained statements. 

Failure to recognize these functions during preprocesses will set later stages—namely, 

dependency parsing—up for failure. Being relatively common in policy documents, and rare in 

the types of documents that standard NLP tools were designed for, these features therefore 

require special handling, a central task of the preprocessing stage  

Figure 2 demonstrates the general workflow involved in preprocessing. It is notable that 

this does not include steps necessary for the user to undertake contextually before any 

application of automated methods. Preprocessing typically engages a generalizable search 

function, a specific code that is based on a set of user-specified rules to identify and remove 

headings, outline fragments (e.g., roman numerals), and irregular punctuation. This 

generalizable, rules-based search function is called a regular expression. Document headers, 

outlined subheadings, page numbers, and signature lines should be manually deleted. After a text 

has undergone preprocessing, it is exported as JavaScript Object Notation (JSON) files, a data 

format for flexibly representing complex datasets in terms of nested or tree-like structures, whose 



complexity represents an intermediate stage toward the tabular csv format necessary for 

statistical analysis​.  
Insert Figure 2 about here 

 

VI. Automating Institutional Grammar Coding  

After preprocessing is done, the next step is to classify the restructured policy text into 

the IG. To do so, we rely on the general insight that the elements of the IG —as well as other 

general textual characteristics—map to standard grammatical constructions. That being the case, 

we rely on the well-developed literature around standard NLP approaches to annotate texts, then 

leverage those annotations to predict the IG elements associated with each word in the policy 

text. Our approach more specifically involves three steps: computing NLP  annotations, 

matching them to the IG’s syntactic elements, and extracting institutional statements. The basic 

intuition is to link the NLP program’s analysis information to IG syntactic elements and filter out 

institutional statements. In this section, we begin by describing the annotation of the documents, 

then describe two approaches we have taken to mapping the annotations to the IG and the 

comparative success of those approaches at accurately predicting the human-assigned IG 

elements.  

We start with annotation. To do so, we rely on Stanford’s CoreNLP (Manning et al., 

2014), a well-developed suite of NLP tools for identifying a broad range of different 

characteristics in texts. CoreNLP is the gold standard for automated grammatical analysis and is 

open-source software.  As such, it is perfectly suited for our task. 



We implement CoreNLP through the R statistical programming language. The capability 

of R for NLP and other text-as-data tasks has expanded significantly, and continues to do so. 

During the annotation step, the preprocessed texts run through CoreNLP’s annotation pipeline, 

including sentence splitting,  Part-of-speech tagging, Named Entity Recognition, and Syntactic 

Parsing. For each word in the document, we therefore gain a host of potentially relevant 

information about the word itself, and its relation to nearby words.  

The second step is taking these characteristics and associating them with the IG. We do 

this by probabilistically associating syntactic elements with IG elements using supervised 

machine learning. To motivate this complex approach, consider first a simpler approach: treating 

syntactic characteristics as ​uniquely​ predictive of IG elements, such that a particular dependency, 

or part-of-speech, or other characteristic, predicts one and only one grammatical component. 

This approach relies on a predefined mapping of the characteristics identified by CoreNLP to the 

IG elements. To characterize this approach, we ran a dependency parser to deconstruct sentences 

and define their grammatical structures and the relationships between their words. Table 1 

provides a hypothetical version of the mapping of the assigned dependencies to the IG ABDICO 

elements.  

This sort of one-to-one mapping has the advantage of simplicity, but at the cost of lost 

information and the inability to handle any higher dimensionality problems. To understand the 

stark limitations, consider a hypothetical word that appears in two different contexts within a 

document and is associated with two different IG codings within that same document; 

identifying a one-to-one match of the word to the IG code is therefore impossible. We might rely 

instead of the identified relations, but again we expect that relations will only be correlated with 



rather than perfectly predictive of a particular component classification. We could, of course, 

develop such a mapping ourselves, writing a series of decision rules. The costs of doing so are 

exorbitant however, and as a result quite limited. 

 

Insert Table 1 about here 

 

We turned, therefore, to the supervised learning approach. Supervised learning 

approaches operate by training a classifier that links the identified characteristics from the NLP 

analysis to the human-coded IG elements, in order to try to mimic human discriminations. We 

begin by partitioning the data into testing and training sets. The training set is the dataset on 

which we “train” the classifier to predict the human-coded IG, using all of the features of the text 

as predictors in the algorithm. Then, we assess the accuracy of the trained classifier using the 

held-out test set.  

In all, our supervised learning approach operates as follows. First, we utilize Stanford 

CoreNLP’s dependency parser and Part-of-speech tagger in order to create (for each word in the 

corpus) a set of features.  We convert the classifications into a series of indicator variables. 2

Because CoreNLP assigned each word to at least one of these dependencies by the parser, we are 

able to create a series of indicators for each of those that simply indicate whether or not the 

observed word was assigned that dependency. We also include indicator variables for each 

unique word in the corpus.  

2 For implementing CoreNLP, we rely on the cleanNLP package in R (Arnold, 2017).  



Our analysis retains every word with a human-assigned IG label.  We then randomly split 

the word into training and test sets, with approximately 90 percent of the data (in the analyses 

below, that leads to ​N​  = 8,320 classified words) in the training set and 10 percent of the data 

(again, in the analyses below, that leads to ​N​ = 922) reserved for evaluation of the fitted model. 

With the training set, we train our model to predict the word-Grammar classifications.  

Of the many potential approaches for training a supervised learning model, we rely on 

neural networks.  The underlying intuition of supervised learning is that we know a host of 3

characteristics about each individual classified word; our goal then is to infer rules from the 

classified data that best map the characteristics to the assigned classification. In neural networks, 

the idea is to model the decision-making process of making a classification in a (very) simplified 

version of the way human brains work; we create multiple layers of “neurons” (called units 

below) that communicate while trying to accomplish some task (in supervised learning, usually 

classification or prediction). The program learns the connections that best predict the 

classification, and can amplify those connections while minimizing poorly performing 

connections.   In this way, the approach neatly mimics the intuition of the human based approach 

noted above, but does so at a scale that would be impossible for humans.  

3 We have also experimented with Support Vector Machines (SVM) classifiers (Vapnik & Lerner, 1963; 
Boser et al., 1992) — which represent data in a multidimensional space and search for the hyperplane(s) 
that best separate the data according to the classification data — and Random Forest (RF) classifiers 
(Breiman 2001) — which rely on ensembling and randomization of many individual decision tree 
classifiers. In the former case, though SVMs are generally good in high dimensional classification settings 
(see, e.g., D’Orazio et al., 2014; Caruana & Niculescu-Mizil, 2006) as the size of the training data 
increased, SVMs performed slightly worse than neural networks on out-of-sample prediction tasks, 
suggesting they would not scale well as we expand our training data in future work. In the latter case, RF 
models performed slightly worse while taking many orders of magnitude longer to estimate; indeed, some 
RF models with large training sets were taking over 6 hours to estimate. Again, then, they did not seem 
likely to scale well. Finally, we explored linear and non-linear ensembles of SVMs and RFs, along with 
other approaches; none outperformed the neural network approach, while all combinatorials of different 
approaches magnified computational time.  



To train our neural network classifier, we employ Keras (Chollet et al., 2015) and 

TensorFlow (Abadi et al., 2015), both of which are open-source and are available to be run 

through R. We train a sequential model with a linear stack of three layers; the first is a dense 

layer of 256 units, and the second a dense layer of 128 units. For each, we rely on rectified linear 

unit activation. The third layer is a dense layer of 6 units, equal to the number of classes that we 

are trying to predict. For this final layer, and only this final layer, we rely on a softmax activation 

function.The model was trained using Adam (Kingma and Ba, 2017) and a sparse categorical 

cross-entropy loss function.   4

The model was trained for 10 epochs. In Figure 3, we plot the loss (top panel) and 

accuracy (bottom panel) across the epochs for the 90% of data the model is trained on and a 

held-out test set of 10%. We pause to note that this is an additional split of the training data only; 

we retain in reserve the10% of data we previously held out as a “hidden” or “invisible” test set. 

As the plot makes clear, the neural network continues to learn additional features to aid in 

prediction over the epochs, though the rate of learning decreases markedly and rather suddenly 

after only one or two epochs. Yet across this range, there is no change in the accuracy within the 

validation set. That is, the model is achieving in-sample success by virtue of fitting additional 

noise; indeed, within sample the neural network is achieving classification accuracies that are at 

or exceeding 90 percent.. To avoid overfitting, with a particular eye on the hidden test set, we do 

not train beyond 10 epochs. As an additional mechanism to avoid overfitting problems, we 

employ a dropout rate of 0.1 between each layer, and a batch size of 64. 

 

4 All code necessary to replicate these analyses will be posted to the Author’s dataverse upon 
publication.. 



Insert Figure 3 about here 

 

In addition to evaluating the predictive capacity of the trained neural network, we also 

leverage the predictions in what might be termed a “meta-model.” Here, we leverage the 

predicted classification probabilities from the neural network in a second stage classifier. 

Specifically, we add the classification probabilities for each of the six categories to our training 

dataset, and estimate a gradient boosting (Friedman et al., 2000; Friedman 2001) model using 

extreme gradient tree boosting, also known as XGBoost (Chen and Guestrin, 2016); using 

XGBoost in combination with neural networks has been regularly demonstrated to yield 

state-of-the art predictive accuracy.  

The underlying motivation for the second stage is two-fold. First, and pragmatically, the 

first stage might have a tendency to assign a high overall probability to the most commonly 

assigned IG component. This maximizes the predictive accuracy at this stage, but has the 

downside of ignoring the small increases in probability associated with particular sub-categories 

of components that may be substantively meaningful in classification. The second stage, 

however, can incorporate that additional signal and results in a substantial increase in predictive 

accuracy. Second, and more theoretically valuable as we consider avenues for development, we 

envision this stage as later incorporating the probabilities for context terms; that is, those terms 

which immediately follow or precede the word we are attempting to classify. In doing so, the 

classifier will naturally incorporate a type of smoothing that will yet further increase both its 

accuracy and its utility for practical applications.   5

5 We train an XGBoost model using the xgboost package in R. We train a model with a softmax objective 
to be evaluated by a multiclass log-loss function, where the max depth of the trees  is 20, we complete 30 



 

VII. Automated Classification of Food System Regulations  

With the classifiers — a neural network approach and a tree boosting approach — in 

place, we turn to evaluating their predictive fit. Our dataset comes from Siddiki (2014) and is 

comprised of 19 food policy documents, each of which has been classified according to the IG. 

Our feature set includes 7,848 total unique features. For training and testing, we randomly split 

8,320 words into the training set and the remaining 922 classified words into the test set, forming 

approximately a 90 percent / 10 percent training / testing split. For each token to be classified, 

the 7,848 unique features includes indicators for the actual word (under the assumption that some 

words are likely to be associated with some categories), part-of-speech indicators (under the 

assumption that particular types of speech like adverbs might be associated with some 

categories), and relations and source indicators from the dependency parser detailed above. The 

set is expanded then by incorporating these indicators for the token immediately preceding and 

the token immediately succeeding the token to be classified; that is, we incorporate the 

immediate context of  each word. Neural networks and deep learning approaches more generally 

are particularly useful in the context of learning the interdepencies and conditionality between 

features. The vast feature set therefore provides an avenue to understand how, when a particular 

word is used in a particular way within a particular context, the probability it belongs to a 

particular category is greater or lesser. 

With this data in hand, we move to assessing the success of  our automated procedure at 

predicting human-assigned IG classifications. We start with the neural network approach. In 

training passes on the dataset, the step size for each boosting step is 0.1, and a regularization parameter on 
the weight of 0.08.  



Table 2, we include the overall accuracy, precision, and recall of the classifier when we use it 

with the held-out test data. Start first with the overall accuracy. Of the 922 words in the test set, 

our preliminary approach correctly classifies 74 percent. Given that general levels of acceptable 

intercoder reliability range from 70 to 90 percent (see, e.g., Quinn et al., 2010), this accuracy 

offers strong initial evidence of the potential of our approach. Particularly given the relatively 

small number of classified words on which this is trained, the associated complexity of the 

classification task, and the number of extensions to our approach which are still available, we 

believe the classification accuracy points towards the viability of automated classification of 

institutional documents into the Grammar.  

We pause to highlight two additional important considerations in evaluating the success 

of the classifier. First, though we treat the human-coded data as a gold standard for evaluation, it 

is not necessarily the case that each individual classification is precisely correct. That is, were 

one to train two coders in the IG and assign them the same document, achieving agreement on 

approximately 75 percent of all classified terms would be deemed largely successful. Second, 

and really as a corollary of the first,  where classifications fail is largely around boundary words 

like “the” or “a” that are not clearly within one or another category within the Grammar. 

Removing those terms would significantly increase the accuracy of the classifier. 

 

Insert Table 2 Here 

  

Turning to the results within subgroups, Table 6 also includes information on the 

precision ​(intuitively, if we classify something as, say, an Aim, how likely is it to be an Aim?) 



and ​recall ​(intuitively, of all the instances of Aim, how many do we correctly identify as Aims?). 

Importantly, the approach performs well across both metrics and across all subgroups. The 

model underclassifies Aims, both of which appear far fewer times in coded documents, but is 

more precise when identifying those classifications. On the other hand, the model overclassifies 

Conditions and Objects, both of which are the predominant classifications, leading to lower 

precision but higher recall. In all, though, the only area where the model truly struggles is with 

the Or / Else category, which is rare and comprises only three actual classifications in the test 

data.  

We turn next to the XGBoost approach. Recall that this approach is simply a second stage 

that aims to supplement the first stage classification by adding the estimated probabilities from 

the neural network model to the feature set, and again predicting the classifications. Therefore, 

our feature set is the same, except it now includes an additional six features which are equal to 

the estimated probability of class membership for each of the six categories from the trained 

neural network model. The results of the XGBoost model appear in Table 3.  

 

Insert Table 3 about here.  

 

Interestingly, the boosting approach yields slightly ​lower​ accuracy overall. As the 

precision and recall metrics make clear, this appears to be partially attributable to struggles with 

the classification of Attributes, as those are now correctly classified more frequently as 

Attributes when the model predicts Attribute (i.e., precision) but far fewer instances are actually 

identified (i.e., recall). The lack of clear improvement in the boosting model, though 



disappointing, also points to the initial success of the neural network at correctly classifying 

variation in the data and the signals available at this point in time in the training data. Taken 

together, our results validate the utility of automated approaches for the classification of 

institutional rules and policy statements into the institutional grammar.  

 

VIII. Conclusion 

Proposed more than two decades ago, the IG offered enormous promise for a central 

subject of study for political scientists and others interested in the systematic study of public 

policy. However, the exorbitant resource costs necessary for implementing the IG in research 

settings inhibited its growth as an avenue for scholarly inquiry. Recently, scholars have begun 

making headway in applying the IG, but the considerable promise of the tool remains unrealized. 

In this paper, we propose and provide initial evidence for the utility of an automated approach to 

classifying institutional statements in accordance with the IG. As we show, one can approach 

high levels of accuracy relatively quickly by employing the growing amount of texts classified 

into the IG in conjunction with robust tools for natural language processing and improved 

methods for supervised machine learning.  

In all, the results provide strong initial evidence of the potential of supervised machine 

learning for the automated classification of institutional rules into the institutional grammar. This 

is particularly so given the following two routes for further improvement. First, expanding the 

training set to incorporate more of coded policy documents is likely to lead to significant 

increases in the out-of-sample performance with the test data. Though some simple classification 

tasks can achieve high rates of accuracy with little training data, more complex classification 



tasks require large training data sets. For instance, recent work in sentiment analysis, arguably a 

more simple classification task, regularly utilizes datasets with hundreds of thousands of training 

instances (see, e.g., Maas et al., 2011). Though we will never approach that level of data supply, 

the success of our neural network approach with even a relatively small training set provides 

important evidence that — as the training data is supplemented by additional work — the 

approach will move towards being a robust and open solution to a problem that has paralyzed 

and important avenue of research.  

Second, and more directed at our particular specification choices, our present approach 

samples words randomly; however, a better training approach would sample at the statement 

level from the coded data. By doing so, one can incorporate the labels of context words in the 

XGBoost model and that additional predictive information is also likely to yield a significant 

improvement in our out-of-sample performance in the training data. We plan to incorporate this 

approach as we continue to build this work towards public release.  
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TABLES  
 

 
Table 1. Matching IG ABDICO elements with Universal Dependencies 

ABDICO Component Universal Dependencies 
Attributes nominal subject (nsubj), passive nominal subject (nsubjpass), clausal 

subject (csubj),  
Object direct object (dobj), dependent (dep) 
Deontic auxiliary (aux) 
Aim root, passive auxiliary (auxpass), negation modifier (neg), phrasal 

verb particle (compound:prt), indirect object (iobj), copula (cop) 
Condition nominal modifier (nmod), adverbial modifier (advmod), open clausal 

complement (xcomp), clausal complement (ccomp), adverbial clause 
modifier (advcl) 

Or else N/A 
 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2: Out-of-sample Performance of Neural Network Classifier for Predicting 
Institutional Grammar Components from Nineteen Policy Documents. 

Level Accuracy Precision Recall N 

Overall 0.74 --  -- 922 

Aim -- 0.94 0.72 69 

Attribute -- 0.75 0.61 80 

Condition -- 0.68 0.72 322 

Deontic -- 0.91 0.94 32 

Object -- 0.75 0.76 416 

Or/Else -- 0.33 0.33 3 

Note: Results based on classification of held-out test set using neural network classifier 
trained on a set of 8,120 randomly sampled words. 

  

  

  

  

  

  



 
Table 3: Out-of-sample Performance of XGBoost Classifier for Predicting Institutional 
Grammar Components from Nineteen Policy Documents. 

Level Accuracy Precision Recall N 

Overall 0.73 --  -- 922 

Aim -- 0.95 0.77 69 

Attribute -- 0.76 0.51 80 

Condition -- 0.66 0.72 322 

Deontic -- 0.89 0.97 32 

Object -- 0.74 0.76 416 

Or/Else -- 0.33 0.33 3 

Note: Results based on classification of held-out test set using XGBoost classifier trained 
on a set of 8,120 randomly sampled words and probability scores from the neural network 
classifier. 

  

  

 

 

 



FIGURE LEGENDS 

 

  

Figure 1. Automated Coding Process. ​This figure provides the sequence of steps for automating the               
process of getting unstructured institutional statement coded according to the IG. 

 

 

Figure 2: Preprocessing Workflow. ​The first step in preprocessing requires the user to read the text file                 
into the preprocessing interface. Second, by applying a rules-based script based on regular expressions,              
the user can remove all bulleted symbols (or other punctuation) that might hinder the performance of the                 
NLP program when it is used in later stages. Third, one applies an NLP annotator on the cleaned text.                   
This annotator assigns each word or punctuation mark a unique identifier (a “token” ID), and then, after                 
finding the sentence breaks, assigns each grouping of words a sentence ID. Fourth, the sentence ID is                 
used to reassemble the sentences in the proper order. It is at this stage that the user has the option of                     
adding additional contextual information to each sentence, such as statute location or statement type.              
Finally, the sentence data is combined in a single file formatted to promote better NLP. 

 

 

 

Figure 3: Evaluation of Trained Three Layer Neural Network Model of Institutional Grammar. This              
figure plots the loss metrics (top panel) and accuracy (bottom panel) for the trained models both within                 
the training sample (blue) and within a held-out evaluation set (green) across the 10 training epochs.  


