Machine Coding with the Institutional Grammar

The Institutional Grammar (IG) is used to analyze the syntactic structure of statements
constituting institutions (e.g., public policy and social norms) that indicate behavioral
constraints. Significant progress has been made in methodologically developing the IG in recent
years. Scholars have offered increasingly clear guidelines for IG-based coding, identified unique
considerations for applying the IG to different types of institutions, and even expanded its
syntactic scope. However, while validated as a robust institutional analysis approach, the
resource and time commitment associated with its application has precipitated concerns over
whether the IG might ever enjoy widespread use. Needed now in the methodological
development of the IG are reliable and accessible (i.e., open source) approaches that reduce the
costs associated with its application. We propose an automated approach leveraging
computational text analysis and natural language processing. We then present results from an
evaluation in the context of food system regulations.
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I. Introduction

In 1995, Sue Crawford and Elinor Ostrom introduced an approach for analyzing the language
of institutions that govern behavior (e.g., public policies and social norms), called “A Grammar of
Institutions” (Crawford and Ostrom, 1995). A primary motivation for the Grammar of Institutions,
referred to hereafter as the Institutional Grammar, was to offer a systematic basis for defining
different types of institutions that institutional analysts had been investigating in the context of
laboratory (e.g., game theoretic) and field settings; namely, strategies, norms, and rules (North,
1990). Crawford and Ostrom argued that institutions of different types have qualitative differences
that can be discerned through examinations of the language through which they are expressed.
That is, when strategies, norms, and rules are communicated, either orally or in written form, they
convey distinct sets of linguistic elements. Based on this observation, Crawford and Ostrom
constructed the Institutional Grammar around a set of syntactic elements common to institutions,
with each element conveying a distinct type of behaviorally relevant semantic meaning. Strategies,
they posit, convey actions, actors associated with those actions, and temporal, spatial, and
procedural conditions of actions. Norms, convey all of this information, as well as indicate whether
actions are required, allowed, or forbidden. Rules, convey all of the same information as norms,
but also specify incentives for action/inaction. Rooting institutional variation in parameters and
incentives of action not only provided a basis for differentiating strategies, norms, and rules, it also
offered a nuanced approach for specific assessments of how institutions are intended to affect
behavior.

The IG received little scholarly attention immediately following its introduction, but interest

in it has burgeoned over the last ten years (see Siddiki et al. (2019) for a meta-review of published



IG research). Scholars from around the world have applied the IG in a variety of institutional
settings (Basurto et al., 2010; Feiock et al., 2016; Roditis et al., 2015); demonstrating its utility in
differentiating types of institutions, as well as for gaining systematic and comprehensive
understanding of institutional design. They have also demonstrated how the IG can be leveraged to
operationalize key concepts relating to governance, such as institutional coerciveness and
institutional change (Siddiki, 2014; Weible and Carter, 2015). Finally, through various
applications, scholars have showcased the theoretical and methodological versatility of the IG.
They have shown, for example, that the Institutional Grammar can be effectively paired with
various concepts, theories, and methods in the study of governance phenomena. The 1G has been
used to operationalize concepts and theories relating to polycentricity (Heikkila and Weible, 2018),
policy design (Siddiki et al., 2011), policy implementation (Carter et al., 2015), nonprofit
management (Siddiki & Lupton, 2016), and a host of other domains of study (Clement et al.,
2015). Methodologically, the IG has been coupled with interviews and surveys (Siddiki et al.,
2012), as well as used in the context of computational simulations to understand behavioral
outcomes linked to policy design (Frantz et al., 2015; Ghorbani and Bravo, 2016). In all, the 1G
has enjoyed a robust revival in the last decade.

In most of this existing research applying the IG, scholars have used it to study the
design, and related impacts, of institutions codified in written form; in particular, institutions
taking the form of public policy (Basurto et al., 2010; Carter et al., 2016; Feiock et al., 2016). This
line of research was initiated by Basurto et al. (2010), who used the IG to study the design of
abortion and transportation policies in the U.S. state of Georgia. Importantly, in addition to

providing the first empirical application of the IG to study public policies, Basurto et al. presented



the first set of coding guidelines for utilizing the IG for this purpose. Others have added to their
effort by contributing additional coding guidance (Siddiki et al., 2011; Carter et al., 2015).

The coding guidance offered by Basurto et al. and others was critical for the
methodological development of the IG. This coding guidance laid out clear practical steps for
applying the IG, and in so doing, contributed to greater validity and reliability in IG-based coding
of formal institutions, such as public policies. Yet other methodological challenges associated with
applying the IG remain that have yet to be fully resolved. Among the steepest is the significant
capital investment associated with applying it. With the exception of Heikkila and Weible (2018),
all published applications of the IG involving the study of public policy rely on fully manual (i.e.,
human) coding of policy text. Manually parsing public policies into individual directives (referred
to as institutional statements in the IG parlance), and then further classifying the language of these
directives along the IG’s syntactic elements requires a significant amount of time and resources.
The implication of this is two-fold. First, it limits the amount of data that analysts can collect. Most
studies using the IG report analyses of a single policy or a limited number of policies, which
inherently raises concerns about the generalizability of findings emerging therefrom. A second
implication is that it inhibits the widespread uptake of the IG; one confronts a steep learning curve
to understand coding the IG, then must actualize that in parsing individual documents passage by
passage.

One way to overcome the resource constraints of applying the 1G is to automate the
coding process. Machine-coding policy texts can vastly reduce the amount of human effort and
time commitment associated with applying the IG, thus enabling the study of large quantities of

public policies from which generalizable insights relating to policy design can be derived. Recent



advancements in computational linguistics, and related natural language processing and machine
learning techniques, can be effectively leveraged in the effort to automate the IG coding process.
In this paper, we report evidence of the effectiveness of this approach, and present the findings
from a pilot study focused on developing an automated approach for coding public policies based
on the IG using natural language processing. Findings from the pilot study show that: (i)
automated coding achieves coding accuracy values on individual IG syntactic elements that are
comparable to those achieved through manual coding; (i1) automated coding can be effectively
applied to policies of various types (e.g., statutes, regulations, executive orders) and with variable
foci and structural characteristics; and (iii) preprocessing of original policy texts improves
accuracy of automated coding.

This paper proceeds as follows. Part 2 provides an elaborated description of the IG and its
main elements. This description is followed in Part 3 by an overview of applications of the IG.
This overview highlights the challenges associated with manual applications of the IG. Part 4
introduces natural language processing and automated coding. Part 5 describes how we prepare
policy texts for analysis. Part 6 describes how we leverage NLP techniques to build an automated
IG classifier. In Part 7, we present and discuss the results of our pilot study on food system

regulations. Part 8 concludes the paper.

II. Introduction to the Institutional Grammar

The focal unit of analysis under the IG is the institutional statement, which is parsed along

six syntactic elements. According to Crawford and Ostrom (1995, 583):



The term institutional statement refers to a shared linguistic constraint or opportunity that
prescribes, permits, or advises actions or outcomes for actors (both individual and
corporate). Institutional statements are spoken, written, or tacitly understood in a form

intelligible to actors in a corporate setting.

Within the context of written institutions, like public policies, institutional statements are often
coterminous with sentences, but not always. If a sentence addresses multiple actors or actions, it
may contain multiple institutional statements, which is defined based on the presence of specific
syntactic elements, as explained in more detail below. The following is an example of an
institutional statement: “Operations certified as organic under the U.S. National Organic Program
must submit an organic system plan annually or face certification revocation.”

The six syntactic elements comprising the IG, along which statements are parsed, include
the following: (1) Attribute [A], the actor to whom an institutional statement applies; (2) Aim [I],
the action of the statement; (3) Deontic [D], the prescriptive operator that indicates whether the
Attribute is required, forbidden, or permitted to perform the focal action of the statement; (4)
Objectl [B], the animate or inanimate receiver of the focal action; (5) Condition [C], the temporal,
spatial or procedural boundary (or boundaries) in which the action of statement may, must, or must
not be performed; and (6) Or else [O], incentives for performing/failing to perform the focal action
(e.g., the punitive sanction associated with not carrying out the focal action as prescribed).
Syntactic elements are sometimes summarized with the acronym “ABDICO.” The following
shows how the example institutional statement offered above—*“Operations certified as organic

under the U.S. National Organic Program must submit an organic system plan annually or face

! The Object was introduced by Siddiki et al. (2011).



certification revocation”—would be deconstructed along Institutional Grammar syntactic
elements: Attribute = “operations certified as organic under the U.S. National Organic Program”;
Deontic = “must”; Aim = “submit”; Object = “organic systems plan”’; Condition = “annually”; Or
else = “or face certification revocation.”

At a minimum, institutional statements contain an Attribute, Aim, and Condition.
Consistent with their objective of offering a way for differentiating between types of institutional
statements based on linguistic elements—rather, the presence or absence of different
elements—Crawford and Ostrom characterize an institutional statement containing an Aim,
Attribute, and Condition as a Strategy, an institutional statement containing an Aim, Attribute,
Condition, and Deontic as a Norm, and an institutional statement containing all syntactic elements
as a Rule. An Object may be present in any type of statement. Deontics and Or else clauses are the

key elements for distinguishing rules from norms from strategies.

III.  Applications and Challenges in Manually Coding the 1G

Though Crawford and Ostrom introduced the IG in 1995, it wasn’t until 2008 that the
first journal article that addressed it was published. Between 2008 and 2019, twenty-one journal
articles have been published that address the IG. Substantively, extant research can be grouped
according to four, sometimes overlapping, thematic foci. One set of articles is focused on the
behavioral assumptions and ontological logic underlying the IG syntax (e.g., Schliiter &
Theesfeld, 2010). Another set of articles focuses on leveraging the IG within the context of
computational simulation; specifically, within agent-based models, with the objective of

assessing endogenous emergence of institutions (e.g., Frantz et al., 2015; Ghorbani & Bravo,



2016). In these studies, the IG is used in the parametrization of models. The IG interfaces
naturally with agent-based modeling since many of the syntactic elements correspond to key
modeling parameters. For example, agent and agent roles are reflected in Attribute data. Agent
activities are captured in Aims, and the Conditions specify the parameters that define
when/where/how these activities occur. A third set of articles focus on the IG as a
methodological tool and offer suggestions for its methodological refinement (Basurto et al.,
2010; Carter et al., 2015; Siddiki et al., 2011). These articles also often contain “proof of
concept” empirical applications. Finally, but most relevant to the exercise reported in this paper,
a fourth set of articles focuses on applying the IG to study the design of policies, such as laws,
regulations, and city charters, and implications thereof (e.g., Basurto et al., 2010; Siddiki, 2014;
Feiock et al., 2014).

In studies that apply the IG to evaluate policy design, authors typically dissect policy
texts manually into institutional statements and then further along IG syntactic categories. These
hand-coded data are then analyzed in accordance with the authors’ research objectives. Authors
of such studies often report on the laborious and time-consuming nature of manual coding
(Siddiki et al., 2019). As noted previously, this reality limits the amount of data that can be
collected, and can also dissuade scholars from embarking on research that employs the IG.

One resolution to the posited problem is to automate the coding process; that is, rely on
computers to code policy texts in line with the IG syntax. One of the first published efforts in this
area used a semi-automated approach that adapted and applied the IG to analyze thousands of
institutional statements and categorize them by institutional types for describing polycentricity

(Heikkila & Weible, 2018). Recent advances in machine learning and natural language



processing platforms offer great promise in facilitating automated coding. We turn to an

overview of these now.

IV. Natural Language Processing (NLP) and Automated Coding

NLP is a subfield of artificial intelligence (Al) and linguistics that engages computers to
understand human language. It primarily utilizes two groups of techniques to interpret human
language data: syntactic and semantic analysis. Syntactic analysis pertains to evaluating natural
language in relation to structural elements and grammatical rules. Key analytical tasks associated
with syntactic analysis include tokenization, lemmatization, stemming, and part-of-speech
tagging. Tokenization involves splitting a large set of texts into tokens, a sequence of characters
that are grouped together in a useful way—often individual words. Both lemmatization and
stemming reduce various inflected forms of a word into a single form. For example, a group of
inflected words “am, is, are” will be replaced by “be”. Part-of-speech tagging identifies the
part-of-speech for every token.

Semantic analysis is focused on understanding context-relevant meaning and
interpretation of words. A number of more or less guided techniques can be engaged in semantic
analysis. A more guided technique is Named Entity Recognition (NER), which is
characteristically used to identify names of people, organizations, and places from text. A less
guided approach is to employ machine learning techniques to inductively derive semantic
meaning. Through this approach, the meaning of particular words is derived based on
algorithmically “learned” semantic patterns among surrounding words, as well as syntactic

dependencies between words.



To overcome the challenges associated with manual coding of policy documents in
accordance with the IG, we employ a variety of NLP techniques in conjunction with methods
from machine learning to automatically code policies in terms of the IG. As an overview, Figure
1 outlines the general process of automated coding relating to our exercise. First, a set of raw
texts (e.g., policy documents) are “preprocessed.” The preprocessed data are then annotated
using the NLP program. The program then maps the annotations to IG syntactic elements, based
on a supervised learning program trained using a large amount of human-coded data employed in
prior published work. After learning is complete, the program filters institutional statements. The
resulting output is a simple, standard csv (“comma separated value”) format data file that maps
institutional statements to their elements in the IG. In the remainder of the paper, we detail each
of these steps, then provide some initial evidence of validity as well as discussions of future

directions.

Insert Figure 1 about here

V. Preprocessing

In general, text must undergo preprocessing so that it is suitable for downstream analyses.
While standard text pre-processing often focuses on elements such as stop word removal or
removing punctuation, here we are particularly concerned with issues related to the formatting of
policy documents. Specifically, for purposes of Grammar-style analyses, many policy documents
present challenges as they consist of sentence styles that differ from the typical prose utilized in
many other written contexts; frequently, policy documents contain, for example, various types of

outline headers, fragmented clauses, and uncommon punctuation.



Thus, the first step is a preprocessing approach suitable for an automated IG application.
During the preprocessing stage, we remove any special characters or text formatting styles that
may be problematic for automated coding. We also restructure certain text structures to facilitate
downstream NLP tasks. Consider a long, multi-clause statement structured as a bulleted list.
Such statements are often difficult for NLP programs to interpret, as their clauses are long and
complex, and separated syntactically by non-syntactic (even non-linguistic) document features
such as special characters (e.g. bullets) and line-breaks. The clauses of a bulleted statement can
serve very different functions: establishing context for subsequent clauses, detailing steps of a
sequence, aspects of a requirement, or standing independently as self-contained statements.
Failure to recognize these functions during preprocesses will set later stages—namely,
dependency parsing—up for failure. Being relatively common in policy documents, and rare in
the types of documents that standard NLP tools were designed for, these features therefore
require special handling, a central task of the preprocessing stage

Figure 2 demonstrates the general workflow involved in preprocessing. It is notable that
this does not include steps necessary for the user to undertake contextually before any
application of automated methods. Preprocessing typically engages a generalizable search
function, a specific code that is based on a set of user-specified rules to identify and remove
headings, outline fragments (e.g., roman numerals), and irregular punctuation. This
generalizable, rules-based search function is called a regular expression. Document headers,
outlined subheadings, page numbers, and signature lines should be manually deleted. After a text
has undergone preprocessing, it is exported as JavaScript Object Notation (JSON) files, a data

format for flexibly representing complex datasets in terms of nested or tree-like structures, whose



complexity represents an intermediate stage toward the tabular csv format necessary for
statistical analysis.

Insert Figure 2 about here

VI. Automating Institutional Grammar Coding

After preprocessing is done, the next step is to classify the restructured policy text into
the IG. To do so, we rely on the general insight that the elements of the IG —as well as other
general textual characteristics—map to standard grammatical constructions. That being the case,
we rely on the well-developed literature around standard NLP approaches to annotate texts, then
leverage those annotations to predict the IG elements associated with each word in the policy
text. Our approach more specifically involves three steps: computing NLP annotations,
matching them to the IG’s syntactic elements, and extracting institutional statements. The basic
intuition is to link the NLP program’s analysis information to IG syntactic elements and filter out
institutional statements. In this section, we begin by describing the annotation of the documents,
then describe two approaches we have taken to mapping the annotations to the IG and the
comparative success of those approaches at accurately predicting the human-assigned 1G
elements.

We start with annotation. To do so, we rely on Stanford’s CoreNLP (Manning et al.,
2014), a well-developed suite of NLP tools for identifying a broad range of different
characteristics in texts. CoreNLP is the gold standard for automated grammatical analysis and is

open-source software. As such, it is perfectly suited for our task.



We implement CoreNLP through the R statistical programming language. The capability
of R for NLP and other text-as-data tasks has expanded significantly, and continues to do so.
During the annotation step, the preprocessed texts run through CoreNLP’s annotation pipeline,
including sentence splitting, Part-of-speech tagging, Named Entity Recognition, and Syntactic
Parsing. For each word in the document, we therefore gain a host of potentially relevant
information about the word itself, and its relation to nearby words.

The second step is taking these characteristics and associating them with the IG. We do
this by probabilistically associating syntactic elements with IG elements using supervised
machine learning. To motivate this complex approach, consider first a simpler approach: treating
syntactic characteristics as uniquely predictive of IG elements, such that a particular dependency,
or part-of-speech, or other characteristic, predicts one and only one grammatical component.
This approach relies on a predefined mapping of the characteristics identified by CoreNLP to the
IG elements. To characterize this approach, we ran a dependency parser to deconstruct sentences
and define their grammatical structures and the relationships between their words. Table 1
provides a hypothetical version of the mapping of the assigned dependencies to the IG ABDICO
elements.

This sort of one-to-one mapping has the advantage of simplicity, but at the cost of lost
information and the inability to handle any higher dimensionality problems. To understand the
stark limitations, consider a hypothetical word that appears in two different contexts within a
document and is associated with two different IG codings within that same document;
identifying a one-to-one match of the word to the IG code is therefore impossible. We might rely

instead of the identified relations, but again we expect that relations will only be correlated with



rather than perfectly predictive of a particular component classification. We could, of course,
develop such a mapping ourselves, writing a series of decision rules. The costs of doing so are

exorbitant however, and as a result quite limited.

Insert Table 1 about here

We turned, therefore, to the supervised learning approach. Supervised learning
approaches operate by training a classifier that links the identified characteristics from the NLP
analysis to the human-coded IG elements, in order to try to mimic human discriminations. We
begin by partitioning the data into testing and training sets. The training set is the dataset on
which we “train” the classifier to predict the human-coded IG, using all of the features of the text
as predictors in the algorithm. Then, we assess the accuracy of the trained classifier using the
held-out test set.

In all, our supervised learning approach operates as follows. First, we utilize Stanford
CoreNLP’s dependency parser and Part-of-speech tagger in order to create (for each word in the
corpus) a set of features.”? We convert the classifications into a series of indicator variables.
Because CoreNLP assigned each word to at least one of these dependencies by the parser, we are
able to create a series of indicators for each of those that simply indicate whether or not the
observed word was assigned that dependency. We also include indicator variables for each

unique word in the corpus.

2 For implementing CoreNLP, we rely on the cleanNLP package in R (Arnold, 2017).



Our analysis retains every word with a human-assigned IG label. We then randomly split
the word into training and test sets, with approximately 90 percent of the data (in the analyses
below, that leads to N = 8,320 classified words) in the training set and 10 percent of the data
(again, in the analyses below, that leads to N = 922) reserved for evaluation of the fitted model.
With the training set, we train our model to predict the word-Grammar classifications.

Of the many potential approaches for training a supervised learning model, we rely on
neural networks.? The underlying intuition of supervised learning is that we know a host of
characteristics about each individual classified word; our goal then is to infer rules from the
classified data that best map the characteristics to the assigned classification. In neural networks,
the idea is to model the decision-making process of making a classification in a (very) simplified
version of the way human brains work; we create multiple layers of “neurons” (called units
below) that communicate while trying to accomplish some task (in supervised learning, usually
classification or prediction). The program learns the connections that best predict the
classification, and can amplify those connections while minimizing poorly performing
connections. In this way, the approach neatly mimics the intuition of the human based approach

noted above, but does so at a scale that would be impossible for humans.

3 We have also experimented with Support Vector Machines (SVM) classifiers (Vapnik & Lerner, 1963;
Boser et al., 1992) — which represent data in a multidimensional space and search for the hyperplane(s)
that best separate the data according to the classification data — and Random Forest (RF) classifiers
(Breiman 2001) — which rely on ensembling and randomization of many individual decision tree
classifiers. In the former case, though SVMs are generally good in high dimensional classification settings
(see, e.g., D’Orazio et al., 2014; Caruana & Niculescu-Mizil, 2006) as the size of the training data
increased, SVMs performed slightly worse than neural networks on out-of-sample prediction tasks,
suggesting they would not scale well as we expand our training data in future work. In the latter case, RF
models performed slightly worse while taking many orders of magnitude longer to estimate; indeed, some
RF models with large training sets were taking over 6 hours to estimate. Again, then, they did not seem
likely to scale well. Finally, we explored linear and non-linear ensembles of SVMs and RFs, along with
other approaches; none outperformed the neural network approach, while all combinatorials of different
approaches magnified computational time.



To train our neural network classifier, we employ Keras (Chollet et al., 2015) and
TensorFlow (Abadi et al., 2015), both of which are open-source and are available to be run
through R. We train a sequential model with a linear stack of three layers; the first is a dense
layer of 256 units, and the second a dense layer of 128 units. For each, we rely on rectified linear
unit activation. The third layer is a dense layer of 6 units, equal to the number of classes that we
are trying to predict. For this final layer, and only this final layer, we rely on a softmax activation
function. The model was trained using Adam (Kingma and Ba, 2017) and a sparse categorical
cross-entropy loss function.*

The model was trained for 10 epochs. In Figure 3, we plot the loss (top panel) and
accuracy (bottom panel) across the epochs for the 90% of data the model is trained on and a
held-out test set of 10%. We pause to note that this is an additional split of the training data only;
we retain in reserve the10% of data we previously held out as a “hidden” or “invisible” test set.
As the plot makes clear, the neural network continues to learn additional features to aid in
prediction over the epochs, though the rate of learning decreases markedly and rather suddenly
after only one or two epochs. Yet across this range, there is no change in the accuracy within the
validation set. That is, the model is achieving in-sample success by virtue of fitting additional
noise; indeed, within sample the neural network is achieving classification accuracies that are at
or exceeding 90 percent.. To avoid overfitting, with a particular eye on the hidden test set, we do
not train beyond 10 epochs. As an additional mechanism to avoid overfitting problems, we

employ a dropout rate of 0.1 between each layer, and a batch size of 64.

4 All code necessary to replicate these analyses will be posted to the Author’s dataverse upon
publication..



Insert Figure 3 about here

In addition to evaluating the predictive capacity of the trained neural network, we also
leverage the predictions in what might be termed a “meta-model.” Here, we leverage the
predicted classification probabilities from the neural network in a second stage classifier.
Specifically, we add the classification probabilities for each of the six categories to our training
dataset, and estimate a gradient boosting (Friedman et al., 2000; Friedman 2001) model using
extreme gradient tree boosting, also known as XGBoost (Chen and Guestrin, 2016); using
XGBoost in combination with neural networks has been regularly demonstrated to yield
state-of-the art predictive accuracy.

The underlying motivation for the second stage is two-fold. First, and pragmatically, the
first stage might have a tendency to assign a high overall probability to the most commonly
assigned IG component. This maximizes the predictive accuracy at this stage, but has the
downside of ignoring the small increases in probability associated with particular sub-categories
of components that may be substantively meaningful in classification. The second stage,
however, can incorporate that additional signal and results in a substantial increase in predictive
accuracy. Second, and more theoretically valuable as we consider avenues for development, we
envision this stage as later incorporating the probabilities for context terms; that is, those terms
which immediately follow or precede the word we are attempting to classify. In doing so, the
classifier will naturally incorporate a type of smoothing that will yet further increase both its

accuracy and its utility for practical applications.’

5 We train an XGBoost model using the xgboost package in R. We train a model with a softmax objective
to be evaluated by a multiclass log-loss function, where the max depth of the trees is 20, we complete 30



VII. Automated Classification of Food System Regulations
With the classifiers — a neural network approach and a tree boosting approach — in
place, we turn to evaluating their predictive fit. Our dataset comes from Siddiki (2014) and is
comprised of 19 food policy documents, each of which has been classified according to the IG.
Our feature set includes 7,848 total unique features. For training and testing, we randomly split
8,320 words into the training set and the remaining 922 classified words into the test set, forming
approximately a 90 percent / 10 percent training / testing split. For each token to be classified,
the 7,848 unique features includes indicators for the actual word (under the assumption that some
words are likely to be associated with some categories), part-of-speech indicators (under the
assumption that particular types of speech like adverbs might be associated with some
categories), and relations and source indicators from the dependency parser detailed above. The
set is expanded then by incorporating these indicators for the token immediately preceding and
the token immediately succeeding the token to be classified; that is, we incorporate the
immediate context of each word. Neural networks and deep learning approaches more generally
are particularly useful in the context of learning the interdepencies and conditionality between
features. The vast feature set therefore provides an avenue to understand how, when a particular
word is used in a particular way within a particular context, the probability it belongs to a
particular category is greater or lesser.
With this data in hand, we move to assessing the success of our automated procedure at

predicting human-assigned IG classifications. We start with the neural network approach. In

training passes on the dataset, the step size for each boosting step is 0.1, and a regularization parameter on
the weight of 0.08.



Table 2, we include the overall accuracy, precision, and recall of the classifier when we use it
with the held-out test data. Start first with the overall accuracy. Of the 922 words in the test set,
our preliminary approach correctly classifies 74 percent. Given that general levels of acceptable
intercoder reliability range from 70 to 90 percent (see, e.g., Quinn et al., 2010), this accuracy
offers strong initial evidence of the potential of our approach. Particularly given the relatively
small number of classified words on which this is trained, the associated complexity of the
classification task, and the number of extensions to our approach which are still available, we
believe the classification accuracy points towards the viability of automated classification of
institutional documents into the Grammar.

We pause to highlight two additional important considerations in evaluating the success
of the classifier. First, though we treat the human-coded data as a gold standard for evaluation, it
is not necessarily the case that each individual classification is precisely correct. That is, were
one to train two coders in the IG and assign them the same document, achieving agreement on
approximately 75 percent of all classified terms would be deemed largely successful. Second,
and really as a corollary of the first, where classifications fail is largely around boundary words
like “the” or “a” that are not clearly within one or another category within the Grammar.

Removing those terms would significantly increase the accuracy of the classifier.

Insert Table 2 Here

Turning to the results within subgroups, Table 6 also includes information on the

precision (intuitively, if we classify something as, say, an Aim, how likely is it to be an Aim?)



and recall (intuitively, of all the instances of Aim, how many do we correctly identify as Aims?).
Importantly, the approach performs well across both metrics and across all subgroups. The
model underclassifies Aims, both of which appear far fewer times in coded documents, but is
more precise when identifying those classifications. On the other hand, the model overclassifies
Conditions and Objects, both of which are the predominant classifications, leading to lower
precision but higher recall. In all, though, the only area where the model truly struggles is with
the Or / Else category, which is rare and comprises only three actual classifications in the test
data.

We turn next to the XGBoost approach. Recall that this approach is simply a second stage
that aims to supplement the first stage classification by adding the estimated probabilities from
the neural network model to the feature set, and again predicting the classifications. Therefore,
our feature set is the same, except it now includes an additional six features which are equal to
the estimated probability of class membership for each of the six categories from the trained

neural network model. The results of the XGBoost model appear in Table 3.

Insert Table 3 about here.

Interestingly, the boosting approach yields slightly lower accuracy overall. As the
precision and recall metrics make clear, this appears to be partially attributable to struggles with
the classification of Attributes, as those are now correctly classified more frequently as
Attributes when the model predicts Attribute (i.e., precision) but far fewer instances are actually

identified (i.e., recall). The lack of clear improvement in the boosting model, though



disappointing, also points to the initial success of the neural network at correctly classifying
variation in the data and the signals available at this point in time in the training data. Taken
together, our results validate the utility of automated approaches for the classification of

institutional rules and policy statements into the institutional grammar.

VIII. Conclusion

Proposed more than two decades ago, the IG offered enormous promise for a central
subject of study for political scientists and others interested in the systematic study of public
policy. However, the exorbitant resource costs necessary for implementing the IG in research
settings inhibited its growth as an avenue for scholarly inquiry. Recently, scholars have begun
making headway in applying the IG, but the considerable promise of the tool remains unrealized.
In this paper, we propose and provide initial evidence for the utility of an automated approach to
classifying institutional statements in accordance with the IG. As we show, one can approach
high levels of accuracy relatively quickly by employing the growing amount of texts classified
into the IG in conjunction with robust tools for natural language processing and improved

methods for supervised machine learning.

In all, the results provide strong initial evidence of the potential of supervised machine
learning for the automated classification of institutional rules into the institutional grammar. This
is particularly so given the following two routes for further improvement. First, expanding the
training set to incorporate more of coded policy documents is likely to lead to significant
increases in the out-of-sample performance with the test data. Though some simple classification

tasks can achieve high rates of accuracy with little training data, more complex classification



tasks require large training data sets. For instance, recent work in sentiment analysis, arguably a
more simple classification task, regularly utilizes datasets with hundreds of thousands of training
instances (see, e.g., Maas et al., 2011). Though we will never approach that level of data supply,
the success of our neural network approach with even a relatively small training set provides
important evidence that — as the training data is supplemented by additional work — the
approach will move towards being a robust and open solution to a problem that has paralyzed
and important avenue of research.

Second, and more directed at our particular specification choices, our present approach
samples words randomly; however, a better training approach would sample at the statement
level from the coded data. By doing so, one can incorporate the labels of context words in the
XGBoost model and that additional predictive information is also likely to yield a significant
improvement in our out-of-sample performance in the training data. We plan to incorporate this

approach as we continue to build this work towards public release.
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TABLES

Table 1. Matching IG ABDICO elements with Universal Dependencies

ABDICO Component  Universal Dependencies

Attributes nominal subject (nsubj), passive nominal subject (nsubjpass), clausal
subject (csubj),

Object direct object (dobj), dependent (dep)

Deontic auxiliary (aux)

Aim root, passive auxiliary (auxpass), negation modifier (neg), phrasal
verb particle (compound:prt), indirect object (iobj), copula (cop)

Condition nominal modifier (nmod), adverbial modifier (advmod), open clausal

complement (xcomp), clausal complement (ccomp), adverbial clause
modifier (advcl)
Or else N/A




Table 2: Out-of-sample Performance of Neural Network Classifier for Predicting
Institutional Grammar Components from Nineteen Policy Documents.

Level Accuracy Precision Recall N
Overall 0.74 -- -- 922
Aim - 0.94 0.72 69
Attribute -- 0.75 0.61 80
Condition -- 0.68 0.72 322
Deontic -- 0.91 0.94 32
Object -- 0.75 0.76 416
Or/Else -- 0.33 0.33 3

Note: Results based on classification of held-out test set using neural network classifier
trained on a set of 8,120 randomly sampled words.




Table 3: Out-of-sample Performance of XGBoost Classifier for Predicting Institutional
Grammar Components from Nineteen Policy Documents.

Level Accuracy Precision Recall N
Overall 0.73 -- -- 922
Aim - 0.95 0.77 69
Attribute -- 0.76 0.51 80
Condition -- 0.66 0.72 322
Deontic -- 0.89 0.97 32
Object -- 0.74 0.76 416
Or/Else -- 0.33 0.33 3

Note: Results based on classification of held-out test set using XGBoost classifier trained
on a set of 8,120 randomly sampled words and probability scores from the neural network
classifier.




FIGURE LEGENDS

Figure 1. Automated Coding Process. This figure provides the sequence of steps for automating the
process of getting unstructured institutional statement coded according to the IG.

Figure 2: Preprocessing Workflow. The first step in preprocessing requires the user to read the text file
into the preprocessing interface. Second, by applying a rules-based script based on regular expressions,
the user can remove all bulleted symbols (or other punctuation) that might hinder the performance of the
NLP program when it is used in later stages. Third, one applies an NLP annotator on the cleaned text.
This annotator assigns each word or punctuation mark a unique identifier (a “token” ID), and then, after
finding the sentence breaks, assigns each grouping of words a sentence ID. Fourth, the sentence ID is
used to reassemble the sentences in the proper order. It is at this stage that the user has the option of
adding additional contextual information to each sentence, such as statute location or statement type.
Finally, the sentence data is combined in a single file formatted to promote better NLP.

Figure 3: Evaluation of Trained Three Layer Neural Network Model of Institutional Grammar. This
figure plots the loss metrics (top panel) and accuracy (bottom panel) for the trained models both within
the training sample (blue) and within a held-out evaluation set (green) across the 10 training epochs.



