
Fast Tetrahedral Meshing in the Wild

YIXIN HU, New York University, USA

TESEO SCHNEIDER, New York University, USA

BOLUN WANG, Beihang University, China and New York University, USA

DENIS ZORIN, New York University, USA

DANIELE PANOZZO, New York University, USA

5.0%
2.7%

1.2% 0.6% 0.4% 0.2%

9.6%

6.8%
4.8%

3.8%

2.7%
1.5%

54.5%

26.9%

8.1%

1.9%
0.6% 0.1%4.0% 1.3% 0.2% 0.1% 0.1% 0.0%

>1m >2m >4m >8m >16m >32m
0%

10%

20%

30%

40%

50%

TetGen CGAL TetWild Ours

Ours

#T = 293 735

252s

TetWild

#T = 459 626

1588s

TetGen

#T = 8 221 130

1705s

CGAL

#T = 1 362 980

444s

Input

#F = 392 040

Fig. 1. The bar charts show the percentage of models requiring more than the indicated time for the different approaches over 4 540 inputs (the subset of

Thingi10k where all 4 compared algorithms succeed). Our algorithm successfully meshes 98.7% of the input models in less than 2 minutes, and processes all

models within 32 minutes. The comparison has been done using the experimental setup of TetWild [Hu et al. 2018] and selecting a similar target resolution for

all methods. The CGAL surface approximation parameter has been selected to be comparable to the envelope size used for TetWild and for our method. The

images above the plot show a mouse skull model (from micro-CT) tetrahedralized with fTetWild (right) compared with other popular tetrahedral meshing

algorithms.

We propose a new tetrahedral meshing method, fTetWild, to convert trian-

gle soups into high-quality tetrahedral meshes. Our method builds on the

TetWild algorithm, replacing the rational triangle insertion with a new in-

cremental approach to construct and optimize the output mesh, interleaving

triangle insertion and mesh optimization. Our approach makes it possible to

maintain a valid floating-point tetrahedral mesh at all algorithmic stages,

eliminating the need for costly constructions with rational numbers used

by TetWild, while maintaining full robustness and similar output quality.

This allows us to improve on TetWild in two ways. First, our algorithm is

significantly faster, with running time comparable to less robust Delaunay-

based tetrahedralization algorithms. Second, our algorithm is guaranteed

to produce a valid tetrahedral mesh with floating-point vertex coordinates,

while TetWild produces a valid mesh with rational coordinates which is not

guaranteed to be valid after floating-point conversion. As a trade-off, our

Authors’ addresses: Yixin Hu, New York University, USA, yixin.hu@nyu.edu; Teseo
Schneider, New York University, USA, teseo.schneider@nyu.edu; Bolun Wang, Beihang
University, China, New York University, USA, wangbolun@buaa.edu.cn; Denis Zorin,
New York University, USA, dzorin@cs.nyu.edu; Daniele Panozzo, New York University,
USA, panozzo@nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.
0730-0301/2020/7-ART117 $15.00
https://doi.org/10.1145/3386569.3392385

algorithm no longer guarantees that all input triangles are present in the

output mesh, but in practice, as confirmed by our tests on the Thingi10k

dataset, the algorithm always succeeds in inserting all input triangles.

CCS Concepts: • Mathematics of computing → Mesh genera-

tion.

Additional KeyWords and Phrases:Mesh Generation, Tetrahedral Mesh-

ing, Robust Geometry Processing

ACM Reference Format:

Yixin Hu, Teseo Schneider, Bolun Wang, Denis Zorin, and Daniele Panozzo.

2020. Fast Tetrahedral Meshing in the Wild. ACM Trans. Graph. 39, 4, Arti-

cle 117 (July 2020), 18 pages. https://doi.org/10.1145/3386569.3392385

1 INTRODUCTION

Tetrahedral meshes are commonly used in graphics and engineering

applications. Tetrahedral meshing algorithms usually take a 3D

surface triangle mesh as input and output a volumetric tetrahedral

mesh filling the volume bounded by the input mesh. Traditional

tetrahedral meshing algorithms have strong assumptions on the

input, requiring it to be a closed manifold, free of self-intersections

and numerical unstably close elements, and so on. However, those

assumptions often do not hold on imperfect 3D geometric data in

the wild.

The recently proposed Tetrahedral Meshing in the Wild (TetWild)

[Hu et al. 2018] algorithmmakes it possible to reliably tetrahedralize

ACM Trans. Graph., Vol. 39, No. 4, Article 117. Publication date: July 2020.

117:2 • Hu, Y. et al

triangle soups by combining exact rational computations with a

geometric tolerance to automatically address self-intersections, gaps

and other imperfections in the input. The algorithm imposes no for-

mal assumptions on the input mesh and is extremely robust, opening

the door to automatic processing and repair of large collections of

3D models.

However, TetWild has two downsides, one theoretical and one

practical. The theoretical downside is that it does not guarantee the

generation of a floating point tetrahedral mesh: the algorithm inter-

nally uses rational numbers, which are then converted to floating

point in the process of mesh optimization. While quite unlikely, it

is possible that the mesh optimization stage will be unable to round

all coordinates of the output mesh to floating point. The practical

downside is the long running time compared with Delaunay-based

tetrahedralization algorithms.

We introduce fTetWild, a variant of the TetWild algorithm ad-

dressing both these limitations while keeping the important proper-

ties of TetWild: robustness to imperfect input and ability to batch

process large collections of models without parameter tuning, while

producing high-quality tetrahedralmeshes. Differently fromTetWild,

which generates a polyhedral rational mesh inserting all triangles

at once, we start from a floating point tetrahedral mesh, insert one

input triangle at a time and re-tetrahedralize locally, rejecting the

operations producing inverted or degenerate elements. We then

improve the quality of the mesh iteratively, and attempt to insert

the rejected triangles into a higher quality mesh, which is less likely

to fail.

Our algorithm always guarantees to generate a valid tetrahe-

dral mesh with floating point vertex positions, independently from

the stopping criteria or quality of the mesh. It might fail to insert

few input triangles leading to a łless accuratež boundary preserva-

tion, however we never observe this behavior in our experiments.

The new algorithm can be implemented using floating point con-

structions, avoiding the overhead associated with rational numbers.

The use of floating point numbers also simplifies parallelization,

which we use during mesh optimization to further improve the

running time on large models. Consequently, our new algorithm is

significantly faster than TetWild, with running times comparable to

Delaunay-based algorithms (Figure 1), while providing the stronger

guarantee of always producing a valid floating point output at the

same time.

These improvementsmake fTetWildmore practical than TetWild

not only for volumetric meshing problems, but also for mesh repair

and approximate mesh arrangements. By combining fTetWild and

some elements of [Zhou et al. 2016], we obtain an approximate

mesh arrangement algorithm for input triangle soups guaranteed

to produce a valid floating point output. In comparison, the origi-

nal algorithm presented in [Zhou et al. 2016] may fail to produce

a floating-point output due to impossibility of rounding after the

rational-arithmetic arrangement computation.

We demonstrate the robustness and practical utility of our algo-

rithm by computing tetrahedral meshes on the Thingi10k dataset

(10 000 models) and computing approximate Booleans. We use the

generated tetrahedral meshes to solve elasticity, fluid flow, and heat

diffusion equations on complex geometric domains. The complete

implementation of fTetWild is provided in the additional material,

together with scripts to reproduce all results in the paper.

2 RELATED WORK

We briefly review the literature on tetrahedral meshing (Section 2.1),

with an emphasis on envelope-based techniques, and we refer to

[Cheng et al. 2012; Shewchuk 2012] for a more detailed overview

of the topic. We also review mesh repair and mesh arrangement

algorithms (Section 2.2), since our technique can be also used in

these settings to enable processing of imperfect geometry.

2.1 Tetrahedral Meshing

Delaunay Meshing. The most studied and most widely used algo-

rithms to generate tetrahedral meshes are based on the Delaunay

condition [Alliez et al. 2005a; Aurenhammer 1991; Aurenhammer

et al. 2013; Bishop 2016; Boissonnat et al. 2002; Boissonnat and

Oudot 2005; Busaryev et al. 2009; Chen and Xu 2004; Cheng et al.

2008, 2012; Chew 1989, 1993; Cohen-Steiner et al. 2002; Dey and

Levine 2008; Du and Wang 2003; George et al. 2003; Jamin et al.

2015; Murphy et al. 2001; Remacle 2017; Ruppert 1995; Sheehy 2012;

Shewchuk 1996, 1998, 1999, 2002a; Si 2015; Si and Gartner 2005; Si

and Shewchuk 2014; Tournois et al. 2009; Weatherill and Hassan

1994]. These methods are efficient and are widely used in commer-

cial software. They can be applied to either point clouds inputs, or to

tessellate the interior of manifold non self-intersecting meshes with

no degenerate faces, but are not designed to deal with imperfect

input, and, as a consequence, these techniques fail on a significant

fraction of data in the wild [Hu et al. 2018]. We provide a direct

comparison with TetGen [Si 2015], the most commonly used code in

this category, which builds on the techniques developed in [George

et al. 2003; Weatherill and Hassan 1994], and CGAL [Wein et al.

2018] in Section 4.

Grid Methods. An alternative approach is the use of a background

grid as a starting point [Baker et al. 1988; Bern et al. 1994; Bridson

and Doran 2014; Bronson et al. 2013; Doran et al. 2013; Labelle

and Shewchuk 2007; Molino et al. 2003; Yerry and Shephard 1983].

These algorithms fill the entire bounding box of the input with a

regular lattice or with a hierarchical space partitioning, optionally

intersect the background mesh with the input surface, and then

discard the elements outside of the input. These methods are simpler

and more robust than Delaunay methods, but still struggle with

imperfect input geometry, and create high-quality elements only in

the interior of the mesh, where the background mesh is preserved

exactly. However, placing badly shaped triangles on the boundary is

problematic for many applications. Our algorithm borrows the idea

of a background mesh from these methods, but inserts the elements

incrementally, interleaving mesh optimization stages to ensure that

the final quality of the mesh is uniformly high.

Front-Advancing Methods. Another family of methods starts from

the boundary, and inserts one element at a time, growing the vol-

umetric mesh (i.e. marching in space), until the entire volume is

filled [Alauzet and Marcum 2014; Cuilliere et al. 2013; George 1971;

Haimes 2014; Peraire et al. 1987; Sadek 1980]. These methods create

high quality elements close to the boundary, but introduce many

ACM Trans. Graph., Vol. 39, No. 4, Article 117. Publication date: July 2020.

Fast Tetrahedral Meshing in the Wild • 117:3

corner cases in the interior regions where the fronts meet, lowering

the quality of the elements and making a robust implementation

challenging.

Envelope Meshing. All methods discussed above assume a valid,

manifold, non self-intersecting boundary input mesh, and are not

designed to handle the imperfections which are common in real-

world CAD and scanned data. This issue has been tackled for surface

meshes in Mandad et al. [2015], by creating a surface approximation

within a tolerance volume using a modified Delaunay refinement

process, and for implicit surfaces [Shen et al. 2004], using differ-

ent filter radius. A similar idea has been exploited for volumetric

meshing in TetWild [Hu et al. 2018], and its 2D counterpart TriWild

[Hu et al. 2019]. The main idea of this work is to combine exact

computation, using a hybrid kernel similar to [Attene 2017], and a

surface envelope [Hu et al. 2017], which allows the resulting mesh to

approximate the input instead of reproducing it exactly. Our method

closely follows [Hu et al. 2018], but we design our algorithm to avoid

the use of exact computation. We compare the two techniques in

Section 4.

Mesh Improvement. Many algorithms have been proposed to im-

prove the quality of an existing tetrahedral mesh by displacing

vertices or changing the local connectivity [A. Freitag and Ollivier-

Gooch 1998; Alexa 2019; Alliez et al. 2005b; Canann et al. 1996, 1993;

Chen and Xu 2004; Faraj et al. 2016; Feng et al. 2018; Hu et al. 2018;

Klingner and Shewchuk 2007; Lipman 2012]. Our method relies on

the algorithm proposed in Hu et al. [2018], which uses a set of local

operations to optimize the conformal AMIPS energy [Fu et al. 2015;

Rabinovich et al. 2017]. We parallelized some of the steps of that

algorithm (Section 3), which is easier in our case since we only have

floating point coordinates.

2.2 Applications

Mesh Repair. Since our algorithm can be used for mesh repair, we

review the most recent works on this topic, and we refer to [Attene

et al. 2013] for a complete overview.

MeshFix [Attene 2010, 2014] detects problematic regions in tri-

angle meshes, and uses a set of local operations to heal them. The

tool is very effective, but due to its use of a greedy algorithm it

might delete large parts on a mesh. The most recent mesh repair

technique has been introduced in [Hu et al. 2018]: the algorithm

generates a tetrahedral mesh and discards the generated tetrahedra,

only keeping the boundary surface. While simple and effective, this

techniques is computationally expensive, and thus only usable in

batch processing applications. Our algorithm can be used in the

same way, but its higher efficiency makes it more practical. We

also propose a simple modification to the surface mesh extraction

procedure to guarantee a manifold output.

Booleans and Mesh Arrangements. Many approaches to perform-

ing Boolean operations on meshes were proposed, with some meth-

ods emphasizing robustness, other methods aiming to produce exact

results, and another set prioritizing performance. In most cases, non-

trivial assumptions are made on the input meshes: most commonly,

these are required to be closed; in other cases, no self-intersections

are allowed, or most restrictively vertices may be assumed in general

position.

CGAL, one of the most robust implementations of Boolean oper-

ations available [Granados et al. 2003], relies on exact arithmetic,

and uses a very general structure of Nef polyhedra [Bieri and Nef

1988] to represent shapes. This allows one to obtain exact Boolean

results in degenerate cases (e.g., when the result is a line or a point).

At the same time, the assumptions on the input are quite restrictive:

the surfaces need to be closed and manifold (although the latter

constraint could be eliminated).

Another approach to achieve robustness at the expense of ac-

curacy, is to convert input meshes to level sets e.g. by sampling a

signed distance function for each object [Museth et al. 2002] and

perform all operations on the level set functions. The obvious dis-

advantage of these methods is that their accuracy is limited by the

resolution of the grid; the original mesh geometry is lost, and it is

non-trivial to maintain even explicitly tagged features. These down-

sides are partially addressed by adaptive [Varadhan et al. 2004] and

hybrid [Pavic et al. 2010; Wang 2011; Zhao et al. 2011], the latter

preserving mesh geometry away from intersections. All these meth-

ods rely on well-defined signed distance function, i.e., assume that

input meshes are closed, and may still significantly alter the input

geometry near intersections. [Schmidt and Singh 2010] does not use

a signed distance function, but resembles these methods, in that it

removes existing geometry near intersections and replaces it by new

mesh connecting the two objects and approximating the result of the

Boolean. Binary Space Partitioning (BSP) based methods, starting

from [Naylor et al. 1990; Thibault and Naylor 1987] are closest in

their approach to ours. Using BSP trees preserves the input more

accurately, and, along the way, creates a volume partition. However,

it is prone to errors due to numerical instability of intersection calcu-

lations, and, due to global intersections of triangle planes, performs

excessive refinement. [Bernstein and Fussell 2009] addresses the

issue of non-robustness by using exact predicates, and [Campen and

Kobbelt 2010] reduces refinement by creating localized BSP trees in

an octree. Examples of highly efficient but non-robust software for

computing Booleans are [Douze et al. 2015], [Barki et al. 2015], and

[Bernstein 2013]. A general position assumption is often required

explicitly or implicitly. In [Zhou et al. 2016] a robust way to compute

mesh arrangements is introduced, with Boolean operations as an

application. Robustness is achieved by using rational numbers for

critical computations. To perform Booleans the mesh is required to

be Positive Winding Number (PWN), which does not always hold

in meshes in the wild [Zhou and Jacobson 2016].

Sheng et al. [2018a,b] use a combination of plane-based and vertex-

based representations of mesh faces to improve robustness of ba-

sic operations needed for Boolean operations performed in floats.

Their method achieves very high efficiency, at the expense of some-

what lower robustness compared to the state of the art [Granados

et al. 2003; Zhou et al. 2016]. Their method assumes that the input

meshes enclose solids and are free of self-intersections. [Magalhães

et al. 2017] is an efficient technique using simulation-of-simplicity

techniques to handle general intersections between objects, self-

intersections or holes are not handled. [Paoluzzi et al. 2017] con-

siders a general problem of arrangements of complexes in 2D and

ACM Trans. Graph., Vol. 39, No. 4, Article 117. Publication date: July 2020.

117:4 • Hu, Y. et al

Input
#F = 89 466

Our output 63s
#T = 92 808

Max energy = 8.0

Fig. 2. Example of an input surface mesh with self-intersections and a bad

triangulation on the base. fTetWild converts this model into a high-quality

tetrahedral mesh.

3D, presenting a theoretical general merge algorithm, but do not

consider the questions of robustness and handling imperfect inputs.

Compared to existing methods, the application of fTetWild to

Boolean operations is more conservative, in terms of mesh geome-

try changes and refinement, compared to level set and BSP-based

methods, while maintaining their level of robustness. At the same

time, thanks to the geometric tolerance, fTetWild is capable of

eliminating near-degenerate or overly refined triangles in the input

model, which [Zhou et al. 2016] cannot do. We also make fewer

assumptions on the inputs, allowing gaps, self-intersections, and

degeneracies.

3 METHOD

fTetWild takes as input a 3D triangle soup (i.e., a set of arbitrarily

connected, potentially intersecting triangles with vertices poten-

tially duplicated) whose vertices are represented in floating-point

coordinates, representing the surface of an object. The algorithm

has two user-defined parameters: target edge length ℓ, and envelope

size ϵ . The ϵ-envelope represents the maximal deviation from the

input surface the user is willing to accept. For instance, in additive

manufacturing applications ϵ can be the machining precision. It

outputs a volumetric tetrahedral mesh of the axis-aligned bounding

box containing the input, with floating-point vertex coordinates,

whose elements are (1) non-inverted (i.e., positive volume) and

(2) with some faces approximating the input soup within a user-

defined ϵ-envelope. fTetWild makes no assumptions on the input

triangle soup and it is robust when handling imperfect input with

self-intersections or small gaps. This robustness is achieved by al-

lowing the faces of the tetrahedral mesh corresponding to the input

surface to move inside an ϵ-envelope (up to ϵ far from the input):

self-intersections, degenerate and near-degenerate faces and gaps

contained in the envelope are automatically removed when com-

bined with proper mesh improvement operations (Figure 2).

The output tetrahedral mesh can be optionally post-processed to

remove the tetrahedra outside the input surface (Section 3.6). We

note that this optional stage relies on the input triangles (geometry

and orientation) to represent a valid volume. This heuristic filtering

might fail, for instance if the input is far from a closed surface (e.g., a

half-sphere) fTetWild will generate a valid tetrahedral mesh with

faces conforming to the input, but the filtering stages might discard

all tetrahedra since the łoutsidež region is not well defined.

Similarities and Differences to Existing Face Insertion Algorithms.

The main challenge tackled in many existing tetrahedral meshing al-

gorithm is the preservation of the input faces, which can be exact or

approximate. One of the best known algorithms exactly preserving

the input faces is [George et al. 2003], which proposed to subdivide

a background mesh by intersecting it with input faces. This proce-

dure can, however, introduce inverted elements due to floating-point

rounding, which then need to be untangled, a difficult task for which

no robust algorithm currently exists. A robust solution is proposed

in TetWild [Hu et al. 2018], that initially inserts the faces exactly

using rational numbers to avoid numerical problems, but is then

forced to allow them to move to round the rational coordinates back

to floating point. Although robust and conservative, this solution

relies on expensive rational constructions, and it is not guaranteed

to succeed in the rounding phase.

Our method follows an approach similar to TetWild (see Appen-

dix A for a brief description of the algorithm), enabling small and

controlled deviations from the input surface, but sidesteps the need

for constructing a rational mesh, always using floating-point coor-

dinates, while inheriting the robustness of TetWild. Algorithmically,

there are three major differences:

(1) fTetWild preserves the input faces by inserting one input

triangle at a time into an existing background tetrahedral

mesh. To facilitate the insertion it relaxes the insertion with

a snapping tolerance (relatively larger than floating point

machine precision) which is only possible thanks to the ϵ-

envelope.

(2) fTetWild always tetrahedralizes the region affected by the

newly inserted face by looking up a pre-computed table and

always maintains a valid inversion-free tetrahedral mesh

(using exact predicates).

(3) fTetWild represents the vertices using only floating point

coordinates, reducing the running time and memory con-

sumption.

We note that inserting a triangle might fail due to limitations of

the floating-point representation. For instance, the inserted face can

be arbitrarily close to one of the existing vertices and the insertion

will introduce a tetrahedron with a volume numerically equal to

zero. In this scenario, we rollback the problematic operation, mark

the problematic face as un-inserted, iteratively perform mesh im-

provement operations on the whole mesh, and try to insert the face

again when the mesh quality has increased. This procedure shows

the only possible failure of fTetWild: the impossibility of adding

some input faces. While this is indeed possible, it never manifested

in our experiments. Note that even if some faces could not be in-

serted, fTetWild still outputs a valid mesh conforming to all other

faces.

ACM Trans. Graph., Vol. 39, No. 4, Article 117. Publication date: July 2020.

Fast Tetrahedral Meshing in the Wild • 117:5

Input Preprocessing
Triangle

Insertion

Mesh

Improvement
Output

Fig. 3. Overview of our algorithm. From left to right, the input mesh is

simplified, a background mesh is created and the input faces are inserted,

the mesh quality is optimized, and the final result is obtained by filtering

the elements lying outside the input surface.

3.1 Algorithm Overview

Our algorithm consists of four phases (Figure 3): (1) the input tri-

angle soup is simplified while ensuring it stays in the ϵ-envelope

of the input (Section 3.3), (2) a background mesh is generated and

the triangles are iteratively inserted into it, if the insertion does not

introduce inverted elements (Section 3.4), (3) the mesh is improved

using local operations (Section 3.5) and at the end of every three

improvement iteration we re-attempt the insertion of input trian-

gles that could not be inserted at phase 2, (4) the mesh elements are

optionally filtered to remove the elements outside the surface or to

perform Boolean operations (Section 3.6).

During the whole procedure we ensure that the tetrahedral mesh

remains valid, that is, we ensure that (1) each element has posi-

tive volume (checked using exact predicates [Lévy 2019; Shewchuk

1997]) and (2) all successfully inserted triangles, from now on called

the tracked surface, stay inside the ϵ-envelope of the input.

Throughout the algorithm, we consider a distance between two

points zero if it is below a numerical tolerance ϵzero. Similarly, we

use ϵ2zero, ϵ
3
zero for areas and volumes respectively. We found that

the performance of the algorithm are not heavily affected by this

tolerance, as long as ϵzero > 10−20: in our experiments we used

ϵzero = 10−8.

3.2 Envelope

We use the envelope definition and the algorithms introduced in

[Hu et al. 2018] to build the envelope and check if a triangle is

contained in it. In particular, testing if a triangle is contained within

the envelope is done by sampling the input triangle and checking

if the samples are all within a slightly smaller envelope with the

sampling error conservatively compensated [Hu et al. 2018].

3.3 Preprocessing

We use the same preprocessing procedure proposed in [Hu et al.

2018] for simplifying the input: we merge vertices closer than ϵzero

and collapse an edge (by merging one endpoint to the other) if:

(1) it is a manifold edge (has no more than two incident triangles)

and vertex-adjacent edges are also manifold, and (2) the collapsing

operation does not move triangles outside a smaller envelope of size

ϵprep < ϵ . At this stage, we use ϵprep = 0.8ϵ since this value gives

space for snapping in triangle insertion (Section 3.4), and prevents

vertices to be too close to the boundary of the envelope, thus leaving

more freedom for surface vertices to move in the mesh improvement

Fig. 4. A two-dimensional example of edge coloring. From left to right: one

parallel-independent edge is selected (in red), its vertex-adjacent triangles

are colored in black. The algorithm proceeds until no edges can be marked

(last image). In the end, all red edges can be safely collapsed in parallel

without affecting other red edges.

stage (Section 3.5). On our dataset, we observed that changing this

parameter has a minor impact on the running time and negligible

effect on the output when in the range 0.7 to 0.999. Note that it

cannot be set to 1 because it will prevent snapping (Section 3.4). We

use the value 0.8 since it is far from the bounds of this range.

Since the preprocessing step is computationally expensive, due to

the envelope containment checks, we propose a basic parallelization

strategy which leads, on average, to a 4x speedup of the preprocess-

ing step when using 8 cores. Our parallel edge collapsing procedure

uses a serial 2-coloring pass over all input faces. We mark all input

triangles white in the initial stage. Then, iteratively, we mark all

edges as parallel-independent if all its vertex-adjacent triangles are

white, and then mark these triangles black (Figure 4). At this point,

we can safely collapse all marked parallel-independent edges in

parallel. We iterate this procedure until we are unable to remove

more than 0.01% of the original input vertices.

3.4 Incremental Triangle Insertion

3.4.1 Background Mesh Generation. The triangle insertion stage

requires a background mesh (which does not necessarily conform

to the input triangles) which we create using Delaunay tetrahedral-

ization [Lévy 2019] on the vertices from the preprocessing stage.

Since we allow the surface to move within an ϵ-envelope, we gen-

erate the background mesh for a bounding box 2ϵ larger than the

bounding box of the input vertices. Similarly to TetWild, additional

points are added uniformly inside the box and at least ϵ away from

the input faces before Delaunay tetrahedralization to obtain more

uniformly-shaped initial elements. More precisely, the additional

points are added in a regular grid with spacing of d/20 (where d is

the diagonal of bounding box of the input mesh), skipping inserting

the additional points with distance to the input faces smaller than ϵ .

3.4.2 Single Triangle Insertion. The key component of our algo-

rithm is three-stage procedure for inserting one triangle T into a

valid tetrahedral meshM , adding new vertices and tetrahedra, and

adjusting mesh connectivity, to minimize the number of insertion

failures and number of badly shaped tetrahedra created by insertion.

Note that we do not insert degenerate triangles. Our algorithm uses

ideas from marching tetrahedra [Doi and Koide 1991] and other

tetrahedralization methods [George et al. 2003; Weatherill and Has-

san 1994], as well as marching cubes [Lorensen and Cline 1987]. It

consists of the following steps: (1) Find the set TI consisting of the

tetrahedra ofM that triangle T cuts, as defined below; (2) Compute

the intersection points of the plane spanned byT (denoted as P) and

the edges of the tetrahedra in TI ; (3) Subdivide all cut tetrahedra us-
ing a connectivity pattern from a pre-computed tet-subdivision table.

ACM Trans. Graph., Vol. 39, No. 4, Article 117. Publication date: July 2020.

117:6 • Hu, Y. et al

M

p q
p1

p3 p4
p2

M

p q

v

(v is moved to line pq.)

p1 p2 p3

v

(v is not moved to line pq.)

p1 p2 p3

Traingle Insertion

with Snapping

Traingle Insertion

without Snapping

Case 1

Case 2

Case 3

. (a) Initial Mesh (b) Cutting Triangles (c) Snapping (d) Intersection (e) Triangles Subdivision (f) Final Mesh .

Fig. 5. Segment insertion into a triangle mesh (a 2D analog of triangle insertion) with and without snapping. (a) Insertion of segment pq into mesh M . (b)

Identification of cut triangles TI (in red). (c) Snapping vertex v to line pq and updating TI , where v is δ -close to pq . v is moved to its closest points on line pq

if this does not invert any elements of M (case 1). Vertex v is added in Vδ both if v is moved (case 1) or not (case 2). The yellow triangle is added to TI . (d)
Computing the intersection of line pq with the edges of TI (points p1, p2, p3). (e) Triangles requiring subdivision (shown in red). (f) The final mesh after

subdivision.

T
T

p1
p2

p1
p2

p3

p1

p2

p1

p2

T ∈ TI T < TI

Fig. 6. Examples of tetrahedra T included into, or excluded from, TI . The
intersections are shown in red. Left two:T intersects a face of T at a segment

([p1, p2]) or a polygon ([p1, p2, p3]) that contains interior points of both T
and the intersected face of T. In this case, we put T into TI . Right two: T
intersects a face of T (in light red) at a segment ([p1, p2]) that does not
contain any interior points of either T or the intersected face of T. In this

case, we do not put T into TI .

These patterns guarantee that a valid tetrahedral mesh connectivity

is maintained.

Finding Cut Tetrahedra. We first define that object A cuts though

object B if their intersection contains interior points of both A and

B. We say that triangle T cuts tetrahedron T if (1) it is completely

contained inside T , or (2) it cuts through at least one face of T
(Figure 6). We initialize TI to be the set of the tetrahedra ofM thatT

cuts. Note that this set will be iteratively expanded by the algorithm.

We use exact predicates [Lévy 2019; Shewchuk 1997] for checking

if a triangle is contained inside a tetrahedron. To detect if one trian-

gle cuts through another, we combine the exact predicates with the

algorithm [Guigue andDevillers 2003]. The use of predicates ensures

topological correctness when using floating-point coordinates.

Plane-Tetrahedra Intersection. To insert a triangle T defining a

plane P into TI (Figure 5(c)(d)), we need to ensure that after the

insertion: (1) for every pointp ∈ T there is a face F of the refined tets

in the set TI such thatminq∈F ∥p−q∥ < δ ; (2) the projection of faces

F in TI , that are within the distance δ from T to the plane P covers

T . We call sets with these properties covers ofT . We allow the cover

of triangles to deviate from P . This is crucial for robustly inserting

triangles using floating point computations: without it, we observe

a significantly higher running time due to more insertion failures,

p1 p2

p3
T

P

T

v
F

(a)

T

P

T

v
F

(b)

p2

p3
T

P

T

v
F

(c)

T
p1
p2P

T

v
F

(d)

Fig. 7. Plane P intersects TI (T ∈ TI). (a) The faces of F (marked in yellow)

are the covering of triangle T . (b) Snapping v to its closest point on P

and expanding F to include red triangles makes F safely covering T . (c)

Snapping a boundary vertex p1 of F to v changes the area of F and make it

not coveringT . (d) Snapping an interior vertex p3 of F tov does not change

the boundary of F: F is still covering T .

which leads to additional iterations of mesh optimization. Also,

more faces remain uninserted in the final output. For the first pass

of triangle insertion (i.e., before any mesh improvement is done), we

use a larger δ = max(ϵzero, 10−3ϵ), while for all subsequent passes
we reduce it to δ = ϵzero.

We start with the idealized case of infinite-precision arithmetics.

In this case, we can easily realize the covering of T by intersecting

all the faces of the tetrahedra in TI with plane P . This generates a

planar polygonal mesh F on P coveringT and the maximal distance

fromT to F is zero (Figure 7 (a)). The vertices of F are intersection

points of P and edges of TI .
When the floating point representation is used to represent the

coordinates of vertices, round-off error may result in degenerate

or inverted tetrahedra. Our approach is to reject insertion in these

ACM Trans. Graph., Vol. 39, No. 4, Article 117. Publication date: July 2020.

Fast Tetrahedral Meshing in the Wild • 117:7

p q
v

p q

v

p q
v

v1

v0
v’

v0’ v1’

(1) (2) (3)

Fig. 8. 2D illustration of step (1) to (3) of snapping when inserting segment

[p, q]. The cut triangles in TI are marked in red. (1) Vertex v is within δ

distance to segment [p, q]. (2) Check the effect of moving v to line [p, q].
(Vertex v cannot be moved to [p, q] in this case, because a triangle reverts

its orientation.) (3) One-ring triangle [v, v0, v1] (marked in yellow) of v is

intersecting with line [p, q], and the projection of its edges [v, v0], [v, v1]
on line [p, q], segment [v ′

, v
′
0], [v ′

, v
′
1], intersect with segment [p, q].

cases. However, to minimize the number of triangles that have to

be rejected, we either snap vertices of the tetrahedral meshM to P

(Figure 7 (b)) or snap intersection points to vertices ofM (Figure 7

(c)(d)). Moving a vertexv of TI (thus changingM) changes the cover

F , because P intersects the edges of TI in different locations. As no

intersection of P with an edge of TI disappears (at most, it may move

to an endpoint), and no new intersections appear (other than at the

endpoints shared with already intersected edges), the connectivity

of TI can be viewed as unchanged, possibly with some zero-length

edges. We can view snapping vertices of TI to P as a deformation of

F , keeping it on plane P . If the affected vertices are in the interior

of F , F still covers T since the boundary of F does not change.

However, if moving v changes the boundary of F , the covering

might be invalidated (Figure 7 (b)). In this case, before moving a

boundary vertex, we extend TI by adding its 1-ring neighbourhood,

intersect it with P , and extend F accordingly. We repeat this process

until all affected vertices are in the interior.

Moving the point v to the plane P might not always be possible,

since it could invert some tetrahedra inM . In these cases, instead

of moving v to P , we deform F by moving some vertices of F to v ,

which is at δ distance from P by definition (Figure 7 (c)(d)). Similarly

to the previous case, this operation can only be applied on interior

vertices of F . We thus extend TI if this operation affects vertices on

the boundary of F .

In practice, we never explicitly compute F on the plane P since

it is uniquely defined by the intersection points (Appendix E), but

instead use the following 4 steps, that directly determine the vertices

of F (the faces of F are obtained by table-based refinement of TI).
(1) Find all vertices of the tetrahedra in TI , with distance to P

smaller than δ and put them in Vδ (e.g., vertex v in Fig-

ure 8(1)).

(2) Move vertices inVδ to their closest points on P if it does not

invert any elements ofM (Figure 8(2)).

(3) For each vertex inVδ , add all of its vertex-adjacent tetrahedra

to TI if these are cut by P and have faces covering T (i.e., the

projection of the face to P intersects with T). For example,

[v,v0,v1] in Figure 8(3) is added.

(4) Repeat steps (1) to (3) until no more new tetrahedra are added

to TI .

Table-based Tetrahedron Subdivision. All tetrahedra sharing the

edges of tetrahedra in TI cut by P are subdivided into sub-tetrahedra

Table 1. A subset of the tet-subdivision table, the complete table is pro-

vided in the additional material. The first row corresponds to the case of a

tetrahedron without cut edges, the second and third to the case of one cut

edge, e0 and e1 respectively, and the last row to two cut edges e0 and e1.

All tetrahedra shown in the table have same edge label.

I

II
0 1 · · ·

0(10) = 000000(2)

e0

e1

e5 e3
e4

e2 · · ·

1(10) = 000001(2) · · ·

2(10) = 000010(2) · · ·

3(10) = 000011(2) · · ·

.

.

.
.
.
.

.

.

.
. . .

according to the tet-subdivision table. Note that this set of tetra-

hedra usually contains some tetrahedra from TI (red elements in

Figure 5(e)) and some neighboring tetrahedra of TI (yellow elements

in Figure 5(e)).

Since an edge can have at most one intersection point with P ,

the decomposition of the subdivided tetrahedron is largely (but

not entirely) determined by which edges are cut. (An edge will be

cut if it intersects with P and neither endpoints are snapped.) We

record all possible decompositions of a tetrahedron in a subdivision

table, indexed by primary cut indices and secondary cut indices. The

primary index (I) (Table 1), is a binary string, indicating which edges

are cut. If two edges on a face are cut (3 edges of a face cannot be cut

at the same time), there are two possible triangulations of this face

and also multiple decompositions of the tetrahedron; the secondary

index (II) is the number of a specific decomposition (Table 1). A

primary index paired with a secondary index retrieves a unique

decomposition of a tetrahedron.

For an oriented tetrahedron T , there are 26 = 64 combinations of

possible intersection points on its edges, but not all 64 combinations

can be practically realized. A direct enumeration shows that the

following edge-cut configurations are impossible: (1) T has six cut

edges, (2) T has five cut edges, (3) T has 4 cut edges, and 3 of them

are on the same face, and (4) T has 3 cut edges on the same face.

In total, there are
(6
6

)

+

(6
5

)

+ 3 · 4 + 4 = 23 impossible edge-cut

configurations.

The remaining 41 realizable edge-cut configurations cover all

subdivision cases and we can categorize them into 7 symmetry

classes (Figure 9). Five of them were discussed in [Schweiger and

Arridge 2016] and used for a tetrahedron cut by a plane. We need

2 extra configurations (Figure 9, (4) and (6)) for subdividing the

neighboring tetrahedra ofTI with only certain edges cut by P (yellow

elements in Figure 5(e)).

ACM Trans. Graph., Vol. 39, No. 4, Article 117. Publication date: July 2020.

117:8 • Hu, Y. et al

(1) No cut (2) 1 edge cut (3) 2 edge cut (4) 2 edge cut (5) 3 edge cut (6) 3 edge cut (7) 4 edge cut

Fig. 9. 7 symmetry classes of edge-cut configurations. (4) and (6) can only happen on neighboring tetrahedra of TI with only certain edges cut by P .

We retrieve a list of decompositions of T corresponding to a

primary index; we now need to select a secondary index corre-

sponding to a decomposition that preserves the validity of mesh

M after the subdivision, that is, we want M to have a valid topol-

ogy and no inverted tetrahedra. To ensure a valid topology, two

adjacent subdivided tetrahedra must have the same triangulation

on the shared face. We set a rule for choosing such triangulation

using only the global ordering of the vertices of M . For a face

[v0,v1,v2] of tetrahedra T with two intersection points p1,p2 on it

(see inset), we select the triangulation containing the edge [p2,v1]
if the unique integer label of vertex v1 is larger than the one of v2.

v2v1

v0

p1 p2

T
Otherwise, we select the triangulation con-

taining the edge [p1,v2]. This simple rule

completely identifies a secondary index and

preserves the topology of the mesh. For com-

pleteness, we remark that some configura-

tions might require additional vertices (Ap-

pendix C). However, our rule automatically excludes them. We at-

tach the visualization of the tet-subdivision table in the supple-

mentary material. We then check if all sub-tetrahedra have volume

larger than ϵ3zero (since we observed that elements with positive but

extremely small volume could delay later insertions in this local

region) and reject the insertion if this is not the case.

3.4.3 Open-boundary Edge Preservation. After triangle insertion,

the input edges shared by two non-coplanar triangles are preserved

through the insertion of adjacent triangles, as the plane of the next

inserted triangle will intersect the cover F of a previously inserted

triangle. This does not hold for boundary edges. An edge is an open-

boundary edge if it has only one incident triangle or has multiple

coplanar incident triangles on the same side of the edge in their

common plane.

To preserve an open-boundary edge e of a triangle T , we project

e and the cover F of T to the plane P ′ that best fits the faces of
F . Then, we compute the intersection of the projection of e to P ′

with the projections of the faces of F . The intersection points of

the projection of e and T are then computed on P ′ and are lifted

back to the corresponding faces of F . Since we have a set of edges

cut into two, we can subdivide the affected tetrahedra using the

previous table-based tetrahedron subdivision. An example can be

found in Appendix D.

Note that the open-boundary edge preservation might fail due

to numerical reasons, in this case we rollback the operation and

postpone the insertion of the open-boundary triangle to later stages.

Input
#F = 212 748

Unstable energy
computation, 826s

#T = 753 755
Max energy = 8.0

Stable energy
computation, 253s

#T = 290 973
Max energy = 8.0

Fig. 10. Example of model where the numerical instability of the AMIPS

energy causes over-refinement (middle). By evaluating the energy using

rational numbers (when it is above 108) the issue disappears (right).

3.5 Mesh Improvement

Weadapt themesh improvement framework proposed in TetWild [Hu

et al. 2018] that optimizes the conformal AMIPS 3D energy [Ra-

binovich et al. 2017] to increase the mesh quality, but avoid the

overhead introduced by the hybrid kernel by specializing the frame-

work for floating point computation. Note that, as mentioned in [Hu

et al. 2018], we use the AMIPS energy since it is differentiable and

scale-invariant. We made three changes to the original optimization:

(1) We try to insert the uninserted input faces every three mesh

improvement iterations until all input faces are inserted or

the mesh improvement terminates.

(2) We parallelize the vertex smoothing step using a simple graph

coloring strategy.

(3) We discovered an instability in the evaluation of the AMIPS

energy computation in floating points, which sometimes leads

to overrefinement in TetWild. We propose a fix using a hybrid

evaluation that uses rational numbers to compute intermedi-

ate results.

(1) is a change required by the new algorithm, since not all faces

can be inserted when computations are done in floating point. (2) is a

minor, yet effective, modification that slightly improves performance

(Figure 16). (3) is a subtle problem, which we now explain in more

detail. The conformal AMIPS 3D energy is a Jacobian-based energy

defined as:

AMIPS =
tr(JT J)
det(J)2/3

, (1)

where J is the Jacobian of the transformation from a regular tetra-

hedron to the tetrahedron T . The larger the energy is, the worse

the quality of T is. The minimal value is 3, the energy of a regular

tetrahedron. The AMIPS energy is invariant under permutation of

ACM Trans. Graph., Vol. 39, No. 4, Article 117. Publication date: July 2020.

Fast Tetrahedral Meshing in the Wild • 117:9

the vertices of T , however its numerical evaluation in floating-point

arithmetic is not, due to floating-point rounding. Usually the differ-

ence is negligible, but when the energy of T is large (on the order

of 108), the floating point computation becomes unstable and the

resulting energy could differ by two orders of magnitude, which

means that the descent direction that appears to be decreasing

the energy may be determined incorrectly (see Appendix B for a

concrete example). This numerical instability might prevent mesh

improvement and thus lead to over-refinement, since the algorithm

is trying to add degrees of freedom unnecessary to improve the

quality (Figure 10).

To address this issue, we raise the energy to the third degree mak-

ing it completely rational, and evaluate it using rational computation

for elements with energy larger than 108. We round the computed

value of its third degree to the 64-bit floating point representation,

and then compute the cubic root. The rational computation is more

accurate (and permutation invariant) but significantly slower. How-

ever, the cases of precision loss in the energy are rare, and the overall

computational overhead is negligible. Note that we only use the

rational evaluation of the energy to ensure validity of the line search

step: the search direction is always computed using floating-point.

This change has a major effect on the speed and effectiveness of our

mesh optimization (Figure 10), avoiding unnecessary refinement

and decreasing the overall runtime.

The mesh improvement terminates when either a user-specified

mesh quality or a user-controlled number of iterations is reached.

To ensure a fair comparison, for the large dataset testing and all

examples in the paper, we use the same stopping criteria (max

AMIPS energy is smaller than 10 or the number of optimization

iterations reaches 80) and input parameters (envelope size ϵ = 10−3d ,
targeted edge length ℓ = d/20, where d is the diagonal’s length of

the bounding box of the input mesh) as in [Hu et al. 2018].

We note that our method provides no theoretical guarantees on

the quality of the final mesh. In our experiments, it achieves a quality

higher or comparable to other methods (Section 4). Quartet [Bridson

and Doran 2014], a grid based method, produces uniformly sized

tetrahedral mesh whose dihedral angles are bounded between 10.7◦

and 164.8◦, or between 8.9◦ and 158.8◦ [Labelle and Shewchuk 2007],
but it does not preserve sharp edges or corners. The Constrained

Delaunay refinement method used in TetGen [Si 2015] guarantees

a radius-edge ratio larger than 2 if the input does not have sharp

features or angles smaller than 70.53◦.
We use the same strategy as in TetWild for handling inputs with

open boundaries. We track the vertices on the open boundary and

project them back to the open boundary during mesh improvement

(Section 3.5). Elements are classified as inside or outside the surface

using the generalized winding number (Section 3.6). An example of

input with open boundary is shown in Figure 11.

3.6 Filtering

The output of themesh improvement step is a volumetric tetrahedral

mesh of the expanded bounding box of the input triangle soup, with

the preprocessed input triangles inserted. We provide three ways of

optionally filter the result, targeting two different applications.

Input
#F = 35 459

Output 99s
#T = 72 242

Max energy = 7.9

Output with open region
smoothed 113s
#T = 72 094

Max energy = 10

Fig. 11. Input with open boundary on the bottom (left). The output tetrahe-

dral mesh preserves the input geometry and closes the open side (middle).

Users can choose to enable an additional smoothing process for smoothing

the open region (right).

The first strategy is to use a simple flood-fill algorithm starting

from the boundary. This method is well-suited for watertight input

models with incorrect normal orientations and several component

nested. This simple strategy only removes elements outside the outer

boundary of the object but can not remove unwanted elements inside

nested components as shown in the middle of the sliced output in

Figure 13.

The second strategy uses the fast winding number [Barill et al.

2018] to filter the tetrahedra outside of the preserved/tracked input

[Hu et al. 2018]. This strategy is particularly suited to inputs with

gaps, since it is able to extend the notion of in-out to these regions.

In this case, the volume of output extracted by the winding number

filter depends on the orientation of the input triangles.

The third strategy is a volumetric extension of the mesh arrange-

ment algorithm [Zhou et al. 2016]. In this case, the input becomes a

set of triangle soups, coupled with a set of Boolean operations to

perform on them. During the triangle insertion stage, we keep track

of the provenance of each triangle, and use it at the end to compute

a set of generalized winding numbers (one for each tracked input

surface) for the centroids of all tetrahedra in the volumetric mesh.

We use the set of winding numbers to decide which tetrahedron to

keep by checking if it is supposed to be contained in the result of

the Boolean operation. For instance, when intersecting two triangle

soups, we keep all tetrahedra that are inside both input triangle

soups, according to the winding number definition.

There are three major advantages of this method over [Zhou

et al. 2016]: (1) Boolean operations can be performed on non-PWN

surfaces, (2) the output is equipped with a tetrahedral mesh, which

could be useful in downstream applications, and (3) the surface

quality is high since the algorithm is allowed to remesh within the

ϵ envelope.

4 RESULTS

Our algorithm is implemented in C++ and uses Eigen [Guennebaud

et al. 2010] for the linear algebra routines. We perform a large-scale

ACM Trans. Graph., Vol. 39, No. 4, Article 117. Publication date: July 2020.

117:10 • Hu, Y. et al

Fig. 12. 1000 random samples of fTetWild output on Thingi10k dataset.

Input
#F = 151 328

Output using flood fill 1064s
#T = 273 084

Max energy = 12.3

Fig. 13. An input model (left) where the heuristic winding number filtering

fails to extract the volume (it drops most of the tetrahedra in the output) due

to inconsistent triangle orientations in the input. By changing the heuristic

to the flood-fill algorithm, we can obtain the expected output (right).

Memory usage of fTetWild (MB)

Fig. 14. Histogram ofmemory usage of fTetWild over the Thingi10k dataset

(data truncated at 2GB).

comparison of our method with other meshing methods on the

Thingi10k dataset [Zhou and Jacobson 2016], which contains 10 000

real-world surface triangle meshes. We run our experiments on

cluster nodes with a Xeon E5-2690v4 2.6GHz, allowing every model

to use up to 8 threads, 128GB memory, and 24 hours running time.

The reference implementation and testing data are open-source and

available on GitHub: https://github.com/wildmeshing/fTetWild.

Table 2. Comparison of code robustness and performance on the Thingi10k

dataset.

Method
Success

rate

Out of

memory

(>32GB)

Time

exceeded

(>3h)

Algorithm

limitation

Average

time(s)

CGAL 79.00% 0.00% 0.00% 21.00% 11.7

TetGen 49.50% 0.10% 1.70% 48.70% 32.3

TetWild *99.89% 0.05% 0.11% 0.00% 360.0

Ours **99.97% 0.02% 0.03% 0.00% 49.8
Note: The maximum resources allowed for each model are 3 hours and 32GB of
memory. The first 3 lines of data are from [Hu et al. 2018], Table 2. Note that the
average time (last column) is computed over all the models for which each method
succeeded, and it is thus not directly comparable between different methods. *:

TetWild exceeds the 3h time on 11 models. If 27 hours of maximal running time are
allowed, TetWild achieves 100% success rate. **: Our method exceeds the 3h time limit
on 3 models. If 11 hours of maximal running time are allowed, fTetWild achieves

100% success rate.

4.1 Success Rate

With the above memory and time constraints, fTetWild success-

fully tetrahedralizes 100% of the 10 000 input meshes (Figure 12).

Most of the input models can be tetrahedralized with less than 1GB

of RAM as detailed in Figure 14. Note that very complex models

might require more memory, for instance the one in Figure 23 uses

around 17GB of memory.

As observed in [Hu et al. 2018], most of the state-of-the-art tet-

meshers have low success rate on in-the-wild data. We summarize

the results on the whole Thingi10k dataset in Table 2. Note that

only our method and TetWild have high success rates: our average

timing is however seven times faster than TetWild.

4.2 Running Time

Thingi10k Dataset (10000 Models). We compare the running time

of our method with TetWild. For a fair comparison, we disable our

code optimizations that could be easily ported to TetWild, such as

parallelization of the preprocessing and smoothing step, and using

the recent fast winding number algorithm for the final filtering.

Without these optimizations, our algorithm is 4 times faster than

TetWild on average (80.4s vs 360s). With code optimizations, we

further improve our running time to 49.8s on average on a machine

with 8 cores, which is 7 times faster than the serial implementation

of TetWild (Figure 16). On more complex examples, like the model

in Figure 17, our method is up to 17 times faster than TetWild.

ACM Trans. Graph., Vol. 39, No. 4, Article 117. Publication date: July 2020.

Fast Tetrahedral Meshing in the Wild • 117:11

Input, #F = 35 528

TetWild, 1846s

#T = 287 064

Max energy = 11.9

fTetWild, 479s

#T = 211 429

Max enenrgy = 7.8

2x10-3 10-3 5x10-4 2.5x10-4 1.25x10-4

Envelope size wrt d

2x10-3 10-3 5x10-4 2.5x10-4 1.25x10-4

Envelope size wrt d

TetWild, 4386s

#T = 220 112

Max energy = 11.3

fTetWild, 249s

#T = 179 298

Max enenrgy = 8.0

Input, #F = 1 141 868

Fig. 15. Input models and running time plots of fTetwild and Tetwild with

ϵ reduced from 2 10−3d to 1.25 10−4d (left). Output tetrahedral meshes of

the two methods at ϵ = 5 10−4d (middle and right). Note that we flipped

all the normals of the input triangles of the airplane model for visualization

purposes (see Figure 30 for a detailed discussion).

The running time of our algorithm (and of TetWild too) depends,

among other factors, on the envelope size. Checking envelope con-

tainment using sampling has a cost that grows quadratically as the

envelope shrinks. This results in a trade-off between running time

and detail preservation. Figure 15 shows how the performance of

fTetWild and TetWild are affected by the envelope size: while

both methods are fast with large envelope size, the running times

dramatically increase when the envelope shrinks. Alternative strate-

gies could be used to check the envelope to mitigate this issue

[Wang et al. 2020]. If a small envelope is required, the runtime could

be reduced by sacrificing element quality by stopping the algorithm

prematurely during the mesh optimization.

Reduced Thingi10k Dataset (4540Models). Weuse a reduced dataset

containing the intersection of the Thingi10k models that TetGen,

CGAL, TetWild, and our method all succeed on. The dataset con-

tains 4540 models, and allows us to fairly compare the performance

of the different methods. On average, our method is comparable

(18.5s) to the widely used, Delaunay-based tetrahedral mesher Tet-

Gen (22s), and is faster than CGAL (95s) and TetWild (107s), while

robustly handling imperfect inputs. Figure 1 shows the number of

models requiring more than a given time. For example, within less

than 2 minutes, our method successfully tetrahedralizes 98.7% of

the inputs. It is interesting to note that the tail of the distribution of

our method is shorter than both TetGen and CGAL. For instance,

there are only 4 models where our method requires more than 16

68.8%

44.4%

21.0%
7.9%

2.8%

26.2%

11.7% 4.6% 1.8% 0.8%
13.8% 5.1%

1.6% 0.6% 0.3%

>60s >120s >240s >480s >960s
0%

20%

40%

60% TetWildTetWild Ours unoptimizedOurs unoptimized Ours optimizedOurs optimized

Fig. 16. Percentage of models requiring more than a certain time for our

parallel and serial algorithm compared with TetWild on Thingi10k dataset.

Input
#F = 171 436

TetWild 17hr
#T = 39 312

Max energy = 1625.4

Ours 56m
#T = 36 605

Max energy = 8.5

Fig. 17. Example of a challenging model where fTetWild is 17 times faster

than TetWild.

Input
#F = 240 486

TetWild 2476s
#T = 376 437

Max energy = 8.0

Ours 411s
#T = 311 318

Max energy = 8.9

Fig. 18. Our method (right) produces high-quality tet-meshes that are

similar to TetWild (middle).

minutes, differently from TetGen, CGAL, and TetWild which have

20, 122, and 25 models, respectively.

4.3 Mesh Quality

The geometric quality of meshes produced by our algorithm is simi-

lar to the meshes produced by TetWild (Figure 18), since our method

implements a similar mesh optimization strategy. We quantitatively

evaluate and compare the element quality of TetWild and our output

using five different measures:

(1) AMIPS energy (Equation (1)), range [3,+∞), optimal 3,

(2) Minimal dihedral angle, range (0, 1.23], optimal 1.23,

(3) Volume-to-edge ratio 6
√
2V /ℓ3max, range (0, 1], optimal 1,

(4) Aspect ratio
√

3/2hmin/ℓmax, range (0, 1], optimal 1,

(5) Radius-to-edge ratio 2
√
6 rin/ℓmax, range (0, 1], optimal 1,

ACM Trans. Graph., Vol. 39, No. 4, Article 117. Publication date: July 2020.

117:12 • Hu, Y. et al

TetWild Ours

Average AMIPS energy

Maximum AMIPS energy (truncated at 11)

Average smallest dihedral angle

Minimum smallest dihedral angle

Average volume-to-edge ratio

Minimum volume-to-edge ratio

Average aspect ratio

Minimum aspect ratio

Average radius-to-edge ratio

Minimum radius-to-edge ratio

Fig. 19. Histogram for mesh quality comparison of TetWild (red) and our

method (green) in five different quality measures. The statistic is based on

the output of the whole Thingi10k dataset.

Comparison of mesh size between TetWild and fTetWild

100 101 102 103 104 105 106 107 100 101 102 103 104 105 106 107

TetWild Ours

Fig. 20. Histograms of number of in log scale for the output meshes of

Thingi10k dataset.

Input
#F = 16 248

MeshFix 23s
#F = 13 486

Our 129s
#F = 31 348

Fig. 21. Example of repairing an invalid triangular mesh (left) with MeshFix

(middle) and our algorithm (right). MeshFix is fast but loses details during

processing, while our method preserves them. The max AMIPS energy of

our intermediate tetrahedral mesh is 1975. Here we stop mesh improvement

when maximum energy reaches 2000.

where V is the volume, ℓmax is the longest edge, hmin the minimum

height, and rin the radius of the inscribed circle of a tetrahedron

T . We use (3), (4) and (5) since these are standard measures for

tetrahedral quality [Shewchuk 2002b].

Figure 19 shows the histograms of worst and average element

quality of 10 000 output meshes of TetWild and our method. The

quality of our outputs are quite similar to TetWild’s output. We

refer to the study in [Hu et al. 2018, Figure 14] for the full quality

comparison of TetWild and other tetrahedral meshing algorithms.

4.4 Mesh Density

Compared with TetWild, our method generates meshes of similar

density (Figure 20). Both TetWild and our method aim to generate

as-coarse-as possible meshes while preserving the input surface.

This choice is useful in downstream applications to reduce their com-

putational cost. Optionally, the algorithm supports a user-specified

sizing field to increase the density if desired.

In contrast to our method, TetGen preserves the input surface ge-

ometry exactly and thus generates a dense tetrahedral mesh around

the surface if the input surface mesh is dense, as visible in the model

shown in Figure 1. CGAL approximates the surface by means of

an implicit function, but sometimes over-refines sharp features and

tiny artifacts as illustrated in Figure 1, where the dark spots are

over-refined regions.

ACM Trans. Graph., Vol. 39, No. 4, Article 117. Publication date: July 2020.

Fast Tetrahedral Meshing in the Wild • 117:13

Input
#F = 16 248

Non-manifold
output 87s
#F = 42 924

Max energy = 9.0

Manifold output 90s
#F = 42 931

Max energy = 9.2

Geodesic distance
from one point on
the manifold surface

Fig. 22. Example of a non-manifold surface mesh (left) which is automati-

cally repaired by our algorithm (right second).

5 APPLICATIONS

5.1 Mesh Repair

Similarly to TetWild, our algorithm can be used to repair imper-

fect triangle meshes by tetrahedralizing the volume and extracting

the surface of the generated tetrahedral mesh. However, the mesh

improvement step of our method (Section 3.5) can be stopped at

any time since we maintain an inversion-free floating point tetra-

hedral mesh at all stages of our algorithm. High tetrahedral mesh

quality is not required for this application, and we can stop mesh

optimization as soon as all input faces are inserted, further reducing

the running time. We compared our result with the state-of-the-art

mesh repairing tool MeshFix [Attene 2010] in Figure 21. Our method,

while slower, provides a higher-quality result with controllable geo-

metric error. A minor, yet important, observation is that keeping

only the boundary of a valid tetrahedral mesh might generate a

non-manifold surface mesh (Figure 22). To avoid this problem, we

identify the non-manifold edges and split them. Then we duplicate

every non-manifold vertex to ensure a global manifold output, us-

ing the algorithm proposed in [Attene et al. 2009]. Note that this

procedure ensures manifoldness, but introduces vertices in the same

geometric position. With this minor change, our algorithm can be

used to repair triangle meshes, guaranteeing the extraction of an

high-quality, manifold boundary surface mesh within the prescribed

distance from the input triangle soup.

We also tested an extremely challenging model coming from an

industrial application in additive manufacturing (the part is copy-

righted by Velo3D): the design of an exhaust pipe using a volume

filled with a structure based on the gyroid triply periodic minimal

surface. The model has a multitude of issues introduced during the

modeling phase, but it can be cleaned up by our algorithm within 55

minutes (or 122 minutes with the envelope size decreased by a factor

of two), compared to around two weeks of manual labor required

by Velo3D’s current processing pipeline. Our output mesh (Figure

23) is directly usable for FEA, further editing, or fabrication. As a

reference point, the original implementation of TetWild takes 215

Envelope size = 1e-3d, 55min

#T = 1 202 275

Max energy = 8.1

Input

#F = ~31Million

Envelope size = 5e-4d, 2hr 2min

#T = 2 207 842

Max energy = 8.0

Fig. 23. Meshing a complex model with 93 million vertices and 31 million

faces with different envelope sizes (top). The inputmesh contains degenerate

triangles and severe self-intersections. Our output tetrahedral meshes are

in geometric high quality with either default envelope size (middle) or half

envelope size (bottom).

minutes with a default envelope size. Another challenging model we

tested contains complex thin structures coming from architecture

(Figure 24). The method in [Ghomi et al. 2018; Masoud 2016] opti-

mizes for the layout of a graph, then replaces the graph edges with

cylinders of varying radii. To ensure solidity of the final structure,

all cylinders are intersecting as shown in the close up. Although the

mesh contains many irregularities, fTetWild successfully meshes

the domain into an analysis-ready mesh.

5.2 Mesh Arrangements

Zhou et al. [2016] proposes to compute the arrangement between

multiple surfaces using an algorithm to map Boolean operations

into simple algebraic expressions involving the winding number

of the input surfaces. Their method is robust, but only supports

clean PWN surfaces as input. We propose a simple extension of this

algorithm (as explained in Section 3.6) to arbitrary triangle soups.

The advantages of our method is evident when the input surfaces

come from CAD models containing small gaps or self-intersections:

both Mesh Arrangements [Zhou et al. 2016] and CGAL [Hachen-

berger and Kettner 2019] are unable to perform the operation (since

it is not well-defined for non-PWN surface), while fTetWild can

compute an approximate (since it allows for an ϵ-deviation from the

input surfaces) union, difference, and intersection between them

ACM Trans. Graph., Vol. 39, No. 4, Article 117. Publication date: July 2020.

117:14 • Hu, Y. et al

Input
#F = 700 070

Envelope size = 1e-4d , 38min
#T = 417 744

Max energy = 40

Fig. 24. Example of an architectural application with 80 999 self-intersecting

faces. The cylinders in the input are intersecting with each other as shown

in the closeup. fTetWild successfully cleaned and tetrahedralized this input.

Here we stop mesh optimization when maximum energy reaches 50.

U U

U

-

)

)(

(

=

Fig. 25. Four Boolean operations among 5 objects. fTetWild takes 34s and

products output with #T = 8 060 and max energy = 7.2.

Input
#F = 8 436

Time 58s
#T = 16 291

Max energy = 7.9
Elastic deformation

Fig. 26. Example of non-linear elastic deformation of a body (right).

(Figures 29, 25), providing robust (but slower) Boolean operations

on imperfect geometries. The output is a tetrahedral mesh, which

can be useful in downstream applications, and its boundary is a

high quality surface triangular mesh.

5.3 Simulation

The main application of tetrahedral meshing is physical simula-

tions, and the high-quality of our results makes them ideal to be

directly used in downstream finite element software (Figure 26).

Additionally, the recently proposed a priori p-refinement [Schnei-

der et al. 2018] is an ideal fit for our approach when targeting FEM

applications, since fTetWild always produces a valid floating-point

mesh. Schneider et al. [2018] provides a simple formula to determine

Input
#F = 30 580

Max energy ≤ 10, 107s
#T = 90 438

Max energy = 8.0

p ≤ 4, 69s
#T = 41 735

Max energy = 32.4

Fig. 27. Two different stopping criteria of our algorithm. The full optimiza-

tion (middle) improves the mesh to high quality, while using the criterion

in [Schneider et al. 2018] (right) results in lower mesh quality but faster

meshing and smaller mesh size. The color shows the solution of the volu-

metric Laplace equation.

Input
#F = 138 504

Time 50s
#T = 40 161

Max energy = 7.3
Streamlines

Fig. 28. Streamlines of a fluid (right) moving in a cylindrical pipe (left top)

with a complicated obstacle (left bottom) in the center. The background

mesh (middle) is obtained by subtracting the obstacle from a cylinder using

our method.

the order of each element to compensate for its, possibly bad, shape.

We can use this criterion to terminate the mesh optimization early

in our algorithm (thus reducing the meshing time) without affecting

the quality of the simulation, Figure 27.

We use the Boolean difference (Section 5.2) to generate the back-

ground mesh required for simulating the fluid flow on a cylindrical

tube containing an obstacle (Figure 28).

6 CONCLUDING REMARKS

We introduced fTetWild, a novel robust tetrahedral meshing algo-

rithm for triangle soups which combines the robustness of TetWild

with a running time comparable to Delaunay-based methods. The

improved performancemakes this algorithm suitable not only for ap-

plications requiring a volumetric discretization, but also for surface

mesh repair and Boolean operations.

Our current naive parallelization approach shows that our algo-

rithm benefits from shared-memory parallelization; exploring more

advanced parallelization techniques and extending it to distributed

computation on HPC clusters are important directions for future

work. Our iterative triangle insertion algorithm could be used in

dynamic remeshing tasks, potentially allowing to reuse an existing

mesh and insert new faces only in regions with high deformation.

ACM Trans. Graph., Vol. 39, No. 4, Article 117. Publication date: July 2020.

Fast Tetrahedral Meshing in the Wild • 117:15

Two objects for Boolean Input
#F = 3 506

Union, 30s
#T = 46 885

Max energy = 8.0

Difference, 31s
#T = 25 768

Max energy = 8.0

Intersection, 33s
#T = 10 347

Max energy = 7.5

Fig. 29. Three Boolean operations computed on non-manifold, self-intersecting, and non-PWN input surface meshes. The left are two objects for Boolean

operation. The middle is the input surface mesh of fTetWild. The right are our output meshes after computing the union, difference, and intersection between

the two objects. The average max AMIPS energy of outputs and average time of different operations are with small variance.

While conceptually trivial, extending our algorithm to 2D triangle

meshing could improve the performance of [Hu et al. 2019].

Our algorithm optionally uses the winding number or flood fill

filters to extract the volume of the interior of the object bounded

by the input surface. While these heuristics are very effective for

imperfect inputs representing closed input models with consistent

normal orientation, they might fail if the input surface contains

open shells not bounding a volumes or nested components with

wrongly oriented normals (Figure 30). In these cases, the volume

is not well defined and our filtering will arbitrarily discard or keep

tetrahedra around these regions. We recommend to not rely on these

heuristics if the input contains open shells, and do the filtering using

an ad-hoc algorithm. In case of nested components we recommend

to correct the orientation to ensure a proper definition of in-out

[Takayama et al. 2014].

fTetWild uses the conformal AMIPS energy [Rabinovich et al.

2017] to measure and optimize the quality of the tetrahedra. An in-

teresting alternative has been introduced concurrently to our work

by [Alexa 2019]: they propose to optimize directly for the Dirichlet

energy of the tetrahedralization and show that this measure is ef-

fective at removing slivers, while being computationally efficient

to evaluate. A comparative study of the two measures would be

interesting, and using the Dirichlet energy could lead to further

reductions in the running time of our method.

ACKNOWLEDGMENTS

This work was supported in part through the NYU IT High Perfor-

mance Computing resources, services, and staff expertise. This work

was partially supported by the NSF CAREER award 1652515, the

NSF grants IIS-1320635, DMS-1436591, DMS-1821334, OAC-1835712,

OIA-1937043, CHS-1908767, CHS-1901091, the National Key Re-

search and Development Program of China grant 2018YFB1107402,

the SNSF grant P2TIP2_175859, a gift from Adobe Research, a gift

from nTopology, and a gift from Advanced Micro Devices, Inc.

REFERENCES
L. A. Freitag and C. Ollivier-Gooch. 1998. Tetrahedral Mesh Improvement Using

Swapping and Smoothing. Internat. J. Numer. Methods Engrg. 40 (05 1998).
F. Alauzet and D. Marcum. 2014. A Closed Advancing-Layer Method With Changing

Topology Mesh Movement for Viscous Mesh Generation. In Proceedings of the
22nd International Meshing Roundtable. Springer International Publishing, Cham,
241ś261.

Input Output Output filtered by
flood fill

Output filtered by
winding number

Fig. 30. The output of fTetWild is a tetrahedral mesh of the bounding

box containing the input (second column). The output can be optionally

filtered to delete the tetrahedra in the exterior using the flood fill or the

winding number heuristic (last two columns), which may fail on inputs (first

column) with open shells or nested components with inconsistent normal

orientation.

M. Alexa. 2019. Harmonic Triangulations. ACM Transactions on Graphics (Proceedings
of SIGGRAPH) 38, 4 (2019), 54.

P. Alliez, D. Cohen-Steiner, M. Yvinec, and M. Desbrun. 2005a. Variational Tetrahedral
Meshing. ACM Transactions on Graphics 24, 3 (07 2005), 617. https://doi.org/10.
1145/1073204.1073238

P. Alliez, D. Cohen-Steiner, M. Yvinec, and M. Desbrun. 2005b. Variational Tetrahedral
Meshing. ACM Trans. Graph. 24, 3 (July 2005), 617ś625. https://doi.org/10.1145/
1073204.1073238

M. Attene. 2010. A lightweight approach to repairing digitized polygon meshes. The
Visual Computer 26, 11 (01 Nov 2010), 1393ś1406. https://doi.org/10.1007/s00371-
010-0416-3

M. Attene. 2014. Direct Repair of Self-intersecting Meshes. Graph. Models 76, 6 (Nov.
2014), 658ś668. https://doi.org/10.1016/j.gmod.2014.09.002

M. Attene. 2017. ImatiSTL - Fast and Reliable Mesh Processing with a Hybrid Kernel.
Springer Berlin Heidelberg, Berlin, Heidelberg, 86ś96.

M. Attene, M. Campen, and L. Kobbelt. 2013. Polygon Mesh Repairing: An Application
Perspective. ACM Comput. Surv. 45, 2, Article 15 (March 2013), 33 pages.

ACM Trans. Graph., Vol. 39, No. 4, Article 117. Publication date: July 2020.

117:16 • Hu, Y. et al

M. Attene, D. Giorgi, M. Ferri, and B. Falcidieno. 2009. On converting sets of tetrahedra
to combinatorial and PL manifolds. Computer Aided Geometric Design 26, 8 (2009),
850 ś 864. https://doi.org/10.1016/j.cagd.2009.06.002

F. Aurenhammer. 1991. Voronoi Diagrams&Mdash;a Survey of a Fundamental Geo-
metric Data Structure. ACM Comput. Surv. 23, 3 (Sept. 1991), 345ś405. https:
//doi.org/10.1145/116873.116880

F. Aurenhammer, R. Klein, and D.-T. Lee. 2013. Voronoi Diagrams and Delaunay Trian-
gulations. WORLD SCIENTIFIC, River Edge, NJ, USA. https://doi.org/10.1142/8685
arXiv:https://www.worldscientific.com/doi/pdf/10.1142/8685

B. S. Baker, E. Grosse, and C. S. Rafferty. 1988. Nonobtuse triangulation of polygons.
Discrete & Computational Geometry 3, 2 (01 Jun 1988), 147ś168.

G. Barill, N. Dickson, R. Schmidt, D. I. Levin, and A. Jacobson. 2018. Fast Winding
Numbers for Soups and Clouds. ACM Transactions on Graphics 37, 4 (2018), 43:1ś
43:12.

H. Barki, G. Guennebaud, and S. Foufou. 2015. Exact, robust, and efficient regularized
Booleans on general 3D meshes. Computers and Mathematics with Applications 70,
6 (2015), 1235ś1254.

M. Bern, D. Eppstein, and J. Gilbert. 1994. Provably good mesh generation. J. Comput.
System Sci. 48, 3 (1994), 384 ś 409.

G. Bernstein. 2013. Cork Boolean Library . https://github.com/gilbo/cork.
G. Bernstein and D. Fussell. 2009. Fast, Exact, Linear Booleans. In SGP. Eurographics

Association, Aire-la-Ville, Switzerland, Switzerland, 1269ś1278.
H. Bieri and W. Nef. 1988. Elementary Set Operations with D-dimensional Polyhedra.

In Proc. IWCGA. Springer-Verlag, Berlin, Heidelberg, 97ś112.
C. J. Bishop. 2016. Nonobtuse Triangulations of PSLGs. Discrete & Computational

Geometry 56, 1 (2016), 43ś92.
J.-D. Boissonnat, O. Devillers, S. Pion, M. Teillaud, and M. Yvinec. 2002. Triangulations

in CGAL. Computational Geometry 22 (2002), 5ś19.
J.-D. Boissonnat and S. Oudot. 2005. Provably Good Sampling and Meshing of Surfaces.

Graphical Models 67, 5 (09 2005), 405ś451. https://doi.org/10.1016/j.gmod.2005.01.004
R. Bridson and C. Doran. 2014. Quartet: A tetrahedral mesh generator that does

isosurface stuffing with an acute tetrahedral tile. https://github.com/crawforddoran/
quartet.

J. R. Bronson, J. A. Levine, and R. T. Whitaker. 2013. Lattice Cleaving: Conforming
Tetrahedral Meshes of Multimaterial DomainsWith Bounded Quality. In Proceedings
of the 21st International Meshing Roundtable. Springer Berlin Heidelberg, Berlin,
Heidelberg, 191ś209. https://doi.org/10.1007/978-3-642-33573-0_12

O. Busaryev, T. K. Dey, and J. A. Levine. 2009. Repairing and Meshing Imperfect Shapes
with Delaunay Refinement. In 2009 SIAM/ACM Joint Conference on Geometric and
Physical Modeling (SPM ’09). ACM, 25ś33.

M. Campen and L. Kobbelt. 2010. Exact and Robust (self-)intersections for Polygonal
Meshes. Comput. Graph. Forum 29, 2 (2010), 397ś406.

S. A. Canann, S. N. Muthukrishnan, and R. K. Phillips. 1996. Topological refinement
procedures for triangular finite element meshes. Engineering with Computers 12, 3
(01 Sep 1996), 243ś255. https://doi.org/10.1007/BF01198738

S. A. Canann, M. B. Stephenson, and T. Blacker. 1993. Optismoothing: An optimization-
driven approach to mesh smoothing. Finite Elements in Analysis and Design 13, 2
(1993), 185 ś 190. https://doi.org/10.1016/0168-874X(93)90056-V

L. Chen and J.-c. Xu. 2004. Optimal Delaunay Triangulations. Journal of Computational
Mathematics 22, 2 (2004), 299ś308.

S.-W. Cheng, T. K. Dey, and J. A. Levine. 2008. A Practical Delaunay Meshing Algorithm
for a Large Class of Domains. In Proceedings of the 16th International Meshing
Roundtable. Springer, Springer Berlin Heidelberg, Berlin, Heidelberg, 477ś494.

S.-W. Cheng, T. K. Dey, and J. Shewchuk. 2012. Delaunay Mesh Generation. Chapman
and Hall/CRC, Boca Raton, Florida.

L. P. Chew. 1989. Constrained delaunay triangulations. Algorithmica 4, 1 (01 Jun 1989),
97ś108. https://doi.org/10.1007/BF01553881

L. P. Chew. 1993. Guaranteed-Quality Mesh Generation for Curved Surfaces. In Pro-
ceedings of the ninth annual symposium on Computational geometry - SCG ’93. ACM
Press, New York, NY, USA, 274ś280. https://doi.org/10.1145/160985.161150

D. Cohen-Steiner, E. C. de Verdière, and M. Yvinec. 2002. Conforming Delaunay Trian-
gulations in 3D. In Proceedings of the eighteenth annual symposium on Computational
geometry - SCG ’02. ACM Press, 217 ś 233.

J.-C. Cuilliere, V. Francois, and J.-M. Drouet. 2013. Automatic 3D Mesh Generation of
Multiple Domains for Topology Optimization Methods. In Proceedings of the 21st
International Meshing Roundtable. Springer Berlin Heidelberg, Berlin, Heidelberg,
243ś259. https://doi.org/10.1007/978-3-642-33573-0_15

T. K. Dey and J. A. Levine. 2008. Delpsc: A Delaunay Mesher for Piecewise Smooth
Complexes. In Proceedings of the twenty-fourth annual symposium on Computational
geometry - SCG ’08. ACM Press, New York, NY, USA, 220ś221. https://doi.org/10.
1145/1377676.1377712

A. Doi and A. Koide. 1991. An efficient method of triangulating equi-valued surfaces
by using tetrahedral cells. IEICE TRANSACTIONS on Information and Systems 74, 1
(1991), 214ś224.

C. Doran, A. Chang, and R. Bridson. 2013. Isosurface Stuffing Improved: Acute Lattices
and Feature Matching. In ACM SIGGRAPH 2013 Talks on - SIGGRAPH ’13. ACM

Press, New York, NY, USA, 38:1ś38:1. https://doi.org/10.1145/2504459.2504507
M. Douze, J.-S. Franco, and B. Raffin. 2015. QuickCSG: Arbitrary and Faster Boolean

Combinations of N Solids. Technical Report 01121419. Inria Research Centre Grenoble,
Rhone-Alpes.

Q. Du and D. Wang. 2003. Tetrahedral Mesh Generation and Optimization Based on
Centroidal Voronoi Tessellations. International journal for numerical methods in
engineering 56, 9 (2003), 1355ś1373.

N. Faraj, J.-M. Thiery, and T. Boubekeur. 2016. Multi-Material Adaptive Volume
Remesher. Compurer and Graphics Journal (proc. Shape Modeling International
2016) 58 (2016), 150 ś 160.

L. Feng, P. Alliez, L. Busé, H. Delingette, and M. Desbrun. 2018. Curved Optimal
Delaunay Triangulation. ACM Trans. Graph. 37, 4 (2018), 61:1ś61:16.

X. M. Fu, Y. Liu, and B. Guo. 2015. Computing Locally Injective Mappings by Advanced
MIPS. ACM Trans. Graph. 34, 4, Article 71 (July 2015), 12 pages.

J. A. George. 1971. Computer Implementation of the Finite Element Method. Ph.D.
Dissertation. Stanford University, Stanford, CA, USA. AAI7205916.

P. L. George, H. Borouchaki, and E. Saltel. 2003. ‘Ultimate’ robustness in meshing an
arbitrary polyhedron. Internat. J. Numer. Methods Engrg. 58, 7 (2003), 1061ś1089.

A. T. Ghomi, M. Bolhassan, A. Nejur, and M. Akbarzadeh. 2018. Effect of Subdivision
of Force Diagrams on the Local Buckling, Load-Path and Material Use of Founded
Forms. In Proceedings of the IASS Symposium 2018, Creativity in Structural Design.
MIT, Boston, USA.

M. Granados, P. Hachenberger, S. Hert, L. Kettner, K. Mehlhorn, and M. Seel. 2003.
Boolean operations on 3D selective Nef complexes: Data structure, algorithms,
and implementation. In Proc. ESA. Springer Berlin Heidelberg, Berlin, Heidelberg,
654ś666.

G. Guennebaud, B. Jacob, et al. 2010. Eigen v3.
P. Guigue and O. Devillers. 2003. Fast and Robust Triangle-Triangle Overlap Test

Using Orientation Predicates. Journal of graphics tools 8, 1 (2003), 39ś52. https:
//doi.org/10.1080/10867651.2003.10487580

P. Hachenberger and L. Kettner. 2019. 3D Boolean Operations on Nef Polyhedra. In
CGAL User and Reference Manual (4.14 ed.). CGAL Editorial Board.

R. Haimes. 2014. MOSS: Multiple Orthogonal Strand System. In Proceedings of the 22nd
International Meshing Roundtable. Springer International Publishing, Cham, 75ś91.
https://doi.org/10.1007/978-3-319-02335-9_5

K. Hu, D. Yan, D. Bommes, P. Alliez, and B. Benes. 2017. Error-Bounded and Feature
Preserving Surface Remeshing with Minimal Angle Improvement. IEEE Transactions
on Visualization and Computer Graphics 23, 12 (Dec 2017), 2560ś2573.

Y. Hu, T. Schneider, X. Gao, Q. Zhou, A. Jacobson, D. Zorin, and D. Panozzo. 2019.
TriWild: Robust Triangulation with Curve Constraints. ACM Trans. Graph. (2019).

Y. Hu, Q. Zhou, X. Gao, A. Jacobson, D. Zorin, and D. Panozzo. 2018. Tetrahedral
Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (July 2018), 14 pages.
https://doi.org/10.1145/3197517.3201353

C. Jamin, P. Alliez, M. Yvinec, and J.-D. Boissonnat. 2015. CGALmesh: A Generic
Framework for Delaunay Mesh Generation. ACM Trans. Math. Software 41, 4 (10
2015), 1ś24. https://doi.org/10.1145/2699463

B. Klingner and J. Shewchuk. 2007. Aggressive Tetrahedral Mesh Improvement. Pro-
ceedings of the 16th International Meshing Roundtable, IMR 2007, 3ś23.

F. Labelle and J. R. Shewchuk. 2007. Isosurface Stuffing: Fast Tetrahedral Meshes With
Good Dihedral Angles. In ACM SIGGRAPH 2007 papers on - SIGGRAPH ’07. ACM
Press, New York, NY, USA, 57. https://doi.org/10.1145/1275808.1276448

B. Lévy. 2019. Geogram. http://alice.loria.fr/index.php/software/4-library/75-
geogram.html.

Y. Lipman. 2012. Bounded Distortion Mapping Spaces for Triangular Meshes. ACM
Trans. Graph. 31, 4 (2012), 108.

W. E. Lorensen and H. E. Cline. 1987. Marching Cubes: A High Resolution 3D Surface
Construction Algorithm. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987), 163ś169.
https://doi.org/10.1145/37402.37422

S. V. Magalhães, W. R. Franklin, and M. V. Andrade. 2017. Fast exact parallel 3D mesh
intersection algorithm using only orientation predicates. In Proceedings of the 25th
ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems. ACM, ACM, New York, NY, USA, 44.

M. Mandad, D. Cohen-Steiner, and P. Alliez. 2015. Isotopic Approximation Within
a Tolerance Volume. ACM Trans. Graph. 34, 4, Article 64 (July 2015), 12 pages.
https://doi.org/10.1145/2766950

A. Masoud. 2016. 3D Graphical Statics Using Reciprocal Polyhedral Diagrams. Ph.D.
Dissertation. ETH Zruich, Stefano Franscini Platz 5, Zurich, CH, 8093.

N.Molino, R. Bridson, and R. Fedkiw. 2003. TetrahedralMesh Generation for Deformable
Bodies. In Proc. Symposium on Computer Animation.

M. Murphy, D. M. Mount, and C. W. Gable. 2001. A Point-Placement Strategy for
Conforming Delaunay Tetrahedralization. International Journal of Computational
Geometry & Applications 11, 06 (12 2001), 669ś682.

K. Museth, D. E. Breen, R. T. Whitaker, and A. H. Barr. 2002. Level set surface editing
operators. ACM Trans. Graph. 21, 3 (2002), 330ś338.

B. Naylor, J. Amanatides, and W. Thibault. 1990. Merging BSP trees yields polyhedral
set operations. In Proc. SIGGRAPH. ACM, New York, NY, USA, 115ś124.

ACM Trans. Graph., Vol. 39, No. 4, Article 117. Publication date: July 2020.

Fast Tetrahedral Meshing in the Wild • 117:17

A. Paoluzzi, V. Shapiro, and A. DiCarlo. 2017. Arrangements of cellular complexes.
CoRR abs/1704.00142 (2017). arXiv:1704.00142 http://arxiv.org/abs/1704.00142

D. Pavic, M. Campen, and L. Kobbelt. 2010. Hybrid Booleans. Comput. Graph. Forum 29
(2010), 75ś87.

J. Peraire, M. Vahdati, K. Morgan, and O. C. Zienkiewicz. 1987. Adaptive Remeshing
for Compressible Flow Computations. J. Comput. Phys. 72, 2 (Oct. 1987), 449ś466.

M. Rabinovich, R. Poranne, D. Panozzo, and O. Sorkine-Hornung. 2017. Scalable Locally
Injective Mappings. ACM Trans. Graph. 36, 2 (April 2017), 16.

J.-F. Remacle. 2017. A Two-Level Multithreaded Delaunay Kernel. Computer-Aided
Design 85 (04 2017), 2ś9. https://doi.org/10.1016/j.cad.2016.07.018

J. Ruppert. 1995. A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh
Generation. Journal of Algorithms 18, 3 (05 1995), 548ś585. https://doi.org/10.1006/
jagm.1995.1021

E. A. Sadek. 1980. A scheme for the automatic generation of triangular finite elements.
Internat. J. Numer. Methods Engrg. 15, 12 (1980), 1813ś1822.

R. Schmidt and K. Singh. 2010. Meshmixer: an interface for rapid mesh composition. In
ACM SIGGRAPH 2010 Talks. ACM, ACM, New York, NY, USA, 6.

T. Schneider, Y. Hu, J. Dumas, X. Gao, D. Panozzo, and D. Zorin. 2018. Decoupling
simulation accuracy from mesh quality. ACM Transactions on Graphics 37, 6 (dec
2018), 1ś14. https://doi.org/10.1145/3272127.3275067

M. Schweiger and S. Arridge. 2016. Basis mapping methods for forward and inverse
problems: BASIS MAPPING METHODS. Internat. J. Numer. Methods Engrg. 109 (05
2016). https://doi.org/10.1002/nme.5271

D. R. Sheehy. 2012. New Bounds on the Size of Optimal Meshes. Computer Graphics
Forum 31, 5 (08 2012), 1627ś1635. https://doi.org/10.1111/j.1467-8659.2012.03168.x

C. Shen, J. F. O’Brien, and J. R. Shewchuk. 2004. Interpolating and Approximating
Implicit Surfaces from Polygon Soup. In Proceedings of ACM SIGGRAPH 2004. ACM
Press, 896ś904.

B. Sheng, P. Li, H. Fu, L. Ma, and E. Wu. 2018a. Efficient non-incremental constructive
solid geometry evaluation for triangular meshes. Graphical Models 97 (2018), 1ś16.

B. Sheng, B. Liu, P. Li, H. Fu, L. Ma, and E. Wu. 2018b. Accelerated robust Boolean
operations based on hybrid representations. Computer Aided Geometric Design 62
(2018), 133ś153.

J. Shewchuk. 2012. Unstructured Mesh Generation. Chapman and Hall/CRC, Boca Raton,
Florida, Chapter 10, 257 ś 297.

J. R. Shewchuk. 1996. Triangle: Engineering a 2D quality mesh generator and Delaunay
triangulator. In Applied Computational Geometry Towards Geometric Engineering,
Ming C. Lin and Dinesh Manocha (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 203ś222.

J. R. Shewchuk. 1997. Adaptive Precision Floating-Point Arithmetic and Fast Robust
Geometric Predicates. Discrete & Computational Geometry 18, 3 (Oct. 1997), 305ś363.

J. R. Shewchuk. 1998. Tetrahedral Mesh Generation by Delaunay Refinement. In
Proceedings of the fourteenth annual symposium on Computational geometry - SCG
’98. ACM Press, New York, NY, USA, 86ś95. https://doi.org/10.1145/276884.276894

J. R. Shewchuk. 1999. Lecture Notes on Delaunay Mesh Generation. (1999).
J. R. Shewchuk. 2002a. Constrained Delaunay Tetrahedralizations and Provably Good

Boundary Recovery. In Eleventh International Meshing Roundtable. Sandia National
Laboratories, 193ś204.

J. R. Shewchuk. 2002b. What is a good linear element? interpolation, conditioning, and
quality measures. In In 11th International Meshing Roundtable. 115ś126.

H. Si. 2015. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM Trans.
Math. Softw. 41, 2, Article 11 (Feb. 2015), 36 pages. https://doi.org/10.1145/2629697

H. Si and K. Gartner. 2005. Meshing Piecewise Linear Complexes by Constrained Delau-
nay Tetrahedralizations. In Proceedings of the 14th international meshing roundtable.
Springer, Springer Berlin Heidelberg, Berlin, Heidelberg, 147ś163.

H. Si and J. R. Shewchuk. 2014. Incrementally Constructing and Updating Constrained
Delaunay Tetrahedralizations With Finite-Precision Coordinates. Engineering with
Computers 30, 2 (04 2014), 253ś269. https://doi.org/10.1007/s00366-013-0331-0

K. Takayama, A. Jacobson, L. Kavan, and O. Sorkine-Hornung. 2014. A Simple Method
for Correcting Facet Orientations in Polygon Meshes Based on Ray Casting. Journal
of Computer Graphics Techniques 3, 4 (2014), 53ś63.

W. C. Thibault and B. F. Naylor. 1987. Set operations on polyhedra using binary space
partitioning trees. In Proc. SIGGRAPH. ACM, New York, NY, USA, 153ś162.

J. Tournois, C. Wormser, P. Alliez, and M. Desbrun. 2009. Interleaving Delaunay
Refinement and Optimization for Practical Isotropic Tetrahedron Mesh Generation.
ACM Transactions on Graphics 28, 3 (07 2009), 1.

G. Varadhan, S. Krishnan, T. Sriram, and D. Manocha. 2004. Topology preserving
surface extraction using adaptive subdivision. In SGP. ACM, New York, NY, USA,
235ś244.

B. Wang, T. Schneider, Y. Hu, M. Attene, and D. Panozzo. 2020. Exact and Efficient
Polyhedral Envelope Containment Check. ACM Trans. Graph. 39, 4 (July 2020).

C. C. L. Wang. 2011. Approximate Boolean Operations on Large Polyhedral Solids with
Partial Mesh Reconstruction. IEEE Trans. Vis. Comput. Graph. 17, 6 (2011), 836ś849.

N. P.Weatherill andO. Hassan. 1994. Efficient three-dimensional Delaunay triangulation
with automatic point creation and imposed boundary constraints. Internat. J. Numer.
Methods Engrg. 37, 12 (1994), 2005ś2039.

R. Wein, E. Berberich, E. Fogel, D. Halperin, M. Hemmer, O. Salzman, and B. Zukerman.
2018. 2D Arrangements. In CGAL User and Reference Manual (4.13 ed.). CGAL
Editorial Board.

M. A. Yerry and M. S. Shephard. 1983. A Modified Quadtree Approach To Finite Element
Mesh Generation. IEEE Computer Graphics and Applications 3, 1 (Jan 1983), 39ś46.

H. Zhao, C. C. Wang, Y. Chen, and X. Jin. 2011. Parallel and efficient Boolean on
polygonal solids. The Visual Computer 27, 6-8 (2011), 507ś517.

Q. Zhou, E. Grinspun, D. Zorin, and A. Jacobson. 2016. Mesh Arrangements for Solid
Geometry. ACM Transactions on Graphics (TOG) 35, 4 (2016), 39.

Q. Zhou and A. Jacobson. 2016. Thingi10K: A Dataset of 10, 000 3D-Printing Models.
CoRR abs/1605.04797 (2016). arXiv:1605.04797

A A BRIEF DESCRIPTION OF THE TETWILD

ALGORITHM

The TetWild algorithm [Hu et al. 2018] takes a 3D triangle soup

as input and generates a tetrahedral mesh that (1) has no inverted

or degenerate tetrahedra and (2) contains an approximation of the

input surface within a user-defined ϵ-envelope.

The method starts with an initial background mesh generated

using an unconstrained Delaunay tetrahedralization on the input

points plus an additional set of evenly-spaced points sampled from

a regular grid. These additional points are added to improve the

shape of the tetrahedra in the background mesh.

This step generates tetrahedra that might not represent the input

faces of the triangle soup: to ensure that they are preserved TetWild

uses a Binary Space Partitioning (BSP) subdivision step. Each input

triangle is converted into a plane that cuts the tetrahedra of the

background mesh. The output of this stage is a polyhedral mesh. To

avoid numerical issues and to guarantee that the sub-elements in

the polyhedral mesh are convex and non-inverted, TetWild converts

the coordinates of the vertices of the initial background mesh into

rational numbers and performs all computations using rational

numbers.

Since any convex polyhedron can be trivially subdivided into

tetrahedra by adding an additional point in its barycenter, a tetrahe-

dral mesh that exactly preserves the input triangles can be naturally

obtained after BSP subdivision. However, the vertices of this tetra-

hedral mesh are represented in rational coordinates. Rounding them

to floating point is not simple, since the BSP subdivision introduces

badly-shaped tetrahedra which could invert after rounding.

TetWild thus increases the quality of the elements using a hybrid

optimization procedures that mixes floating point and rational rep-

resentation. During this procedure, the preserved input triangle’s

faces are tracked and are allowed to move inside the ϵ-envelope.

The ϵ-envelope limits the tracked surface from deviating from the

input further than ϵ .

TetWild uses four local operations for mesh improvement: (1)

edge splitting, (2) edge collapsing, (3) edge swapping, and (4) vertex

smoothing. Every operation is rolled back if the tracked surface

leaves the envelope after the operation or if any tetrahedra are

inverted, ensuring a valid output. Differently from other mesh im-

provement methods, TetWild uses the 3D conformal AMIPS energy

for measuring the geometric quality of the tetrahedra. The AMIPS

energy is scaling-invariant and easily differentiable, which boosts

these traditional local operations.

As the quality of the mesh is improved, the rational coordinates

can be gradually rounded into floating points. Theoretically, there

ACM Trans. Graph., Vol. 39, No. 4, Article 117. Publication date: July 2020.

117:18 • Hu, Y. et al

might be some unroundable vertices, but it does not occur on the

ten thousand models that TetWild has been tested on.

The final step is the removal of the tetrahedra outside of the

tracked surface. To handle potentially noisy inputs, TetWild com-

putes the winding number of the centroids of all tetrahedra with

respect to the tracked surface, and filters out all tetrahedra with

centroid’s winding-number larger than 0.5.

B EXAMPLE OF UNSTABLE AMIPS ENERGY

If we compute the 3D AMIPS energy for a tetrahedron with these 4

vertices

v1 = (22.8289586180569, 31.46598870690956, 2.000000016196326)
v2 = (22.83955896584259, 31.46598870610162, 2.000000016081439)
v3 = (22.85206254968259, 31.46598870514861, 2.000000015945925)
v4 = (22.83955896584259, 30.48801551784109, 2.616041190648805)
we obtain

AMIPS1234 = 5.027711906288343e10

AMIPS2341 = 2.171615254548946e11

AMIPS3412 = 8.865129658843354e10

AMIPS4123 = 7.103076229685612e10,

where the subscript indicates the vertex permutations. There are

24 permutations in total and here we pick 4 of them as an example.

Even if we use the cube of the energy without rational we obtain

fluctuations

AMIPS31234 = 9.401446861483944e25

AMIPS32341 = 1.834560196543814e25

AMIPS33412 = 1.006679363250288e26

AMIPS34123 = 3.462536408842030e26.

As reference the correct value computed with rational number is

AMIPS = 1.127562687503913e11.

C UNUSED DECOMPOSITIONS OF A TETRAHEDRON

We enumerated all the possible decompositions of a tetrahedron

and discovered two symmetry classes (Figure 31) of triangulation of

faces whose decomposition requires an additional internal vertex.

Note that these two cases are never selected by our algorithm (we

include them here for completeness), as our rule (Section 3.4.2) never

selects these two cases.

We show that our rule does not select case 1 (Figure 31 left). By

contradiction: since the configuration is selected then the edges

[p1,v2], [p2,v3] and [p3,v1] are present, thus v2 > v1, v3 > v2, and
v1 > v3, according to our rule. Combining these inequalities, the

indices of the vertices must satisfy v3 > v2 > v1 > v3, which is

impossible. Case 2 (Figure 31 right) is also not selected following a

similar argument.

D AN EXAMPLE FOR OPEN-BOUNDARY EDGE

PRESERVATION

If triangle T is the only inserted triangle and is entirely contained

inside a tetrahedron T (Figure 32(1)), the intersection of the plane

p1
p2

T
p3

v2v1

v0

v3 p1 p2

T

p3

v2v1

v0

v3

p4

Case 1 Case 2

Fig. 31. Two unused configurations requiring an additional vertex.

T

T
P

p1
p2

p3 p4

e

(1) (2) (3)

Fig. 32. Example for preserving an open-boundary edge e of triangle T . (1)

Insert T and TI = {T } in this case. (2) The sub-tetrahedra of T after subdi-

vision. (Only sub-tetrahedra behind T are shown for better visualization.)

(3) Inserting edge e and get the intersection points (in green).

Table 3. Edge-cut configurations of a cutting tetrahedron before and after

snapping. Numbers corresponds to the configurations in Figure 9.

Before 1 vertex snapped 2 vertices snapped 3 vertices snapped

(2) (1) (2) (1)

(3) (1)(2) (1)(2) (1)

(5) (1)(3) (1)(2) (1)(2)

(7) (3) (1)(3) (1)

P and T will be a larger polygon (marked in yellow) containing T .

In this case, the edges of T , which are open-boundary edges, are

not preserved. To preserve them, we subdivide the tetrahedra once

more.

In Figure 32(1), T first get decomposed into sub-tetrahedra (Fig-

ure 32(2)). Then the faces coveringT areF = {[p1,p2,p3], [p4,p2,p3]}
Figure 32(3). The open-boundary edge e and the faces in F are pro-

jected to the best-fitting plane of p1,p2,p3, and p4. The intersection

points of the projection of e and T are then computed in 2D and

are lifted to 3D (3 green points in Figure 32(3)). Now there are 3

edges [p1,p2], [p2,p3], [p3,p4] cut into two. We thus subdivide all

the neighbouring tetrahedra with the table-based subdivision.

E CHANGES OF EDGE-CUT CONFIGURATION AFTER

SNAPPING

Table 3 shows all possible edge-cut configurations of a cutting tetra-

hedron T after snapping. The final configurations have no more

than two vertices which makes the triangulation of F uniquely

defined by the points. The table includes only the 4 symmetry

classes where T is cut by plane P and contains a face in F (Figure 9

(2)(3)(5)(7)), but excludes the remaining 3 classes where T is not cut

or is just affected by their neighbors (Figure 9 (1)(4)(6)).

A tetrahedron T can have at most 3 vertices snapped. If T has

all its 4 vertices within a δ distance to the P , we only snap the 3

vertices closer to P .

ACM Trans. Graph., Vol. 39, No. 4, Article 117. Publication date: July 2020.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Tetrahedral Meshing
	2.2 Applications

	3 Method
	3.1 Algorithm Overview
	3.2 Envelope
	3.3 Preprocessing
	3.4 Incremental Triangle Insertion
	3.5 Mesh Improvement
	3.6 Filtering

	4 Results
	4.1 Success Rate
	4.2 Running Time
	4.3 Mesh Quality
	4.4 Mesh Density

	5 Applications
	5.1 Mesh Repair
	5.2 Mesh Arrangements
	5.3 Simulation

	6 Concluding Remarks
	Acknowledgments
	References
	A A Brief Description of the TetWild Algorithm
	B Example of Unstable AMIPS Energy
	C Unused Decompositions of a Tetrahedron
	D An Example for Open-Boundary Edge Preservation
	E Changes of Edge-cut Configuration After Snapping

