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Abstract

Performing numerical integration when the integrand itself cannot be evaluated point-wise is a challenging
task that arises in statistical analysis, notably in Bayesian inference for models with intractable likelihood
functions. Markov chain Monte Carlo (MCMC) algorithms have been proposed for this setting, such as the
pseudo-marginal method for latent variable models and the exchange algorithm for a class of undirected graphical
models. As with any MCMC algorithm, the resulting estimators are justified asymptotically in the limit of the
number of iterations, but exhibit a bias for any fixed number of iterations due to the Markov chains starting
outside of stationarity. This “burn-in” bias is known to complicate the use of parallel processors for MCMC
computations. We show how to use coupling techniques to generate unbiased estimators in finite time, building on
recent advances for generic MCMC algorithms. We establish the theoretical validity of some of these procedures,
by extending existing results to cover the case of polynomially ergodic Markov chains. The efficiency of the
proposed estimators is compared with that of standard MCMC estimators, with theoretical arguments and

numerical experiments including state space models and Ising models.

1 Introduction

1.1 Context

For various statistical models the likelihood function cannot be computed point-wise, which prevents the use of
standard Markov chain Monte Carlo (MCMC) algorithms such as Metropolis—Hastings (MH) for Bayesian inference.
For example, the likelihood of latent variable models typically involves an intractable integral over the latent space.
Classically, one can address this problem by designing MCMC algorithms on the joint space of parameters and latent
variables. However, these samplers can mix poorly when latent variables and parameters are strongly correlated

under the joint posterior distribution. Furthermore these schemes cannot be implemented if we can only simulate

the latent variables and not evaluate their probability density function [Andrieu et al., 2010, Section 2.3]. Similarly,
in the context of undirected graphical models, the likelihood function might involve an intractable integral over the
observation space; see Moller et al. [2006] with examples from spatial statistics.

Pseudo-marginal methods have been proposed for these situations [Lin et al., 2000, Beaumont, 2003, Andrieu
and Roberts, 2009], whereby unbiased Monte Carlo estimators of the likelihood are used within an MH acceptance
mechanism while still producing chains that are ergodic with respect to the exact posterior distribution of interest,
denoted by 7. Pseudo-marginal algorithms and their extensions [Deligiannidis et al., 2018, Tran et al., 2016] are
particularly adapted to latent variable models, such as random effects models and state space models, where the
likelihood can be estimated without bias using importance sampling or particle filters [Beaumont, 2003, Andrieu
and Roberts, 2009, Andrieu et al., 2010]. Related schemes include the exchange algorithm [Murray et al., 2000,
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, |, which applies to scenarios where the likelihood involves an intractable, parameter-dependent
normalizing constant. Exchange algorithms rely on simulation of synthetic observations to cancel out intractable
terms in the MH acceptance ratio. As with any MCMC algorithm, the computation of each iteration requires the
completion of the previous ones, which hinders the potential for parallel computation. Running independent chains
in parallel is always possible, and averaging over independent chains leads to a linear decrease of the resulting
variance. However, the inherent bias that comes from starting the chains outside of stationarity, also called the
“burn-in bias”, remains [ , ]

This burn-in bias has motivated various methodological developments in the MCMC literature; among these,

some rely on coupling techniques, such as the circularly-coupled Markov chains of [ |, regeneration tech-
niques described in [ ], [ |, and “coupling from the past” as proposed
in [ |. Coupling methods have also been proposed for diagnosing convergence in

[ , ] and as a means to assess the approximation error for approximate MCMC kernels in

[ |. Recently, a method has been proposed to completely remove the bias of Markov chain ergodic averages
[ , |. An extension of this approach using coupling ideas was proposed by [ |
and applied to a variety of MCMC algorithms. This methodology involves the construction of a pair of Markov
chains, which are simulated until an event occurs. At this point, a certain function of the chains is returned, with
the guarantee that its expectation is exactly the integral of interest. The output is thus an unbiased estimator of
that integral. Averaging over i.i.d. copies of such estimators we obtain consistent estimators in the limit of the
number of copies, which can be generated independently in parallel. Relevant limit theorems have been established
in [ I, [ ], enabling the construction of valid confidence intervals.
The methodology has already been demonstrated for various MCMC algorithms | , ,

, , , |, which were instances of geometrically ergodic Markov chain samplers under typical
conditions. However, in the case of intractable likelihoods and pseudo-marginal samplers, in realistic situations the
associated Markov chains can often be sub-geometrically ergodic, see e.g. | , |.

We show here that unbiased estimators of w(h), with finite variance and finite computational cost, can also be
derived from polynomially ergodic Markov chains such as those generated by pseudo-marginal methods. We provide
results on the associated efficiency in comparison with standard MCMC estimators. We apply the methodology to
particle MCMC algorithms for inference in generic state space models, with an application to a time series of neuron
activation counts. We also consider a variant of the pseudo-marginal approach known as the block pseudo-marginal
approach [ , ] as well as the exchange algorithm [ , ]

Accompanying code used for simulations and to generate the figures are provided at https://github.com/

lolmid/unbiased_intractable_targets.

1.2 Unbiased estimators from coupled Markov chains

Let 7 be a probability measure on a topological space Z equipped with the Borel o-algebra B(Z). In this section we
recall how two coupled chains that are marginally converging to m can be used to produce unbiased estimators of
expectations m(h) := [ h(z) m(dz) for any m-integrable test function h : Z — R. Following [ ],

[ |, we consider the following coupling of two Markov chains (Z,,),>0 and (Zn)nZO- First, Zo, Z, are
drawn independently from an initial distribution my. Then, Z; is drawn from a Markov kernel P given Z;, which is
denoted Z1|Zy ~ P(Zy,-). Subsequently, at step n > 1, a pair (Zn41, Zp) is drawn from a Markov kernel P given
(Zn,Zn_l), which is denoted (Zn+1,2n)\(Zn,Zn_1) ~ P((Zn,Zn_l), -). The kernel P is such that, marginally,
Zni1(Zn, Zn,l) ~ P(Z,,-) and Zn\(ZmZn,l) ~ P(Zn,l, -). This implies that, marginally for all n > 0, Z,, and
Z,, have the same distribution. Furthermore, the kernel P is constructed so that there exists a random variable
7 termed the meeting time, such that for all n > 7, Z, = Z,_; almost surely (a.s.). Then, for any integer k,

the following informal telescoping sum argument informally suggests an unbiased estimator of 7(h). We start from



m(h) = lim, o E[h(Z,,)] and write

m (h) = E[h(Zk)] + Z E[h(Z,)] — B[ Zn_1)] (write as telescoping sum),
n=k+1
Z h(Z Zn—1)] (swap expectation & limit),
n=k+1
> W(Zn) = M Zn-)] (Zn = Zp_y for n > 7).
n=k+1

The sum Y —_ k 41 is treated as zero if 7 —1 < k + 1. The suggested estimator is thus defined as

Hy(Z,Z) = h(Zy) + Z {h(z Zn-1)}, (1)

n=k+1

with Z and Z denoting the chains (Z,),>0 and (Z,)n>0 respectively. As in [ |, we average Hy(Z, Z)

over a range of values of I, [ € {k,k+ 1,...,m} for an integer m > k, resulting in the estimator

~ 1 m T7—1 . n—k
Hym(Z,2) = ——— Y "h(Z)+ Y min (1, m) (MZy) = W(Zn-1)). (2)

m—k—|—ll:k it —k+1

Intuitively, Hy.,, can be understood as a standard Markov chain average after m steps using a burn-in period of
k—1 steps (which would be in general biased for 7(h)), plus a second term that can be shown to remove the burn-in
bias. That “bias correction” term is a weighted sum of differences of the chains between step k and the meeting time
T=inf{n>1: Z, = Nn_l}. In the following, we will write Hy.,, := Hg.;m(Z, Z) for brevity. The construction of
Hy.p, is summarized in Algorithm 1, where the initial distribution of the chains is denoted by 7wy, and the Markov
kernels by P and P as above. Standard MCMC estimators require the specification of my and P, while the proposed
method requires the additional specification of the coupled kernel P. We will propose coupled kernels for the setting
of intractable likelihoods, and study the estimator Hy.,, under conditions which cover pseudo-marginal methods.

Algorithm 1 Unbiased MCMC estimator Hj.,, for any choice of k and m with 0 < k < m.

1. Initialization:
(a) Sample Zy, Zo ~ mo(-).
(b) Sample Z1|{Zy = 20} ~ P(zo,-).
(¢c) Set n =1 and 7 = 0.
2. While n < max(m, 7):
(a) Sample (Z,41, Zn)HZn = Zn, Zn—l = Zn—l} ~ P ((zns Zn—1) ,°)-
(b) If Zpy1 = Z, and T = o0, set T = n.

(c) Increment n by 1.

3. Return Hy.,, as described in Equation (2).

To see how coupled kernels can be constructed, we first recall a construction for simple MH kernels. Focusing,
for now, on the typical Euclidean space case Z C R¢, we assume that 7 admits a density, which with a slight abuse

of notation we also denote with . Then the standard MH algorithm relies on a proposal distribution ¢(dz’|z), for



instance chosen as a Gaussian distribution centered at z. At iteration n — 1, a proposal Z' ~ ¢(:|Z,_1) is accepted
as the new state Z,, with probability ayu(Z,—1, Z") := min (1, 7(Z")q(Zn-11Z")/7(Zn—-1)q(Z'| Zr—1)), known as the
MH acceptance probability. If Z’ is rejected, then Z,, is assigned the value of Z,,_;. This defines the kernel P. To
construct P, following [ | we can consider a maximal coupling of the proposal distributions. This
is described in Algorithm 2 for completeness; see also [ | and [ | for a consideration of
the cost of sampling from a maximal coupling. Here U]a, b] refers to the uniform distribution on the interval [a, b].
The algorithm relies on draws from a maximal coupling (or y-coupling) of the two proposal distributions ¢ (-|Z,)
and q(-|Z,_1) at step n > 1. Draws (Z’,Z’) from maximal couplings are such that the probability of the event
{Z' = 7'} is maximal over all couplings of Z’ ~ q(-|Z,) and Z’' ~ q(-|Z,_1). Sampling from maximal couplings
can be done with rejection sampling techniques as described in [ |, in Section 4.5 of Chapter 1 of

[ | and in [ ]. On the event {Z’ = Z'}, the two chains are given identical proposals, which
are then accepted or not based on ayu(Z,, Z’') and onH(Zn_l, A ) using a common uniform random number. In
the event that both proposals are identical and accepted, then the chains meet: 7,11 = Z,,. One can then check

that the chains remain identical from that iteration onwards.

Algorithm 2 Sampling from the coupled MH kernel given (Z,,,Z,,_1).

—_

. Sample Z’ and Z’ from a maximal coupling of ¢ (:|Z,,) and q(:|Z,_1).
2. Sample u ~ U [0, 1].

3. fu<oayn (Z,,2") set Z, 11 = Z'. Otherwise set Z,,11 = Zp,.

4. fu< aMH(Zn,hZ’) set Z,, = Z'. Otherwise set Z,, = Z,,_1.

5. Return (Z,41, Zn)

The unbiased property of Hg.,,, has an important consequence for parallel computation. Consider R independent
copies, denoted by (Hlirr)n) for r =1,..., R, and the average ﬁ,fm =R! Zle H,(Crr)n Then ﬁ,ﬁm is a consistent
estimator of w(h) as R — oo, for any fixed (k,m), and a central limit theorem holds provided that V[Hp..,] < oo;
sufficient conditions are given in Section 1.3. Since 7 is a random variable, the cost of generating Hy.,, is random.
Neglecting the cost of drawing from 7, the cost amounts to that of one draw from the kernel P, 7—1 draws from the
kernel P, and then (m—7) draws from P if 7 < m. Overall that leads to a cost of T}, := 2(7 — 1)+ max(1,m—71+1)
units, where each unit is the cost of drawing from P, and assuming that one sample from P costs two units.
Theoretical considerations on variance and cost will be useful to guide the choice of the parameters k& and m as

discussed in Section 1.5.

1.3 Theoretical validity under polynomial tails

We provide here sufficient conditions under which the estimator Hjy.,, is unbiased, has finite expected cost and
finite variance. Below, Assumptions 1 and 3 are identical to Assumptions 2.1 and 2.3 in [ | whereas
Assumption 2 is a polynomial tail assumption on the meeting time weaker than the geometric tail assumption,
namely, P(7 > n) < Kp" for all n > 1, for some constants K < oo and p € (0,1), used in [ |-
Relaxing this assumption is useful in our context as the pseudo-marginal algorithm is polynomially ergodic under
realistic assumptions | , ] and, as demonstrated in Section 1.4, this allows the verification of

the polynomial tail assumption.

Assumption 1. Fach of the two chains marginally starts from a distribution my, evolves according to a transition
kernel P and is such that E[h(Z,)] — w(h) as n — oo for a real-valued function h. Furthermore, there exists
constants 1 > 0 and D < oo such that E[|h(Z,)|?T"] < D for alln > 0.



Assumption 2. The two chains are such that there exists an almost surely finite meeting time T = inf{n > 1 :
Zy = ~n,1} such that P(t > n) < Kn™" for some constants 0 < K < oo and r > 2 (277_1 + 1), where 1 is as in

Assumption 1.
Assumption 3. The chains stay together after meeting, i.e. Zy = Zp_1 for alln > 7.

Under Assumption 2, E[7?] < KpY_ o,n ""P~! for all p > 1 and thus E[r?] < co if K > p. As it is assumed
that £ > 2 (2n~' + 1), this implies that I[i[rp] < oo for p < 2(2n~! +1). In particular, one has E[r] < oo and thus
the computational cost associated with Hy.,, has a finite expectation. It also implies that 7 has a finite second
moment.

The following result states that Hg.,, has not only a finite expected cost but also has a finite variance and that

its expectation is indeed mw(h) under the above assumptions. The proof is provided in Appendix A.1.

Theorem 1. Under Assumptions 1-2-3, for all k > 0 and m > k, the estimator Hy.,, defined in (2) has expectation

w(h), has a finite expected computing time and admits a finite variance.

1.4 Conditions for polynomial tails

We now proceed to establishing conditions that imply Assumption 2. To state the main result, we put assumptions
on the probability of meeting at each iteration. We write D for the diagonal of the joint space Z x Z, that is
D :={(z,2) € Zx Z: z = Z} and introduce the measure mp(dz,dz) := w(dz)d,(dZ). In this case, we identify
the meeting time 7 with the hitting time of the diagonal, 7 = 7p := inf {n >1: (Zn, Zn,1> € D}. The first

assumption is on the ability of the pair of chains to hit the diagonal when it enters a certain subset of Z x Z.

Assumption 4. The kernel P is wp-irreducible: for any set A C D such that ip(A) > 0 and all (2,2) € Zx Z
there exists some n > 0 such that P" ((z,%),A) > 0. The kernel P is also aperiodic. Finally, there exist € € (0,1),
ng > 0 and a set C C Z such that

. f pno ~ D > e
(z,Z)lgcxc ((ZVZ)» )76 (3)

Next we will assume that the marginal kernel P admits a polynomial drift condition and a small set C’; we will
later consider that small set to be the same set C' as in Assumption 4. Intuitively, the polynomial drift condition
on C will ensure regular entries of the pair of chains in the set C' x C, from which the diagonal can be hit in ng

steps under Assumption 4.

Assumption 5. There exist g > 0, a probability measure v on Z and a set C C Z such that

zig(ij(z, ) > eov(t). (4)

In addition, there exist a measurable function V : Z — [1,00), constants by,cy > 0, € € (0,1), and a value
a € (0,1), such that, defining ¢(x) := dz® for a constant d > 0 and all z € [1,00), then for any z € Z,

PV(z) <V(z) —poV(z) +bylc(z), (5)

sup V(z) < ey, (6)
zeC

inf poV(z)>by(l—e) (7)

z¢C

The following result states that Assumptions 4 and 5 guarantee that the tail probabilities of the meeting time

are polynomially bounded. The proof is provided in Appendix A.2.



Theorem 2. Suppose that Assumptions j and 5 hold for the same set C C Z, and that g admits a density with
respect to w and is supported on a compact set. Then we have that for all n > 1 and some constant K > 0,

P(r>n) < Kn™",

where kK = 1/(1 — ), with « defined as in Assumption 5.

We note the direct relation between the exponent « in the polynomial drift condition and the exponent x in the
bound on the tail probability P(7 > n). In turn this relates to the existence of finite moments for 7, as discussed
after Assumption 2. In particular, if we can take large values of 7 in Assumption 1, then we require in Assumption
2 that « is just above 2, which is implied by a > 1/2 according to Theorem 2. However, if we consider n = 1 in
Assumption 1, for instance, then we require in Assumption 2 that x is just above 6, which is implied by o > 5/6

according to Theorem 2. The condition o > 5/6 will appear again in the next section.

1.5 Efficiency under polynomial tails

In removing the bias from MCMC estimators, we expect that Hy.,, will have an increased variance compared to
an MCMC estimator with equivalent cost. In this section we study the overall efficiency of Hy.,, in comparison to
standard MCMC estimators. This mirrors Proposition 3.3 in [ | in the case of geometrically ergodic
chains.

We can define the inefficiency of the estimator Hy.,, as the product of its variance and of its expected com-
putational cost via IF[Hy.p,] := E[T},|V[Hg.m], with T}, denoting the computational cost. This quantity appears
in the study of estimators with random computing costs, since seminal works such as
[ | and [ |. The inefficiency can be understood as the asymptotic variance of the proposed
estimator as the computing budget goes to infinity. The following provides a precise comparison between this
inefficiency and the inefficiency of the standard “serial” algorithm. Since the cost T, is measured in units equal
to the cost of sampling from P, the cost of obtaining a serial MCMC estimator based on m iterations is equal
to m such units. The mean squared error associated with an MCMC estimator based on (Z,),>0 is denoted by
MSEy..,, := [(MCMCb:m — ﬂ(h))ﬂ, where MCMCy,, := (m — b+ 1)"' 3", h(Z;) and where b — 1 denotes the
number of discarded iterations. We are particularly interested in the comparison between IF[Hy.,,], the inefficiency
of the proposed estimator with parameters k, m, and lim,, ., m X MSEy.,,,, the asymptotic inefficiency of the serial
MCMC algorithm. Both correspond to asymptotic variances when the computing budget goes to infinity.

We first express the estimator Hg.,,, for m > k > 0 as MCMCy.,,, + BCk.,n, where the bias correction term is

BCho = TZ_I min (1, "_k) (h(Zn) — h(Z,H)). 8)

arn il m—k+1

Then Cauchy-Schwarz provides a relationship between the variance of Hy.,,, the MCMC mean squared error, and

the second moment of the bias-correction term:

V[ < MSEpuyn + 20/ MSEw E [BCE,,] + E [BCL,,,] 9)

This relationship motivates the study of the second moment of BCy.,,. The following result shows that if the Markov
chains are mixing well enough, in the sense of the exponent « in the polynomial drift condition of Assumption 5
being close enough to one, then we can obtain a bound on |E [BCi:m] which is explicit in £ and m. The proof can
be found in Appendix A.3.

Proposition 1. Suppose that the marginal chain evolving according to P is v¥-irreducible and that the assumptions
of Theorem 2 hold for 5/6 < a < 1 and some measurable function V : Z — [1,00), such that Sy = {z : V(z) <
o} # 0. In addition assume that there exists a v € (1 — a, 1) such that 7(V*Y) < co. Then for any measurable



function h : Z — R such that sup,.z V(2)"*7"Hh(z)| < oo, and any integers m > k > 0 we have that, for

k:=1/(1 —«), and a constant B < oo,

1 1 1

2
E [Bck:m] <B mr/2—1 + (m —k+ 1)2 kr/2—3

(10)

The fact that a restriction on the exponent « has to be specified to control the second moment of BCy.,, is to be
expected: we have already seen in the previous section that such a restriction is also necessary to apply Theorem
2 to verify Assumption 2 with an adequate exponent k, which, in turn, leads to a finite variance for Hy.,, through
Theorem 1. The specific condition 5/6 < a < 1 could perhaps be relaxed with a more refined technical analysis,
thus we interpret the condition qualitatively: the chains are allowed to satisfy only a polynomial drift condition but
it needs to be “close” enough to a geometric drift condition.

It follows from (9) and (10) that under the assumptions of Proposition 1, we have

1 1 1
. < . .
V[Hym] < MSEgm + 2\/BMSEk,m\/mK/2_1 A pray ey

1 1 1
mp/2—1 + (m —k+ 1)2 kr/2-3

+B { (11)
The variance of Hy.,, is thus bounded by the mean squared error of an MCMC estimator, and additive terms
that vanish polynomially when &k, m — k and m increase. To compare the efficiency of Hy.,, to that of MCMC
estimators, we add simplifying assumptions as in [ ]. As k increases and for m > k, we expect
(m — k + 1)MSEy.,,, to converge to V[(m — k + 1)"Y23"" h(Z,)] := Vim as m — oo, where Zy ~ m. We will
make the simplifying assumption that MSEg.,, = Vi .,/(m — k + 1) for k large enough. As the condition 5/6 < «
is equivalent to k > 6, |E [BCi:m] will be negligible compared to the two other terms appearing on the right hand

side of (11), so we obtain the approximate inequality

m

— _ <
E2(7 — 1)+ max(1l,m — 7+ 1)]V[Hg.m] S e R

Vk:,m

1 1 1
+2m\/BVk7m\/(m_k+ 1)m"’"/2_1 + (m—k—|—1)3 kn/2_3’

where the cost of Hy.,, is approximated by the cost of m calls to P. For the left-hand side to be comparable to
Vie.m,» we can select m as a large multiple of k such that m/(m — k + 1) is close to one. The second term on the
right-hand side is then negligible as k increases, and we see that the polynomial index determining the rate of decay

is monotonic in k.

2 Unbiased pseudo-marginal MCMC

2.1 Pseudo-marginal Metropolis—Hastings

The pseudo-marginal approach | , , , , , | generates Markov
chains that target a distribution of interest, while using only non-negative unbiased estimators of target density
evaluations. For concreteness we focus on target distributions that are posterior distributions in a standard Bayesian
framework. The likelihood function associated to data y € ) is denoted by 6 — p(y|6), and a prior density 6 — p (6)
w.r.t. the Lebesgue measure is assigned to an unknown parameter §# € © C R”. We assume that we can compute a
non-negative unbiased estimator of p(y|6), for all @, denoted by p(y|6, U) where U € U C RM are random variables
such that U ~ mg(du), where for any 6 € O, my denotes a Borel probability measure on U. We assume that mg(du)
admits a density with respect to the Lebesgue measure denoted by u — mg(u). The random variables U represent

variables required in the construction of the unbiased estimator of p(y|f). The pseudo-marginal algorithm targets



a distribution with density

ply [0, u)
p(y | 0)

The generated Markov chain (Z,),>0 takes values in Z = © x Y. Since [p(y | 6, u)me (u) du = p(y|0) for all 6,

marginally 7(0) = [ (6, u)du = p(d | y), corresponding to the target of interest for the 6 component of (Z,,),>o0-

(0,u) = m(0,u) = p(0 | y) my (u) . (12)

Sampling from 7(df,du) is achieved with an MH scheme, with proposal g (d¢’|0)mg: (du'). This results in an
acceptance probability that simplifies to

(13)

apn {(0.5(y | 0.)) . (¢, 5(y | 0',))} = min {1, Ply |9, w)p(9)q (616) } ,

Py | 0,u)p(0)q (0'10)

which does not involve any evaluation of u +— mg(u). Thus the algorithm proceeds exactly as a standard MH
algorithm with proposal density ¢(6’|0), with the difference that likelihood evaluations p(y|f) are replaced by
estimators p(y|6, U) with U ~ my(-). The performance of the pseudo-marginal algorithm depends on the likelihood
estimator: lower variance estimators typically yield ergodic averages with lower asymptotic variance, but the cost
of producing lower variance estimators tends to be higher which leads to a trade-off analyzed in detail in
[2015], [2020].

In the following we will generically denote by gy the distribution of p(y | 6, U) when U ~ my(-), and for notational
simplicity, we might write p(y | 0) instead of p(y | 6,U). The above description defines a Markov kernel P and we
next proceed to defining a coupled kernel P, to be used for unbiased estimation as in Algorithm 1.

2.2 Coupled pseudo-marginal Metropolis—Hastings

To define a kernel P that is marginally identical to P but jointly allows the chains to meet, we proceed as follows,
mimicking the coupled MH kernel in Algorithm 2. First, the proposed parameters are sampled from a maximal
coupling of the two proposal distributions. If the two proposed parameters 6’ and ' are identical, we sample a
unique likelihood estimator p(y | 6') ~ go/ () and we use it in the acceptance step of both chains. Otherwise, we
sample two estimators, p(y | 0') ~ go- (-) and p(y | ') ~ g4 (-). Denoting the two states of the chains at step n > 1
by (0, p(y | 0)) and (0,1, 5(y | B,_1)), Algorithm 3 describes how to obtain (6,41, 5(y | Opy1)) and (6, p(y | 6,));
thereby describing a kernel P.

Algorithm 3 Sampling from the coupled pseudo-marginal MH kernel given
{0050y 1 62)), 01,50y | B-1)) }-

1. Sample " and 6’ from a maximal coupling of ¢ (-6,,) and q(:|0,_1).

2. If @ = @, then sample p(y | @) ~ gor () and set p(y | ') = ply | ).
Otherwise sample p(y | 0') ~ go/ (-) and Py | 0') ~ g (-).

3. Sample u ~ U [0, 1].

4 M u < apm {(0n,p(y | 0n)), (0", p(y | 7))} then set (Oni1,P(y | Ony1)) = (6, 0(y | 0'))-
Otherwise, set (6,41, P(y | On+1)) = (0n, Py | 0n)).

5. 1w < aps { (Gn-1,59 | 01, (F',3(y | 0)) } then set (B, By | 0.)) = (0, 5ly | 9).
Otherwise, set (6,,,5(y | 0n)) = (Op—1,0(y | On_1)).

6. Return {(0n+1,ﬁ(y | 051))s (O, By | én))}

In step 2. of Algorithm 3 the two likelihood estimators p(y | 6') and p(y | o' ) can be generated independently,



as we will do below for simplicity. They can also be sampled together in a way that induces positive correlations,
for instance using common random numbers and other methods described in [ I,

[ |. We leave the exploration of possible gains in correlating likelihood estimators in that step as a future
avenue of research. An appealing aspect of Algorithm 3, particularly when using independent estimators in step
2., is that existing implementation of likelihood estimators can be readily used. In Section 4.2 we will exploit
this by demonstrating the use of controlled sequential Monte Carlo | , | in the proposed framework.
Likewise, one could explore the use of other advanced particle filters such as sequential quasi Monte Carlo |

, ]. To summarize, given an existing implementation of a pseudo-marginal kernel, Algorithm 3
involves only small modifications and the extra implementation of a maximal coupling which itself is relatively

simple following, for example, [ |.

Remark 1. It is worth remarking that the proposed coupling based on maximally coupling the proposals may be
sub-optimal, especially in high-dimensional problems where the overlap of the proposals may be quite small. In such
cases one may consider more sophisticated couplings, for example reflection couplings, see e.g.

[2018] for an application to Hamiltonian Monte Carlo; see also [2019] and references therein.

2.3 Theoretical guarantees

We provide sufficient conditions to ensure that the coupled pseudo-marginal algorithm returns unbiased estimators
with finite variance and finite expected computation time, i.e. sufficient conditions to satisfy the requirements of
Theorem 2 are provided. By introducing the parameterization w = p(y|0, u)/p(y|6) and using the notation w ~ gy (+)

when u ~ myg (-), we can rewrite the pseudo-marginal kernel

P((0,w),(dd,dw")) = q (0,0 )ge (W) apm {(0,w), (0, w')} do'dw’
+ OPM (07 w) 5(0,71)) (d9/7 dw/) )

where, in this parameterization, we write

apm {(0,w), (0',w')} = min {1,
and opy (6, w) is the corresponding rejection probability. We first make assumptions about the target and proposal
densities.

Assumption 6. The target posterior density 6 — m(0) is strictly positive everywhere and continuously differen-

tiable. Its tails are super-exponentially decaying and have regular contours, that is,

. 0 . 0 Vm(0)
lim —.Viogm (0) = —c0, limsup —. ———= < 0,
o gy 18T ) S o] [V ()

where 0] denotes the Euclidean norm of §. Moreover, the proposal distribution satisfies q (0, A) = [, q (0’ — x) d¢’

with a bounded, symmetric density q that is bounded away from zero on all compact sets.
We then make assumptions about the moments of the noise.

Assumption 7. There exist constants a’ > 0 and b’ > 1 such that

My = ess Supgee/ max (w_alawb) Go(dw) < oo,
R+

where the essential supremum is taken with respect to the Lebesque measure. Additionally the family of distributions

defined by the densities gy is continuous with respect to 6 in the topology of weak convergence.



Both assumptions are used in | , | to establish a drift condition for the pseudo-marginal
algorithm. Assumption 6 can be understood as a condition on the ‘ideal’ algorithm, i.e. if the likelihood could be
evaluated exactly, and Assumption 7 ensures the likelihood estimate has neither too much mass around zero nor in
the tails. The following proposition follows from establishing minorization conditions for both the pseudo-marginal

and coupled pseudo-marginal kernels along with | , , Theorem 38].

Proposition 2. Under Assumptions 6 and 7 then Equations (5), (6) and (7) hold for any x €(0,min (1,d")),
a € (x,d] and b € (0,0 — x) for the drift function defined as

V(0,w) = {sup ™ (9)}X 77X () max(w™?, w®),
0cR

where a =1 —1/b and C = {(0,w) € © x RT : || < M, w € [w,w]} for some constants M > 1, w € (0,1] and w >

w. Additionally the minorization conditions (3) and (4) hold for the same C and ng = 1. Finally if opm (0, w) < 1

for all ,w and if for some 6 € B (0, M) we have ffgg(w)wdw > 0 then Assumptions j and 5 hold with the same

C for the kernel P induced by Algorithm 3. B

If the assumptions of Proposition 2 are satisfied for a’,b’ such that ¥ — min (1,a’) > 6 then, by application
of Theorem 2, the coupling times exhibit the required tail bounds of Assumption 2 with a > 5/6 - provided also
mo admits a density with respect to m and is supported on a compact set. We note that the uniform moments
bounds of Assumption 7 might not be satisfied in many non-compact parameter spaces. A weaker assumption
allowing to satisfy the polynomial drift condition is provided in [ , Condition 44] and could

be alternatively used here.

3 Experiments with coupled pseudo-marginal kernel

We next present two examples where we are able to verify the conditions guaranteeing the validity of the estimators.

3.1 Tails of meeting times in a toy experiment

We provide numerical experiments on the tails of the meeting time 7 in a toy example, to illustrate the transition
from geometric to polynomial tails. The target 7 is a bivariate Normal distribution N (p, I), with u = (1,2) € R?
and identity covariance matrix; the initial distribution 7 is uniform over the unit square. Although we can
evaluate 6 — 7(0), in order to emulate the pseudo-marginal setting, we assume instead we have access for each
6 to an unbiased estimator 7 (6, W) of 7(0), of the form # (8, W) = w(0) x W where W is a log-Normal variable;
that is log W ~ N'(—0?/2,0?) with o calibrating the precision of #(, W) of m(). We consider a pseudo-marginal
Metropolis—Hastings algorithm with proposal distribution ¢(d#’|0) = N (d¢’;0,1), and a coupled version following
Algorithm 3. Indeed, in this simplified setting we are able to verify Assumptions 6 and 7 directly. We note that in
the case o0 = 0, we recover the standard MCMC setting.

We draw R = 10° independent realizations of the meeting time for ¢ in a grid of values {0,0.5,1,1.5,2}. We
then approximate tail probabilities P(7 > n) by empirical counterparts, for n between 1 and the 99.9% quantile of
the meeting times for each o. The resulting estimates of P(7 > n) are plotted against n in Figure la, where the
y-axis is in log-scale. First note that in the case o = 0, log P(7 > n) seems to be bounded by a linear function of n,
which would correspond to P(r > n) < Kp™ for some constants K < oo and p € (0,1). This is indeed the expected
behavior in the case of geometrically ergodic Markov chains | , |.

As o increases, P(7 > n) decreases less rapidly as a function of n. To verify whether IP(7 > n) might be bounded
by Kn~" (as our theoretical considerations suggest), we plot P(7 > n) against n with both axes in log-scale in
Figure 1b, with a focus on the tails, with n > 20. The figure confirms that logIP(7 > n) might indeed by upper
bounded by xlogn, up to a constant offset, for large enough values of n. The figure suggests also that in this case

k decreases with o.
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Figure 1: Survival probabilities of the meeting time IP(7 > n) along n, approximated with 10,000 copies of the
meeting times in the pseudo-marginal toy example of Section 3.1. Left: y-axis in log-scale and x-axis in natural
scale. Right: log-scale for both axes, and restriction to n > 20, in order to focus on the tails. Each line corresponds
to a different value of o, which calibrates the amount of noise in the estimators of target density evaluations.

3.2 Beta-Bernoulli model

3.2.1 Model description

We consider here a random effect model such that, for t =1,...,T,
i.d.d.
X~ foo), Yil{Xe = 2} ~ go(-[x). (14)

The likelihood of data y = (y1,...,yr) is of the form p(y|d) = Hz;l p(y:]0) where p(y|0) = [ fo(dx)ge(y:|x) and
the likelihood estimator is given by p(y|0) = Hthl D(y:|0), where {p(y¢|60)}1=1,...,r are T independent non-negative
unbiased likelihood estimators of {p(y:|0)}i=1,... . These are importance sampling estimators using a proposal
go(zly) detailed below.

We focus on a Beta-Bernoulli model in which the likelihood is tractable; the latent states z; € X = [0,1] and
observations y; € {0,1} are such that

fo(ze) = Beta(z; o, ), g(yelwe) = af (1 —ae)' 7",

where Beta(z; a, ) = B(a, 8)"*2*~1(1 — 2)%~! and B(a, 8) denotes the Beta function.
The marginal likelihood of a single observation is given by p(y:|0) = a¥817Y /(a + ), and therefore the full

marginal likelihood is
; ol BTfT’ ) T
=7 7 =N"1fy =1
p(yl yT‘ ) (a + 5)’1“ tzzl [yt ]
Since the likelihood is uniquely determined by the ratio 8/a, we fix & > 0 and thus our parameter is given by 6 = £.
We allow 3 to vary in the interval 8 € © = [3, 5] bounded away from 0 and co.

We consider likelihood estimator employing the following importance proposal,

Beta (z;1 + «, (1 +¢€)) if oy =1,

qo(e|ye) = .
Beta (z; a(14¢€),1 4+ 5) if y,=0.

Recall that Assumption 6 was introduced in [ | where it was shown to imply geometric

ergodicity of random walk Metropolis. In the present scenario, the state space © of the marginal algorithm is

11



compact, whence we easily obtain that the marginal random walk Metropolis algorithm is even uniformly ergodic,
see for example | , , Example 15.3.2].

To establish Assumption 7, we need to bound moments of w = p(y:|0)/p(y:|0) where

d yel0 RS
t A
, 0) w X’,
t:r[1 [( ytlﬁ)] DYl ; £ Yt)s
(yt|33t fe(aft)
QO($t|yt)

w(iCtayt)

for ¢ > 0 with X vr qo(-lye) for i =1,..., N. We have p(y: = 1|0) = o/(a+ 8) and p(y: = 0|0) = B/(a+ ), thus
with @(x,y) := w(x, y:)/p(y:|0) we obtain

oz, =1) o (1 —x)7%P, o(z,y = 0) oc z™°. (15)

We see that sup,cx @(z,y1) = oo suggesting that the associated pseudo-marginal algorithm is not geometrically
ergodic; see [ , Remark 34]. Despite this, we have lim._,o @(z,y;) = 1 for any «, 8 > 0 and

€ (0,1). The next proposition, proven in Section A.5 in the appendices, verifies Assumption 7.

Proposition 3. For any e > 0 and y € {0,1}, there exists 1 < b < 1+ ¢! such that

sup E,, [@(X, y)b,] <oo and supEy, |© [’(X, y)_a/} < 00,
0cO 0cO

for any a’ > 0. Moreover, for any b’ > 1, there exists € sufficiently small such that
sup Eg, [@(X, yt)b/} < 0.
6co

Through inspection of Proposition 2 we see that for any x € (0,1) we obtain Kk = (1 — )™t € (0,0 — x).
Essentially higher, uniformly bounded, moments of the weights translate to higher moments for the meeting time,
and therefore tighter polynomial bounds for the tail of 7. As a result we understand the latter part of the proposition
qualitatively, in that the better the proposal the more moments of the meeting time are bounded and as such the
lighter the tail of the meeting time.

3.2.2 Experiments

We simulated 7' = 100 observations with « = 1 and 8 = 2. We set a uniform prior on 8 on the interval [0.1, 10.0].

We ran 100,000 independent coupled pseudo-marginal algorithms with a random walk proposal with standard
deviation 2, employing the maximal coupling between proposals, as in Algorithm 3. Figure 2a shows the plot of
the (unnormalised) posterior distribution and contrasts this to the prior. The distribution of the meeting times
was examined for N = 10 and € € {271,272,273 0}, with ¢ = 0 corresponding to the exact algorithm where
the likelihood is evaluated exactly. The variance of the log-likelihood estimator for # = {5} at its true value was
estimated to be {1.9,0.4,0.1,0} for each of these values respectively, from 1,000 independent likelihood estimators.

The resulting tail probability IP(7 > n) was examined for the coupling algorithm and is displayed on a log-log
scale in Figure 2b. In addition to plotting the tail probabilities in Figure 2b, we also plot polynomials of the form
Cn~"" which appear to bound each of the experiments in an attempt to estimate the the true index of the tail
P(7 > n). For the value of ¢ = 273, corresponding to the green line, the meeting times appear to be bounded by
C =2-10°% and x’' = 6, therefore guaranteeing that the resulting estimators have finite variance, as per Proposition
1. The remaining polynomials for € € {271,272} had values 80n=2 and 2 - 10322 respectively. In the case In all
cases, the exponent is smaller in absolute value than 1 4+ ¢!, the bound predicted by Proposition 3, noting that
k<b <14e L.
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Figure 2: Beta-Bernoulli model. Left: Plots of the prior and posterior distribution of paramter 5. Right: Plots of
the tail probability IP(7 > n) for a range of values of €. Dotted lines show bounding polynomials of the form Cn~"
for each of the values of e.

4 Experiments in state space models

State space models are a popular class of time series models. These latent variable models are defined by an
unobserved Markov process (X;);>o and an observation process (Y;);>1 where the observations are conditionally

independent given (X;);>o with
Xo~po(),  Xl{Xici=a} ~ follz),  Yil{Xe=a} ~go(|z), (16)

where 0 parameterizes the distributions pg, fo and gy (termed the ‘initial’, ‘transition’ and ‘observation’ distribution
respectively). Given a realization of the observations Yi.7 = y1.7, we are interested in performing Bayesian inference
on the parameter 6 to which we assign a prior density p(6). The posterior density of interest is thus 7 (0) o
p(0)p(y1.7|0) where the likelihood p(y1.7|0) = [ pe(dxo) Hle fo(dzi|xe—1)ge(ye|zt) is usually intractable. It is
possible to obtain a non-negative unbiased estimator p(y|6, u) of p(y|6) using particle filtering where here u represents
all the random variables simulated during the run of a particle filter. The resulting pseudo-marginal algorithm is
known as the particle marginal MH algorithm (PMMH) | , ]. This algorithm can also be easily
modified to perform unbiased smoothing for state inference and is an alternative to existing methods in

[ |. Guidelines on the selection of the number of particle in this context are provided in [ |.
For state-space models, it is unfortunately extremely difficult to check that Assumptions 6 and 7 are verified.

4.1 Linear Gaussian state space model

The following experiments explore the proposed unbiased estimators in a linear Gaussian state space model where
the likelihood can be evaluated exactly. This allows a comparison between the pseudo-marginal kernels, that use
bootstrap particle filters | , | with N particles to estimate the likelihood, and the ideal kernels
that use exact likelihood evaluations obtained with Kalman filters. We assume Xg ~ N(0,1), X¢|{X—1 =z} ~
N(az,0%) and V;|{X; = 2} ~ N(z,1) where a and ox are assigned prior distributions, a ~ [0, 1] and ox ~ T'(2,2).

4.1.1 Effect of the number of particles

A dataset of T = 100 observations was generated from the model with parameters a = 0.5 and ox = 1. We
study how the meeting times and the efficiency vary as a function of N, the number of particles. We set the initial
distribution to U[0, 1] over a and U0, 5] over ox, and the proposal covariance of the Normal random walk proposals
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to 0.22I, corresponding to acceptance rate for the exact algorithm of approximately 36.6%. In the following we
consider a grid of values for the number of particles, varying N between 50 and 250.

We estimate large quantiles of the distribution of the meeting time over 20,000 repetitions of coupled PMMH,
with the results shown in Figure 3a. As expected, increasing N generally reduces the meeting time at the cost of
more computation per iteration.

We examine IF[Hy..,,], as defined in section 1.5, for the proposed unbiased estimators with h : x — z1 + 25 +

23 + a3, for each of these values of N and consider three cases for k and m, in particular
(k,m) € {(250,500), (250, 1000), (750, 1000) }

corresponding to the following: (1) a smaller value of m — k, (2) a larger value of m — k and (3) a smaller value of
m —k with a more conservative choice of k. Estimates of IF[Hy.,,| were obtained using 20,000 repetitions of coupled
PMMH where for each value of (k,m) estimators were obtained using a single realisation of the largest value of
m = 1,000 using 30 cores of an Intel Xeon CPU E5-4657L 2.40GHz, taking approximately 60 hours in total.

The results are plotted in Figure 3b where we plot also the inefficiency of estimators obtained using coupled
Metropolis-Hastings (horizontal line) for (k,m) as in case (2). We see first of all that the inefficiency is reduced by
increasing NV in all cases, and that the inefficiency of estimators obtained using coupled PMMH asymptotes over
this range of IV towards the inefficiency of estimators obtained using coupled Metropolis-Hastings for IV increasing.
We also see that for case (3) that the larger value of k can ameliorate the efficiency of the estimators for small
numbers of particles.

We also examine the inefficiency weighted by the cost of obtaining each estimator, i.e. NIF[H}.,,], and compare
this to the inefficiency of the serial algorithm using NV,s, with the notation of Section 1. Here, V,s was estimated
using the spectrum0.ar function in R’s CODA package | , |, averaging over 10 estimators obtained
through running the serial algorithm for 500,000 iterations and discarding the first 10% as burn-in. Figure 4
shows the results of this procedure, showing +2 sample standard errors for the inefficiency estimates. Figure 4a
demonstrates that despite the lower cost of obtaining unbiased estimators for lower values of IV, the initial decline
in inefficiency is still significant. In Figure 4b we show the same results though with a focus around the optimum
inefficiency. Here, we see that the optimum is attained at N = 100 with value NV,s = 640 for the serial algorithm
and at N = 150 with NIF[H}.,,] = 980 for case (2). Therefore, we see that the increase in inefficiency is estimated
to be under 55% relative to a well-tuned serial algorithm for the values considered. Indeed, for this particular batch
of N =150 and m = 1,000, the parallel execution time to obtain the estimators Hy.,, on the stated machine was
under 14 hours, which we compare to approximately 12 days of serial execution time if performed all on a single core
(the mean time to obtain an estimator was 53 seconds) or 8 days after accounting for the increase in inefficiency of
55%.
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Figure 3: Coupled PMMH meeting times and inefficiency of estimators for a linear Gaussian state space model with
T = 100 observations and over a range of particles, N. Left: estimates of the quantiles of the meeting times. Right:
inefficiencies for serial PMMH as a function of N, compared to the inefficiency of unbiased estimators obtained
using coupled MH.
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Figure 4: Inefficiencies weighted by N for a linear Gaussian state space model, comparing directly the inefliciency of
estimators obtained using the serial algorithm to those obtained using coupled PMMH. Left: inefficiencies weighted
by N. Right: inefficiencies weighted by N close to their optima.

4.1.2 Effect of the time horizon

We investigate the distribution of meeting times as a function of 7', with NV scaling linearly with 7. Such a scaling
is motivated through the guarantee that the variance of the log-likelihood estimates obtained at each iteration are
asymptotically constant | , , , , , |. For the model as
before, we consider a grid of T' € {100, ...,1000}, using a single realisation of the data. Throughout the following,
we fix the proposal covariance to be ?I , coinciding with the proposal covariance in 4.1.1 for T" = 100, providing
an acceptable acceptance rate for the exact algorithm and where 1/7T is motivated as a result of the variance of the
posterior contracting at a rate proportional to 1/7.

We consider two cases. Firstly, we examine how the distribution of meeting time changes for a fixed initial
distribution (the distribution used previously of U[0,1] over a and U[0,5] over ox); we refer to this as Scaling
1. Secondly, for Scaling 2, we examine how the distribution of meeting times changes if we also scale the initial
distribution by setting mo = N (u*, %I ), truncated to ensure it is dominated by the prior and where u* denotes the

true parameter values.
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In both cases we compare the distribution of meeting times for N = T with the distribution of meeting times
for the exact algorithm (i.e. P as in Algorithm 2) with likelihood evaluations performed using the Kalman filter.
Figure 5a and 5b show estimates of the 80" and 99*" percentile over 1,000 repetitions for Scaling 1 and Scaling
2 respectively. Firstly, it can be seen that in all cases the meeting times for coupled PMMH are higher than the
meeting times for coupled MH. Furthermore the smaller difference between the 80" percentiles, compared to the
difference between the 99*" percentiles, reflects a heavier tail of the distribution of the meeting time in the case
of PMMH. Finally, it can be seen that out of the two scalings Scaling 2 appears to stabilise for larger values of T

whereas Scaling 1 exhibits an increase with T.
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Figure 5: Scaling quantiles of meeting times with T over 1,000 repetitions. Left: fixing the initial distribution and
scaling the proposals (Scaling 1). Right: scaling both the proposals and the initial distribution (Scaling 2).

4.2 Neuroscience experiment

We apply the proposed methodology to a neuroscience experiment described in [ ]. The same
data and model were used to illustrate the controlled Sequential Monte Carlo (¢SMC) algorithm in

[2020].

4.2.1 Model, data and target distribution

The model aims at capturing the activation of neurons of rats as their whiskers are being moved with a periodic
stimulus. The experiment involves M = 50 repeated experiments, and 7' = 3000 measurements (one per millisecond)
during each experiment. The activation of a neuron is recorded as a binary variable for each time and each
experiment. These activation variables are then aggregated by summing over the M experiments at each time step,
yielding a series of variables Y; taking values between 0 and M; see [ | for an alternative analysis
that avoids aggregating over experiments. Letting Bin(-;n,p) denote the binomial distribution for n trials with

success probability p, the model for neuron activation is given by Xy ~ A (0,1) and, for ¢t > 1,
Xi{ X1 =2} ~N(sax,0%), Yil{X: =z}~ Bin(;; M, s(z))

where s(z) := (1 + exp(—s))~!. We focus on the task of estimating (a,0%) from the data using the proposed
method. Following [ | we specify a uniform prior on [0, 1] for a and an inverse-Gamma prior on
0% with parameters (1,0.1), where the probability density function of an inverse-Gamma with parameters (a,b)
is x — D(a)" %2~ * Lexp(—b/z). The PMMH kernels employed below use a Gaussian random walk proposal.
The likelihood is estimated with ¢SMC with N = 128 particles and 3 iterations, where the exact specification
is taken from the appendix of [ |. Such ¢SMC runs take approximately one second, on a 2015

desktop computer and a simple R implementation. Figure 6 presents the time series of observations (6a) and the
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Figure 6: Left: counts of neuron activation in 50 experiments, over a duration of three seconds. Right: estimated
log-posterior density in the neuroscience experiment of Section 4.2.

estimated log-posterior density (6b), obtained on a 500 x 500 grid of parameter values, and one ¢cSMC likelihood
estimate per parameter value. In Figure 6b, the upper right corner presents small black circles, generated by the
contour plot function, which indicate high variance in the likelihood estimators for these parameters. Thus we
expect PMMH chains to have a lower acceptance rate in that part of the space. On the other hand, the maximum
likelihood estimate (MLE) is indicated by a black dot on the bottom right corner. The variance of the log-likelihood
estimators is of the order of 0.2 around the MLE, so that PMMH chains are expected to perform well there, as was

observed in Heng et al. [2020] where the chains were initialized close to the MLE.

4.2.2 Standard deviation of the proposal

Here, we initialize the chains from a uniform distribution on [0,1]?, and we investigate two choices of standard
deviation for the random walk proposals: the one used in Heng et al. [2020], that is 0.002 for a and 0.01 for 0%,
and another choice equal to 0.01 for @ and 0.05 for 0%, i.e. five times larger. For each choice, we can run pairs
of chains until they meet and record the meeting time; we can do so on P processors in parallel (e.g. hundreds),
and for a certain duration (e.g. a few hours). Thus the number of meeting times produced by each processor is a
random variable. Following Glynn and Heidelberger [1990], if no meeting time was produced by a processor within
the time budget, the computation continues until one meeting time is produced, otherwise on-going calculations
are interrupted when the budget is reached. This allows unbiased estimation of functions of the meeting time on
each processor via Corollary 7 of Glynn and Heidelberger [1990], and then we can average across processors. In
particular we use this strategy to produce all histograms in the present section, as in Figure 7.

We observe that the meeting times are significatively larger when using the smaller standard deviation (7a),
with a maximum value of 21,570 over 1565 realizations. With the larger choice of standard deviation (7b), we
observe shorter meeting times, with a maximum of 928 over 5572 realizations. This suggests that the values of k
and m should be chosen very differently in both cases.

To explain this difference we investigate the realization of the coupled chains that led to the largest meeting
time of 21,570, in Figure 8. Figure 8a presents the trajectories of two chains overlaid with contours of the target
density function. The chains seem to follow approximately the gradient of the density. Given the shape of this
density, it means that small starting values for component a result in the chains going to the region of high variance
of the likelihood estimator, in the top right corner of the plot. The marginal trace plots of one of the two chains
are shown in 8b. From the trace plots we see that most of the 21,570 iterations have been spent in that top right
corner, where the chain got stuck, approximately between iterations 2,000 and 20,000. The overall acceptance rate

is of 6% for that chain, compared to 39% for the other chain shown in 8a Therefore the use of a larger proposal
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Figure 7: Histograms of meeting times associated with coupled PMMH chains, obtained with a standard deviation
of the random walk proposal of 0.002 for a and 0.01 for 0% on the left, and with a larger standard deviation (0.01
on a and 0.05 on 0% ) on the right. In both cases, the likelihood was estimated with controlled SMC, with N = 128
particles, I = 3 iterations, in the neuroscience model of Section 4.2.
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Figure 8: Traces of the chains corresponding to the largest observed meeting time (21,570) obtained with a small
standard deviation of the random walk proposal (0.002 for a and 0.01 for 0% ), in form of a two-dimensional trajectory
on the left, and trace plots of one of the two chains on the right. The likelihood is estimated with controlled SMC,
with N = 128 particles, I = 3 iterations, in the neuroscience experiment of Section 4.2.

standard deviation seems to have a very noticeable effect here on the ability of the Markov chain to escape a region

of high variance of the likelihood estimator.

4.2.3 Comparison with PMMH using bootstrap particle filters

We use the larger choice of standard deviation (0.01 on a and 0.05 on 0% ) hereafter, and compare meeting times
obtained with ¢SMC with those obtained with bootstrap particle filters, with N = 4,096 particles. This number
is chosen so that the compute times are comparable. Over 23 hours of compute time, the number of meeting
times obtained per processor varied between 4 and 35, and a total of 7,776 meeting times were obtained from 400
processors. The meeting times are plotted against the duration it took to produce them in Figure 9a. The compute
time associated with meeting times is not only proportional to the meeting times themselves, but also varies across
processors. This is partly due to hardware heterogeneity across processors, and to concurrent tasks being executed
on the cluster during our experiments. The histogram in Figure 9b shows that meeting times are larger, and heavier

tailed, than when using ¢SMC (see Figure 7b). The maximum observed value is 9,371. From these plots, we see
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Figure 9: Left: duration (in hours) versus meeting times, using BPF with N = 4,096 particles. Each color corre-
sponds to a different processor. Right: estimated histogram of the meeting times, in the neuroscience experiment
of Section 4.2.
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Figure 10: Left: start and end time for the calculation of unbiased estimators on 100 parallel processors, for a
budget of 23 hours (dashed line), with ¢SMC, N = 128 particles, I = 3 iterations and k£ = 1,000, m = 10, 000.
Right: estimated histograms of both parameters a and o%; the red lines correspond to estimates obtained with
250, 000 iterations of PMMH and discarding the first 10,000 as burn-in; this is for the neuroscience experiment of
Section 4.2.

that to produce unbiased estimators Hy.,, using BPF with a similar variance as when using ¢cSMC, we would have

to choose larger values of k and m, and thus the cost per estimator would likely be higher.

4.2.4 Efficiency compared to the serial algorithm

Using ¢SMC and the larger choice of standard deviation for the proposal, we produce unbiased estimators Hy.,,
with £ = 1,000 and m = 10,000. We run 100 processors for a time budget of 23 hours, and each processor produced
between 2 and 9 estimators, for a total of 578 estimators. The generation of samples for each processor is represented
chronologically in Figure 10a. The variation among durations is due to the randomness of meeting times and also
to external factors such as concurrent tasks being executed on the cluster. We produce histograms of the posterior
marginals in Figure 10b, with the result from a long run of PMMH with ¢SMC (250, 000 iterations) overlaid in red
lines.

We compute the loss of efficiency incurred by debiasing the PMMH chain with the proposed estimators. We
consider the test function h : 2 + x1 + 29 + 2 + 23. Along the PMMH chain of length nyeme = 250,000, after a
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burn-in of nyymin = 10,000 steps, and using the spectrumO function of the CODA package, we find the asymptotic
variance associated with h to be Vs = 7.53 - 1073. If we measure computing cost in terms of MCMC iterations, we
obtain an inefficiency of Nmeme X Vas/(Mmeme — Mburnin) = 7-84 - 1072, With the unbiased estimators Hy.,,, if the
cost of an estimator is 2(7 — 1) + max(1,m + 1 — 7), then the average cost per processor is 59,860. The empirical
variance of the unbiased estimators obtained per processor is equal to 1.4 - 1077, thus we obtain an inefficiency of
59860 x 1.4 -1077 ~ 8.4 - 1073, This inefficiency is slightly above 7.84 - 1073,

Next, we parameterize cost in terms of time (in seconds) instead of number of MCMC steps. This accounts for
the fact that running jobs on a cluster involve heterogeneous hardware and concurrent tasks. The serial PMMH
algorithm was run on a desktop computer for 169,952 seconds and thus the inefficiency might be measured as
169,952 X Vi /(Nmeme — Mburnin) =~ 5.3 - 1073, Note that each iteration took less than a second on average, because
parameter values proposed outside of the support of the prior were rejected before running a particle filter; on the
other hand the cost of a ¢cSMC run is above one second on average. For the proposed estimators, the budget was
set to 23 hours and we obtained a variance across processors of 1.4 - 10~7; thus we can compute the inefficiency as

1.16 - 102, which is approximately twice the inefficiency of the serial algorithm.

5 Methodological extensions

The following provides two further examples of coupled MCMC algorithms to perform inference when the likelihood

function is intractable. The associated estimators are not covered by our theoretical results.

5.1 Block pseudo-marginal method

Block pseudo-marginal methods have demonstrated significant computational savings for Bayesian inference for
random effects models over standard pseudo-marginal methods | , |. Such methods proceed through
introducing strong positive correlation between the current likelihood estimate p(y|6) and the likelihood estimate
of the proposed parameter p(y|@’) through only modifying a subset of the auxiliary variables used to obtain the
likelihood estimate at each iteration. We here demonstrate the computational benefits of such a scheme in obtaining
unbiased estimators of posterior expectations.

We focus here on random effects models, as defined in section 3.2.1. We recall that the likelihood estimate is
given by p(y|0,U) = Hthl P(ye]0, Up), where {p(y:|0, U) }i=1,....1 are T independent non-negative unbiased likelihood
estimates of {p(y;|0)}i=1,...,r when U, ~ my(-). In the following, we provide a minor modification of the blocking
strategy proposed in [ ], where instead of jointly proposing a new parameter and a single block
of auxiliary random variables, a parameter update is performed, followed by sequentially iterating through the
auxiliary random variables used to construct the likelihood estimate of observation ¢. For each data t, new values

are proposed according to U} ~ m;(-) and accepted with probability

N ) . P(yel0,Uy)
o +{p(ye | 6,U), pye]0, U, mln{l,A . 17
seate (Bl | 0,02, (w10, U1} T (17)
As remarked in [ ], such blocking strategies are generally not applicable to particle filter inference in

state space models, whereby likelihood estimates for observation ¢ typically depend on all auxiliary random variables
generated up to and including t. We provide pseudo-code for the proposed blocking strategy in Algorithm 4. We

denote by Uy ,, the set of auxiliary variables U, at iteration n,

5.1.1 Coupled block pseudo-marginal method

An algorithm to couple two block pseudo-marginal algorithms to construct unbiased estimators Hy.,, is provided
in Algorithm 5. Denoting the two states of the chains at step n > 1 by (6, (Utvn)tZI) and (én_l, (Utyn_l)t21)7
Algorithm 5 describes how to obtain (0,41, (Utn+1),-,) and (0, (I_'N]tyn)tzl); thus it describes a kernel P.
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Algorithm 4 Sampling from the block pseudo-marginal kernel given (Gn_l, (Ut7n_1)t21)

1. Sample ¢ ~ ¢ (:|0,—1) and compute p(y; | ', Uy p—1) fort =1,....T.

2. With probability apy {(Qn—1,HtT=1 PWe | On—1,Usn-1)), (9/aHtT=1 Py | 9/,Ut,n—1))}, set 0, = ¢’. Otherwise,
set 0, = 0,_1.

3. Fort=1,...,T

(a) Sample U/ ~ my (-).
(b) With probability agpa,s {P(Ye | On, Ut.n—1), Dyt | 0, U{)}, set U,,, = U/. Otherwise, set U, ,, = Uy pp—1.

Algorithm 5  Sampling from the coupled block pseudo-marginal kernel given

(9n7 (Ut,n)t21 ) 971717 (Ut,nfl)t21)

1. Sample (#’,6") from the maximal coupling of ¢ (-|6,,) and q(-|6,,_1).
2. Compute p(y; | 0, Uz ,n) and p(y: | é',(NItyn_l) fort=1,...,T.
3. Sample u ~ U [0, 1].

4. If u < apm {(Hn,HtTZIﬁ(yt | 6,, Um)) 7(9’,1_[?:15(% | 0’,Ut}n))} then set 0,11 = 6'. Otherwise, set 0,11 =

9,.
5 1fu < apM{(én,thT:l Bt | Oner, Upn)), (0", T, ﬁ(yt|§fﬁt,n,1))} then set 6, = &. Otherwise, set
0, =0,_1.

6. Fort=1,...T

(a) Sample U] ~ my(-).

(b) Sample u ~ ¢ [0, 1].

(c) fu < agpm, {PWe | On+1,Un), D1 | Ont1,U;)} then set Uy 41 = U]. Otherwise, set U, 541 = Uy p.
(d) If u < appae {;B(yt | O, Usn1), Byt | O, Ug)} then set Uy, = U!. Otherwise, set Uy, = Us.n_1.

5.1.2 Bayesian multivariate probit regression

The following demonstrates the proposed algorithm for a latent variable model applied to polling data and explores
the possible gains when compared to the unbiased estimators obtained using the coupled pseudo-marginal algorithm.
The data consists of polling data collected between February 2014 and June 2017 as part of the British Election
Study [ , |. We use a multivariate probit model, which for i € {1,..,7} and j € {1,2,3} can be
expressed as X;; = '(;; + €; and Y;; = 1[X;; > 0] for observed binary response Y;;, latent state X;; and where ¢
indexes the i* participant, j indexes the j** wave of questions, 3 is a vector of regression coefficients (including an
intercept) and (;; is a vector of independent variables.

We use a random sample of T' = 2,000 participants over three waves (one a year) in the run up to the United
Kingdom’s European Union membership referendum on 23"¢ June 2016, regressing the binary outcome asking
participants how they would vote in an EU referendum against how they perceive the general economic situation
in the UK has changed over the previous 12 months (graded 1-5, with 1=‘Got a lot worse’, 5=‘Got a lot better’).
A detailed description of the data is provided in Appendix A.6.

We allow for correlations between waves through modelling the perturbations (€;1, €2, €3) ~ N(0,%,) with

a generic correlation matrix 3,. In total, we have five unknown parameters 0 = (81, 82, p2,1, 3,1, P3,2), with 3
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Figure 11: Meeting times for coupled block pseudo-marginal and coupled pseudo-marginal algorithms. Left: raw
meeting times for the two algorithms. Right: meeting times weighted by cost for the two algorithms, i.e. 7N for
coupled pseudo-marginal and 27N for coupled block pseudo-marginal.

denoting a regressor coefficient, 82 a constant offset and p;; element (s,t) of ¥£,. We place independent priors on
each parameter with 31, 82 g N(0,10%) and ps bt U[—1,1], where we additionally truncate the prior on X, to

ensure support only on the manifold of positive definite matrices.

Inference For each observation y; := (y:1, Yi2, ¥i3), we obtain unbiased estimates of the likelihood of # using the
sequential importance sampling algorithm of Geweke, Hajivassiliou and Keane; see, e.g., [ , 5.6.3] and
references therein. We set the initial distribution 79 = A/(j1,0.01%21), supported only on areas of positive mass

under the prior (we employ a simple rejection sampling algorithm to sample ¥, initially) and use a Normal random
2.382

5

3, see [ |, following where i and 3 are an empirical

walk proposal with covariance set to
estimate of the posterior mean and covariance on a preliminary run of 10,000 iterations of block pseudo-marginal
with N = 40 discarding the first 10% as burn-in.

We compare coupled block pseudo-marginal with coupled pseudo-marginal. We examine values of N for the
latter that are close to the optimal value of N for the serial algorithm, estimated through ensuring the variance of
the log-likelihood estimates is between 1 and 2, as per the guidance in [ |- In this case we consider
N € {600, 700,800}, providing a corresponding variance of the log-likelihood estimates given by {1.67,1.40,1.25}
(estimated using 10,000 likelihood estimates at (). For the block pseudo-marginal algorithm we consider N €
{5, 10, 20}.

Meeting times Both algorithms were run continuously until coupling for half an hour each on a 48 CPU Intel
Xeon 2.4Ghz E5-4657L server, with the number of estimators produced for block pseudo-marginal varying between
2,000 and 4,000 for the values of N considered and between 160 and 180 for the pseudo-marginal. The meeting
times are plotted in Figure 1la, where it can be seen that despite the lower cost of the block pseudo-marginal
algorithm the absolute values of the meeting times are comparable across algorithms.

Accordingly, we also plot the distribution of meeting times accounting for the cost of running each algorithm,
i.e. N7 for the pseudo-marginal algorithm and 2N7 for the block pseudo-marginal algorithm. The additional
factor of 2 for the latter can be seen as an upper bound on the additional computational cost of the block pseudo-
marginal algorithm, assuming twice the density evaluations per complete iteration and less than twice the number
of pseudo-random numbers generated. Figure 11b shows the results of this additional cost-weighting where it can
be seen that meeting times are between 1 and 2 orders of magnitude larger for the pseudo-marginal over the block

pseudo-marginal algorithm.
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Variance of estimators We estimate the increase in inefficiency of the coupled over the serial algorithm for
N =10, k = 500 and m = 5, 000; the choice of k is guided by the meeting times in Figure 11a. Running coupled block
pseudo-marginal 200 times, we estimate the variance using the test function h: z — Y, (z; + z7) to be 1.05-107°.
Estimating the cost of 2(7—1)+max(1, m+1—7) to be 5121, implies an inefficiency of 5.36-1072. In comparison, we
estimate the inefficiency of the serial algorithm using spectrum0.ar as before on runs of length 125,000 (discarding
10% as burn-in and averaging over 20 estimators) to be nmeme X Vas/(Mmeme — Mhurnin) = 4.82 - 1072 suggesting an
increase in inefficiency of 11% for the unbiased estimators.

Finally, we compare the inefficiency of unbiased estimators generated with coupled block pseudo-marginal kernels
with those produced using standard coupled pseudo-marginal kernels with Npyr = 700 particles. For coupled pseudo-
marginal, the variance of the unbiased estimator was estimated to be 1.53-107° and the expected cost was estimated
to be 5147, implying an inefficiency of 7.86 - 1072. As a result we estimate the improvement of inefficiency for the

coupled block pseudo-marginal by IgPNM X % to be approximately 51 times. Estimation of the asymptotic

variance of the serial pseudo-marginal algorithm was computationally infeasible for this many particles, with a
single iteration taking on average six seconds on the aforementioned server, hence the choice of N motivated by the

guidance in [2015] instead.

5.2 Exchange algorithm

Problems where the likelihood function is only known only up to a constant of proportionality occur frequently across
Bayesian statistics; see, e.g., [ | for a recent account of current methodology and applications.
In this case, posterior distributions 7 () « p(y|0)p (f) are given by

f(ylo)
Z(0)

polo) =02, 20) = [ i)y,
where f(y|0) can be evaluated pointwise but its parameter-dependent normalizing constant Z(6) is intractable.
This is a scenario common for undirected graphical models and spatial point processes | , ,

, |. The exchange method detailed in Algorithm 6 is an MCMC scheme proposed by [ | to
sample such distributions under the assumption that, although Z(6) cannot be evaluated, it is possible to simulate
exactly artificial observations from p(y|@). This is indeed possible for a large class of spatial point processes as well

as the Ising and Potts models using perfect simulation procedures.

Algorithm 6 Sampling from the Exchange kernel given 6,,_;

1. Sample ¢ ~ ¢ (:|0p—1) and Y’ ~ p(-|0").

2. With probability

(18)

agx (0p—1,0",Y’) := min {17 ff(y|9’)p(9’)f(Y’|9n1)q (6n—110") } ;

(Y10n—1)p(Orn—1) f(Y'|0")q(6"|0r—1)
set 0, = 0. Otherwise, set 0,, = 0,,_1.

5.2.1 Coupled exchange algorithm

An algorithm to couple two block pseudo-marginal algorithms to construct unbiased estimators Hy.,, is provided
in Algorithm 7. Denoting the two states of the chains at step n > 1 by 6,, and 6,,_1, Algorithm 3 describes how to
obtain 60,1 and én; thus it describes a kernel P.
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Algorithm 7 Sampling from the coupled Exchange kernel given (6,,,6,,_1)

—_

. Sample ¢’ and #’ from the maximal coupling of ¢ (-6,,) and q(:|6,_1).

2. If the proposals couple, i.e. if @ = ', then sample Y’/ ~ p(-|¢) and set Y’ =Y.
3. If the proposals do not couple, sample Y/ ~ p(-|8") and Y ~ p(~|§’).

4. Sample u ~ U [0,1].

5. Ifu < agx (0,,0,Y’) then set 0,11 = ¢'. Otherwise, set 0,11 = 6,,.

6. Ifu< aEx(én_l, 0',Y") then set 0,, = 0'. Otherwise, set 0,, = 0,,_;.

5.2.2 High temperature Ising model

We examine the proposed algorithm for inference in a planar lattice Ising model without an external field. The
model comprises observations y; € {—1,+1} on a L x L square lattice such that p(y|6) o exp (ﬁ D i yiyj) where
i ~ j denotes the neighbours j of node ¢ and # = 3 denotes the inverse temperature. We restrict interest to high
temperature models specifying a prior distribution 8 ~ U[0, 8.], with 8. = %log(l + 1/2) denoting the critical
temperature of the Ising model on the infinite lattice | , , , |. Here, perfect simulation can
be performed using coupling from the past techniques with simple heat bath dynamics developed by

[ |. We generate observations for L = 80 and set the proposal covariance to 10~*1, initialising the chains
from the prior.

We obtain estimates of the distribution of meeting times using 1,000 repetitions of coupled exchange, with the
results shown in Figure 12a. Based on this, we obtain unbiased estimates of the expectation of S under the posterior
distribution using k£ = 100 and m = 10k over 1,000 repetitions. It is noted that the clock time to obtain a single
estimator (on the same machine) varies significantly due to the variable computational cost of performing coupling
from the past, depending on . We plot a histogram of the clock times to obtain each Hy.,, in Figure 12b.

Based on the heterogeneity of times to produce a single unbiased estimator, we compare the serial inefficiency
with the inefficiency of coupled exchange based on the clock time to obtain a certain variance, with the test
function h : z — z. We estimate the asymptotic variance with ny,cme = 200, 000 iterations of the original algorithm
(discarding the first 10% as burn-in, and using spectrum0.ar as before) to be Vs &~ 4.22- 1074, and the algorithm
taking in total 41,095 seconds. As a result, we estimate the serial inefficiency in terms of clock-time to be 41,095 x
Vas/ (Mmeme — Mburnin) & 9.6 - 107°. Comparatively, the mean time to return a single estimator Hy.,, was estimated
to be 546 seconds, with the variance of a single Hy,.,, estimated to be 4.78-10~7 providing an estimated inefficiency
of 2.6 - 107*, implying a three-fold increase in inefficiency.

6 Conclusion

Markov chain Monte Carlo algorithms designed for scenarios where the target density function is intractable can
be coupled and utilized in the framework of [ I, [ |. The validity of the
resulting unbiased estimators can be related to polynomial drift conditions on the underlying Markov kernels.
These estimators open new ways of using parallel computing hardware to perform numerical integration in such
scenarios.

In the context of state space models, in addition to parameter estimation, the proposed coupling strategy
for PMMH would additionally provide unbiased estimators with respect to the joint distribution over state and
parameters. This would enable unbiased smoothing under parameter uncertainty, instead of fixing the parameters
as in [ I, [2020] and [ ]
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Figure 12: Coupled exchange algorithm for unbiased Bayesian inference with an 80 x 80 Ising model. Left: distri-
bution of meeting times (1,000 runs). Right: clock time to obtain 1,000 unbiased estimators.
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A  Appendix

In the rest of the paper we will often use the symbol ¢ to denote a generic positive constant whose value may vary

from line to line.

A.1 Proof of Theorem 1

The following provides a slight relaxation on Assumption 2.2 in [ |, where geometric conditions
were imposed on the tails of the distribution of the meeting time. The following proof considers Hy(Z, Z ) instead
of Hp.m; one can first perform the same reasoning for Hy(Z, Z ) for all k¥ > 0, and then consider the finite average
(m—k+1)"t>, H(Z, Z) to obtain the result for Hy.,,.

By Assumption 2, it follows that E [r] < co. This implies that the estimator Hy can be computed in expected
finite time. To show that Hy(Z, Z ) admits a finite variance, we proceed by following [ , Propo-
sition 3.1], adapting the proof under the proposed weaker assumptions. We denote the complete space of random
variables with finite second moment by Ls. We then construct a Cauchy sequence of random variables H™(Z, Z )
in Ly converging to Ho(Z, Z), where H"(Z,Z) := .7, Ay with Ay = h(Z;) — h(Z4—1) if t > 0 and A, = h(Z;) for
t =0. As E[r] < oo, we have P(7 < oo) = 1 and Z;, = Z,_; for t > 7. This implies that H"(Z, Z) — Ho(Z, Z)

almost surely. For positive integers n,n’ we have
_ , ~ 2 n n
E {(H"(Z, Z)— H" (Z, Z)) } = 3 3 EAL

E[A2] 1/2p A2]1/2

M

s=n+1t=n+1

Y Eaf?

t=n-+1

2

We note that E[A?] = E[A?1,~,]. Thus by Holder’s inequality we obtain
o
E[A7] <E [JA] 7 BlL,.7
1
< cTEP(r > )T,

where E[|A,[*T"] < ¢ for all ¢ as E[h(Z;)*""] < ¢ by Assumption 1. Consequently we have

fires-we]=(£ (o




With v = %ﬁ, it follows from Assumption 2 that P(r > t) < Kt~" for k > 1/~ which yields

[ AL
t=n+1 t=n-+1

oo (oo}
1 > qdt
Y P(r>t) <K —<K/ — < o0

We obtain limy, 0 » s, 41 P(7 > )7 = 0. This proves that H,(Z, Z) is a Cauchy sequence in Ly. We can thus con-
clude that the variance of Hy(Z, Z) is finite and that its expectation is lim,, ., E[H"(Z, Z)] = limy, o E[R(Z,)] =
w(h).

A.2 Proof of Theorem 2

The following establishes a bivariate drift condition that we will later use to bound moments of the hitting time to

the diagonal set D. A similar statement is provided in [ , Lemma 1].

Lemma 1. Let P be a coupling of the Markov kernel P with itself, and V be as in Assumption 5. Then the function
V(z,2) ==V (2) + V(Z) — 1 satisfies

PV(2,2) <V(2,2) —eppo V(z,2) + bla(z, 2), (19)

for all (z,2) € Z x Z, where b := 2by + e,¢(1) and C = C x C.

Proof. For (z,%) ¢ C we have

PV(2,2) = PV(2) + PV(3) — 1
<V(z)+V(Z) —1—¢oV(z) —¢poV(Z) + by (Lo(z) + Lc(2))
<V(E)+V(E) —1-doV(2)—doV(Z) + by
— V) 4+ VE) —1—epoV(z)+doV(3)

—(I—e)[poV(z)+do V()] +bv.

Since (z,%) ¢ C then at least one of z, Z is not in C, and o V > 0, so

IN

V(z)+V(E)—1—eldpoV(z)+¢oV(Z)] — (1 —ep) Zlggqb oV(z) +bv
Viz)+V(E)—1—e[poV(z)+poV(2)] — by + by
V(z,2) —e[poV(z) +poV(Z)],

IN

where we used (7) in Assumption 5. By two applications of the mean value theorem, we have that for any t > s > 1
there exist r € [t,t + s — 1] and r* € [1, s] such that

pt+s—1)—o(t)=¢'(r)(s—1),  é(s) = (1) =¢'(r")(s — 1).
By concavity, since ¢t > s implies that r > r*, it follows that ¢'(r) < ¢'(r*) and thus
P(t+s—1) = o(t) < d(s) — o(1),

or equivalently

Pt +s—1)+ (1) < o(t) + ¢(s).
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Therefore, with t = max{V'(2),V(2)} and s = min{V(z), V(2)} we get

$poV(z,2) + ¢(1) < ¢poV(z) + o V(2), (20)
whence
PV(2,2) <V(2,2) —e[po V(2) + o V(Z)]
SV(z2) —e [0 (V(2,2) +¢(1)]
<V(2,2) — e o V(z,2). (21)

For (z,%) € C we get by Assumption 5,

PV(z,2) = PV(2)+ PV (3) -1
<V(z)—¢poV(z)+by + V() —¢goV(Z)+by — 1
=V(z,2) —¢poV(z) — po V(Z) + 2by. (22)

Combining (21) and (22), (20) and the fact that ¢ > 0, we have for any (z, 2)

PV (2,2) <V(2,2) — e o V(z,2)1ac(z, 2)
—[poV(z) +¢oV(2) - 2by]1a(z,2)
V(z,2) —eppo V(z,2) e (2, 2)
—[poV(z,2) + (1) — 2by | 14(2, 2)
Vi(z,2) —eppoV(z,2)1ac(z,2)
— [equ oV(z,2)+ (1 —e)poV(z, 2) + o(1) — 2bv] 1s(z,2)

IA

< V(Zv 2) - €b¢ © V(Za 2) + [QbV - Qb(l)} ]1@(2, 2)
< V(Z7 2) - Eb(b © ‘7<Za 2) + [QbV + (b(l)} 1@(27 2)
O
The proof of Theorem 2 then follows through making use of [ , Proposition 2.1], which we
provide below for the reader’s convenience, noting that the exact statement is taken from [ ,
Proposition 4]. We borrow the following definitions from [ |. For any non-decreasing concave
function v : [1,00) — (0, 00), let
H (v) . ° dix (23)
v ' 1 Y(x)
Let lel : [0,00) — [1,00) be its inverse. For k € N, n >0, v > 1, let
Yo H, (n)
ry(n) i = —————=
T (24)
Hy(v) := H' (Hy (v) + k) — H, " (k).
Proposition 4. (Proposition 2.1 from [200/]). Assume that P is a Markov kernel such that for some

function V> 1 we have
PV(2) <V(z) —voV(z)+blc (2),

where 1 : [1,00) — (0,00) is a nondecreasing concave function. Let ry and Hy, be defined as in (24). Then we have
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for Vi :=HpoV
PVip1(2) < Vi(2) — 1)1y (k) + bry(k + 1) 1e(2), k>0.

Equipped with the above results we proceed to the proof of Theorem 2. Applying Proposition 4 with P, V,

1 = e,¢ and and b = b, then letting
¢o H(;l (epn)

=0

we have the sequence of drift conditions
PVii1(2,2) < Vi(2,2) — ()7 (k) + br(k + D1a(2,2), k>0,
where V}, := Hy, o V. Letting Vi = Vi +1 > 1 we obtain
PVi1(2,2) < Vi(z, 2) — epp(L)r(k) + br(k + Dlga(z,2), k> 0. (25)

To proceed we follow the proof of [ , Proposition 2.5], specifically the steps leading up to
[ , Equation (2.6)]. Notice that by Assumption 4 the diagonal D is an accessible set, since clearly 7p(D) =1 > 0.
Therefore by Dynkin’s formula we have

Tp—1 Tp—1
(DB, | 37 r(k)| < Vo(z,2) + BE. 2 Zr<k+1>nc<zk>],
k=0 k=0

where in the above, [E; ; denotes expectation with respect to the probability measure under which the joint chain
B = (Zn, anl) is initialized at (z, ') and evolves according to the transition kernel P, 7p := inf {n > 1: Z,, € D},
c1,co are positive constants depending on the set B and the various constants in the drift condition, but not on
(z,%). Notice that by Assumption 4 we have that for all (z,%) € C, and p € (0,1)

K, ((2.2),D) := 3 p'P' ((2,2),D) = pe.

In particular it easily follows that
]lé ((Z7 2)) S (pnoe)—le ((Z7 Z)aD) 1)
and therefore continuing from above

Ez,g Dzé ’I"(k‘)]

k=0

v (1)

. B ™p—1 _
<Vo(z,2) + WEz,g [Z r(k + l)Kp(:k,D)]

k=0

o0
0620 E.:

= Vo(z,2) + b Zp ZE“ 1{k < mp — l}r(k‘—i—l)lp(_kﬂ)}

noe
=0 k=0

TDI

Z r(k + 1)P'(E, D)

A careful look above reveals that the integrand will be non-zero only for k£ such that 7p < k+i¢ and &k < 7p — 1.

There are at most ¢ such values of k, and since r(-) is non-decreasing for each one of these values we will have
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r(k+1) <r(rp). Therefore

™o —1 - oo
- B b .
ed(1)E, 3 Z r(k)| < Vo(z,2) + —- Zp% xE, z [T(TD)]
k=0 PE=o
Similarly to the proof of [ , Proposition 2.5|, using the fact that r(-) grows sub-geometrically we can

find for any 6 > 0 a constant ¢(d) > 0 such that

and therefore conclude that for some constants ¢y, ¢, independent of (z, 2), we have

Tpfl nd ~
Vo(z,2) + 1
E. - By < 2052 T
SINCIEE

From the definition of ¢(y) we have that
r(n) =[d(1 — a)en + l}a/(l_a) > en®/(=2),

where recall that ¢ denotes a generic constant whose value may change from line to line. Thus for any N

N N N
Zr(k) > cZko‘/(l_o‘) > c/ 2/ (A=) g — ch/(l_a),
k=0 k=0 =0

hence we obtain

Vo(Z, 5) +c
C2 '

TD—l

> (k)

k=0

Ez,2 I:T%/(lia)} S CEZ,,% S (&

We have that the chain (Zn, Zn_1> is initialised at n = 1 under my P ® my. Recalling the definition of V, we have

that Vo(z,2) < V(2) 4+ V(%) and as 7 is compactly supported, m (V) < co. Similarly by Assumption 5 we have
that moP(V) < oo, in which case it follows that E, pgr, [7713/ (1704)} < 00. An application of Markov’s inequality

completes the proof

1/(1—«
EW0P®7F0 [T’D/( )] < ¢

IPTI'OP®TI'0 [TD Z t] S tl/(l—oz) - tl/(l_o‘) ’

A.3 Proof of Proposition 1

To fix notation, we have that for any measurable functions W : Z — [1,00), g : £ — R, and a finite signed measure

uon X, we write

z
Iglw:=supW—7 lullw == sup  |u(f)].
zez W(z) Fillfllw <1

Our starting point is Assumption 5 which we restate here

PV (z) <V(z) —dV*(z) + byle (2), (26)

for some function V' : Z — [1,00), some a € (0, 1), constants by, d > 0 and a small set C. As before we assume that
(Zn, Zn,l) evolves according to P, and that marginally the components Z,, and Z,, evolve according to P. Notice

that we write IE for the measure with the chains started from my and [E, for the measure with the chains initialized
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at .
By [ , Lemma 3.5] for any n € (0, 1) there exist &', d’ > 0 such that

PV7(2) <V (2) = d VT 2) + V1 (2). (27)

With v € (1 — «, 1) as in the statement of Proposition 1, we have that « ++ — 1 € (0,1). Under this assumption,
from (27), [ , Theorem 14.0.1] applied with f = V**7~! and the fact that 7 is a maximal
irreducibility measure (see [ , Proposition 10.1.2]), it follows that 7(Sy) = 1, with Sy as
defined in the statement of Proposition 1. From this we conclude that V is m-a.e. finite. Also from

[ , Theorem 14.0.1], since 7(V") < 7(V*)/* < 0o by assumption, we have that for all m-a.e. z € Z
there exists a finite constant ¢ such that

(oo}
STIP(2,) = wllyesaos < e(1+V7(2). (28)
n=0

Since by assumption |h|ya+r—1 < 00, we have

AP R =72 < hllvass-r 3 1P (2,) = wllyasss
n=0

n=0

< cflhllverr—1(14+V7(2)) < oo,

for m-almost all z. Therefore the function

9(z) =Y P’ [h—m(h)] (=)

j=0

is well-defined and satisfies |g|y» < oo, m(g?) < oo, where the second property follows from 7(V4') < co. In

particular it follows that ¢ — Pg = h — w(h), and therefore ¢ is the solution to the Poisson equation with respect to

P and h. We continue with the calculation in the proof of [ , Proposition 3.3]. Let
NATp—1 B
SV = 1{mp >3 Y b [h(Zt) ~“h(Z)],
1=

where (b;)¢>0 is an arbitrary bounded sequence. Writing Z; := (Z;, Z;_1), (x,y) = g(z) — g(y) and P for the
transition kernel of Z; we then have

W(Z:) = h(Zir) = [W(Z0) = w(B)] = [A(Zi-1) = =(B)]
= 19(2)) = Pg(Z)] - |9(Zu-1) = Pg(Zi1)]
= [9(20) ~ 9(2i-0)| - |Po(20) - Pg(Zi-)]

= §(Z¢) — Py(Zy),

where we used the fact that, by construction of P, we have Pg(z,?) = Pg(z) — Pg(Z).
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Then from [ , Equation (A.3)] we have

E { {5§.N>r} <4 Z bE { (Ziy1) — Pg(2,)]* 1{rp > t}}

+ 45? [9°(Z;)1{rp > j}] + 4R E [¢°(Zn)L{7p > N}]

2
N-1

+48 Y b — bEY? (32 (Ze )W {rp > t+1}] p
t=j

and we proceed to bound these terms. Letting F; := 0 (Z4;0 < s < t), notice that
2
E{[9(Zes1) — Pg(Z0)]) 1 > 1}

{E[ (Zis1) — P§(Z4)) ]l{TD>t}‘]:t}}
=E{§(Zi11)°1{rp > t}} — E{Pg(Z,)*1{rp > t}}

_ 2
E{ Zt+1 ]l{TD > t}} < |g|V“f {[VW(Zt) + V’Y(Zt_l)] ]].{TD > t}} .
We next bound the last quantity using the fact that (a + b)? < 2a? + 2b and the Cauchy-Schwarz inequality

E { [vv(zt) + W(ZH)}2 1{rp > t}} < 9B { [v?v(zt) + V27(Zt,1)] 1{rp > t}}
<c []E {(V¥(Z)} + E {V‘*V(Zt_l)}]lm]? (rp > t)'/2.

Finally notice that since V' is non-negative

dm
4~ 0
E{V*Y(Z) }<‘ pm

E. {VY(Z,)}

o0

dmo E, {V*(Z)} = en(V*) < o0,

<
_‘dﬂ’

o0

where we used the fact that when started from 7 and evolved through P, the Markov chain {Z;}1>0 is stationary.

From the above and Theorem 2 we conclude that there exists a positive constant ¢ < oo such that
_ c
E{[3(Ze+1) - P3(Z)]" Lrp > 11} < .

On the other hand for terms of the form E[g?(Z;)1{rp > t}], using the same techniques we have

B [(Z01(ro > )] < loB{ [V1(2) + Vi(Z0)] 10 > 01} < 55

Overall we thus have that

2 b2. i b
(N) i+
E { {SJ } } sc ] Nn/2 + Z tl‘i/2 Z tn/2 ’
2

‘bt+1 _bt
E{Sf} <c 5/2 +Ztn/? Z t/-c/Q ’

t>7
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where S; := limy 00 SJ(N) is the limit in the L? sense as in [ , Proposition 3.1|. Setting b; = 0,
by:=(t—j)/(m—j+1)for j<t<m+1andb :=1fort>m+1 we then obtain

T S e
T t=j+1 (m—j+ 1)2tn/2 t=m+1 /2 t=j (m it 1)tK/2

For the first term notice that, after changing variables r =t — j and writing M = m — j + 1 we have

e T R 2 e
o (m JH 1P M2 ()

C M I2
ey
- M2 /le (z +j)r/?

- C M 1‘2

= , dz (changing z = x/j)
MQJH/Q /:E':l (fL‘/]+ 1)&/2

c M/j 7322
< ——F — 5 dz
M2jel2 [ 5 (2 + 1)/

C M/ 22 C
MQjH/2—3 L_l/j (Z+ 1);@/2 LS MZJ';@/Q—?,’

since by assumption k = 1/(1 — ) > 6. Finally we get

- 1 1 1
E[S?] <
[J—ij—j+n%W%3+mW%f+Wlj*”””J

1 1 1 1

=c _mn/Q—l + (m _j + 1)2 j5/2—3 + jm—2 '
1 4 1 1

= 2T T = 1)2 jR/2s

as k/2 — 3 < k — 2. With our choice of sequence (bt)tzo» S; coincides with BCj.p,, in the notation of the statement

of the proposition which thus follows from the above.

A.4 Proof of Proposition 2

First we want to prove the minorization condition (4) for the set C = B (0, M) x [w,w], where M,w,@w > 0 are

given and fixed. That is, we want to establish that there exist ¢; > 0 and a probability measure v such that
P((0,w),dd,dw") > eqv (db', dw")

for all (6,w) € C. We have

P((0,w),dd,dw") >g, (w') min {q 6,6, 771;((99/)) q(0’, 9)} min {1, Z/} do’ dw’
> e,1(0" € B(0,M))min{q (6,0"),q(¢",0)}

~ -

min {90’ (w') , Gy (W) 1:;} de’'dw’,

where " o
Inig. i

_ Infgo1<m (0") >0,

Supg. gj<m 7 (6)
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by the assumption that 7 is bounded from above, and bounded away from zero on all compact sets. Since the
proposal ¢ is bounded away from zero on compact sets we also have that min {q (0, 60’) ,q(0’,0)} > ¢, for |0/ —0| < 2M
which ensures that

!/
P ((8,w),dd',dw') > 46 min {ggl (W), gy (') w} df’dw’.
w
This can be rewritten as
P ((0,w),dd,dw") > ee.1(0" € B(0,M)) Z (0') gor (w) db’ duw’

with

Z(0) = /59 (w)min{l,%}dw <1,

and
g0 (w) = Z71 (0) g, (w) min {1, %} )

Suppose now that for fixed M,w we have

inf Z(0)=0,
0:10|<M
which implies that there is a sequence 6,, € B (0, M) such that lim, . Z(6,) = 0. Since B(0, M) is compact we
can extract a convergent subsequence 0, — 6 € B(0, M) such that limj_,o Z(6,,) = 0. By weak convergence,
since w — min {1, w/w} is bounded and continuous, we also have that

. . _ . w _ ) w
0= klggo Z(0y,,) = klggo/ga"k (w) min {1, %} dw = /gg(w) min {1, %} dw.
Since w + min {1, w/w} is strictly positive for w > 0, this implies that the support of gz is {0} which is a
contradiction, since in that case necessarily [gz(w)wdw = 0 # 1. Therefore we conclude that for all finite
M,w > 0, there exists ez (M, w) > 0 such that Z (0) > ¢4 (M, w), for all 6 € B (0, M).

Therefore we obtain

P ((0,w),dd,dw") > eze,e,1(0" € B(0, M)) go (w) db’du’,

which proves the result for ¢y = eze46,vol{ B(0, M)} and with minorising measure v(d¢’, dw’) = U (¢’ € B(0, M)) go (w).
Next we establish that the minorization condition (3) holds for P, the coupled transition kernel defined by

Algorithm 3, and C as defined above. Let the current states be z := (6, w), z := (6, W) € C respectively. According

to Algorithm 3 the next parameter states 6,6 will be sampled from 0((8, 0),de’, d@’)7 the ~-coupling of ¢ (-0)

and ¢(-|@). This is the maximal coupling generated by the rejection sampler described in [ ]. If the

coupling is successful, that is @ = @', then the algorithm samples w’ ~ gor (+), sets W' = w' in which case we know

by definition that ((6/,w’), (6',@')) € D if the proposal (6’,w') is accepted since the same uniform is used in both

acceptance steps. Therefore under the coupled transition kernel P , writing z := (0, w), % := (é, 11)) and letting
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Dy = {(0,5) 10 = 5} be the diagonal of © x O, we have for (z,2') € C' x C that

P((z,2),D)> P ((z, ), D (B(0, M) x 1R+)2)

://DmB(mM)?Q(( )d@’ @ / 9o (

1 / /
/ H{u<m1n{ 0 H]I u<min< 1, 7"(9)2 dudw’
u=0

o el (CORA

1 ! / / /
/ o' (w')/ I |u < min l,ww)g,w(q)wf dudw’
R+ e () w’ (9) w

o el (CORA)

/ Gor (w')min < 1 T T () w dw’
R+ 771'(9)10’71_(@)117 ’

S\S

where we also used the fact that the proposal is symmetric by assumption. Continuing from the above inequality,
letting e,,€, and €z be as above, we have that

P((z7),D) 2// a((0.6),a0',a8)
DoNB(0,M)?
/ /
/ggl(w’)min{l,aﬂw,sﬂw}dw’
R+ w w
0((6,0),d¢,d6
/L (COR L)
w/
/ Gor (w") min {1, %}min{l,}dw'
w
= min{1,e,} // (e,é) ,de',dé’) Z(0') / Gor (w') du’
DyNB(0,M)? R+
£76x Q((0,0),d¢’,d6’
5 o 2 ((99) 9747
E7En min<q(0'10),q (0 (6)}de
; /B(W) {a@10),4(0'[0)}

> szsﬂ/ gqdd’
B(0,M)

= ezeqgqvol (B(0,M)) > 0,

Y

Y%

v

where we used the fact that in the y—coupling, conditionally on the coupling succeeding, the variables are sampled
from a density proportional to the minimum of their respective densities. This establishes that condition (3) holds
with C' = B (0, M) x [w, w] for any M, w,w.

Next we establish that P is mp—irreducible. Let A C D such that 7p (A) > 0. For sets A C D we will write
AM for the projection onto its first coordinate, that is if A € D then A = AM x AM . We need to show that
for any z,Z € Z there exists n > 1 such that P" ((2,%),A4) > 0. Notice that by construction if (z,Z) € D then
P((z,2),dz',dZ") = P(z,dz') 5., (dZ), that is the chain couples automatically from the diagonal and proceeds as
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the pseudo-marginal kernel P. Letting 2,z € Z and n > 1 we have
P (( // A, dF) P (2,2, A)
// )9, dé’)
Dy

/m g (wf) min {1’ 7;((99/)) % 7;((09/)) Z} dw’/P” (0,0, A),

where we have provided a lower bound by considering the event where the joint chain couples in the first step and
then moves to the set A in n steps. Continuing we have

(0.6 .4 (é, 9')}d0’/ min {q(@,&’) 4 (é, 0')}

f@mln{q(ﬁ 0"),q (é,@’)}d@’
/}R+ gor (') min {1, 7;(09/; %’, :((Z,)) } / pn A(l)) a0’

Pt ((2,2),A) > / min

S}

— =

Therefore we have that

o0

S 2t (2, 7), A) Z/Gmin{q(&@’),q(éﬁ’)}

n=0
oot 0. S S o

oo

> oD /P" ((0’,w’),A(1>) de'.
n=0
By Assumption 6 and [Theorem 2.2 ] it easily follows that the exact algorithm is
m—irreducible and aperiodic. Since by assumption we have gpy (6, w) < 1, we deduce from
[Theorem 1 | that the kernel P is irreducible, hence m—irreducible. This further implies that
S [Pt B) >0,
n=0
for all (¢',w’) and sets B such that 7(B) > 0 by [Proposition 4.2.1 |. Since by assumption

7 (A(l)) = 7p(A) > 0 the integrand above will be strictly positive on a set of non-vanishing Lebesgue measure
whence P is mp—irreducible. Finally to establish aperiodicity first notice that by assumption and continuity of the
measures defined by the densities gy(-), we have that 7(C) > 0. Letting D¢ := {(2,2) € D : z € C'} and following
the steps proving Equation (4) we can establish that for some ¢ > 0

f P D
nf P(2,D)=>

and since m(D¢) > 0 this proves the aperiodicity of P.
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A.5 Proof of Proposition 3

We proceed to bound the moments of the likelihood estimate. For y = 1, letting

s B(a,f(1+¢€) a+p
' B(a,8) a+pB(1+e¢)

then we have for ¢’ € R,
Ey, [az(X, l)cl} = / w(z,1)"Beta(z; 1 + a, B(1 + €))dz
[0
z< / (1—2)" P Beta(z; 1+ a, B(1 + €))dx

=z / x_E’BC/Beta(x; B(l+¢€),1+a)dx
[0.1]

/

zZe / /
< PPe(=)) =1,
B(B(1+¢€),1+a) Jioy

where the third equality exploits symmetry properties of the Beta distribution. We wish to show that there exists
¢’ such that

sup IEg, {@(X, 1)0/} < 00.
B

Firstly, we note that supgcg Z < oo and supgee B(B(1 +¢€),1+ a) < oo as © is compact. Secondly, we see that if
¢’ < 0 then the integral is finite, thereby proving the second part of the Proposition.
For the first part of the proposition consider ¢’ such that

1 )
0<cd—-1<=(1-=],
e ( B)
for some 0 < § < . This implies that 3(1 — e(¢’ — 1)) > ¢ and as a result we have

/

z<

ze / 51
%7 Hdr < 0.
B(B(1+¢€),1+a) Jjoy

B(B(1+¢€),1+a)

/ pPe=c) =1 g o
[0,1]

1—-3
Furthermore, for fixed ¢/ > 1 we see that (1 — e(c’ — 1)) > ¢ is also equivalent to requiring that e < C/fél which

can be satisfied for e sufficiently small enough thereby proving the final part of the proposition.

B(a(1+e€),8)  a+f
B(a,B) a(l+e)+8?

Repeating the above argument for y = 0 we have that for 2’ :=

Eq, [@(X, O)c/} =z / m_w‘c/Beta(x; a(l+e€),1+ B)dx
(0,1]
Z/c / 51
< x dr < oo,
Bla(l+¢€),1+8) Jio

/

for0<d <o .

A.6 Description of referendum survey data

We use data from the 13 wave internet survey study (as of June 2018) [ , | comprising 68,625
respondents in total, with the number of respondents varying between waves. We first subset the data into those in
the four annual waves 1, 4, 7 and 11 occurring between February and May of 2014-2017. Of these 7,729 answered
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either ‘Stay/remain in the EU’ or ‘Leave the EU’ to the question ‘If you do vote in the referendum on Britain’s
membership of the European Union, how do you think you will vote?’ in each wave. We filter out those that
answered ‘Don’t know’ to the question ‘How do you think the general economic situation in this country has
changed over the last 12 months?’ reducing the sample by 5 respondents. Finally, we perform inference only on
waves 1, 4, and 7, the waves prior to the EU referendum on 23"¢ June 2016. For simplicity, we do not take into
account respondent weighting.
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