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Abstract

Intricate mesostructures in additive manufacturing (AM) designs can offer enhanced strength-
to-weight performance. However, complex mesostructures can also hinder designers, often 
resulting in unpalatably large digital files that are difficult to modify. Similarly, existing methods 
for defining and representing complex mesostructures are highly variable, which further increases 
the challenge in realizing such structures for AM. To address these gaps, we propose a standardized 
framework for designing and representing mesostructured components tailored to AM. Our 
method uses a parametric language to describe complex patterns, defined by a combination of 
macrostructural, mesostructural, and vector field information. We show how various 
mesostructures, ranging from simple rectilinear patterns to complex, vector field-driven cellular 
cutouts can be represented using few parameters (unit cell dimensions, orientation, and spacing). 
Our proposed framework has the potential to significantly reduce file size, while its extensible 
nature enables it to be expanded in the future.

1. Introduction

Additive manufacturing (AM) has fundamentally altered the landscape of manufacturable 
geometries by giving designers powerful abilities to manipulate shape, functional, material, and 
hierarchical complexity of their designs [1,2]. Respectively, these abilities allow for unique AM-
enabled design advantages, including components with strategically-defined macro, meso, and 
micro structures [3]. In general, a macrostructure describes the overall shape of a geometry [4].
Mesostructures and microstructures refer to medium and smaller scale geometric features, 
respectively [4]. Designing with hierarchical complexity in mind, which involves the strategic 
definition of structures across scales, is becoming increasingly useful due to advancements in 
manufacturing capability, especially in examples such as lightweighting parts to achieve higher 
strength-to-weight ratio [5]. These mesostructurally-complex designs can also be useful for heat 
exchangers, thermal insulators [6], and metamaterial parts with controlled properties [7]. The
diversity of different mesostructures that can be tried for even trivial applications is expansive 
[4,8], causing designers to rethink their traditional, macrostructurally-centered design processes.

Although the benefits of adding hierarchical complexity through the use of mesostructures are 
well-established, a major shortcoming exists in the AM community that leaves it unprepared to 
extract the full potential of such designs. Simply put, computer aided design (CAD) packages have 
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not kept pace with capabilities of manufacturing processes [9]. Since many industries evolved to 
predominantly use CAD only as a drafting tool to reproduce designs that were once completed by 
hand [10], commercial CAD tools excel at standard modeling tasks. Unfortunately, they often fail 
to provide efficient and scalable techniques to design, save, communicate, and redesign the 
diversity of mesostructurally complex designs that researchers have explored. Standard file 
formats superlinearly scale in size when the complexity of a mesostructure increases, limiting 
designers [11]. Furthermore, although many CAD standards exist [12], such as ISO 10303 [13]
and ISO/ASTM 52915 [14], none sufficiently provide a unified framework to allow designers to 
share hierarchically complex designs in a platform-agnostic manner.

As the understanding of hierarchically complex parts matures, further work must be completed 
to bring those pieces together into useful end-user tools and systems. In this study, we propose and 
demonstrate a standardized framework for representing mesostructurally complex parts. The
framework uses hierarchically-complex entities and scalable relationships to provide generalized, 
platform-independent representation of macrostructures, mesostructural unit cells, coordinate 
systems, and patterns. Our framework both meets the demands of mesostructure strategies 
available today, such as truss-based, cellular, and functionally-graded patterns, and allows for 
expansion to meet future needs. We showcase the versatility of this framework by modeling six 
different case studies and characterizing our framework’s effect on the file size scalability. 
Through this study, we aim to answer the following research questions:

1. What is the capacity of a single framework to describe the diverse types of mesostructures
previously explored in literature and beyond?

2. If using such a framework, to what extent does doing so influence file sizes when compared
to STEP and STL formats?

For our first research question, we hypothesized that our framework will be able represent 
diverse categories of mesostructures, which must be shown through rigorous case study testing. 
For our second research question, we hypothesized that the framework would reduce file sizes for 
all case studies and that the benefit will be maximized with the most complex mesostructures
because the existing CAD formats must duplicate geometry definition for every patterned unit cell 
instance.

2. Background

2.1. Mesostructural Complexity in Additive Manufacturing
Mesostructures are made up of many unit cells and can either be stochastic, as is the case in 

foams [15]; unique, if each unit cell is different from the others; or patterned, as is most common 
with AM parts [4]. Three-dimensional, patterned mesostructured parts are difficult or impossible 
to manufacture using traditional methods, but can be designed to exhibit unique mechanical 
properties [16–18]. Two of the most common approaches for designing parts with patterned 
mesostructures are truss-based and cellular-based patterns [19]. Truss-based unit cells define 
repeating truss elements which connect nodes [4]. Cellular-based unit cells pattern a shape and 
subtract it from the macrostructure [19]. While regular unit cells are common in AM, the design 
freedom provided by the technology allows the manufacture of non-uniform mesostructural 
elements. A clear example of this is the creation of a graded lattice structure, with uniform variation 
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in member thickness [20]. However, these lattice structures are often laborious to create, or created 
using proprietary tools. 

 
Although proprietary CAD applications such as SolidWorks, NetFabb, and nTopology can 

assist the creation of complex lattice structures, they introduce challenges of their own. For 
instance, CAD tools do not follow uniform standards or workflows [21], which means that 
advancements in one tool will only immediately enhance the capabilities of its specific users. 
Furthermore, users typically must convert CAD files to neutral formats before switching 
proprietary applications or advancing through  the design-to-manufacture process [22]. While this 
conversion, although tedious, does not normally cause issue, neutral CAD formats are poorly 
suited for preserving fine details and design intent [23], two attributes that are often essential to 
mesostructurally-complex designs. Similarly, the available features, such as unit cell type and 
patterning methodology, differs in each proprietary application, hindering engineers’ collaborative 
efforts. A diverse array of mesostructure synthesis techniques have been developed by researchers, 
sometimes using third-party software such as MATLAB or C++ [24–26]. This trend suggests that 
maximizing interoperability of mesostructure data representation and design workflows rather than 
relying on available proprietary methods would help foster advancement across the industry. 
 
2.2. Additive Manufacturing Digital File Formats 

Despite the benefits designers have at their disposal when manufacturing a mesostructured part 
using AM, they often face challenges when navigating the digital thread of file formats that is 
inherent to AM processes [27]. For the purposes of this study, we have organized the filetypes 
employed along the digital thread into four groups: input, design, transfer, and machine (see Figure 
1). 

 

 
Figure 1 Listing of the groups of CAD files used in the AM digital thread, as they pertain to this study, with example formats and 

images. 
 

“Input” files are the results of scanning operations used to bring objects from the physical 
world into the digital world, and include surface point cloud file formats [28], such as OBJ, 
voxelized representations [29], DICOM, and photogrammetry image sets [30]. “Design” files are 
CAD files which are typically characterized by dimensional accuracy, describing geometries as 
mathematically defined boundary surface representations. Generally, they include neutral data 
interchange files, such as STEP [13] and IGES [31], and proprietary CAD files, such as Autodesk 
Fusion 360 Archive Files (.f3d) and SolidWorks Part Files (.SLDPRT). “Design” files can also 
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contain abstract information, such as parameterized modeling schemes, allowing designers to 
quickly redesign parts by only modifying a few values [32]. “Transfer” files are used to convert 
“input” or “design” files into a consistent form prior to translation into layer slices and machine 
commands [33]. “Transfer” files are usually a repetition of a simple tessellation pattern, such as 
the Stereolithography (STL), which patterns triangles across the entire surface [33]. Despite being 
computationally lightweight to process, “transfer” files can require very large file sizes, especially 
for curved or repetitive geometry. Additionally, these files can vary based on the CAD packages 
used, and aren't produced in a uniform way [34]. We included STEP and IGES files, which are 
commonly referred to as “interchange” formats in the “design” category instead of the “transfer” 
category because one of their primary purposes is to interchange between other CAD file formats, 
and not to transfer geometric information to slices. Finally, “machine” files are the actual machine 
position and temperature commands, and are often text commands in the form of G-code [35]. 

 
Despite the prevalence of the STL file format in the AM workflow [32], STL lacks several 

features that can be crucial to AM geometries. For instance, tessellated polygons patterned in an 
STL cannot perfectly model curved surfaces [36]. Another example is the poor scalability of STL 
file sizes with increases in geometric complexity [37]. In response to these and other shortcomings, 
newer AM file formats have been developed [12]. Two examples are the AMF and 3MF formats. 
The AMF file format, ISO/ASTM 52915, preserves the tessellated surface geometry data from the 
STL file format and adds additional features through an extensible system [14]. 3MF was 
developed by Microsoft as a standardized AM data format [38], and uses a similar XML scheme 
to AMF [14]. Although not an ISO standard, 3MF is backed by an industry-sponsored consortium 
[38]. While these extensible AM file formats offer potential solutions to many issues faced by 
modern AM designers, they do not fully capitalize on the complexity AM has to offer. For instance, 
they are lacking in representation of voxel-based geometries, tolerancing and testing specification, 
and efficient representation of generalized mesostructures. We predict that as design tools in these 
areas become more advanced, greater need for such capabilities will emerge. 
 

In response to the gap in standard AM file format mesostructure representation, we propose a 
standardized framework for representing complex mesostructures in an efficient, scalable, and 
platform-agnostic manner. By defining the data structure for complex mesostructures outside of 
proprietary CAD applications, many different CAD applications can be upgraded to behave 
identically and predictably build parts defined by the data structure. This framework exists in the 
“design” domain of AM digital representations. As mentioned earlier, it does not intend replace 
other standard file formats, such as STEP or AMF, but rather to coexist with them and be used as 
a part of the digital thread when a design requires it. 
 

3. Methodology 
 

The framework presented in this study is not a file format which can be used with CAD 
applications today, but rather a generalized blueprint upon which such a file format can be 
developed. This framework could then be standardized as a file format and the next generation of 
CAD software upgrades and add-ins could be designed to utilize it. We generate a prototype of 
such an implementation using the Fusion 360 API [39] and apply it to six case studies to 
demonstrate the framework’s flexibility and usefulness in a practical setting. This section describes 
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1) our proposed framework, 2) our prototype CAD implementation of the framework, and 3) the
case-studies to demonstrate our framework.

3.1. Proposed Mesostructure Framework Design
Our framework is inspired by the design strategy of first defining macrostructures and then 

applying mesostructural elements to them, which may be represented as parent-child relationships 
that may interact with each other (see Figure 2). The four operations handled by our framework 
are 1) coordinate system definition, 2) macrostructure definition, 3) mesostructure unit cell 
definition, and 4) unit cell patterning. These operations were selected with three target framework 
attributes in mind: generalizability, flexibility, and scalability. In order to be general, our 
framework must allow many potential design paradigms to be used. Allowing multiple types of 
macrostructure representations, custom coordinate systems, unit cells, and patterns enables this 
goal to be maximized. Flexibility is achieved by allowing the user to employ as few or as many of 
the framework’s features as needed. For instance, if a custom coordinate system is not defined, the 
industry-standard cartesian coordinate system would be used. Lastly, the framework promotes 
scalability by allowing reuse of the four operation definitions wherever possible. Scalable designs 
must preserve memory-efficiency with increased complexity, and can be achieved through 
parametric definitions and abstract data concepts, such as mathematically-defined patterns and 
gradients. 

Figure 2 Hierarchical relationship between some of the information required to pattern a unit cell across a macrostructure

We have created an entity-relationship model as a generalized description of the framework 
from which programmatic implementations can be built (see Figure 3). This entity-relationship
model defines the relationship between our major operations. The arrows extending outward from 
the parent model indicate which entities are to have many-to-one relationship allowance, a key 
differentiating feature for our framework from other file formats, such as AMF, which uses a 
“constellation” feature that merely patterns a single object to specified positions in cartesian space 
[14]. Conversely, our framework enables scalable inclusion of parametric design in all of its major 
operations. For example, unit cells can be defined by parametric values using constructive solid 
geometry (CSG) operations. These values can then be scaled, stretched, and morphed through 
space by changing their parameter values using functions defined as unit cell patterning entities.
This scheme allows each individual geometric definition to determine many more complex 
patterns than simple patterning of a single shape by employing more abstraction in the file format. 
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Although doing so may increase the complexity of the parsing program which reads and 
manipulates the files, we believe this is a necessary trade-off for advancing the art in the next 
generation design applications.

Figure 3 Entity-relationship diagram for the proposed mesostructure framework with examples of each entity.

3.1.1. Coordinate System Definition
Our framework augments the global cartesian coordinate systems used by CAD applications 

by allowing users to define their own coordinate systems in one, two, three, or even more 
dimensions. More than three dimensions could be useful in designs that specify conditions based 
on both spatial and other physical quantities, such as time and or density. Additionally, these 
coordinate systems can have nonlinear axes, as is the case in polar and spherical coordinate 
systems. Allowing for different coordinate system representations can simplify the amount of 
information needed to represent some geometries and  facilitate new ways of thinking about 
patterns beyond rudimentary rectilinear and circular templates. We handle these complex 
coordinate systems by allowing users to specify the origin, unit vector direction, and axis type 
(linear, distance, or circular) for each axis of the coordinate system in the global cartesian space. 
Linear axes record position as a distance magnitude to the origin and do not change direction. 
Distance axes record position as a distance vector to the origin that can change direction based on 
another coordinate axes. Circular axes record position as an angular distance from an origin angle.

The coordinate system examples we explore in this initial study are cartesian, polar, and 
spherical (see Figure 4). For custom 3D cartesian coordinate systems, three perpendicular, linear 
unit vectors are defined. Although seemingly trivial, this feature allows users to locate and rotate 
structures relative to one another within the CAD global default coordinate system in a platform-
agnostic manner. For 3D polar, a distance axis ( ), a circular axis ( ), and a linear axis ( ) can be 
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used. Finally, a 3D spherical coordinate system uses a distance axis ( ) and two circular axes (  
and ). 

 

 
Figure 4 The three coordinate systems investigated in this study 

 
3.1.2. Macrostructure Definition 

Once coordinate systems are defined, macrostructure entities may be created, positioned, and 
oriented. Since our file format does not seek to replace existing geometric definition standards, we 
chose to use a flexible approach to how macrostructures may be defined. In our approach they can 
either be directly created through CSG or imported as a reference to an external standard CAD 
format file. CSG was chosen for direct model definition because it is supported by many CAD 
applications and allows for many AM-relevant geometries to be defined [40]. Once the 
macrostructure is defined, it must be positioned and oriented within the global coordinate system 
of the CAD application attempting to read it. Our framework enables these actions by allowing 
transformation matrices to be applied to macrostructures. To support scalability, more than one 
macrostructure may be added to each file, allowing assemblies or arranged build platforms to be 
represented. 
 
3.1.3. Mesostructure Unit Cell Definition 

After defining macrostructures, the mesostructure unit cell entities may be defined and applied 
to them. Like macrostructures, mesostructure unit cells can either be directly defined through CSG 
or imported from an existing model. The mesostructure unit cells are defined once and then 
patterned many times through separate patterning entities. Unlike macrostructures, mesostructures 
can be defined either by constant values or based on parameters that can be changed through 
functions. When defining the mesostructure, the file specifies these parameters with unique 
identifiers. For instance, the thickness of a truss element could be parametrically defined, and its 
actual size values would be computed as a result of a pattern entity’s operations later in the file. 
At this time, imported geometries used as mesostructures may be parametrically morphed through 
transformation matrices, with the elements of those transformation matrices serving as the defining 
parameters. 
 
3.1.4. Mesostructure Pattern Definition 

Once mesostructure entities are ready for use, pattern entities can be used to duplicate the unit 
cells across the macrostructures. The actual application of the mesostructures is achieved through 
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CSG. Unit cells can be subtracted from the macrostructure using a “difference” operation, added 
to the macrostructure using a “union” operation, and combined with the macrostructure using an 
“intersection” operation. This approach means that hierarchically complex parts can be defined in 
two divergent ways: Either as patterned mesostructures alone, or as a combination of both 
macrostructural and mesostructural components. This dual approach is flexible and mimics 
paradigms that designers are familiar with in current CAD applications. Once the method of 
application is prescribed, the unit cells are then patterned through looping commands. The number, 
spacing, and direction of the patterns may be defined as constant values or mathematical functions 
(see Figure 5). As shown in Figure 5a, unit cells are designed just like any other macrostructure, a 
parametric ellipsoid in this case. This unit cell shape can then be oriented or morphed based on 
additional parameters. Additionally, the initial values and functional gradients of unit cell 
parameter values are defined alongside the ellipsoid as well, represented as numeric attributes of 
the unit cell entity definition. Doing so allows a CAD program to rebuild the geometry exactly as 
intended by the designer while maintaining the freedom to make major design changes with small 
changes in the parametric equations.

Figure 5 Images of a) an ellipsoidal unit cell positive form, b) functionally grading the orientation of the ellipsoid as a function 
of position, c) functionally grading the spacing of the ellipsoid as a function of iteration number in a series, and d) functionally

grading the shape of the ellipsoid as a function of space

In addition to patterning based on functions, our framework also allows for exotic unit cell 
placement and spacing. For example, rather than to simply pattern unit cell position and parametric 
size blindly across a coordinate system, a different design strategy could be to define those unit 
cells based on a vector field. Our framework allows vector fields to be imported from an external 
file or embedded directly as binary values. First, the structure of the vector field file is defined. 
Next, the vector field is made available to the file as an array of IEEE double-precision floating 
point values that meets the organizational definition. Finally, the patterning instructions detail how 
each vector field value manipulates the parametric transformations of the unit cell. We have chosen 
this generalized method so that user may input large amounts of vector field information without 
reliance on a particular proprietary format for that information. This technique could be used to 
apply the results of numerical analysis to create unique patterns or vectors based on the curvature 
of a part to create conformal lattice structures.

3.2. Prototype File Format and CAD Implementation
We have implemented a prototype file format and CAD design tool that demonstrates this 

framework in action. We have chosen an Extensible Markup Language (XML) file format that 
supports the features in our entity-relation model. We chose XML because it is human-readable
and used by other modern AM-oriented file formats, such as AMF and 3MF, and extensible [37].
This file format is not intended to be a finished product ready for deployment to commercial CAD 
applications as-is, but rather a viable demonstration to support our research questions. Future file 
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formats could either be an extension of this effort or a restarted effort adopting a different strategy, 
such as a binary file specification. For the prototype CAD implementation, we created a Fusion 
360 Add-In. This Add-In was programmed in C++ using the Fusion 360 API. To showcase the 
benefits of our framework to the design process, we enabled our Add-In to use a form-based dialog 
window, allowing users to specify their mesostructure through simple inputs, such as drop-downs, 
checkboxes, and number entry fields (see Figure 6).

Figure 6 Screenshot of the prototype Fusion 360 CAD Add-In being used to create a BCC truss I-beam part

4. Case Studies

After developing our framework and a prototype implementation we tested the framework with 
six diverse case-studies in order to examine the framework’s versatility with respect to arbitrary, 
mesostructurally-complex designs (see Figure 7). We designed these case study geometries using 
our prototype framework implementation then compared the resulting file size to STEP and STL 
files, two common file formats used in the AM community. 

Figure 7 Images of macrostructures and mesostructures for all case studies investigated
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These case-studies were intended to capture increasingly complex examples of 1) truss-based 
and cellular patterning mesostructures that are commonly used today (“common”) and 2) some 
potential design concepts that are not commonly encountered (“uncommon”). For the “common” 
examples we explored an I-beam with a truss-based unit cell (“I-beam”), a disk with a polar sector 
cutout pattern (“disk”), and a sphere with a spherical sector cutout pattern (“sphere”). For the 
“uncommon” examples we explored a gear with vector field-driven, varying size cutouts (“gear”), 
an I-beam with vector field-driven, varying direction cutouts (“direction beam”), and a patterned 
macrostructure used as a mesostructure in a Nittany Lion statue (“Nittany Lion”).

All of the “common” case-studies used base macrostructures defined by the STEP file format 
and mesostructures defined with CSG operations. The I-beam case study uses an I-beam-shaped 
macrostructure and a body-centered cubic (BCC), truss-based mesostructure. All entities in the I-
beam were designed using a cartesian coordinate system. The parameters of the mesostructure 
included truss thickness, unit cell height, unit cell width, and unit cell depth. It was applied using 
a static pattern spacing in all three dimensions and intersection CSG operation with the 
macrostructure. Unlike the I-beam, the disk case study used a difference CSG operation, 
subtracting a sector-shaped volume element unit cell from a disk-shaped macrostructure. The 
sector was patterned along the three polar directions. The spherical case study was similar to the 
polar geometry but used a spherical macrostructure, spherical sector unit cell, and used one 
distance axis and two curved axes.

For the “uncommon” case studies, the base macrostructures were also defined by the STEP 
file format. In the gear case study, a basic involute gear was modeled and meshed for finite element 
analysis (FEA) using ANSYS. A force was then applied to a single tooth of the gear. The purpose 
of this analysis was not to accurately model the performance of a gear, but rather to generate an 
interesting scalar field to test the mesostructure framework with. We used the FEA locations and 
their corresponding von Mises stress magnitudes as input scalar field data to define the locations 
and sizes of patterned cylinder cutouts. The direction I-beam case study also used an FEA analysis. 
An asymmetric bending force was applied to the corner of the I-beam flange. In this case, the 
principal stress direction vectors were output from the analysis and used to control the position 
and orientation of constant-size, ellipsoid cutout features. Finally, the Nittany Lion case study 
demonstrated how both the macrostructure and the mesostructure can be loaded from external 
CAD files, in this case patterning a structure within itself along a cartesian coordinate system.

To evaluate the performance of the prototype file format and CAD implementation we 
analyzed the file sizes of each of the case studies. First, we modeled the macrostructure of each 
case study geometry and saved that file in the STEP format. Next, we used our prototype 
framework Fusion 360 CAD add-in to apply the appropriate mesostructure. We then saved this 
geometry as a prototype framework file, STEP file, and ASCII STL file. We then compared the 
size of these files to determine how much the file size was affected when using our framework. 
Additionally, we modeled the I-beam case study for different unit cell densities and similarly saved 
all files for size comparison to investigate the effect of the number of unit cells on the file size 
reduction benefits of our framework. For all case studies we set Fusion 360 to export the STL with 
the “High” quality setting in order to maximize fidelity to the original geometries. For the 
framework file size, the sizes of all source files needed for the prototype Fusion 360 add-in to build 
the part were summed. These files included macrostructure STEP files, XML framework files, and 
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FEA vector field data files. This summation was done to ensure that all data necessary to rebuild 
the framework file was accounted for since, unlike the STEP and STL files, some of the data 
existed in multiple files. Other implementations of our framework could choose to bundle all data 
into a single file.

Figure 8 Results of the file size comparison for each study, showing the percent reduction when using the framework

Our framework successfully reduced the file size compared to STEP and STL for all case 
studies (see Figure 8). Nearly all case studies reduced the file size by 98% or more, except for the 
gear STEP file and the Nittany Lion STL file cases. These cases were 54.498% and 57.499%, 
respectively. We suspect that the gear STEP file was not reduced was much as the STL because 
STEP is capable of some abstractions, such as representing circular edges, with short commands. 
Since the gear mesostructure incorporated cylindrical cutouts, a circular edged feature, it was thus 
able to be represented in STEP with less penalization compared to our framework. However, the 
STL, which cannot represent curved features without many triangles, still exhibited large file sizes 
for the gear. For the Nittany Lion, we surmise that the decreased benefit of the framework was 
due to the original method of modeling the Nittany Lion geometry and our method of comparison. 
The Nittany Lion was originally obtained as an STL that was produced from a digital scan of a 
statue. This STL was then converted to a STEP file. We suspect the Fusion 360 conversion 
operation introduced inefficient overhead because the macrostructure STEP file was significantly 
larger than the STL. Resaving the mesostructured model as an STL removed this overhead. Had 
we used the original STL for the framework file, the reduction would have been over 99% 
compared to STL.

To investigate our second research question, the influence of our framework on file size, we 
further investigated variants of the I-beam case study to study the effect of unit cell density on file 
size. By varying the number of unit cells in the mesostructure, we were able to more clearly 
identify a trend in our framework’s effectiveness in relation to design complexity. We observed 
that the file size increased exponentially with respect to the number of unit cells (see Figure 9). 
The increased number of unit cells only negligibly altered the prototype framework file sizes.
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Figure 9 Plot of the I-beam case study file size versus the number of BCC unit cells used in the mesostructure

These results indicate that our framework successfully reduces file sizes for all case studies 
examined, offering real potential to improve efficiency in the design process for complex 
mesostructures. Based on our findings, file size reduction benefits of our framework over “design” 
CAD files, such as STEP, are maximized when there are few abstract features, such as circular 
edges, in the model. Additionally, file size reduction benefits over STL are maximized when the 
source geometry is not already an STL. In general, file size reduction was most dramatic when the 
number and complexity of unit cells was high.

5. Conclusions and Future Work

This study proposed and demonstrated a standardized framework for designing and 
representing mesostructured components tailored to AM. A prototype implementation of our 
framework, incorporating both an extensible file format based on our framework and a Fusion 360 
Add-In design tool to manipulate the files, was generated to explore six different case studies. The 
case studies, which represented varied mesostructure strategies, were then analyzed for file size 
reduction compared to standard STEP and STL file formats.

In terms of our first research question, we believe our framework is capable of representing 
the diverse array of mesostructures found in literature. The framework’s ability to parametrically 
define truss-based and cellular mesostructures in terms of arbitrary coordinate systems give it a 
strong advantage over standard file formats alone, which do not retain parametric knowledge of 
the patterning scheme and are typically limited to cartesian coordinate systems only. Regarding 
our second research question, the framework resulted in smaller file sizes for all case studies 
observed. The file size does not scale with increases in the number of unit cells, giving a stronger 
advantage for increasingly complex models.

Although this initial study has presented the framework, more work still needs to be done 
before it may be deployed in CAD applications. A full file format should be created, documented, 
and rigorously tested. Additionally, using a framework like the one presented introduces 
abstractions into the digital thread, trading off data storage for computational cost. The 
computational cost of this trade off should be characterized to confirm how complex of 
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mesostructures can be handled by today’s hardware. This study could be accompanied by a more 
in-depth look at how the number and complexity of unit cells affects these computational 
performance metrics. Furthermore, more improved definitions for how vector field data may be 
imported into a model should be developed, so as to maximize compatibility with software that 
may be used to generate such vector fields. Finally, end-use CAD Add-Ins should be developed 
for a variety of platforms to test how using the framework enhances the human experience when 
designing complex mesostructures and modifications or extensions should be made to maximize 
its benefit. Our prototype add-in was only capable of modeling geometries similar to the ones 
explored in this study, and must be expanded before being able to handle the full range of 
geometries found in literature and industry. 
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