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Abstract

The perceptual-based grouping process produces a hier-
archical and compositional image representation that helps
both human and machine vision systems recognize heteroge-
neous visual concepts. Examples can be found in the classi-
cal hierarchical superpixel segmentation or image parsing
works. However, the grouping process is largely overlooked
in modern CNN-based image segmentation networks due
to many challenges, including the inherent incompatibility
between the grid-shaped CNN feature map and the irregular-
shaped perceptual grouping hierarchy. Overcoming these
challenges, we propose a deep grouping model (DGM) that
tightly marries the two types of representations and defines
a bottom-up and a top-down process for feature exchanging.
When evaluating the model on the recent Broden+ dataset
for the unified perceptual parsing task, it achieves state-of-
the-art results while having a small computational overhead
compared to other contextual-based segmentation models.
Furthermore, the DGM has better interpretability compared
with modern CNN methods.

1. Introduction

Deep CNN methods have achieved substantial perfor-
mance improvement compared with non-CNN methods in
the field of semantic segmentation [29, 5]. Many of them
can achieve even better performance by incorporating good
practices that have long been discovered in non-CNN meth-
ods, e.g., multiscale features [59, 48, 44] and contextual
information [57, 55, 19, 16, 58]. However, recent works still
have some key limitations. First, many CNN-based methods
are solely driven by the cross-entropy loss computed against
ground-truth pixel labels, lacking an explicit modeling of
the perceptual grouping process, which is an integral part in
the human visual system [4]. Second, most modelings are
still focusing on regular-shaped feature maps, which creates
not only significant overhead in a multi-scale representation
when considering feature-to-feature attention but also is sub-
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Figure 1: Perceptual grouping process. From fine to coarse:
neighboring pixels form a part; parts group into an object;
and objects combine into a contextual region. The DGM
aims to marry a CNN with the grouping hierarchy for unified
perceptual parsing of images. The grouping hierarchy is
dynamically computed based on the CNN features, and the
CNN features are enhanced by the grouping cues from the
graph hierarchy. The model is applied to unified perceptual
parsing task to show superiority of DGM.

optimal for modeling irregular-shaped semantic regions on
the image.

To overcome these limitations, we revisit the classical
perceptual grouping methods, e.g., superpixel segmenta-
tion [37, 13, 31, 35] and image parsing [4 1, 38, 53], which
were extensively studied before the predominance of CNN's
in segmentation. The seminal work by Tu et al. [41] rep-
resents an image as a hierarchical graph, ak.a. parsing
graph. In their depicted example, an image of a football
match scene is first decomposed into three elements: person,
sports field, and spectator, then these elements are further
decomposed, e.g., the person consists of face and body tex-
ture. Such a graph is both compositional (e.g., lower-level
semantics induce grouping cues for higher-level semantics)
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and decompositional (e.g., higher-level semantics provide
feature support for lower-level semantics), and it varies upon
the input image. In this work, we explore whether it is bene-
ficial to inject such a perceptual grouping process explicitly
in modern CNN frameworks for a unified image parsing of
the scene (see Fig. | for an example).

Three challenges arise when incorporating the percep-
tual grouping process as a hierarchical graph in a deep
CNN. First, there is feature incompatibility between the grid-
shaped CNN feature maps and irregular-shaped graph nodes,
not to mention how to benefit one from the other. Second, it
is unclear how to dynamically grow the grouping hierarchy
based on different levels of feature semantics extracted from
the image. Although superpixel segmentation map provides
a plausible initial grouping based on low-level textural and
edge cues, high-level semantics of larger receptive fields are
needed when growing parts into objects. Third, a holistic
understanding of the scene is required when considering the
unified pcerceptual parsing task. For example, knowing the
scene-level kitchen label helps clarify countertop against
desk. It is easy to do in a CNN but difficult in a parsing
graph hierarchy.

To tackle the challenges as mentioned above, we propose
anovel Deep Grouping Model (DGM), which contains a few
modules that are general enough to adapt to many CNNGs.
The Expectation-Maximization Graph Pooling (EMGP) mod-
ule and Projection module transform multi-resolution feature
maps into a multi-level graph by grouping different regions
on the feature map in a bottom-up fashion (i.e., from high-
to low-resolution). They have several advantages. Since the
model groups pixels and regions iteratively, the number of
nodes in the graph is far smaller than the number of pixels
on a feature map, which reduces computational overhead.
The relationship between different levels of the hierarchy
are learned during grouping, rather than assuming a uniform
distribution such as in bilinear interpolation or adaptive av-
erage pooling on a grid feature map [48, 59]. Furthermore,
the contextual information at one level of hierarchy can be
quantified via edge weights in a graph, which is sparser than
fully-connected non-local block [45, 55], leading to a lower
overhead.

We put forward a Top-down Message Passing (TDMP)
module, which propagates contextual information from the
top-level graph to the bottom level graph by utilizing group-
ing results from EMGP. In this way, higher level context
can be propagated adaptively to the corresponding irregular-
shaped regions. For instance, object context features (e.g.,
human) at higher-level graph will be propagated to its cor-
responding parts (e.g., arms, legs, torso, etc.) at lower-level
graph. Similarly, global scene context can also be propagated
down to lower-level graph containing objects. Our proposed
TDMP module is especially useful in the multi-task settings,
where lower-level features enhanced by high-level seman-

tics are able to produce better results. At the end, we use
Re-projection module to re-project features from the hier-
archical graph back to multi-resolution grid feature maps,
which are used for down-stream tasks.

In order to prove the effectiveness of the proposed model,
we apply our model on unified perceptual parsing task, a
challenging task to recognize diverse perceptual concepts,
including object (or stuff) segmentation, parts segmentation,
scene classification, material segmentation, and texture pre-
diction. We use the recent Broden+ dataset [2], a large-scale
dataset combining five different datasets with heterogeneous
task labels, that is designed for the unified perceptual parsing
task. Our method is trained in a multi-task learning fashion,
and we evaluate our model on each subtask. Results show
that our method achieves the state-of-the-art on Broden+
dataset in every subtask.

Furthermore, the proposed DGM provides better inter-
pretability thanks to the hierarchical graph representation.
By using the grouping result , DGM can be applied to other
two applications: 1) click propagation, 2) explainability with
Grad-CAM, which are the building blocks in recent works
on interactive segmentation [52, 30] and weakly-supervised
segmentation [47, 46, 24].

2. Related Work

Grouping-based Method. Grouping-based segmentation
method is extensively utilized before the deep learning
methods. Ren et al. [37] propose grouping pixels into su-
perpixels using Gestalt cues. Hierarchical grouping meth-
ods [1, 35,42,49, 50, 51] are also proposed for both image
segmentation and video segmentation tasks. More recently,
some deep learning methods start using grouping in the seg-
mentation task. Gadde et al. [17] use superpixels to upsam-
ple CNN’s low resolution prediction to the original image
size. [40, 23] use deep feature rather than traditional low-
level cues to predict superpixel map. Two works are closely
related to our work. [21] puts forward local relation layer to
model pixel-pair affinity in a predefined 7 x 7 square neigh-
borhood, while our proposed model considers the neigh-
borhood adaptively in an irregular-shaped region. Liang et
al. [27] propose structure-envolving LSTM where Graph
LSTM [28] is used for updating node features. In their work,
only one pair of nodes is merged each time when a coarser
graph is generated. Compared with [27], our model groups
nodes more quickly thus reduces computational overhead.
Farabet et al. [12] use multi-scale convolutional feature and
conditional random field to regulate the probability of each
pixel in segmentation prediction. In contrast, our work learns
both grouping hierarchy and top-down message passing at
feature level in a end-to-end fashion.

Graph Neural Network. Some recent works employ Graph
Neural Network on segmentation task. Liang et al. [26] map
feature maps to a concept tree to enable concept reason-
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Figure 2: An overview of the proposed Deep Grouping Model (DGM).

ing. Other works [25, 8] project feature map to graph via
linear transformation with learned anchor vectors or convolu-
tional weights, which may be successful in classifying single
pixel’s semantic meaning but does not consider similarity
between pairs of pixels to group them into a region. Ying et
al. [54] propose a differentiable pooling method through pre-
dicting pooling weights by GraphSAGE [ 18], but the method
does not consider pairwise similarity between graph nodes
and the number of clusters is also fixed. In comparison, our
model considers pairwise affinity among nodes and supports
a dynamic number of clustering centers.

Contextual Modeling. Given the success of self-attention
mechanism in many recognition tasks [45], recent work in-
troduces self-attention module in the semantic segmentation
field from different perspectives. Yuan et al. [55] propose
object context pooling module. Fu et al. [15] apply attention
mechanism on both position and channel. The aforemen-
tioned non-local based context modeling method creates
large overhead since similarity between each pair of grid
needs to be computed on the feature map. He et al. [19]
introduces adaptive context module to model the affinity
between region feature and pixel feature, where the region
feature is computed from average pooling on square patch.
In comparison with non-local based method and adaptive
context module, our method models the context between
nodes at different levels of the graph hierarchy, which not
only leads to lower overhead but also allow contextual infor-
mation flow to irregular-shaped regions.

3. Deep Grouping Model (DGM)

The proposed DGM represents an image as a hierarchi-
cal graph (see Fig. 2). The L-level multiscale feature maps
{F!|1=1,..., L} are extracted from different layers’ out-
put of a CNN, where F* has a large resolution with more
low-level details and FZ is in the lowest resolution con-
taining more high-level semantics [56]. Correspondingly,
we denote graph feature at the [-th level as G! = (V! El),
where V! and E! denote vertex features and adjacency ma-
trix, respectively. First, we initialize the bottom level graph
G! = (V1 E!) from pre-computed superpixel S and bottom
level grid feature map F'. Concretely, vertex features come
from superpixel pooling, i.e., each node takes the mean of
the features in the corresponding superpixel region of the
feature map (formal definition can be seen in supplementary
material). Unweighted adjacency matrix E! is defined from
the region adjacency graph of the superpixel S [39], which is
much sparser compared with fully-connected non-local oper-
ation [45, 55]. Notice that only E! is unweighted adjacency
matrix, while upper-level adjacency matrices E'(I > 1) are
weighted adjacency matrices (more details in Sec. 3.1).

Bottom-up process. The bottom-up process is aiming at
transforming multi-resolution grid feature maps {F' | | =
1,...,L} to hierarchical graph representation {G' | | =
1,..., L} (see Fig. 2), where G' not only dynamically com-
poses information from lower level graph G'~! (Fig. 2(a)),
but also receives high-level semantics from feature map

4055



F! (Fig. 2(b)). To this end, the proposed Expectation-
Maximization Graph Pooling (EMGP) module and Projec-
tion module do the aforementioned jobs, respectively.

Top-down process. From another perspective, high-level
semantics can also help low-level representation. To this
end, Top-down Message Passing (TDMP) module propagates
messages from the top-level graph to the bottom-level graph
(Fig. 2(c)).

Finally, in order to make DGM compatible with modern
CNN framework, we use a Re-projection module to trans-
form hierarchical graph {G'} back to multi-level grid-shape
feature map {F' |1 = 1,..., L} (Fig. 2(d)), which will be
used in down-stream tasks.

3.1. Bottom-up Graph Hierarchy Construction

The bottom-up process transforms {F'} to multi-level
graph features {G' = (VL E") |1 = 1,..., L} from the
bottom level to the top level (i.e., [ is in an increasing or-
der when constructing the graph hierarchy). Concretely, in
order to construct G‘*1 from G', the modules EMGP and
Projection run successively.

Expectation-Maximization Graph Pooling (EMGP).
The goal of EMGP is to pool graph G' to G'*! with less
number of nodes, i.e., [VI*1| < |V!| (see Fig. 2(a)). Fol-
lowing the EM framework [10], we initialize Vit with
uniformly sampled vertices from V!, then update pooled
graph vertex features V! in K iterations:

L1 [V V2

ij = Zl exp (— o2

VH—l _ (Pl)‘rvl , (2)

) (1

where P! € RIV' x|V computes the affinity of vertices
between the levels [ and [ + 1 via a Gaussian kernel with
bandwidth o and Z! € RIV™'l is a normalization term:

|V | ||Vl

Z exp (

After K-iteration updates of vertex features, following
Ying et al. [54], the adjacency matrix of higher level graph
E!*! can be computed by:

Vl+1 I |2
) - 3)

El-’rl — (Pl)TElPl . (4)

Notice that our method is different from the “differentiable
pooling” method proposed in [54]. Instead of predicting
pooling weights P! through a stack of graph convolutional
layers, our method uses EM to make the prediction. There-
fore, our method not only considers similarity between each

pair of nodes, but also can change |V/*!| dynamically ac-
cording to the content of the image. For example, an image
of a simple scene with small number of objects or uniform
textual, e.g., the sky, can be represented by a small |[V!*1|
in the graph.

Projection. Although the pooled node features V!*! sum-
marize the lower level graph through a linear combination
of the lower level graph nodes V', they do not necessarily
contain higher level semantics. To incorporate higher level
semantics, the Projection module projects the feature map
F!'*1 to pooled node features V*1, outputting node feature
Vit

A straightforward design could be constructing a bipartite
graph between 7'+ and V!*! and use graph convolution
to propagate high-level semantics, where pixels on the fea-
ture map F'+1 are treated as nodes and directed edges are
pointing from F!*1 to VI+1, However, such design not only
creates large overhead due to large number of pixels on the
feature map, but also the edge weights of the bipartite graph
is undefined. Therefore, we define auxiliary nodes Uit
obtained from superpixel pooling on feature map F'*! by
the bottom-level superpixel map S, to address the aforemen-
tioned problems. Since both U't! and V' are computed
from the same superpixel map S, U'*! has the same num-

ber of vertices as V1, i.e., |[U'*!| = |V!|. However, Ut!
contains high-level semantics as it is pooled from the feature
map FH1,

A quasi-bipartite graph from U'*! to V!*1 can be con-
structed. Since U'*! can also be hierarchically grouped
to V! as how V! are merged to VI*!, we reuse {P'}
predicted by EMGP to construct the adjacency matrix of
the quasi-bipartite directed graph. Concretely, we compute
the cumulative product [T._, P* € RIV'IXIV™' which
can be regarded as graph pooling weights that directly pool
V! (or the auxiliary nodes U't!) to VI*1. To enable ver-
tices V!T! retain the information through EMGP, self-loops
are added to V'*!, resulting in the final adjacency matrix
I+ Hﬁg:l PF of the bipartite graph. Therefore, the bipartite
graph is formally defined as (U'+!, Vi1 1+ T} _, P*¥),
where directed edges are pointing from U'*+! to VI+1,

Next, we use graph convolution to allow message passing
from Ut! to VIFL:

!
Vi = GCom (U UV T4 [[PY) . )
k=1
where GCony stands for graph convolution. Following the
mean aggregator proposed in GraphSAGE [18], we use
weighted average aggregator GraphSAGE as the graph con-
volution layer:

h, =c(W- > w(uu)-h,) (6)
ueN (v)
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where h, stands for the feature of vertex v, o is the sig-
moid function, W is a learnable weight matrix, and N (v)
defines the neighboring nodes of vertex v. Here, w(u, v) is
the weight of the directed edge from u to v, which can be
found in the given adjacency matrix (i.e., I+ ch:1 P* asin
Eq. 5). Thus, the updated graph node features V'*! contain
features of both high-level semantics F'*! and the feature
summarization from its lower level graph G'.

Global Vector. After the construction of GZ, we obtain the
global vector representation R (see the top node in Fig. 2)
of the scene by:

R = READOUT(V*) | ©)

where READOUT function is used for combining features
of a graph in many GNN methods [54, 43]. Here we use
average pooling as the READOUT function. In other words,
R = \V1L| ZLVLl VL. R can also be regarded as a graph
atlevel L + 1 without edges, i.e., R = GLT1 = (VE+L ),
Since R is a vector representation of the image, it can be su-
pervised by image classification tasks, e.g., a scene category
label for the image.

3.2. Top-down Message Passing (TDMP)

To further enable high-level semantics to help low-level
features, the TDMP module iteratively updates each level of
graph features from the top-level graph R = GZ*! to the
bottom level graph G' through message passing, outputting
updated multi-level graph features. It serves much like the
“decomposition” process as motivated in Introduction.

Concretely, given V!*! (already updated) and V' (to
be updated), a quasi-bipartite graph is constructed (see
Fig. 2(c)), where directed edges are pointing from V/+!
to V. Intuitively, high-level semantics should be transmit-
ted to their corresponding lower-level regions. For example,
the whole human body feature at the (I + 1)-th level should
be sent to human parts (e.g., arms, legs) at the [-th level
. Thus, by reusing the grouping results in the bottom-up
process, edges P! € RIV'IXIV™' can be obtained by:

IV — ViH2
1, @®)

g

1 vl . ..
where Z' € RIV'l is a normalization term:

Vl,+1
N [VE- VP

Z= Y ep(-———1—) . )

J

After adding self-loops to V', a graph convolution layer
is applied to achieve the top-down message passing:

AVARES GConv(VH'1 UVLT+ pl) ) (10)

Material
Segmentation

Texture

Classification

Figure 3: Full Model for the Unified Perceptual Parsing
Task.

where V' is the updated vertex feature at the /th level and
GConvy is defined the same as in Eq. 6.

3.3. Re-projection from Graph to Grid Features

Finally, we re-project the updated vertex features {V'}
back to the grid features resulting in { ' }. The re-prejection
can be regarded as a mirror module of projection. Analogous
to the projection module, at each level [, a quasi-bipartite
directed graph (Vl, LOL I+H2=1 f’k) (see Fig. 2(d)) is built
from superpixel pooling features U’, updated vertex features
V!, and the adjacency matrix that comes from the self-loops
of U’ and the cumulative product ka:l P*. Here, edges are
pointing from V' to U'. Then, we apply graph convolution
to re-project the features:

l
U' = GComy(V' LU T+ [ PF) , an
k=1

where U is the vertex feature receiving information from
the graph and has the same number of superpixels defined
in superpixel map S. Lastly, Ulis copied to pixel regions
defined by the superpixel map S, outputting the updated grid
feature map Fl.

4. Unified Perceptual Parsing with DGM

To fully verify the effectiveness of the hierarchical graph
representation, we apply deep grouping model (DGM) on
the unified perceptual parsing (UPP) task, a challenging task
introduced by Xiao et al. [48]. Aiming at recognizing het-
erogeneous perceptual concepts of an image, UPP combines
tasks of scene classification, object segmentation, parts seg-
mentation, material segmentation, and texture recognition,
requiring good modeling on features at different granulari-
ties.

To this end, we insert DGM to a backbone model (see
Fig. 3), which outputs {F' |l = 1,..., L}. With the residual
connection [20] from {F' |l = 1...L}, we obtain multi-
resolution grid feature maps { ! + F* |1 =1,...,L}. Fol-
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lowing the architecture proposed by Xiao er al. [48], after bi-
linear interpolating all feature maps to the same size, we con-
catenate all L levels of grid features { F'+F'|l =1,...,L}
for object segmentation and part segmentation. In material
segmentation, we only use the bottom-level grid feature
F' 4+ F' for prediction by following the architecture of
UPerNet [48].

For scene classification, we first apply global average
pooling on the original top-level feature map F~ (not shown
in the figure). Then, it is residual connected with the graph
READOUT feature R for scene classification.

Limited by the dataset in UPP task [2], only texture im-
ages with image-level labels are provided. Therefore, for
texture recognition, the model classifies texture images with
the feature come from global average pooling on the bottom
grid features ! + F7 in training and quantitative evaluation.
However, we can also apply the texture classification layer
on each pixel to generate texture segmentation results on
natural images.

To summarize, the final loss of the full model on the
unified perceptual parsing task is defined by:

,C = AS‘CS + )\tﬁt + )\OEO + Apﬁp + Amﬁma (12)

where L and £, are cross-entropy losses between prediction
and image labels for scene classification and texture classifi-
cation, respectively. L,, £, L,,, are cross-entropy losses at
each pixel between the prediction and ground-truth for object
segmentation, part segmentation, and material segmentation,
respectively. Following [48], coefficients of each loss term
are \; = 0.25, A =1, A, =1,A, =0.5,\,, = 1.

5. Experiments
5.1. Dataset and Evaluation Metrics

The Broden+ dataset [2] is used for training and evalua-
tion on the unified perceptual parsing task [48]. The dataset
is comprised of five large datasets: ADE20k [60], PAS-
CAL Context [32], PASCAL-Part [7], OpenSurfaces [3],
and DTD [9] datasets. For each subtask in unified perceptual
parsing, the data source comes from the union of the datasets
that contain subtask’s labels. For example, object/stuff seg-
mentation task will be trained on and evaluated on the union
of ADE20k and PASCAL-Context datasets. In this way,
not only the number of tasks is large, but also the number
of categories is larger since datasets are merged together,
which makes the unified perceptual parsing task extremely
challenging. In terms of evaluation metrics, the scene classi-
fication task and texture classification task are evaluated via
top-1 accuracy (Top-1 Acc.). The object/stuff segmentation,
parts segmentation and material segmentation are evaluated
by mloU and pixel accuracy (P.A.).

ground truth APCNet OCNet UPerNet DGM
= N 7]
5

part object

material

Figure 4: Qualitative comparison on Broden+ Dataset.

5.2. Implementation Details

We follow the experimental settings in [48]. During
training, we resize the image’s shorter side to a size that
is randomly chosen from 300, 375, 450, 525, 600 and keep
its aspect ratio. The shorter side of the image is resized
to 450 pixels in the evaluation stage. Following [5], we
use “poly” learning rate policy (1 — %p 7"y to adjust
learning rate during training, and the initial learning rate is
0.02, where max_iter = 2 x 10° and power = 0.9. The
batch size is 8, and the model is trained on 4 GPUs.

MCQG [35, 1] is used for extracting superpixels for train-
ing DGM, which is further merged greedily to make sure
that the number of superpixel is at most 512. In terms of the
DGM architecture, the input multi-resolution feature map
F! comes from C; to Cy layers’ output from ResNet [20].
Accordingly, we set the level of graph L = 4 in our exper-
iment. All GraphSAGE [18] layers in DGM are followed
by L, normalization and ReLU [33]. The EMGP module
pools the graph to half the number of nodes in upper-level
graph (i.e., [V = |[V!|/2). The number of iteration K in
EMGHP is set as 5 in training and 10 in evaluation.

Our code is based on the PyTorch framework [34]. Specif-
ically, the PyTorch Geometric [14] is used to implement
graph operations in DGM. Following UPerNet [48], in the
experiment on Broden+ dataset, all tasks except the texture
classification task are trained jointly. When training the
texture classification task, the model’s parameters are fixed
except the texture classification branch.

5.3. Comparison with the State-of-the-art

Results of all tasks in the unified perceptual parsing (UPP)
task are shown in Tab. 1. Since the dataset is fairly recent
and only UPerNet [48] reports its results, we replicate OC-
Net [55] and APCNet [19]’s results' on the Broden+ dataset,
as they represent state-of-the-art contextual modeling meth-
ods based on non-local block and region-based context mod-

ITo ensure a fair comparison, we used the authors’ released code for
OCNet. Since no released code for APCNet, we did our best to replicate.
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Tasks Method Object Part Scene Material Texture
mloU PA. | mloU PA. | Top-1 Acc. | mloU PA. | Top-1 Acc.
APCNet 21.25 71.71 | 23.39 41.07 68.50 - - -
OCNet 22,62 74.58 | 28.51 4892 68.50 - - -
O+P+S UPerNet 23.83 77.23 | 30.10 48.34 71.35 - - -
DGM w/o | | 2458 74.76 | 31.23 51.17 71.24 - - -
DGM 2476  75.15 | 31.26 50.55 71.87 - - -
APCNet 20.37 71.01 | 22.32  40.08 68.45 43.88 79.95 50.35
OCNet 20.21  77.09 | 25.75 43.78 66.92 48.20 80.70 51.95
O+P+S+M+T UPerNet 2336 77.09 | 28.75 46.92 70.87 54.19 8445 57.44*
DGM w/o | | 24.05 74.21 | 29.94 49.49 70.24 54.52 8441 58.15
DGM 24.37 7499 | 30.28 49.70 71.03 54.58 84.62 60.10

Table 1: Comparing with state-of-the-art methods on Broden+ dataset. O+P+S means object segmentation task, part
segmentation task, and scene classification task are used in training and evaluation. O+P+S+M+T incrementally add material
segmentation task and texture classification task in training and evaluation stages. *Based on the authors’ released model, we
continue to train UPerNet and get better results on texture classification than the reported number (35.10) in [48].

Method ‘ mloU ‘ Pixel Accuracy
UPerNet 42.66 81.01
+DGM w/o | | 43.64 81.11
+DGM 43.51 81.13
HRNetv2 43.20 81.47
+DGM w/o | | 43.86 81.55
+DGM 43.46 81.53
DeepLabV3 44.1 81.1
+DGM w/o | | 44.31 81.36
+DGM 44.86 81.35
CCNet [22] | 45.22 -
APCNet [19] | 45.38 -
OCNet [55] | 45.45 -

Table 2: Results on ADE20k validation set.

eling in semantic segmentation, respectively. The backbone
of UPerNet, OCNet and our proposed DGM is ResNet50,
and APCNet’s backbone is the dilated ResNet50 [48, 19, 55].
Backbones’ weights are initialized with ImageNet [ ] pre-
trained models. More results comparing with GCU [25] and
HRNetv2 [44] backbone are included in Appendix.

Results shows that our model (DGM in Tab. 1) outper-
forms all other methods, achieving the state-of-the-art re-
sult on Broden+ in every subtask. Although DGM did not
achieve the best performance in terms of pixel accuracy on
the object segmentation subtask, we suspect that the pixel
accuracy measure is easily biased by the imbalanced number
of pixels among different classes, while mloU is a better and
more meaningful evaluation metric for segmentation.

In the qualitative evaluation, our model can achieve more
reasonable results. For example, in Fig. 4, compared with
other methods, our model successfully segments both cabinet
(in green) and toilet (in pink) in object segmentation. Our
model’s parts segmentation has smaller false prediction on
the toilet. Finally, on the material segmentation, our model

level 3 level 4

image

level 1

Figure 5: Visualization of perceptual groupings generated
by DGM. A color represents a graph vertex. Note that the
same color between different levels are not related.

shows sharp boundary on the legs of wood chair.

5.4. Ablation Study

Single-task training. To ablate the effect of multi-task
training, we train our model on ADE20k only focusing on
the semantic segmentation task. We use three backbone mod-
els to train and evaluate our model: UPerNet, HRNetv2 [44],
and DeepLabV3 [6]. Our DGM is general enough to be
an add-on module for many segmentation networks. More
details of how DGM is added will be illustrated in the sup-
plementary material. Results in Tab. 2 (see +DGM) show
that DGM can increase the performance for every backbone
model. Admittedly, OCNet and APCNet show better perfor-
mance on ADE20k. Our model serves a better role in the
more challenging unified perceptual parsing where a joint
representation for multiple tasks is needed.

Top-down message passing. To evaluate the role of
TDMP, we evaluate DGM model without TDMP (denoted
as DGM w/o |). In the Broden+ dataset, DGM w/o | shows
weaker performance compared with the full model, proving
the effectiveness of context modeling of TDMP. In the single-
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Model | FLOPs (A) | #Params (A)

OCP 161.4G 15.179M
RCCA(R=2) 16.5G 23.931M
DGM w/o] 9.3G 3.417M

DGM 10.8G 4.468M

Table 3: Compare overhead of contextual modules.

task ADE20k, DGM w/o |, performs weaker on DeepLabV3
backbone and achieves even better performance than the
full model when UPerNet and HRNetv2 are the backbones.
We suspect that the top-down message passing may not pro-
vide valuable information to lower-level graph features when
only one task is trained and evaluated. In comparison, TDMP
helps lower-level graph features for better prediction on part
segmentation and material segmentation (see Tab. 1).

5.5. Grouping Visualization

To verify the quality of perceptual grouping, the grouping
results are visualized in Fig. 5. Details of grouping visu-
alization will be illustrated in the supplementary material.
As shown in Fig. 5, DGM gradually merges conceptually-
related regions as it goes to higher levels in the hierarchy.
For example, in the second row, sofa gradually merges with
tables to the main area in the living room.

5.6. Overhead

We compare the overhead with other contextual modeling
methods: recurrent criss-cross attention (RCCA) module
proposed in CCNet [22] and object context pooling module
(OCP) in OCNet [55]. For a fair comparison, the size of
the input images to all methods is 769 x 769. In Tab. 3,
we show the difference of FLOPs and the number of pa-
rameters before and after adding the contextual modeling
module to the network. For our proposed DGM model, we
use ResNet50 [48] as the backbone when evaluating the over-
head. The results show that our model has significantly lower
overhead compared with non-local base OCP module. Note
that RCCA is the state-of-art method targeting at reducing
overhead in contextual modeling. Our method beats RCCA
module of CCNet. In Tab. 3, we also show the overhead of
our method without using TDMP (DGM w/o |). The result
shows that TDMP only creates little overhead.

6. Applications

We further show that DGM enables novel applications
due to the added interpretability of the perceptual grouping
process, which is difficult to achieve by using other segmen-
tation networks.

Click Propagation. In interactive segmentation, a user adds
positive click on the object and negative click on the back-
ground, which are used to segment the selected instance on
the image. One critical process of recent interactive seg-

level 1 level 2 level 1 level 2

Figure 6: Visualization of click propagation. Bottom-right is

negative click while others are all positive clicks.
level 1 level 2 level 3 level 4

Figure 7: Visualization of Grad-CAM. Red-to-blue denotes
the decreasing activation. Scene labels are shown.

mentation methods [30, 52] is augmenting user’s click by
propagating it to other related areas on the image. Since our
model produces a compositional-hierarchical graph, related
areas can be dynamically computed through the learning
process, rather than treating it as a pre-processing step. As
shown in Fig. 6, given a user’s click, our model first se-
lects a superpixel. Then, it can propagate to higher levels
by using the P! defined in Eq. 1. For example, positive
click is propagated to the entire shower kit in Fig. 6 top-left,
and negative click will not be propagated to the bathtub in
Fig. 6 bottom-right. More details are in the supplementary
material.

Explainability with Grad-CAM. We use Grad-CAM on
graph [36] to localize activated vertices at each level of
the hierarchy (more details in supplementary material). By
using the gradient back-propagated from the ground-truth
scene label, our model localizes semantically discriminative
regions on the image. For example, the bed is highlighted
with sharp boundary in Fig. 7 bedroom.

7. Conclusion

We propose Deep Grouping Model to marry a CNN seg-
mentation network with the perceptual grouping process,
which outperforms state-of-the-art methods on unified per-
ceptual parsing task with little overhead. Meanwhile, our
proposed model is of good interpretability and is useful in
other tasks. We believe such hierarchical graph representa-
tion is of great potential to be applied to many other tasks.
Acknowledgments. This work was supported in part by
NSF 1741472, 1764415, 1813709, and 1909912. The article
solely reflects the opinions and conclusions of its authors but
not the funding agents.

4060



References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

(13]

Pablo Arbelaez, Jordi Pont-Tuset, Jonathan T. Barron, Fer-
ran Marques, and Jitendra Malik. Multiscale combinatorial
grouping. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2014. 2, 6

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Anto-
nio Torralba. Network dissection: Quantifying interpretability
of deep visual representations. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017.
2,6

Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala.
Opensurfaces: A richly annotated catalog of surface appear-
ance. ACM Trans. Graph., 32(4):111:1-111:17, July 2013.
6

Timothy F Brady, Anna Shafer-Skelton, and George A Al-
varez. Global ensemble texture representations are critical to
rapid scene perception. Journal of Experimental Psychology:
Human Perception and Performance, 43(6):1160, 2017. 1

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille. Deeplab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected
crfs. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 40(4):834-848, April 2018. 1, 6

Liang-Chieh Chen, George Papandreou, Florian Schroff, and
Hartwig Adam. Rethinking atrous convolution for semantic
image segmentation. arXiv preprint arXiv:1706.05587, 2017.
-

Xianjie Chen, Roozbeh Mottaghi, Xiaobai Liu, Sanja Fidler,
Raquel Urtasun, and Alan Yuille. Detect what you can: De-
tecting and representing objects using holistic models and
body parts. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2014. 6

Yunpeng Chen, Marcus Rohrbach, Zhicheng Yan, Yan
Shuicheng, Jiashi Feng, and Yannis Kalantidis. Graph-based
global reasoning networks. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2019.
3

Mircea Cimpoi, Subhransu Maji, lasonas Kokkinos, Sammy
Mohamed, and Andrea Vedaldi. Describing textures in the
wild. In The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2014. 6

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum
likelihood from incomplete data via the em algorithm. Journal
of the Royal Statistical Society: Series B (Methodological),
39(1):1-22, 1977. 4

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2009. 7

Clement Farabet, Camille Couprie, Laurent Najman, and
Yann LeCun. Learning hierarchical features for scene la-
beling. IEEE transactions on pattern analysis and machine
intelligence, 35(8):1915-1929, 2012. 2

Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient
graph-based image segmentation. International journal of
computer vision, 59(2):167-181, 2004. 1

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

4061

Matthias Fey and Jan E. Lenssen. Fast graph representation
learning with PyTorch Geometric. In ICLR Workshop on
Representation Learning on Graphs and Manifolds, 2019. 6
Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei
Fang, and Hanqing Lu. Dual attention network for scene
segmentation. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2019. 3

Jun Fu, Jing Liu, Yuhang Wang, Yong Li, Yongjun Bao, Jinhui
Tang, and Hanqing Lu. Adaptive context network for scene
parsing. In The IEEE International Conference on Computer
Vision (ICCV), October 2019. 1

Raghudeep Gadde, Varun Jampani, Martin Kiefel, Daniel
Kappler, and Peter V. Gehler. Superpixel convolutional net-
works using bilateral inceptions. In Bastian Leibe, Jiri Matas,
Nicu Sebe, and Max Welling, editors, Computer Vision —
ECCV 2016, pages 597-613, Cham, 2016. Springer Interna-
tional Publishing. 2

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive
representation learning on large graphs. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 1024—1034. Curran Associates,
Inc., 2017. 3,4, 6

Junjun He, Zhongying Deng, Lei Zhou, Yali Wang, and Yu
Qiao. Adaptive pyramid context network for semantic seg-
mentation. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019. 1, 3,6, 7

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In The IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016. 5, 6

Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Local
relation networks for image recognition. In The IEEE Inter-
national Conference on Computer Vision (ICCV), October
2019. 2

Zilong Huang, Xinggang Wang, Lichao Huang, Chang Huang,
Yunchao Wei, and Wenyu Liu. Ccnet: Criss-cross attention
for semantic segmentation. In The IEEE International Con-
ference on Computer Vision (ICCV), October 2019. 7, 8
Varun Jampani, Deqing Sun, Ming-Yu Liu, Ming-Hsuan Yang,
and Jan Kautz. Superpixel sampling networks. In The Eu-
ropean Conference on Computer Vision (ECCV), September
2018. 2

Krishna Kumar Singh and Yong Jae Lee. Hide-and-seek:
Forcing a network to be meticulous for weakly-supervised
object and action localization. In The IEEE International
Conference on Computer Vision (ICCV), Oct 2017. 2

Yin Li and Abhinav Gupta. Beyond grids: Learning graph
representations for visual recognition. In S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R.
Garnett, editors, Advances in Neural Information Processing
Systems 31, pages 9225-9235. Curran Associates, Inc., 2018.
3,7

Xiaodan Liang, Zhiting Hu, Hao Zhang, Liang Lin, and Eric P
Xing. Symbolic graph reasoning meets convolutions. In S.
Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Infor-



(27]

(28]

[29]

(30]

[31]

(32]

[33]

(34]

(35]

(36]

(37]

(38]

[39]

[40]

mation Processing Systems 31, pages 1853—-1863. Curran
Associates, Inc., 2018. 2

Xiaodan Liang, Liang Lin, Xiaohui Shen, Jiashi Feng,
Shuicheng Yan, and Eric P. Xing. Interpretable structure-
evolving Istm. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017. 2

Xiaodan Liang, Xiaohui Shen, Jiashi Feng, Liang Lin, and
Shuicheng Yan. Semantic object parsing with graph Istm. In
Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling, edi-
tors, Computer Vision — ECCV 2016, pages 125-143, Cham,
2016. Springer International Publishing. 2

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2015. 1

Soumajit Majumder and Angela Yao. Content-aware multi-
level guidance for interactive instance segmentation. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2019. 2, 8

Alastair P Moore, Simon JD Prince, Jonathan Warrell, Umar
Mohammed, and Graham Jones. Superpixel lattices. In /[EEE
Conference on Computer Vision and Pattern Recognition,
2008. 1

Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu
Cho, Seong-Whan Lee, Sanja Fidler, Raquel Urtasun, and
Alan Yuille. The role of context for object detection and
semantic segmentation in the wild. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June
2014. 6

Vinod Nair and Geoffrey E Hinton. Rectified linear units
improve restricted boltzmann machines. In Proceedings of
the 27th international conference on machine learning (ICML-
10), pages 807-814, 2010. 6

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. In NIPS-W, 2017. 6

J. Pont-Tuset, P. Arbeldez, J. T. Barron, F. Marques, and J.
Malik. Multiscale combinatorial grouping for image segmen-
tation and object proposal generation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39(1):128-140,
Jan 2017. 1,2, 6

Phillip E. Pope, Soheil Kolouri, Mohammad Rostami,
Charles E. Martin, and Heiko Hoffmann. Explainability
methods for graph convolutional neural networks. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2019. 8

Ren and Malik. Learning a classification model for segmen-
tation. In Proceedings Ninth IEEE International Conference
on Computer Vision, pages 10-17 vol.1, Oct 2003. 1, 2
Joseph Tighe and Svetlana Lazebnik. Superparsing. Inter-
national Journal of Computer Vision, 101(2):329-349, 2013.
1

A. Tremeau and P. Colantoni. Regions adjacency graph ap-
plied to color image segmentation. [EEE Transactions on
Image Processing, 9(4):735-744, April 2000. 3

Wei-Chih Tu, Ming-Yu Liu, Varun Jampani, Deqing Sun,
Shao-Yi Chien, Ming-Hsuan Yang, and Jan Kautz. Learning

(41]

(42]

[43]

(44]

[45]

[46]

[47]

(48]

(49]

(50]

(51]

(52]

(53]

4062

superpixels with segmentation-aware affinity loss. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2018. 2

Zhuowen Tu, Xiangrong Chen, Alan L Yuille, and Song-
Chun Zhu. Image parsing: Unifying segmentation, detection,
and recognition. International Journal of computer vision,
63(2):113-140, 2005. 1

J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and
A. W. M. Smeulders. Selective search for object recognition.
International Journal of Computer Vision, 104(2):154-171,
Sep 2013. 2

Petar Velickovié¢, William Fedus, William L. Hamilton, Pietro
Lio, Yoshua Bengio, and R Devon Hjelm. Deep graph info-
max. In International Conference on Learning Representa-
tions, 2019. 5

Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, et al. Deep high-resolution represen-
tation learning for visual recognition. /IEEE Transactions on
Pattern Analysis and Machine Intelligence, March 2020. 1,7
Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming
He. Non-local neural networks. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.
2,3

Xiang Wang, Shaodi You, Xi Li, and Huimin Ma. Weakly-
supervised semantic segmentation by iteratively mining com-
mon object features. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018. 2
Yunchao Wei, Jiashi Feng, Xiaodan Liang, Ming-Ming
Cheng, Yao Zhao, and Shuicheng Yan. Object region mining
with adversarial erasing: A simple classification to semantic
segmentation approach. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), July 2017. 2
Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understanding.
In The European Conference on Computer Vision (ECCV),
September 2018. 1,2, 5,6,7, 8

Chenliang Xu and Jason J. Corso. Actor-action semantic seg-
mentation with grouping process models. In The IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR),
June 2016. 2

Chenliang Xu, Spencer Whitt, and Jason J. Corso. Flattening
supervoxel hierarchies by the uniform entropy slice. In The
IEEE International Conference on Computer Vision (ICCV),
December 2013. 2

Chenliang Xu, Caiming Xiong, and Jason J. Corso. Stream-
ing hierarchical video segmentation. In Andrew Fitzgibbon,
Svetlana Lazebnik, Pietro Perona, Yoichi Sato, and Cordelia
Schmid, editors, Computer Vision — ECCV 2012, pages 626—
639, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
2

Ning Xu, Brian Price, Scott Cohen, Jimei Yang, and
Thomas S. Huang. Deep interactive object selection. In
The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), June 2016. 2, 8

Jian Yao, Sanja Fidler, and Raquel Urtasun. Describing the
scene as a whole: Joint object detection, scene classification



[54]

[55]

[56]

(571

(58]

[59]

(60]

and semantic segmentation. In IEEE Conference on Computer
Vision and Pattern Recognition, 2012. 1

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren,
Will Hamilton, and Jure Leskovec. Hierarchical graph repre-
sentation learning with differentiable pooling. In Advances
in Neural Information Processing Systems, pages 4800-4810,
2018. 3,4,5

Yuhui Yuan and Jingdong Wang. Ocnet: Object context
network for scene parsing. arXiv preprint arXiv:1809.00916,
2018. 1,2,3,6,7,8

Matthew D. Zeiler and Rob Fergus. Visualizing and under-
standing convolutional networks. In David Fleet, Tomas Pa-
jdla, Bernt Schiele, and Tinne Tuytelaars, editors, Computer
Vision — ECCV 2014, pages 818-833, Cham, 2014. Springer
International Publishing. 3

Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang,
Xiaogang Wang, Ambrish Tyagi, and Amit Agrawal. Context
encoding for semantic segmentation. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June
2018. 1

Hang Zhang, Han Zhang, Chenguang Wang, and Junyuan
Xie. Co-occurrent features in semantic segmentation. In The
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2019. 1

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), July 2017. 1, 2

Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fi-
dler, Adela Barriuso, and Antonio Torralba. Semantic under-
standing of scenes through the ade20k dataset. International
Journal of Computer Vision, 127(3):302-321, Mar 2019. 6

4063



