
 1 Copyright © 2020 by ASME

Proceedings of the ASME 2020 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2020
August 18-21, 2020, St. Louis, MO, United States

IDETC2020-22518

DERIVING METAMODELS TO RELATE MACHINE LEARNING QUALITY TO DESIGN
REPOSITORY CHARACTERISTICS IN THE CONTEXT OF ADDITIVE

MANUFACTURING

Glen Williams
Mechanical Engineering

The Pennsylvania State University
University Park, PA, USA

gtw5020@psu.edu

Nicholas A. Meisel
Engineering Design

The Pennsylvania State University
University Park, PA, USA

nam20@psu.edu

Timothy W. Simpson
Mechanical Engineering

The Pennsylvania State University
University Park, PA, USA

tws8@psu.edu

 Christopher McComb
Engineering Design

The Pennsylvania State University
University Park, PA, USA

mccomb@psu.edu

ABSTRACT
The widespread growth of additive manufacturing, a field

with a complex informatic “digital thread”, has helped fuel the
creation of design repositories, where multiple users can upload
distribute, and download a variety of candidate designs for a
variety of situations. Additionally, advancements in additive
manufacturing process development, design frameworks, and
simulation are increasing what is possible to fabricate with AM,
further growing the richness of such repositories. Machine
learning offers new opportunities to combine these design
repository components’ rich geometric data with their associated
process and performance data to train predictive models capable
of automatically assessing build metrics related to AM part
manufacturability. Although design repositories that can be used
to train these machine learning constructs are expanding, our
understanding of what makes a particular design repository
useful as a machine learning training dataset is minimal. In this
study we use a metamodel to predict the extent to which
individual design repositories can train accurate convolutional
neural networks. To facilitate the creation and refinement of this
metamodel, we constructed a large artificial design repository,
and subsequently split it into sub-repositories. We then analyzed
metadata regarding the size, complexity, and diversity of the sub-
repositories for use as independent variables predicting accuracy
and the required training computational effort for training
convolutional neural networks. The networks each predict one of

three additive manufacturing build metrics: (1) part mass, (2)
support material mass, and (3) build time. Our results suggest
that metamodels predicting the convolutional neural network
coefficient of determination, as opposed to computational effort,
were most accurate. Moreover, the size of a design repository,
the average complexity of its constituent designs, and the
average and spread of design spatial diversity were the best
predictors of convolutional neural network accuracy.

1. INTRODUCTION

Additive manufacturing (AM) has increased the diversity of
geometries that can be designed and manufactured. A “digital
thread”, or information pathway, may be created when using an
AM technology [1]. In this digital thread, a component’s design,
which begins as a concept and associated user needs and
specifications, is represented by one or more 3D models before
finally being transformed into machine motion commands
transmitted to an AM system [1]. Along the way, rich and diverse
data is produced at each step. These data, stored in various digital
files (e.g. point clouds, CAD models, STL files, G-Code), may
be saved in a design repository for further analysis. Prior to the
rise of AM and other digitally-driven design and manufacturing
techniques, learning from past designs was a predominantly
manual process, often limited by what could be discerned from
paper 2D engineering drawings. Digital design repositories, on

 2 Copyright © 2020 by ASME

the other hand, allow vast stores of geometric data to be rapidly
searched, sorted, shared, and built upon [2].

These data, which are often geometric, can be useful for
training machine learning (ML) tools to provide feedback related
to AM components, such as in the automatic estimation of related
build metrics [3–7]. ML-powered feedback tools may prove
especially useful as accompaniments to AM heuristics [8,9],
frameworks [10], educational tools [11], and methods [12,13]
that seek to help designers make the most of AM’s unique
opportunities. These diverse areas of active AM design research
illustrate the natural link between AM and ML.

Although the AM-ML intersection shows promise, popular
ML algorithms have been increasing both in terms of complexity
and computational cost [14], presenting an ongoing challenge to
those seeking to apply ML to new areas. Additionally, AM design
repositories vary widely in their size, the geometric complexity
of their constituent 3D solid models, the nature of their relevant
applications, and the skill level of their contributors. There is
currently no benchmark training design repository that meets the
needs of AM-ML, and thus researchers and practitioners will need
to rely on diverse, real-world datasets. An improved theoretical
understanding of how well design feedback algorithms are likely
to perform when trained on diverse AM datasets will enhance the
AM community’s ability to develop more useful AM-ML tools.
Such tools would help engineers design more manufacturable
and cost-efficient AM parts by allowing them to use estimates
about cost and manufacturability to inform design iterations. In
this work, we research this relationship between AM datasets and
design feedback algorithms. Specifically, we study a 3D
convolutional neural network (CNN) designed to analyze AM
build metrics of part mass, support material mass, and build time.
Rather than focusing solely on the CNN performance, however,
we create and refine a metamodel to predict how effective
datasets with varying, quantifiable metadata attributes are when
used as training data. With this metamodel, we can then
investigate the following two research questions:

1. To what extent do the size, complexity, and diversity of a

design repository affect the ability of a 3D CNN trained using
that repository to predict part mass, build time, and support
material usage for unseen designs?

2. To what extent does a derived metamodel accurately

predict the performance of 3D CNNs using summary data related
to the size, complexity, and diversity of the training and testing
datasets?

The remainder of the paper is organized as follows. First, we

discuss relevant literature regarding the use of artificial neural
networks (ANN) and design repositories to analyze AM designs.
Next, we describe our methodology to systematically create and
analyze design repositories, build ML algorithms from their
constituent designs, and use a linear regression metamodel to
make quantitative predictions about the usefulness of different
design repositories for CNN training. Finally, we discuss the
results of our metamodel fitting and evaluation procedure and

use those results to draw conclusions about how this
metamodeling approach may be applied to industrial and
academic design repositories in future work.

2. BACKGROUND
 In this section we synthesize relevant prior contributions in
the literature relating to artificial neural networks in AM (see
Section 2.1) and design repositories used for AM research (see
Section 2.2). We then highlight how the intersection of these
fields creates an important research gap in the study of AM
informatics and AM-ML applications.

2.1. Artificial Neural Networks for AM
The assorted files produced during AM design efforts

present many opportunities for AM-ML research [15].
Specifically, artificial neural networks (ANN) are a popular type
of ML algorithm that have been applied to AM in the literature.

Many AM-ML efforts aim to make predictions about new,
arbitrary designs by learning generalizable patterns from
repositories of existing designs [16]. It is important for AM
analytical tools to learn patterns and solutions for general,
diverse inputs because of the vast complexity of designs that are
possible through AM [17]. These tools differ in input data type,
ML algorithm choice, and analysis objective. In terms of input
data, both design and in-situ processing measurements are
commonly used. Design data typically includes either single
metrics, such as part volume [18] or cost [3], geometric shapes
(e.g. voxel-based model [5,6]), or machine toolpath instructions
(e.g. G-code text [3,19]). In-situ processing data, which is
gathered during a real or simulated fabrication, often includes
thermal data from in-progress builds [20], such as infrared
images [21], image data [22], video data [7,23], and/or surface
topography scans [24]. The data format of choice and its
dimensionality tends to influence which ML algorithms are most
effective for a given task. For instance, data with fewer
dimensions are often analyzed with techniques such as fully-
connected neural networks [18], clustering, and regression [3],
whereas higher dimensional data are typically analyzed with
different techniques, particularly CNNs in recent years [5,6,25–
27].

Generally, ANNs are advantageous for use in AM analysis
due to the wide variety of data dimensionality and formats that
may be used as inputs or outputs for ANN architectures [16]. In
this study we specifically focus on the 3D CNN. The CNN is an
advantageous baseline for AM design repository research
because of its recent popularity in both AM-ML research and 3D
ML research in general. Additionally, the majority of AM
fabricated components are modeled in 3D at some point,
allowing them to either be input layer-by-layer into 2D CNNs or
as an entire volume into 3D CNNs [16]. CNNs, which are
capable of learning spatially-relevant patterns within high
dimensional inputs, such as pixel-based images or voxel-based
volumes, have rapidly spread through many academic fields
within the last decade [16,28]. Contemporary success in 3D
fields was preceded by an explosion of highly performing image
classification CNN architectures [28–31]. 2D and 3D CNNs,

 3 Copyright © 2020 by ASME

both of which have already been successfully used to analyze
AM parts [5,25–27] are likely to continue to be used extensively
in AM-ML.

2.2. AM Design Repositories
The growth of AM-ML research has been accompanied by

similar advancements in AM design repositories. Repositories
may be generally classified as those that are intentionally created
and those that are produced as a byproduct of other work. Many
design repositories that are intentionally created for or are
applicable to AM draw influence from early design repository
work that was completed in the 1990s. The NIST design
repository, created by Regli et al. [2] and Szykman et al. [32],
aimed to develop enhanced product design techniques that
leveraged central repositories and were better-suited to handle
design efforts spread over large geographic areas or long
timelines, as occurs with modern outsourcing [32]. Despite many
design repositories not being created specifically for AM, we
believe they are still relevant to AM because of their tendency to
contain 3D computer-aided design (CAD) data and AM’s general
ability to manufacture geometries that were not originally
designed for it but are subjected to an AM redesign effort [33].
General design repository research has investigated diverse
topics including but not limited to optimum data schema for
mechanical components [34], the extent to which such design
repositories impact design efforts and concept generation when
used as a tool [35–37], and enhancing design repository systems
to promote web-based search and networking activities [38].

Benchmark datasets are common in ML research, providing
a consistent subset of the global data domains for researchers to
compare machine learning results on [39] and eliminating the
need to manually obtain data for each new research effort. For
some fields, like image classification, one single type of data,
such as ImageNet’s annotated images [39], can be extensively
useful for the long-term, providing a method for researchers to
reliably and consistently compare the performance of their novel
ML algorithms [39]. Many research efforts use such benchmarks
to test image classification tools [40]. As mentioned in Section
2.1, some 2D classification techniques can be adapted to 3D
classification algorithms [31]. These types of efforts have driven
the formation of annotated 3D datasets, including ShapeNet [30]
and ModelNet [41]. Such datasets provide ML researchers with
geometric representations of common objects and hierarchical
attribute labels that may be used to train ML classifiers [30,41].

Although hierarchically-labeled 3D object repositories have
many beneficial research applications, they do not always
contain sufficient data or organizational structure for 3D AM-
ML applications. For instance, classification benchmarks tend to
contain models designed for aesthetic representation [30],
possibly making them less realistic for AM. Furthermore, lack of
consistent scale and dimensional specification across designs
[30] could be a challenge for conducting AM-ML analysis,
which is often grounded by the build volume of the AM process.
Also, lacking design intent data could hinder the automated
understanding of what a shape’s intended function is [42]. Other
recent efforts have focused on improving the end-to-end CAD

data gathering, storage, and access challenges associated with
design repositories. FabWave is intended to support data-driven
research of CAD parts by compiling web-scraped CAD models
from free hosting websites and prototyping CAD tool add-ins to
support crowd-sourced model submission [43]. Additionally,
other researchers use artificial design repositories (ADR), or
design repositories containing manufacturable components that
were not originally intended for fabrication [5], to bypass data-
gathering difficulties during early-stage ML research efforts
[5,27]. As the drive to use ML for AM analysis grows, we
anticipate further expansion, diversification, and improvement to
AM-relevant design repositories.

2.3. AM Informatics and ML Research Gap

 At first glance, using design repositories to train supervised
ML tools may appear to be a straightforward process: data is split
into one or more groups of training and validation sets which are
used to iteratively optimize the adjustable parameters of a
particular ML architecture, such as an ANN, until a desirable
accuracy is reached [16]. Although this training process, once
begun, may be largely automatic [44], many 3D analytical ML
architectures require large training sets on the order of thousands
of input geometries [5,31,42]. Manually compiling such large
repositories for design may be time-consuming [45,46], and the
computational and power consumption of training can be
undesirably high [14]. Additionally, the final accuracy of an
ANN may be hard to predict without computationally-intensive
evaluation against an extensive validation dataset [47].

Lack of reliable design repository heuristics and theoretical
understanding could cause inconsistency and suboptimality in
the development of AM-ML. Also, if more industries begin
investigating the use of ML to achieve increasingly specialized
goals, then they may seek to use their existing design portfolios
to drive the creation of useful AI tools. Compiling, selecting, and
prioritizing datasets to use for AM-ML experimentation could
prove inefficient and costly if done ad hoc, potentially hindering
the success of those development efforts. However, this
preparatory stage is critically important for downstream efforts.
Being able to quickly and reliably predict the accuracy and
training time of an AM-ML construct at the outset of a project
could increase the efficiency of AM-ML development by
ensuring computational resources are devoted only to attempts
that are most likely to be successful. Knowing accuracy in
advance is useful to anticipate if the overall goals of the trained
AM-ML construct will be met. Estimating training time can
provide decision makers with the knowledge needed to
understand if their limited resources can handle the additional
development cost. Although predicting both concurrently would
be ideal, these predictions are also useful individually.

The rate and quality of AM-ML technological development
will be increased through a better understanding of the design
repositories to be used as training and testing datasets. In this
study, we generate metamodels that relate design repository
characteristics to measures of the quality of trained ML models.
First, we implement an analytical methodology to model the
design repositories using quantitative metadata that concisely

 4 Copyright © 2020 by ASME

describes the overall size, complexity, and diversity of the
repositories. We then empirically test the performance of design
repositories when used as training datasets for 3D CNN
algorithms and use the results to train an ordinary least squares
(OLS) metamodel. This metamodel can then be used to predict
CNN training performance of a new design repository.

3. METHODOLOGY
We developed our design repository characterization

metamodel using an analytical theory-building approach that
leveraged synthetic data. This section details the artificial design
repository (see Section 3.1), the AM build metrics used to
evaluate each part in the artificial design repositories (see
Section 3.2), the machine learning algorithm used to predict AM
build metrics based on part geometry (see Section 3.3), and the
OLS metamodel used to relate design repository characteristics
to expected CNN accuracy and training time (see Section 3.4).
Figure 1 shows a visualization of the overall methodology.

Figure 1 Visualization of the methodology for the study.

3.1. Artificial Design Repository
The artificial design repository (ADR) used here was

created as a representative analog of design repositories that exist
today but with a more structured, controllable format that is well-
suited for early-stage, AM-ML research. It emulates possible
real-world repositories of 3D mechanical part CAD models in

size, complexity, and diversity [48]. In order to represent the
breadth of possible repositories, a single large repository with
many unique geometries was assembled. This large repository
was then strategically sliced to create sub-repositories which
could be systematically analyzed for metadata attributes and
performance as ML training sets. For the purposes of this
research, we characterize each sub-repository according to the
number of designs, the complexity of those designs, and the
diversity across the set of designs in the sub-repository.

The constituent designs were created using a procedural,
template-based CAD generation process (see Figure 2), similar
to the one used by Williams et al. [5], but with the Autodesk
Fusion 360 C++ API [49] . Although the number of dimensions
required to specify a single design for a given design template
was relatively low, the number of possible combinations is
essentially infinite, enabling us to generate many diverse
geometries relatively quickly.

Each design was first modeled as a parametric CAD file,
then converted to an STL file, before being converted to a 64 ×
64 × 64 voxel model, in which voxels may only be coded “1.0”
to indicate material presence or “0.0” to indicate material
absence. The STL file was used to analyze design complexity
and the AM build metrics, and the voxel-based model was used
for spatial diversity analysis and as an input to the 3D CNNs.

Figure 2 Visualization of the digital pathway from a set of
dimensions specifying a particular embodiment of a two-
stepped cylinder design template (1), a Fusion 360 CAD
model (2), an STL file (3), and a voxel-based model (4).

In addition to the templates used by Williams et al. [5],
templates representing shells, boxes, and hole patterns were
included. Templates with more complex internal geometries
were also added as such features are particularly important to
DfAM, in which lattice structures and infill patterns are
common. In total, 40 unique templates were equally represented
across the 84,700 unique geometries that were created. Every
geometry was also rotated to a random orientation per the impact
of the orientation on the results found by Williams et al. [5]

Once a large design repository was created, sub-repositories
were selectively assembled from the superset. A uniform random
number generator was used to choose 20 to 5,000 individual
designs to be included in each of the sub-repositories. Individual
repositories were not limited to contain uniform distributions of
particular design templates, in an attempt to simulate variety
existing in human-curated repositories. In total, 720 different

 5 Copyright © 2020 by ASME

sub-repositories were created. These sub-repositories themselves
served as data points for fitting and assessing metamodels that
would predict attributes of other repositories.

In this study, we chose seven metadata values to represent
the characteristics of the sub-repositories, providing varying
measures of the sub-repository size, complexity, and diversity.
The design repository size, 𝑠, is the min-max normalized number
of unique geometries in the repository. We chose to include 𝑠
because real-world design repositories can vary substantially in
size, and prior work in the ML literature suggests that training
dataset size is one of the most important factors when creating
accurate CNNs [50].

In addition to size, we wanted to include design repository
values that were specific to the geometric analysis task studied.
We chose measures of geometric complexity, 𝐶𝑃 and 𝐶𝐴 , and
spatial diversity 𝐷. These complexity measures were adapted
from prior design complexity literature by Conner et al. [51]. The
part volume ratio, 𝐶𝑃 , was calculated for each geometry 𝑗 as

𝐶𝑃 ,𝑗 = 1 −
𝑉𝑝

𝑉

where 𝑉𝑝 is the part volume and 𝑉 is the part bounding box
volume. The part surface area ratio, 𝐶𝐴 , was calculated for each
geometry 𝑗 as

𝐶𝐴 ,𝑗 = 1 −
𝐴𝑠

𝐴𝑝

where 𝐴𝑠 is the surface area of a sphere with the same volume as
the part and 𝐴𝑝 is the part surface area. All part volumes and
surface areas were calculated from STL approximations of the
geometries (see Section 2.2).

Spatial diversity, 𝐷, was calculated using the voxel-based
model instead of the STL. 𝐷 was used to assess how much
individual designs filled the cubic voxel space. Williams et al.
[5] found that diversity of the voxel representations of 3D
designs in a training dataset can affect the performance of a 3D
regression CNN, leading us to study a version of that metric as a
potential metadata attribute that might be critical to training
dataset effectiveness. 𝐷 was calculated by flattening the 64 × 64
× 64 voxel-based model into a 1D vector, then taking the squared
Euclidean distance of that vector from the voxel space origin.

For each of these metrics, we computed a median value and
interquartile range to represent the central-tendency and spread
of that quantity for the given design repository, respectively.
Combined with repository size, these seven quantities (𝑠, 𝐶𝑃 ,𝑚,
𝐶𝑃 , , 𝐶𝐴 ,𝑚, 𝐶𝐴 , , 𝐷𝑚, 𝐷) effectively characterize a given
design repository.

3.2. AM Build Metrics
After the large artificial design repository was created, all

constituent geometries were analyzed for three AM build
metrics: (1) part mass, (2) support material mass, and (3) build
time assuming a material extrusion AM process. Part mass is the

amount of material in grams present in the final, manufactured
component after any support material has been removed. Support
material mass is the amount of material in grams that is required
to be deposited beneath overhanging structures to keep them
from collapsing during fabrication. Build time is the amount of
time in hours necessary for the AM machine to fabricate the part,
approximated as a weighted linear combination of the part mass,
support material mass, and part height. All build metric values
were calculated based on STL files, and were calculated using
the methods presented by Williams et al. [5], which assumed a
polylactic acid (PLA) material and simplified AM processing
speeds. These build metrics served as the ground-truth values
when training 3D CNN models to analyze the same metrics
based on voxel inputs (see Section 3.3).

The three metrics were specifically chosen because they
may be quickly calculated using alternative algorithms and
inputs to the 3D CNNs and have been studied in prior AM
estimation and design repository literature [5,6,52]. Although
build metric values will vary depending on the specific AM
process, machine, and material used, we chose to assume these
metrics would be calculated for an idealized, generic material
extrusion process of the same properties as the one analyzed by
Williams et al. [5]. Using a generalized AM process is acceptable
for this study because we seek general theory related to AM-ML,
and not particular machines, processes, or materials. The
proposed method could be repeated with new ground truth data
that is more closely related to specific AM processes (e.g. metal
powder-bed fusion) to make results more relevant for use.

3.3. Machine Learning Algorithm

3.3.1. 3D CNN Architecture
For this study, we used a 10-layer neural network containing

a convolutional section and a fully-connected section (see Figure
3), the same CNN from our previous work [5]. It accepts a 64 ×
64 × 64 voxel model input, and the voxelized design space was
10 cm × 10 cm × 10 cm large, an arbitrary size that represents a
build volume applicable to many desktop material extrusion AM
systems. The CNN was developed and trained using TensorFlow
version 1.12 [53], Keras version 2.2.4 [54], Python version 3.6.5,
and the “Adam” Optimizer [55]. All training was completed on
an NVIDIA P6000 Graphics Processing Unit.

For this study, the 3D CNNs were trained using an early stop
condition. After three consecutive epochs of training in which
the validation accuracy did not improve, the 3D CNN was
considered trained, and its accuracy and the total number of
epochs were recorded.

3.3.2. CNN Performance Metrics

Each individual CNN that was trained was capable of
predicting only one of the three AM build metrics described in
Section 3.2 at a time. All sub-repositories were thus used to train
three separate CNNs to cover all build metrics. Each of these
trained CNNs were then analyzed for two CNN performance
metrics. The first performance metric was CNN coefficient of
determination (CNN-COD), shortened here with the symbol 𝑎.

 6 Copyright © 2020 by ASME

CNN-COD describes the total fraction of a build metric’s
variation that is explained by the particular trained CNN for a
given repository and is used here as an indication of accuracy. A
75%/25% train-test split was used to calculate the CNN-COD.

Figure 3 Diagram of the CNN architecture used in the study.

The second performance metric recorded was the number of
epochs required to achieve convergence (ETC) as determined by
our early stop condition. This value, abbreviated �̂�, was intended
to be a surrogate measure for the amount of computational effort
required to achieve convergence. Note that the raw data for both
𝑎 and �̂� are specific to the build metric predicted by the particular
CNN for which they are reported. For instance, 𝑎𝑃 describes
the COD of a CNN that predicts part mass based on a
component’s voxelized geometric input.

3.3.3. Aggregate CNN Performance Metrics

In addition to describing a trained CNN’s accuracy and
computation time, we also employed metrics to characterize a
CNN’s comparative quality in more general ways. Six aggregate
CNN performance metrics were calculated to achieve this goal.
By fitting metamodels that also predict these aggregate CNN
performance metrics, we aim to study metamodels that offer
more generalized predictions than those relating to only one
combination of CNN performance metric and AM build metric
at a time. The aggregate metrics were found by averaging

normalized CNN performance metrics associated with a given
design repository. The general form of the CNN performance
metric aggregation formula was

�̂�𝑖 =
1
𝑛

𝑃𝑘,𝑖 − 𝑃𝑘,𝑚𝑖𝑛

𝑃𝑘,𝑚𝑎𝑥 − 𝑃𝑘,𝑚𝑖𝑛

𝑛

𝑘=

where 𝑘 is the index of the particular performance metric, 𝑛 is
the total number of CNN performance metrics being aggregated,
and 𝑃𝑘 is either 𝑎 or �̂� for a given build metric. Variables
subscripted 𝑚𝑖𝑛 are the smallest values recorded across sub-
repositories for that metric and variables subscripted 𝑚𝑎𝑥 are the
largest values recorded across all sub-repositories.

Two of the aggregate CNN performance metrics were found
by taking the mean of the same CNN performance metrics across
the three build metrics. These were the aggregate CNN-COD
performance metric, �̂�𝑎, and the aggregate CNN epochs to
convergence performance metric, �̂�𝑡 . Each individual CNN
performance metric was min-max normalized based on the
overall sub-repository ranges prior to aggregation. For this
metric, we chose to use larger aggregate scores to be indicative
of CNNs that were higher performing overall. We used one
minus min-max normalized �̂� to align the direction of better CNN
performance for both 𝑎 and �̂�.

Three additional aggregate CNN performance metrics were
found by taking the mean of the two original CNN performance
metrics, 𝑎 and �̂�, for the same build metric. Thus, individual
aggregates specific to part mass (�̂�𝑃), support material mass
(�̂�), and build time (�̂�) CNNs were calculated. Finally, we
also investigated an overall aggregate CNN performance metric,
�̂�𝐴 , found by taking the mean of the other aggregate build
metrics. These six values (�̂�𝑎, �̂�𝑡 , �̂�𝑃 , �̂� , �̂� , �̂�𝐴)
characterize a design repository’s performance at training CNNs.

3.4. Linear Metamodel Construction
One of the goals of the current study is to demonstrate

models that could predict effectiveness of a design repository as
an ML training dataset. The set of independent variables for this
fit are the summative characteristics that describe each design
repository (e.g., size, median part volume ratio, etc.). The
dependent variables in this fit are the coefficient of determination
(COD) of the CNN trained with the design repository and the
number of epochs required to achieve convergence. To produce
a metamodel linking these variables, we chose to use OLS
regression.

The initial OLS metamodel is comprised of the twelve-
response, multiple linear regression formula given by

�⃑� = 𝜶�⃑� + 𝛽

where �⃑� is the vector of dependent variables predicted by the
metamodel, �⃑� is the vector of independent variables that
characterize a given design repository, 𝜶 are the coefficients
found by the OLS fitting algorithm, and 𝛽 are the intercepts. The

 7 Copyright © 2020 by ASME

independent and dependent variable vectors for a given sub-
repository 𝑖 was formed from the metadata attributes and CNN
performance metrics as follows:

�⃑�𝑖 = [𝑠𝑖 𝐶𝑃 ,𝑚,𝑖 𝐶𝑃 , ,𝑖 𝐶𝐴 ,𝑚,𝑖 𝐶𝐴 , ,𝑖 𝐷𝑚,𝑖 𝐷 ,𝑖]

�⃑�𝑖 = [𝑎𝑃 ,𝑖 �̂�𝑃 ,𝑖 𝑎 ,𝑖 �̂� ,𝑖 𝑎 ,𝑖 �̂� ,𝑖 �̂�𝑎,𝑖 �̂�𝑡,𝑖 �̂�𝑃 ,𝑖 �̂� ,𝑖 �̂� ,𝑖 �̂�𝑖]

where 𝑠 is the repository size, 𝐶𝑃 ,𝑚 is the median part volume
complexity, 𝐶𝑃 , is the interquartile range of part volume
complexity, 𝐶𝐴 ,𝑚 is the median part area complexity, 𝐶𝐴 , is the
interquartile range of part area complexity, 𝐷𝑚 is the median
squared Euclidean distance, and 𝐷 is the interquartile range of
squared Euclidean distance. All of the independent variable
values were min-max normalized prior to use in the metamodel.

This initial metamodel was fit as eight individual OLS
regression models, one response variable at a time. The Python
Scikit-learn package version 0.22.1 was used for OLS fitting
[56]. A 10-fold cross validation approach was used for fitting and
evaluating each model. The individual, fitted linear regressions
were then analyzed and compared to one another in terms of their
mean coefficient of determination, averaged across all ten cross
validation runs, when predicting their respective CNN
performance metrics. The independent variables were also
analyzed to determine whether they had a statistically significant
linear correlation with each of the dependent variables through
calculation of the Pearson correlation coefficients. Finally, the
explained variance contribution of each independent variable
was found using a sequential sum of squares approach in an
ANOVA analysis. The statistical tests were completed using the
Python statsmodels package version 0.9.0 [57]. The results are
analyzed next.

4. RESULTS
This section describes the results from the metamodel fitting

and evaluation process (see Section 4.1), the statistically-driven
down selection process of the different metamodels investigated
(see Section 4.2), and the final selection of the most effective,
single metamodel.

4.1. Metamodel Data Gathering, Fitting, and
Evaluation

All sub-repositories were used to train CNNs to predict part
mass, support material mass, and build time as part of the
metamodel fitting dataset creation process. We observed a wide
range of CNN-COD (see Figure 4) and ETC results (see Figure
5), indicating that these data provide a good basis on which to fit
a metamodel. In general, CNNs trained to predict part mass were
the most accurate, with a median CNN-COD of 0.98. Build time
CNNs were the second most effective on average, exhibiting a
median COD of 0.92. Support material mass was consistently the
most challenging build metric for the CNNs to predict, with a
median COD of 0.47. This generally aligns with previous results
found by Williams et al. [5].

Different output build metrics also resulted in different
average CNN training durations. Part mass and build time were

the longest training durations, with medians of 21 and 22 epochs.
Support material mass CNNs converged faster, with a median of
14 epochs.

Figure 4 Box plots of CNN-COD results for all sub-
repositories grouped by build metric predicted by the CNN.

Figure 5 Box plots of ETC results for all sub-repositories
grouped by build metric predicted by the CNN.

After training the CNNs with each of the sub-repositories
and calculating aggregated CNN performance metrics, we
analyzed the univariate Pearson linear correlation values
between each of the metamodel independent variables and the
CNN performance metrics. The associated p-values from the
univariate Pearson analysis were then used to determine
statistical significance of the linear correlations of each variable
using an alpha value of 0.05 (see Table 1). Although this linearity
estimate does not describe how well a trained linear model will
perform, it does provide insight into whether fitting a linear
model is likely to be sufficient.

 8 Copyright © 2020 by ASME

Table 1 Univariate Pearson correlation values that were used
to analyze the relationship between each independent
variable and the dependent variables. Bolded, highlighted
values indicate that the relationship was significantly linear
(p < 0.05).

 �⃑� Variable Pearson Correlation Coefficient
�⃑� 𝒔 𝑪𝑷𝑹,𝒎 𝑪𝑷𝑹,𝒓 𝑪𝑨𝑹,𝒎 𝑪𝑨𝑹,𝒓 𝑫𝒎 𝑫𝒓

𝑎𝑃 ,𝑖 0.283 0.094 0.037 -0.034 0.067 -0.076 0.159
�̂�𝑃 ,𝑖 -0.323 -0.015 -0.017 -0.090 0.009 0.020 0.016
𝑎 ,𝑖 0.504 -0.018 -0.011 0.019 0.026 -0.052 0.062
�̂� ,𝑖 0.393 -0.041 0.022 -0.019 0.050 -0.079 0.034
𝑎 ,𝑖 0.327 0.138 0.041 -0.021 0.036 -0.112 0.041
�̂� ,𝑖 -0.065 0.052 0.048 0.039 0.020 -0.009 -0.036
�̂�𝑎,𝑖 0.432 0.100 0.033 -0.021 0.058 -0.101 0.122
�̂�𝑡,𝑖 0.025 0.001 -0.031 0.045 -0.046 0.037 -0.008
�̂�𝑃 ,𝑖 0.449 0.058 0.033 0.073 0.022 -0.054 0.058
�̂� ,𝑖 -0.281 0.041 -0.029 0.028 -0.049 0.072 -0.018
�̂� ,𝑖 0.190 -0.003 -0.035 -0.049 -0.007 -0.032 0.053
�̂�𝑖 0.264 0.057 -0.013 0.033 -0.014 -0.018 0.060

As shown in Table 1, repository size was frequently

correlated with the CNN performance metrics. Size was
significantly correlated in 10 out of 12 possible metamodel
dependent variable types, and it had the largest correlation
magnitudes when compared to other independent variables in all
significant cases. Conversely, 𝐶𝑃 , and 𝐶𝐴 , , the interquartile
ranges of part volume ratio complexity and part area ratio
complexity, were not significant in any of the correlations. Part
mass and build time CNN-COD metamodels were also often
linearly correlated with independent variables for the non-
aggregate metamodels. In general, ETC metamodels tended to
have lower numbers of statistically significant linear
relationships than CNN-COD metamodels. Together, these
results suggest that only a subset of the metamodel dependent
variable outputs were likely to be well-predicted by the linear fit.

The k-fold cross validation results for the linear metamodel
were averaged and are shown in Figure 6. Each of the first three
rows of Figure 6 shows the metamodel predictive performances
for a different build metric. The bottom row of Figure 6 shows
the results for the individual normalized responses averaged
across all three build metrics. The first two columns of Figure 6
detail the COD values for each CNN performance metric. The
rightmost column of Figure 6 shows the COD values when the
metamodel is predicting the aggregate, normalized CNN
performance metrics.

A variety of metamodel performance levels were observed
in this study. Overall, 9 out of 12 metamodel combinations
exhibited CODs greater than zero, indicating that they were able
to explain some of the variability present in the data. In general,
CNN-COD, 𝑎, was more easily predicted by the metamodels
than ETC, �̂�. This trend is evident from the fact that all four
metamodel combinations predicting 𝑎 were above zero, whereas
only two out of four of those predicting �̂� were below zero, and

therefore worse than using a mean model. Of the three build
metrics, metamodels that were fitted to predict support material
mass CNN performance explained the most variability for both
non-aggregated CNN performance metrics. The support material
metamodel combination predicting CNN-COD had the highest
individual average COD, at 0.27. Part mass was the second most
effective, non-aggregate build metric, with an average COD of
0.12. Build time had the least effective metamodels, averaging a
COD of 0.02.

Figure 6 Mean COD values for metamodels predicting each

of the independent variables and each build metric.

The most effective aggregate metamodel was the aggregate

CNN-COD performance metric, �̂�𝑎. It had a COD of 0.19. The
�̂�𝑎 metamodel was selected for further study and refinement due
to its relatively high COD and the high number of significant
correlations (see Table 1). This metamodel was also particularly
interesting because it provided predictions that were applicable
to all three build metrics, making it a more generalized
metamodel than some of the others.

4.2. Metamodel Refinement
To further analyze the �̂�𝑎 metamodel, the proportion of

variability explained by each independent variable was estimated
using an ANOVA sequential sum of squares (see Table 2).

Table 2 Explained variance breakdown of the metamodel
predicting 𝒑𝒂 CNN performance metric.

Independent
Variable

Proportion of
Overall Variance

Proportion of
Explained Variance

𝑠 18.6% 84.9%
𝐶𝑃 ,𝑚 0.6% 2.7%
𝐶𝑃 , 0.1% 0.5%
𝐶𝐴 ,𝑚 0.6% 2.7%
𝐶𝐴 , 0.0% 0.0%
𝐷𝑚 0.7% 3.2%
𝐷 1.1% 5.0%

 9 Copyright © 2020 by ASME

As shown in Table 2, size was clearly the largest portion,
accounting for 84.9% of the variance explained by the model.
This provides substantial predictive power. However, there is a
set of additional variables that account for an additional 13.6%
when combined. These included median part volume ratio
complexity (𝐶𝑃 ,𝑚), median part area ratio complexity (𝐶𝐴 ,𝑚),
median squared Euclidean distance diversity (𝐷𝑚), and
interquartile range of squared Euclidean distance diversity (𝐷).
The interquartile ranges of part volume ratio (𝐶𝑃 ,) and part area
ratio (𝐶𝐴 ,) accounted for only 0.5% and 0.0% of the explained
variance, respectively.

Since our results indicated that some independent variables
were likely more influential than others, we decided to create a
refined metamodel that relied only on the most effective
predictors. Pursuing a parsimonious predictive model is
important to avoid overfitting and encourage comprehension and
utility. The proportions of explained variance from each
independent variable, alongside those from the independent
variable linearity significance test results shown in Table 1
provide statistical bases for a trimming approach to refine the
metamodel. Furthermore, the linearity results suggest that certain
independent variables are less likely to be well-modeled by a
linear metamodel. For the case of the �̂�𝑎 metamodel, the
insignificantly correlated variables were interquartile range of
part volume ratio complexity (𝐶𝑃 ,), median part area ratio
complexity (𝐶𝐴 ,𝑚), and interquartile range of part area ratio
complexity (𝐶𝐴 ,). Heuristically, one might use this information
to suggest trimming those independent variables from the
metamodel. However, the empirical evidence of variance
explained by each variable shown in Table 2, suggests including
𝐶𝐴 ,𝑚 in the refined metamodel may be more effective. An
alternative approach could be to remove all variables other than
size, since size was clearly the dominant predictor of aggregate
CNN-COD in the �̂�𝑎 metamodel. We call these two respective
approaches the “size-only trimming approach” and “variance
trimming approach”.

We tested both of these metamodel trimming approaches.
This step involved refitting the metamodels with trimmed
subsets of the original independent variable vector, evaluating
the metamodel performances, and comparing the results. The
results are summarized in Tables 3 and 4.

The best-performing refined metamodel was that trimmed
with the variance approach, with mean COD equal to 0.22. This
COD value was slightly greater than the mean COD of its
predecessor, untrimmed metamodel (which had a COD of 0.19).
Conversely, the size-only trimming approach resulted in a lower
COD of 0.18, indicating that there is value in considering
additional metrics.

Based on these results, we selected the refined metamodel
based on the variance trimming approach as our final, best
metamodel. This metamodel was shown to be able to predict
trained CNN performance for multiple build metric applications,
as evidenced by its nonzero COD value when predicting the
CNN-COD aggregate response. This trait makes it relatively
general and more widely applicable than the non-aggregate

metamodels. Additionally, the metamodel’s mean COD value of
0.22 was relatively large, the second largest of all metamodels
attempted. We refit the metamodel using all available data to
obtain coefficients and a final explained variance breakdown of
a single, fitted OLS metamodel (see Table 4).

Table 3 Coefficients and explained variance of each
independent variable in the size only linear metamodel.

Independent
Variable

Metamodel
Coefficients

Proportion
of Overall
Variance

Proportion of
Explained
Variance

𝛽 0.8932 N/A N/A
𝑠 0.1736 18.6% 100.0%

Table 4 Coefficients and explained variance of each
independent variable in the refined linear metamodel.

Independent
Variable

Metamodel
Coefficients

Proportion
of Overall
Variance

Proportion of
Explained
Variance

𝛽 0.8775 N/A N/A
𝑠 0.1685 18.6% 85.8%

𝐶𝑃 ,𝑚 0.0844 0.6% 2.9%
𝐶𝐴 ,𝑚 -0.0551 0.6% 2.6%

𝐷𝑚 -0.0573 0.7% 3.3%
𝐷 0.0630 1.2% 5.4%

5. DISCUSSION
Our results suggest several interesting trends regarding

design repository effectiveness when training ML constructs for
AM build metrics that may be used to inform development of
new heuristics related to design repository assessment. First, we
found that the predictive power of a metamodel assessing a
design repository can vary substantially depending on the CNN
performance metric it attempts to predict. We found that CNN-
COD was more accurately predicted than ETC. Additionally, of
the aggregate CNN performance metrics, only metamodels
predicting �̂�𝑎 and �̂�𝑃 were of relatively high COD, namely, 0.19
and 0.18. This result suggests that aggregating CNN
performance metrics, although potentially useful, must be done
with care and should be supported by empirical evidence of
effectiveness on a case-by-case basis. In this study, it appears that
aggregating too many measures can result in undesirable
predictive capabilities, as is the case with the overall aggregate,
�̂�, which only achieved an average COD of 0.04. Additionally,
these results differed depending on which build metric was being
predicted by the CNNs. This observation is crucial to the
expansion of this work to other ML applications within AM. In
general, we found that more challenging CNN outputs, such as
support material mass, were easier for the metamodel to predict.
Understanding the specific causality of this observation is
reserved for future work, and may be achieved with a more

 10 Copyright © 2020 by ASME

complex experimental method examining the interactions
between these factors.

Our data also shows useful trends related to the effectiveness
of individual design repository metadata metrics when used as
metamodel independent variables. These results suggest that
choosing which metadata metrics will correlate with CNN
performance may be best done empirically. We chose the size,
complexity, and diversity metadata measures used in this study
based on intuition gathered from the experience of training
thousands of 3D CNNs in prior work. Ultimately, only some of
our intuitively chosen metadata metrics were empirically found
to predict CNN performance accurately based on statistical
analyses. Some, such as size (𝑠), median part volume ratio
complexity (𝐶𝑃 ,𝑚), and median squared Euclidean distance
(𝐷𝑚) were significantly linear and contributed nonzero explained
variance in multiple metamodels. Others, specifically
interquartile range of part volume ratio complexity (𝐶𝑃 ,) and
interquartile range of part area ratio complexity (𝐶𝐴 ,) were not
significantly linear in any attempted metamodels. These results
further illustrate the motivation for this type of study, in which
quantitative metamodels are used to predict ML performance.
Intuitive experience alone is not likely sufficient to make
accurate projections about whether design repositories are
effective for use in deep ML training. Further study of the utility
of summative design repository attributes may reveal that these
complexity metrics are more useful for different predictive
models. Similarly, entirely different complexity metrics may be
found that improve predictive performance.

6. CLOSING REMARKS
In this study we introduced and demonstrated a novel

metamodeling approach to predict CNN performance of AM
build metric estimation given a design repository. We created an
artificial design repository and split it into sub-repositories with
varying size, complexity, and diversity of constituent designs.
The sub-repository attributes were then used as independent
variables to predict CNN performance using a linear metamodel.
We then produced a refined metamodel using only 5 of the
original 7 independent variables that was selected as the most
capable.

Our first research question investigated the extent to which
design repository attributes influence CNN performance. CNN-
COD predictors were more frequently significant than ETC.
ETC may have more subtle or nonlinear relationships with the
independent variables. Also, part mass and build time CNNs
were able to explain more variability than support material mass
CNNs. However, support material CNNs converged faster. This
result indicates that the suitability of particular AM response
variables for ML prediction may be dependent on the most
important ML performance metric for specific problems. We
found that size, median part volume ratio, and squared Euclidean
distance interquartile range were positively correlated with
CNN-COD. Therefore, design repositories that are larger,
contain more complex designs, and are characterized by a higher
spatial diversity spread are most effective at training CNNs.

Regarding our second research question, which aimed to
determine the extent to which the design repository metadata
variables predicted CNN performance, we found that repository
size was the dominant predictor. Squared Euclidean distance
interquartile range was the second most explanatory independent
variable. Although size certainly dominated, the metamodel
refinement process showed that including other variables, such
as median complexity and diversity values, was worthwhile in
making incremental metamodel improvements. Furthermore,
metamodels tended to be more accurate at predicting CNN
performances if those performances were relatively high. This
trend suggests that modeling nonlinear relationships may
increase accuracy for low CNN performance cases.

Although the refined metamodel and the metamodel
development method serve their purpose in responding to our
specific research questions, future work could overcome the
limitations of this study and seek to provide a stronger causative
pathway for the present results. Investigating real-world design
repositories such as design challenge datasets [6] or FabWave
[43], a dataset specifically curated for digital design, instead of
an artificial design repository may provide additional insight
regarding the applicability of our metamodel to such data. These
new datasets could also be analyzed for different and more
numerous summative metadata attributes, such as metrics that
describe the complexity of individual parametric features.
Additionally, the current work could be expanded to study
different build metrics, AM processes, or AM fabrication
performance criteria, such as dimensional distortion due to
thermal effects in small features, bridged features, or other
challenging geometric attributes. Finally, the design of the
metamodel itself could be expanded to explore nonlinear
relationships between design repository metadata and ML
performance metrics and the choice of particular metadata
attributes studied as independent variables could be further
investigated.

ACKNOWLEDGMENTS
This material is based upon work supported by the National

Science Foundation under Grant No. CMMI-1825535. The
authors acknowledge the generous support of the NVIDIA
Corporation through the donation of the Quadro P6000 GPU
used in this work. Any opinions, findings, conclusions, or
recommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the sponsors.

REFERENCES

[1] Bonnard, R., Hascoët, J. Y., Mognol, P., Zancul, E., and

Alvares, A. J., 2019, “Hierarchical Object-Oriented
Model (HOOM) for Additive Manufacturing Digital
Thread,” J. Manuf. Syst., 50(May 2017), pp. 36–52.

[2] Regli, W. C., and Gaines, D. M., 1997, “A Repository for
Design, Process Planning and Assembly,” Comput. Des.,
29(12), pp. 895–905.

[3] Chan, S. L., Lu, Y., and Wang, Y., 2018, “Data-Driven
Cost Estimation for Additive Manufacturing in

 11 Copyright © 2020 by ASME

Cybermanufacturing,” J. Manuf. Syst., 46, pp. 115–126.
[4] Tapia, G., Elwany, A. H., and Sang, H., 2016,

“Prediction of Porosity in Metal-Based Additive
Manufacturing Using Spatial Gaussian Process
Models,” Addit. Manuf., 12, pp. 282–290.

[5] Williams, G., Meisel, N. A., Simpson, T. W., and
McComb, C., 2019, “Design Repository Effectiveness
for 3D Convolutional Neural Networks: Application to
Additive Manufacturing,” J. Mech. Des. Trans. ASME,
141(11), pp. 1–12.

[6] McComb, C., Murphey, C., Meisel, N., and Simpson, T.
W., 2018, “Predicting Part Mass, Required Support
Material, and Build Time via Autoencoded Voxel
Patterns,” 29th Annu. Int. Solid Free. Fabr. Symp., pp.
1–15.

[7] Arul Prakash, S. K., Mahan, T., Williams, G., McComb,
C., Menold, J., and Tucker, C. S., 2020, “Detection of
System Compromise in Additive Manufacturing Using
Video Motion Magnification,” J. Mech. Des., 142(3), pp.
1–11.

[8] Bloesch-Paidosh, A., and Shea, K., 2018, “Design
Heuristics for Additive Manufacturing Validated
Through a User Study,” J. Mech. Des., (c), pp. 1–40.

[9] Mellor, S., Hao, L., and Zhang, D., 2014, “Additive
Manufacturing: A Framework for Implementation,” Int.
J. Prod. Econ., 149, pp. 194–201.

[10] Kumke, M., Watschke, H., and Vietor, T., 2016, “A New
Methodological Framework for Design for Additive
Manufacturing,” Virtual Phys. Prototyp., 11(1), pp. 3–
19.

[11] Lynn, R., Saldana, C., Kurfess, T., Reddy, N., Simpson,
T., Jablokow, K., Tucker, T., Tedia, S., and Williams, C.,
2016, “Toward Rapid Manufacturability Analysis Tools
for Engineering Design Education,” Procedia Manuf., 5,
pp. 1183–1196.

[12] Prabhu, R., Miller, S. R., Simpson, T. W., and Meisel, N.
A., 2018, “Teaching Design Freedom: Exploring the
Effects of Design for Additive Manufacturing Education
on the Cognitive Components of Students’ Creativity,”
Proc. ASME Des. Eng. Tech. Conf., 3, pp. 1–13.

[13] Sinha, S., Chen, H. E., Meisel, N. A., and Miller, S. R.,
2017, “Does Designing for Additive Manufacturing
Help Us Be More Creative? An Exploration in
Engineering Design Education,” Proc. ASME Des. Eng.
Tech. Conf., 3(August).

[14] Yang, T., Chen, Y., and Sze, V., 2017, “Designing
Energy-Efficient Convolutional Neural Networks Using
Energy-Aware Pruning,” 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
IEEE, pp. 6071–6079.

[15] Razvi, S. S., Feng, S., Narayanan, A., Lee, Y.-T. T., and
Witherell, P., 2019, “A Review of Machine Learning
Applications in Additive Manufacturing,” Volume 1:
39th Computers and Information in Engineering
Conference, American Society of Mechanical Engineers,
pp. 1–10.

[16] Schmidhuber, J., 2015, “Deep Learning in Neural
Networks: An Overview,” Neural Networks, 61, pp. 85–
117.

[17] Meisel, N., and Williams, C., 2015, “An Investigation of
Key Design for Additive Manufacturing Constraints in
Multimaterial Three-Dimensional Printing,” J. Mech.
Des. Trans. ASME, 137(11), pp. 1–9.

[18] Munguía, J., Ciurana, J., and Riba, C., 2009, “Neural-
Network-Based Model for Build-Time Estimation in
Selective Laser Sintering,” Proc. Inst. Mech. Eng. Part B
J. Eng. Manuf., 223(8), pp. 995–1003.

[19] Roy, M., and Wodo, O., 2020, “Data-Driven Modeling
of Thermal History in Additive Manufacturing,” Addit.
Manuf., 32(December 2019), p. 101017.

[20] Gaikwad, A., Yavari, R., Montazeri, M., Cole, K., Bian,
L., and Rao, P., 2019, “Toward the Digital Twin of
Additive Manufacturing – Integrating Thermal
Simulations, Sensing, and Analytics to Detect Process
Faults,” IISE Trans., 0(0), pp. 1–22.

[21] Mahmoudi, M., Ezzat, A. A., and Elwany, A., 2019,
“Layerwise Anomaly Detection in Laser Powder-Bed
Fusion Metal Additive Manufacturing,” J. Manuf. Sci.
Eng., 141(3), p. 031002.

[22] Liu, C., Law, A. C. C., Roberson, D., and Kong, Z.
(James), 2019, “Image Analysis-Based Closed Loop
Quality Control for Additive Manufacturing with Fused
Filament Fabrication,” J. Manuf. Syst., 51(October
2018), pp. 75–86.

[23] Gobert, C., Reutzel, E. W., Petrich, J., Nassar, A. R., and
Phoha, S., 2018, “Application of Supervised Machine
Learning for Defect Detection during Metallic Powder
Bed Fusion Additive Manufacturing Using High
Resolution Imaging.,” Addit. Manuf., 21(May 2017), pp.
517–528.

[24] Özel, T., Altay, A., Kaftanoğlu, B., Leach, R., Senin, N.,
and Donmez, A., 2020, “Focus Variation Measurement
and Prediction of Surface Texture Parameters Using
Machine Learning in Laser Powder Bed Fusion,” J.
Manuf. Sci. Eng., 142(1), pp. 1–12.

[25] Caggiano, A., Zhang, J., Alfieri, V., Caiazzo, F., Gao, R.,
and Teti, R., 2019, “Machine Learning-Based Image
Processing for on-Line Defect Recognition in Additive
Manufacturing,” CIRP Ann., pp. 3–6.

[26] Cui, W., Zhang, Y., Zhang, X., Li, L., and Liou, F., 2020,
“Metal Additive Manufacturing Parts Inspection Using
Convolutional Neural Network,” Appl. Sci., 10(2), p.
545.

[27] Khadilkar, A., Wang, J., and Rai, R., 2019, “Deep
Learning–Based Stress Prediction for Bottom-up SLA
3D Printing Process,” Int. J. Adv. Manuf. Technol.,
102(5–8), pp. 2555–2569.

[28] Rawat, W., and Wang, Z., 2017, “Deep Convolutional
Neural Networks for Image Classification: A
Comprehensive Review,” Neural Comput., 29(9), pp.
2352–2449.

[29] Ioannidou, A., Chatzilari, E., Nikolopoulos, S., and

 12 Copyright © 2020 by ASME

Kompatsiaris, I., 2017, “Deep Learning Advances in
Computer Vision with 3D Data,” ACM Comput. Surv.,
50(2), pp. 1–38.

[30] Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P.,
Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su,
H., Xiao, J., Yi, L., and Yu, F., 2015, “ShapeNet: An
Information-Rich 3D Model Repository.”

[31] Maturana, D., and Scherer, S., 2015, “VoxNet: A 3D
Convolutional Neural Network for Real-Time Object
Recognition,” 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), IEEE, pp.
922–928.

[32] Szykman, S., Sriram, R. D., Khanh, T., Jean-Francois,
H., Cuilhem, A., and Sylvain, A., 1999, “The NIST
Design Repository Project: Project Overview and
Implementational Design,” Adv. Soft Comput., pp. 5–
19.

[33] Vayre, B., Vignat, F., and Villeneuve, F., 2012,
“Designing for Additive Manufacturing,” Procedia
CIRP, 3(1), pp. 632–637.

[34] Bohm, M. R., Stone, R. B., Simpson, T. W., and Steva,
E. D., 2008, “Introduction of a Data Schema to Support
a Design Repository,” CAD Comput. Aided Des., 40(7),
pp. 801–811.

[35] Song, H., and Fu, K., 2019, “Design-by-Analogy:
Exploring for Analogical Inspiration with Behavior,
Material, and Component-Based Structural
Representation of Patent Databases,” J. Comput. Inf. Sci.
Eng., 19(2).

[36] Tensa, M., Edmonds, K., Ferrero, V., Mikes, A., Soria
Zurita, N., Stone, R., and DuPont, B., 2019, “Toward
Automated Functional Modeling: An Association Rules
Approach for Mining the Relationship between Product
Components and Function,” Proc. Des. Soc. Int. Conf.
Eng. Des., 1(1), pp. 1713–1722.

[37] Bohm, M. R., Vucovich, J. P., and Stone, R. B., 2008,
“Using a Design Repository to Drive Concept
Generation,” J. Comput. Inf. Sci. Eng., 8(1), pp.
0145021–0145028.

[38] Bohm, M. R., Stone, R. B., and Szykman, S., 2005,
“Enhancing Virtual Product Representations for
Advanced Design Repository Systems,” J. Comput. Inf.
Sci. Eng., 5(4), p. 360.

[39] Deng, J., Dong, W., Socher, R., Li, L.-J., Kai Li, and Li
Fei-Fei, 2010, “ImageNet: A Large-Scale Hierarchical
Image Database,” 2009 IEEE Conference on Computer
Vision and Pattern Recognition, IEEE, pp. 248–255.

[40] Egmont-Petersen, M., de Ridder, D., and Handels, H.,
2002, “Image Processing with Neural Networks—a
Review,” Pattern Recognit., 35(10), pp. 2279–2301.

[41] Brock, A., Lim, T., Ritchie, J. M., and Weston, N., 2016,
“Generative and Discriminative Voxel Modeling with
Convolutional Neural Networks.”

[42] Dering, M. L., and Tucker, C. S., 2017, “A
Convolutional Neural Network Model for Predicting a
Product’s Function, Given Its Form,” J. Mech. Des.,

139(11), p. 111408.
[43] Bharadwaj, A., Xu, Y., Angrish, A., Chen, Y., and Starly,

B., 2019, “Development of a Pilot Manufacturing
Cyberinfrastructure with an Information Rich
Mechanical Cad 3D Model Repository,” ASME 2019
14th Int. Manuf. Sci. Eng. Conf. MSEC 2019, 1, pp. 1–
8.

[44] Sibi, P., Allwyn Jones, S., and Siddarth, P., 2013,
“Analysis of Different Activation Functions Using Back
Propagation Neural Networks,” J. Theor. Appl. Inf.
Technol., 47(3), pp. 1344–1348.

[45] Welinder, P., and Perona, P., 2010, “Online
Crowdsourcing: Rating Annotators and Obtaining Cost-
Effective Labels,” 2010 IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit. - Work. CVPRW 2010,
pp. 25–32.

[46] Baldridge, J., and Osborne, M., 2004, “Active Learning
and the Total Cost of Annotation,” Proc. Empir. Methods
Nat. Lang. Process., pp. 9–16.

[47] Rao, R. B., Fung, G., and Rosales, R., 2008, “On the
Dangers of Cross-Validation. An Experimental
Evaluation,” Soc. Ind. Appl. Math. - 8th SIAM Int. Conf.
Data Min. 2008, Proc. Appl. Math. 130, 2, pp. 588–596.

[48] Szykman, S., Sriram, R. D., Bochenek, C., Racz, J. W.,
and Senfaute, J., 2000, “Design Repositories:
Engineering Design’s New Knowledge Base,” IEEE
Intell. Syst. Their Appl., 15(3), pp. 48–55.

[49] 2019, “Cloud Powered 3D CAD/CAM Software for
Product Design | Fusion 360” [Online]. Available:
https://www.autodesk.com/products/fusion-360.

[50] Cho, J., Lee, K., Shin, E., Choy, G., and Do, S., 2015,
“How Much Data Is Needed to Train a Medical Image
Deep Learning System to Achieve Necessary High
Accuracy?”

[51] Conner, B. P., Manogharan, G. P., Martof, A. N.,
Rodomsky, L. M., Rodomsky, C. M., Jordan, D. C., and
Limperos, J. W., 2014, “Making Sense of 3-D Printing:
Creating a Map of Additive Manufacturing Products and
Services,” Addit. Manuf., 1, pp. 64–76.

[52] Kechagias, J., and Chryssolouris, G., 1997, “Estimation
of Build Times in Rapid Prototyping Processes,”
Proceedings of the 6th European Conference on Rapid
Prototyping and Manufacturing. University of
Nottingham, UK.

[53] Abadi, M., Paul, B., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M.,
Kudlur, M., Levenberg, J., Monga, R., Moore, S.,
Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V.,
Warden, P., Wicke, M., Yu, Y., and Zheng, X., 2016,
“TensorFlow: A System for Large-Scale Machine
Learning,” 12th USENIX Symp. Oper. Syst. Des.
Implement. (OSDI ’16), pp. 265–283.

[54] Chollet, F., and others, 2015, “Keras.”
[55] Kingma, D. P., and Ba, J., 2015, “Adam: A Method for

Stochastic Optimization,” 3rd Int. Conf. Learn.
Represent., 1631, pp. 58–62.

 13 Copyright © 2020 by ASME

[56] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E., 2011, “Scikit-Learn: Machine Learning
in Python,” J. Mach. Learn. Res., 12, pp. 2825–2830.

[57] “StatsModels - Statistics in Python” [Online]. Available:
https://www.statsmodels.org/0.9.0/index.html.

