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ABSTRACT 
The widespread growth of additive manufacturing, a field 

with a complex informatic “digital thread”, has helped fuel the 
creation of design repositories, where multiple users can upload 
distribute, and download a variety of candidate designs for a 
variety of situations. Additionally, advancements in additive 
manufacturing process development, design frameworks, and 
simulation are increasing what is possible to fabricate with AM, 
further growing the richness of such repositories. Machine 
learning offers new opportunities to combine these design 
repository components’ rich geometric data with their associated 
process and performance data to train predictive models capable 
of automatically assessing build metrics related to AM part 
manufacturability. Although design repositories that can be used 
to train these machine learning constructs are expanding, our 
understanding of what makes a particular design repository 
useful as a machine learning training dataset is minimal. In this 
study we use a metamodel to predict the extent to which 
individual design repositories can train accurate convolutional 
neural networks. To facilitate the creation and refinement of this 
metamodel, we constructed a large artificial design repository, 
and subsequently split it into sub-repositories. We then analyzed 
metadata regarding the size, complexity, and diversity of the sub-
repositories for use as independent variables predicting accuracy 
and the required training computational effort for training 
convolutional neural networks. The networks each predict one of 

three additive manufacturing build metrics: (1) part mass, (2) 
support material mass, and (3) build time. Our results suggest 
that metamodels predicting the convolutional neural network 
coefficient of determination, as opposed to computational effort, 
were most accurate. Moreover, the size of a design repository, 
the average complexity of its constituent designs, and the 
average and spread of design spatial diversity were the best 
predictors of convolutional neural network accuracy. 

 
1.  INTRODUCTION 

Additive manufacturing (AM) has increased the diversity of 
geometries that can be designed and manufactured. A “digital 
thread”, or information pathway, may be created when using an 
AM technology [1]. In this digital thread, a component’s design, 
which begins as a concept and associated user needs and 
specifications, is represented by one or more 3D models before 
finally being transformed into machine motion commands 
transmitted to an AM system [1]. Along the way, rich and diverse 
data is produced at each step. These data, stored in various digital 
files (e.g. point clouds, CAD models, STL files, G-Code), may 
be saved in a design repository for further analysis. Prior to the 
rise of AM and other digitally-driven design and manufacturing 
techniques, learning from past designs was a predominantly 
manual process, often limited by what could be discerned from 
paper 2D engineering drawings. Digital design repositories, on 
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the other hand, allow vast stores of geometric data to be rapidly 
searched, sorted, shared, and built upon [2]. 

These data, which are often geometric, can be useful for 
training machine learning (ML) tools to provide feedback related 
to AM components, such as in the automatic estimation of related 
build metrics [3–7]. ML-powered feedback tools may prove 
especially useful as accompaniments to AM heuristics [8,9], 
frameworks [10], educational tools [11], and methods [12,13] 
that seek to help designers make the most of AM’s unique 
opportunities. These diverse areas of active AM design research 
illustrate the natural link between AM and ML. 

Although the AM-ML intersection shows promise, popular 
ML algorithms have been increasing both in terms of complexity 
and computational cost [14], presenting an ongoing challenge to 
those seeking to apply ML to new areas. Additionally, AM design 
repositories vary widely in their size, the geometric complexity 
of their constituent 3D solid models, the nature of their relevant 
applications, and the skill level of their contributors. There is 
currently no benchmark training design repository that meets the 
needs of AM-ML, and thus researchers and practitioners will need 
to rely on diverse, real-world datasets. An improved theoretical 
understanding of how well design feedback algorithms are likely 
to perform when trained on diverse AM datasets will enhance the 
AM community’s ability to develop more useful AM-ML tools. 
Such tools would help engineers design more manufacturable 
and cost-efficient AM parts by allowing them to use estimates 
about cost and manufacturability to inform design iterations. In 
this work, we research this relationship between AM datasets and 
design feedback algorithms. Specifically, we study a 3D 
convolutional neural network (CNN) designed to analyze AM 
build metrics of part mass, support material mass, and build time. 
Rather than focusing solely on the CNN performance, however, 
we create and refine a metamodel to predict how effective 
datasets with varying, quantifiable metadata attributes are when 
used as training data. With this metamodel, we can then 
investigate the following two research questions: 

 
1. To what extent do the size, complexity, and diversity of a 

design repository affect the ability of a 3D CNN trained using 
that repository to predict part mass, build time, and support 
material usage for unseen designs? 

 
2. To what extent does a derived metamodel accurately 

predict the performance of 3D CNNs using summary data related 
to the size, complexity, and diversity of the training and testing 
datasets? 

 
The remainder of the paper is organized as follows. First, we 

discuss relevant literature regarding the use of artificial neural 
networks (ANN) and design repositories to analyze AM designs. 
Next, we describe our methodology to systematically create and 
analyze design repositories, build ML algorithms from their 
constituent designs, and use a linear regression metamodel to 
make quantitative predictions about the usefulness of different 
design repositories for CNN training. Finally, we discuss the 
results of our metamodel fitting and evaluation procedure and 

use those results to draw conclusions about how this 
metamodeling approach may be applied to industrial and 
academic design repositories in future work. 
 
2.  BACKGROUND 
 In this section we synthesize relevant prior contributions in 
the literature relating to artificial neural networks in AM (see 
Section 2.1) and design repositories used for AM research (see 
Section 2.2). We then highlight how the intersection of these 
fields creates an important research gap in the study of AM 
informatics and AM-ML applications. 

2.1. Artificial Neural Networks for AM 
The assorted files produced during AM design efforts 

present many opportunities for AM-ML research [15]. 
Specifically, artificial neural networks (ANN) are a popular type 
of ML algorithm that have been applied to AM in the literature.  

Many AM-ML efforts aim to make predictions about new, 
arbitrary designs by learning generalizable patterns from 
repositories of existing designs [16]. It is important for AM 
analytical tools to learn patterns and solutions for general, 
diverse inputs because of the vast complexity of designs that are 
possible through AM [17]. These tools differ in input data type, 
ML algorithm choice, and analysis objective. In terms of input 
data, both design and in-situ processing measurements are 
commonly used. Design data typically includes either single 
metrics, such as part volume [18] or cost [3], geometric shapes 
(e.g. voxel-based model [5,6]), or machine toolpath instructions 
(e.g. G-code text [3,19]). In-situ processing data, which is 
gathered during a real or simulated fabrication, often includes 
thermal data from in-progress builds [20], such as infrared 
images [21], image data [22], video data [7,23], and/or surface 
topography scans [24]. The data format of choice and its 
dimensionality tends to influence which ML algorithms are most 
effective for a given task. For instance, data with fewer 
dimensions are often analyzed with techniques such as fully-
connected neural networks [18], clustering, and regression [3], 
whereas higher dimensional data are typically analyzed with 
different techniques, particularly CNNs in recent years [5,6,25–
27].  

Generally, ANNs are advantageous for use in AM analysis 
due to the wide variety of data dimensionality and formats that 
may be used as inputs or outputs for ANN architectures [16]. In 
this study we specifically focus on the 3D CNN. The CNN is an 
advantageous baseline for AM design repository research 
because of its recent popularity in both AM-ML research and 3D 
ML research in general. Additionally, the majority of AM 
fabricated components are modeled in 3D at some point, 
allowing them to either be input layer-by-layer into 2D CNNs or 
as an entire volume into 3D CNNs [16]. CNNs, which are 
capable of learning spatially-relevant patterns within high 
dimensional inputs, such as pixel-based images or voxel-based 
volumes, have rapidly spread through many academic fields 
within the last decade [16,28]. Contemporary success in 3D 
fields was preceded by an explosion of highly performing image 
classification CNN architectures [28–31]. 2D and 3D CNNs, 
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both of which have already been successfully used to analyze 
AM parts [5,25–27] are likely to continue to be used extensively 
in AM-ML.  

2.2. AM Design Repositories 
The growth of AM-ML research has been accompanied by 

similar advancements in AM design repositories. Repositories 
may be generally classified as those that are intentionally created 
and those that are produced as a byproduct of other work. Many 
design repositories that are intentionally created for or are 
applicable to AM draw influence from early design repository 
work that was completed in the 1990s. The NIST design 
repository, created by Regli et al. [2] and Szykman et al. [32], 
aimed to develop enhanced product design techniques that 
leveraged central repositories and were better-suited to handle 
design efforts spread over large geographic areas or long 
timelines, as occurs with modern outsourcing [32]. Despite many 
design repositories not being created specifically for AM, we 
believe they are still relevant to AM because of their tendency to 
contain 3D computer-aided design (CAD) data and AM’s general 
ability to manufacture geometries that were not originally 
designed for it but are subjected to an AM redesign effort [33]. 
General design repository research has investigated diverse 
topics including but not limited to optimum data schema for 
mechanical components [34], the extent to which such design 
repositories impact design efforts and concept generation when 
used as a tool [35–37], and enhancing design repository systems 
to promote web-based search and networking activities [38]. 

Benchmark datasets are common in ML research,  providing 
a consistent subset of the global data domains for researchers to 
compare machine learning results on [39] and eliminating the 
need to manually obtain data for each new research effort. For 
some fields, like image classification, one single type of data, 
such as ImageNet’s annotated images [39], can be extensively 
useful for the long-term, providing a method for researchers to 
reliably and consistently compare the performance of their novel 
ML algorithms [39]. Many research efforts use such benchmarks 
to test image classification tools [40]. As mentioned in Section 
2.1, some 2D classification techniques can be adapted to 3D 
classification algorithms [31]. These types of efforts have driven 
the formation of annotated 3D datasets, including ShapeNet [30] 
and ModelNet [41]. Such datasets provide ML researchers with 
geometric representations of common objects and hierarchical 
attribute labels that may be used to train ML classifiers [30,41]. 

Although hierarchically-labeled 3D object repositories have 
many beneficial research applications, they do not always 
contain sufficient data or organizational structure for 3D AM-
ML applications. For instance, classification benchmarks tend to 
contain models designed for aesthetic representation [30], 
possibly making them less realistic for AM. Furthermore, lack of 
consistent scale and dimensional specification across designs 
[30] could be a challenge for conducting AM-ML analysis, 
which is often grounded by the build volume of the AM process. 
Also, lacking design intent data could hinder the automated 
understanding of what a shape’s intended function is [42]. Other 
recent efforts have focused on improving the end-to-end CAD 

data gathering, storage, and access challenges associated with 
design repositories. FabWave is intended to support data-driven 
research of CAD parts by compiling web-scraped CAD models 
from free hosting websites and prototyping CAD tool add-ins to 
support crowd-sourced model submission [43]. Additionally, 
other researchers use artificial design repositories (ADR), or 
design repositories containing manufacturable components that 
were not originally intended for fabrication [5], to bypass data-
gathering difficulties during early-stage ML research efforts 
[5,27]. As the drive to use ML for AM analysis grows, we 
anticipate further expansion, diversification, and improvement to 
AM-relevant design repositories. 

 
2.3.  AM Informatics and ML Research Gap 

 At first glance, using design repositories to train supervised 
ML tools may appear to be a straightforward process: data is split 
into one or more groups of training and validation sets which are 
used to iteratively optimize the adjustable parameters of a 
particular ML architecture, such as an  ANN, until a desirable 
accuracy is reached [16]. Although this training process, once 
begun, may be largely automatic [44], many 3D analytical ML 
architectures require large training sets on the order of thousands 
of input geometries [5,31,42]. Manually compiling such large 
repositories for design may be time-consuming [45,46], and the 
computational and power consumption of training can be 
undesirably high [14]. Additionally, the final accuracy of an 
ANN may be hard to predict without computationally-intensive 
evaluation against an extensive validation dataset [47]. 

Lack of reliable design repository heuristics and theoretical 
understanding could cause inconsistency and suboptimality in 
the development of AM-ML. Also, if more industries begin 
investigating the use of ML to achieve increasingly specialized 
goals, then they may seek to use their existing design portfolios 
to drive the creation of useful AI tools. Compiling, selecting, and 
prioritizing datasets to use for AM-ML experimentation could 
prove inefficient and costly if done ad hoc, potentially hindering 
the success of those development efforts. However, this 
preparatory stage is critically important for downstream efforts. 
Being able to quickly and reliably predict the accuracy and 
training time of an AM-ML construct at the outset of a project 
could increase the efficiency of AM-ML development by 
ensuring computational resources are devoted only to attempts 
that are most likely to be successful. Knowing accuracy in 
advance is useful to anticipate if the overall goals of the trained 
AM-ML construct will be met. Estimating training time can 
provide decision makers with the knowledge needed to 
understand if their limited resources can handle the additional 
development cost. Although predicting both concurrently would 
be ideal, these predictions are also useful individually. 

The rate and quality of AM-ML technological development 
will be increased through a better understanding of the design 
repositories to be used as training and testing datasets. In this 
study, we generate metamodels that relate design repository 
characteristics to measures of the quality of trained ML models. 
First, we implement an analytical methodology to model the 
design repositories using quantitative metadata that concisely 



 4 Copyright © 2020 by ASME 

describes the overall size, complexity, and diversity of the 
repositories. We then empirically test the performance of design 
repositories when used as training datasets for 3D CNN 
algorithms and use the results to train an ordinary least squares 
(OLS) metamodel. This metamodel can then be used to predict 
CNN training performance of a new design repository.  

3. METHODOLOGY 
We developed our design repository characterization 

metamodel using an analytical theory-building approach that 
leveraged synthetic data. This section details the artificial design 
repository (see Section 3.1), the AM build metrics used to 
evaluate each part in the artificial design repositories (see 
Section 3.2), the machine learning algorithm used to predict AM 
build metrics based on part geometry (see Section 3.3), and the 
OLS metamodel used to relate design repository characteristics 
to expected CNN accuracy and training time (see Section 3.4). 
Figure 1 shows a visualization of the overall methodology. 

 

 
Figure 1 Visualization of the methodology for the study. 

3.1. Artificial Design Repository 
The artificial design repository (ADR) used here was 

created as a representative analog of design repositories that exist 
today but with a more structured, controllable format that is well-
suited for early-stage, AM-ML research. It emulates possible 
real-world repositories of 3D mechanical part CAD models in 

size, complexity, and diversity [48]. In order to represent the 
breadth of possible repositories, a single large repository with 
many unique geometries was assembled. This large repository 
was then strategically sliced to create sub-repositories which 
could be systematically analyzed for metadata attributes and 
performance as ML training sets. For the purposes of this 
research, we characterize each sub-repository according to the 
number of designs, the complexity of those designs, and the 
diversity across the set of designs in the sub-repository. 

The constituent designs were created using a procedural, 
template-based CAD generation process (see Figure 2), similar 
to the one used by Williams et al. [5], but with the Autodesk 
Fusion 360 C++ API [49] . Although the number of dimensions 
required to specify a single design for a given design template 
was relatively low, the number of possible combinations is 
essentially infinite, enabling us to generate many diverse 
geometries relatively quickly. 

Each design was first modeled as a parametric CAD file, 
then converted to an STL file, before being converted to a 64 × 
64 × 64 voxel model, in which voxels may only be coded “1.0” 
to indicate material presence or “0.0” to indicate material 
absence. The STL file was used to analyze design complexity 
and the AM build metrics, and the voxel-based model was used 
for spatial diversity analysis and as an input to the 3D CNNs. 
 

 
Figure 2 Visualization of the digital pathway from a set of 
dimensions specifying a particular embodiment of a two-
stepped cylinder design template (1), a Fusion 360 CAD 
model (2), an STL file (3), and a voxel-based model (4). 
 

In addition to the templates used by Williams et al. [5], 
templates representing shells, boxes, and hole patterns were 
included. Templates with more complex internal geometries 
were also added as such features are particularly important to 
DfAM, in which lattice structures and infill patterns are 
common. In total, 40 unique templates were equally represented 
across the 84,700 unique geometries that were created. Every 
geometry was also rotated to a random orientation per the impact 
of the orientation on the results found by Williams et al. [5] 

Once a large design repository was created, sub-repositories 
were selectively assembled from the superset. A uniform random 
number generator was used to choose 20 to 5,000 individual 
designs to be included in each of the sub-repositories. Individual 
repositories were not limited to contain uniform distributions of 
particular design templates, in an attempt to simulate variety 
existing in human-curated repositories. In total, 720 different 
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sub-repositories were created. These sub-repositories themselves 
served as data points for fitting and assessing metamodels that 
would predict attributes of other repositories. 

In this study, we chose seven metadata values to represent 
the characteristics of the sub-repositories, providing varying 
measures of the sub-repository size, complexity, and diversity. 
The design repository size, 𝑠, is the min-max normalized number 
of unique geometries in the repository. We chose to include 𝑠 
because real-world design repositories can vary substantially in 
size, and prior work in the ML literature suggests that training 
dataset size is one of the most important factors when creating 
accurate CNNs [50]. 

In addition to size, we wanted to include design repository 
values that were specific to the geometric analysis task studied. 
We chose measures of geometric complexity, 𝐶𝑃  and 𝐶𝐴 , and 
spatial diversity 𝐷. These complexity measures were adapted 
from prior design complexity literature by Conner et al. [51]. The 
part volume ratio, 𝐶𝑃 , was calculated for each geometry 𝑗 as 

 

𝐶𝑃 ,𝑗 = 1 −
𝑉𝑝

𝑉
 

 
where 𝑉𝑝 is the part volume and 𝑉  is the part bounding box 
volume. The part surface area ratio, 𝐶𝐴 ,  was calculated for each 
geometry 𝑗 as 

 

𝐶𝐴 ,𝑗 = 1 −
𝐴𝑠

𝐴𝑝
 

 
where 𝐴𝑠 is the surface area of a sphere with the same volume as 
the part and 𝐴𝑝 is the part surface area. All part volumes and 
surface areas were calculated from STL approximations of the 
geometries (see Section 2.2). 

Spatial diversity, 𝐷, was calculated using the voxel-based 
model instead of the STL. 𝐷 was used to assess how much 
individual designs filled the cubic voxel space. Williams et al. 
[5] found that diversity of the voxel representations of 3D 
designs in a training dataset can affect the performance of a 3D 
regression CNN, leading us to study a version of that metric as a 
potential metadata attribute that might be critical to training 
dataset effectiveness. 𝐷 was calculated by flattening the 64 × 64 
× 64 voxel-based model into a 1D vector, then taking the squared 
Euclidean distance of that vector from the voxel space origin. 

For each of these metrics, we computed a median value and 
interquartile range to represent the central-tendency and spread 
of that quantity for the given design repository, respectively. 
Combined with repository size, these seven quantities (𝑠, 𝐶𝑃 ,𝑚, 
𝐶𝑃 , , 𝐶𝐴 ,𝑚, 𝐶𝐴 , , 𝐷𝑚, 𝐷 ) effectively characterize a given 
design repository. 

3.2. AM Build Metrics 
After the large artificial design repository was created, all 

constituent geometries were analyzed for three AM build 
metrics: (1) part mass, (2) support material mass, and (3) build 
time assuming a material extrusion AM process. Part mass is the 

amount of material in grams present in the final, manufactured 
component after any support material has been removed. Support 
material mass is the amount of material in grams that is required 
to be deposited beneath overhanging structures to keep them 
from collapsing during fabrication. Build time is the amount of 
time in hours necessary for the AM machine to fabricate the part, 
approximated as a weighted linear combination of the part mass, 
support material mass, and part height. All build metric values 
were calculated based on STL files, and were calculated using 
the methods presented by Williams et al.  [5], which assumed a 
polylactic acid (PLA) material and simplified AM processing 
speeds. These build metrics served as the ground-truth values 
when training 3D CNN models to analyze the same metrics 
based on voxel inputs (see Section 3.3). 

The three metrics were specifically chosen because they 
may be quickly calculated using alternative algorithms and 
inputs to the 3D CNNs and have been studied in prior AM 
estimation and design repository literature [5,6,52]. Although 
build metric values will vary depending on the specific AM 
process, machine, and material used, we chose to assume these 
metrics would be calculated for an idealized, generic material 
extrusion process of the same properties as the one analyzed by 
Williams et al. [5]. Using a generalized AM process is acceptable 
for this study because we seek general theory related to AM-ML, 
and not particular machines, processes, or materials. The 
proposed method could be repeated with new ground truth data 
that is more closely related to specific AM processes (e.g. metal 
powder-bed fusion) to make results more relevant for use. 

3.3. Machine Learning Algorithm 
 

3.3.1. 3D CNN Architecture 
For this study, we used a 10-layer neural network containing 

a convolutional section and a fully-connected section (see Figure 
3), the same CNN from our previous work [5]. It accepts a 64 × 
64 × 64 voxel model input, and the voxelized design space was 
10 cm × 10 cm × 10 cm large, an arbitrary size that represents a 
build volume applicable to many desktop material extrusion AM 
systems. The CNN was developed and trained using TensorFlow 
version 1.12 [53], Keras version 2.2.4 [54], Python version 3.6.5, 
and the “Adam” Optimizer [55]. All training was completed on 
an NVIDIA P6000 Graphics Processing Unit. 

For this study, the 3D CNNs were trained using an early stop 
condition. After three consecutive epochs of training in which 
the validation accuracy did not improve, the 3D CNN was 
considered trained, and its accuracy and the total number of 
epochs were recorded. 

 
3.3.2. CNN Performance Metrics 

Each individual CNN that was trained was capable of 
predicting only one of the three AM build metrics described in 
Section 3.2 at a time. All sub-repositories were thus used to train 
three separate CNNs to cover all build metrics. Each of these 
trained CNNs were then analyzed for two CNN performance 
metrics. The first performance metric was CNN coefficient of 
determination (CNN-COD), shortened here with the symbol 𝑎. 
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CNN-COD describes the total fraction of a build metric’s 
variation that is explained by the particular trained CNN for a 
given repository and is used here as an indication of accuracy. A 
75%/25% train-test split was used to calculate the CNN-COD. 

 
 

 
Figure 3 Diagram of the CNN architecture used in the study. 
 

The second performance metric recorded was the number of 
epochs required to achieve convergence (ETC) as determined by 
our early stop condition. This value, abbreviated �̂�, was intended 
to be a surrogate measure for the amount of computational effort 
required to achieve convergence. Note that the raw data for both 
𝑎 and �̂� are specific to the build metric predicted by the particular 
CNN for which they are reported. For instance, 𝑎𝑃  describes 
the COD of a CNN that predicts part mass based on a 
component’s voxelized geometric input. 
 
3.3.3. Aggregate CNN Performance Metrics 

In addition to describing a trained CNN’s accuracy and 
computation time, we also employed metrics to characterize a 
CNN’s comparative quality in more general ways. Six aggregate 
CNN performance metrics were calculated to achieve this goal. 
By fitting metamodels that also predict these aggregate CNN 
performance metrics, we aim to study metamodels that offer 
more generalized predictions than those relating to only one 
combination of CNN performance metric and AM build metric 
at a time. The aggregate metrics were found by averaging 

normalized CNN performance metrics associated with a given 
design repository. The general form of the CNN performance 
metric aggregation formula was 

 

�̂�𝑖 =
1
𝑛

𝑃𝑘,𝑖 − 𝑃𝑘,𝑚𝑖𝑛

𝑃𝑘,𝑚𝑎𝑥 − 𝑃𝑘,𝑚𝑖𝑛

𝑛

𝑘=

 

 
where 𝑘 is the index of the particular performance metric, 𝑛 is 
the total number of CNN performance metrics being aggregated, 
and 𝑃𝑘 is either 𝑎 or �̂� for a given build metric. Variables 
subscripted 𝑚𝑖𝑛 are the smallest values recorded across sub-
repositories for that metric and variables subscripted 𝑚𝑎𝑥 are the 
largest values recorded across all sub-repositories. 

Two of the aggregate CNN performance metrics were found 
by taking the mean of the same CNN performance metrics across 
the three build metrics. These were the aggregate CNN-COD 
performance metric, �̂�𝑎, and the aggregate CNN epochs to 
convergence performance metric, �̂�𝑡 . Each individual CNN 
performance metric was min-max normalized based on the 
overall sub-repository ranges prior to aggregation. For this 
metric, we chose to use larger aggregate scores to be indicative 
of CNNs that were higher performing overall. We used one 
minus min-max normalized �̂� to align the direction of better CNN 
performance for both  𝑎 and  �̂�. 

Three additional aggregate CNN performance metrics were 
found by taking the mean of the two original CNN performance 
metrics, 𝑎 and �̂�, for the same build metric. Thus, individual 
aggregates specific to part mass (�̂�𝑃 ), support material mass 
(�̂� ), and build time (�̂� ) CNNs were calculated. Finally, we 
also investigated an overall aggregate CNN performance metric, 
�̂�𝐴 , found by taking the mean of the other aggregate build 
metrics. These six values (�̂�𝑎, �̂�𝑡 , �̂�𝑃 , �̂� , �̂� , �̂�𝐴 ) 
characterize a design repository’s performance at training CNNs. 

3.4. Linear Metamodel Construction 
One of the goals of the current study is to demonstrate 

models that could predict effectiveness of a design repository as 
an ML training dataset. The set of independent variables for this 
fit are the summative characteristics that describe each design 
repository (e.g., size, median part volume ratio, etc.). The 
dependent variables in this fit are the coefficient of determination 
(COD) of the CNN trained with the design repository and the 
number of epochs required to achieve convergence. To produce 
a metamodel linking these variables, we chose to use OLS 
regression. 

The initial OLS metamodel is comprised of the twelve-
response, multiple linear regression formula given by 

 
�⃑� = 𝜶�⃑� + 𝛽 

 
where �⃑� is the vector of dependent variables predicted by the 
metamodel, �⃑� is the vector of independent variables that 
characterize a given design repository, 𝜶 are the coefficients 
found by the OLS fitting algorithm, and 𝛽 are the intercepts. The 
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independent and dependent variable vectors for a given sub-
repository 𝑖 was formed from the metadata attributes and CNN 
performance metrics as follows: 

 
�⃑�𝑖 = [𝑠𝑖 𝐶𝑃 ,𝑚,𝑖 𝐶𝑃 , ,𝑖 𝐶𝐴 ,𝑚,𝑖 𝐶𝐴 , ,𝑖 𝐷𝑚,𝑖 𝐷 ,𝑖]  
 

�⃑�𝑖 = [𝑎𝑃 ,𝑖 �̂�𝑃 ,𝑖 𝑎 ,𝑖 �̂� ,𝑖 𝑎 ,𝑖 �̂� ,𝑖 �̂�𝑎,𝑖 �̂�𝑡,𝑖 �̂�𝑃 ,𝑖 �̂� ,𝑖 �̂� ,𝑖 �̂�𝑖]  
 
where 𝑠 is the repository size, 𝐶𝑃 ,𝑚 is the median part volume 
complexity, 𝐶𝑃 ,  is the interquartile range of part volume 
complexity, 𝐶𝐴 ,𝑚 is the median part area complexity, 𝐶𝐴 ,  is the 
interquartile range of part area complexity, 𝐷𝑚 is the median 
squared Euclidean distance, and 𝐷  is the interquartile range of 
squared Euclidean distance. All of the independent variable 
values were min-max normalized prior to use in the metamodel. 

This initial metamodel was fit as eight individual OLS 
regression models, one response variable at a time. The Python 
Scikit-learn package version 0.22.1 was used for OLS fitting 
[56]. A 10-fold cross validation approach was used for fitting and 
evaluating each model. The individual, fitted linear regressions 
were then analyzed and compared to one another in terms of their 
mean coefficient of determination, averaged across all ten cross 
validation runs, when predicting their respective CNN 
performance metrics. The independent variables were also 
analyzed to determine whether they had a statistically significant 
linear correlation with each of the dependent variables through 
calculation of the Pearson correlation coefficients. Finally, the 
explained variance contribution of each independent variable 
was found using a sequential sum of squares approach in an 
ANOVA analysis. The statistical tests were completed using the 
Python statsmodels package version 0.9.0 [57]. The results are 
analyzed next. 

4. RESULTS 
This section describes the results from the metamodel fitting 

and evaluation process (see Section 4.1), the statistically-driven 
down selection process of the different metamodels investigated 
(see Section 4.2), and the final selection of the most effective, 
single metamodel. 

4.1. Metamodel Data Gathering, Fitting, and 
Evaluation 

All sub-repositories were used to train CNNs to predict part 
mass, support material mass, and build time as part of the 
metamodel fitting dataset creation process. We observed a wide 
range of CNN-COD (see Figure 4) and ETC results (see Figure 
5), indicating that these data provide a good basis on which to fit 
a metamodel. In general, CNNs trained to predict part mass were 
the most accurate, with a median CNN-COD of 0.98. Build time 
CNNs were the second most effective on average, exhibiting a 
median COD of 0.92. Support material mass was consistently the 
most challenging build metric for the CNNs to predict, with a 
median COD of 0.47. This generally aligns with previous results 
found by Williams et al. [5]. 

Different output build metrics also resulted in different 
average CNN training durations. Part mass and build time were 

the longest training durations, with medians of 21 and 22 epochs. 
Support material mass CNNs converged faster, with a median of 
14 epochs.  

 

 
Figure 4 Box plots of CNN-COD results for all sub-
repositories grouped by build metric predicted by the CNN. 
 

 
Figure 5 Box plots of ETC results for all sub-repositories 
grouped by build metric predicted by the CNN. 
 

After training the CNNs with each of the sub-repositories 
and calculating aggregated CNN performance metrics, we 
analyzed the univariate Pearson linear correlation values 
between each of the metamodel independent variables and the 
CNN performance metrics. The associated p-values from the 
univariate Pearson analysis were then used to determine 
statistical significance of the linear correlations of each variable 
using an alpha value of 0.05 (see Table 1). Although this linearity 
estimate does not describe how well a trained linear model will 
perform, it does provide insight into whether fitting a linear 
model is likely to be sufficient. 
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Table 1 Univariate Pearson correlation values that were used 
to analyze the relationship between each independent 
variable and the dependent variables. Bolded, highlighted 
values indicate that the relationship was significantly linear 
(p < 0.05). 

 �⃑� Variable Pearson Correlation Coefficient 
�⃑�  𝒔 𝑪𝑷𝑹,𝒎 𝑪𝑷𝑹,𝒓 𝑪𝑨𝑹,𝒎 𝑪𝑨𝑹,𝒓 𝑫𝒎 𝑫𝒓 

𝑎𝑃 ,𝑖 0.283 0.094 0.037 -0.034 0.067 -0.076 0.159 
�̂�𝑃 ,𝑖 -0.323 -0.015 -0.017 -0.090 0.009 0.020 0.016 
𝑎 ,𝑖 0.504 -0.018 -0.011 0.019 0.026 -0.052 0.062 
�̂� ,𝑖 0.393 -0.041 0.022 -0.019 0.050 -0.079 0.034 
𝑎 ,𝑖 0.327 0.138 0.041 -0.021 0.036 -0.112 0.041 
�̂� ,𝑖 -0.065 0.052 0.048 0.039 0.020 -0.009 -0.036 
�̂�𝑎,𝑖 0.432 0.100 0.033 -0.021 0.058 -0.101 0.122 
�̂�𝑡,𝑖 0.025 0.001 -0.031 0.045 -0.046 0.037 -0.008 
�̂�𝑃 ,𝑖 0.449 0.058 0.033 0.073 0.022 -0.054 0.058 
�̂� ,𝑖 -0.281 0.041 -0.029 0.028 -0.049 0.072 -0.018 
�̂� ,𝑖 0.190 -0.003 -0.035 -0.049 -0.007 -0.032 0.053 
�̂�𝑖 0.264 0.057 -0.013 0.033 -0.014 -0.018 0.060 

 
As shown in Table 1, repository size was frequently 

correlated with the CNN performance metrics. Size was 
significantly correlated in 10 out of 12 possible metamodel 
dependent variable types, and it had the largest correlation 
magnitudes when compared to other independent variables in all 
significant cases. Conversely, 𝐶𝑃 ,  and 𝐶𝐴 , , the interquartile 
ranges of part volume ratio complexity and part area ratio 
complexity, were not significant in any of the correlations. Part 
mass and build time CNN-COD metamodels were also often 
linearly correlated with independent variables for the non-
aggregate metamodels. In general, ETC metamodels tended to 
have lower numbers of statistically significant linear 
relationships than CNN-COD metamodels. Together, these 
results suggest that only a subset of the metamodel dependent 
variable outputs were likely to be well-predicted by the linear fit. 

The k-fold cross validation results for the linear metamodel 
were averaged and are shown in Figure 6. Each of the first three 
rows of Figure 6 shows the metamodel predictive performances 
for a different build metric. The bottom row of Figure 6 shows 
the results for the individual normalized responses averaged 
across all three build metrics. The first two columns of Figure 6 
detail the COD values for each CNN performance metric. The 
rightmost column of Figure 6 shows the COD values when the 
metamodel is predicting the aggregate, normalized CNN 
performance metrics. 

A variety of metamodel performance levels were observed 
in this study. Overall, 9 out of 12 metamodel combinations 
exhibited CODs greater than zero, indicating that they were able 
to explain some of the variability present in the data. In general, 
CNN-COD, 𝑎, was more easily predicted by the metamodels 
than ETC, �̂�. This trend is evident from the fact that all four 
metamodel combinations predicting 𝑎 were above zero, whereas 
only two out of four of those predicting �̂� were below zero, and 

therefore worse than using a mean model. Of the three build 
metrics, metamodels that were fitted to predict support material 
mass CNN performance explained the most variability for both 
non-aggregated CNN performance metrics. The support material 
metamodel combination predicting CNN-COD had the highest 
individual average COD, at 0.27. Part mass was the second most 
effective, non-aggregate build metric, with an average COD of 
0.12. Build time had the least effective metamodels, averaging a 
COD of 0.02. 
 

 
Figure 6 Mean COD values for metamodels predicting each 

of the independent variables and each build metric. 
 
The most effective aggregate metamodel was the aggregate 

CNN-COD performance metric, �̂�𝑎. It had a COD of 0.19. The 
�̂�𝑎 metamodel was selected for further study and refinement due 
to its relatively high COD and the high number of significant 
correlations (see Table 1). This metamodel was also particularly 
interesting because it provided predictions that were applicable 
to all three build metrics, making it a more generalized 
metamodel than some of the others. 

4.2. Metamodel Refinement 
To further analyze the �̂�𝑎 metamodel, the proportion of 

variability explained by each independent variable was estimated 
using an ANOVA sequential sum of squares (see Table 2). 
 
Table 2 Explained variance breakdown of the metamodel 
predicting 𝒑𝒂 CNN performance metric. 
 

Independent 
Variable 

Proportion of 
Overall Variance 

Proportion of 
Explained Variance 

𝑠 18.6% 84.9% 
𝐶𝑃 ,𝑚 0.6% 2.7% 
𝐶𝑃 ,  0.1% 0.5% 
𝐶𝐴 ,𝑚 0.6% 2.7% 
𝐶𝐴 ,  0.0% 0.0% 
𝐷𝑚 0.7% 3.2% 
𝐷  1.1% 5.0% 

 



 9 Copyright © 2020 by ASME 

As shown in Table 2, size was clearly the largest portion, 
accounting for 84.9% of the variance explained by the model. 
This provides substantial predictive power. However, there is a 
set of additional variables that account for an additional 13.6% 
when combined. These included median part volume ratio 
complexity (𝐶𝑃 ,𝑚), median part area ratio complexity (𝐶𝐴 ,𝑚), 
median squared Euclidean distance diversity (𝐷𝑚), and 
interquartile range of squared Euclidean distance diversity (𝐷 ). 
The interquartile ranges of part volume ratio (𝐶𝑃 , ) and part area 
ratio (𝐶𝐴 , ) accounted for only 0.5% and 0.0% of the explained 
variance, respectively. 

Since our results indicated that some independent variables 
were likely more influential than others, we decided to create a 
refined metamodel that relied only on the most effective 
predictors. Pursuing a parsimonious predictive model is 
important to avoid overfitting and encourage comprehension and 
utility. The proportions of explained variance from each 
independent variable, alongside those from the independent 
variable linearity significance test results shown in Table 1 
provide statistical bases for a trimming approach to refine the 
metamodel. Furthermore, the linearity results suggest that certain 
independent variables are less likely to be well-modeled by a 
linear metamodel. For the case of the �̂�𝑎 metamodel, the 
insignificantly correlated variables were interquartile range of 
part volume ratio complexity (𝐶𝑃 , ), median part area ratio 
complexity (𝐶𝐴 ,𝑚), and interquartile range of part area ratio 
complexity (𝐶𝐴 , ). Heuristically, one might use this information 
to suggest trimming those independent variables from the 
metamodel. However, the empirical evidence of variance 
explained by each variable shown in Table 2, suggests including 
𝐶𝐴 ,𝑚 in the refined metamodel may be more effective. An 
alternative approach could be to remove all variables other than 
size, since size was clearly the dominant predictor of aggregate 
CNN-COD in the �̂�𝑎 metamodel. We call these two respective 
approaches the “size-only trimming approach” and “variance 
trimming approach”. 

We tested both of these metamodel trimming approaches. 
This step involved refitting the metamodels with trimmed 
subsets of the original independent variable vector, evaluating 
the metamodel performances, and comparing the results. The 
results are summarized in Tables 3 and 4. 

The best-performing refined metamodel was that trimmed 
with the variance approach, with mean COD equal to 0.22. This 
COD value was slightly greater than the mean COD of its 
predecessor, untrimmed metamodel (which had a COD of 0.19). 
Conversely, the size-only trimming approach resulted in a lower 
COD of 0.18, indicating that there is value in considering 
additional metrics. 

Based on these results, we selected the refined metamodel 
based on the variance trimming approach as our final, best 
metamodel. This metamodel was shown to be able to predict 
trained CNN performance for multiple build metric applications, 
as evidenced by its nonzero COD value when predicting the 
CNN-COD aggregate response. This trait makes it relatively 
general and more widely applicable than the non-aggregate 

metamodels. Additionally, the metamodel’s mean COD value of 
0.22 was relatively large, the second largest of all metamodels 
attempted. We refit the metamodel using all available data to 
obtain coefficients and a final explained variance breakdown of 
a single, fitted OLS metamodel (see Table 4).  

 
Table 3 Coefficients and explained variance of each 
independent variable in the size only linear metamodel.  
 

Independent 
Variable 

Metamodel 
Coefficients 

Proportion 
of Overall 
Variance 

Proportion of 
Explained 
Variance 

𝛽 0.8932 N/A N/A 
𝑠 0.1736 18.6% 100.0% 

 
Table 4 Coefficients and explained variance of each 
independent variable in the refined linear metamodel.  
 

Independent 
Variable 

Metamodel 
Coefficients 

Proportion 
of Overall 
Variance 

Proportion of 
Explained 
Variance 

𝛽 0.8775 N/A N/A 
𝑠 0.1685 18.6% 85.8% 

𝐶𝑃 ,𝑚 0.0844 0.6% 2.9% 
𝐶𝐴 ,𝑚 -0.0551 0.6% 2.6% 

𝐷𝑚 -0.0573 0.7% 3.3% 
𝐷  0.0630 1.2% 5.4% 

 

5. DISCUSSION 
Our results suggest several interesting trends regarding 

design repository effectiveness when training ML constructs for 
AM build metrics that may be used to inform development of 
new heuristics related to design repository assessment. First, we 
found that the predictive power of a metamodel assessing a 
design repository can vary substantially depending on the CNN 
performance metric it attempts to predict. We found that CNN-
COD was more accurately predicted than ETC. Additionally, of 
the aggregate CNN performance metrics, only metamodels 
predicting �̂�𝑎 and �̂�𝑃  were of relatively high COD, namely, 0.19 
and 0.18. This result suggests that aggregating CNN 
performance metrics, although potentially useful, must be done 
with care and should be supported by empirical evidence of 
effectiveness on a case-by-case basis. In this study, it appears that 
aggregating too many measures can result in undesirable 
predictive capabilities, as is the case with the overall aggregate, 
�̂�, which only achieved an average COD of 0.04. Additionally, 
these results differed depending on which build metric was being 
predicted by the CNNs. This observation is crucial to the 
expansion of this work to other ML applications within AM. In 
general, we found that more challenging CNN outputs, such as 
support material mass, were easier for the metamodel to predict. 
Understanding the specific causality of this observation is 
reserved for future work, and may be achieved with a more 
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complex experimental method examining the interactions 
between these factors. 

Our data also shows useful trends related to the effectiveness 
of individual design repository metadata metrics when used as 
metamodel independent variables. These results suggest that 
choosing which metadata metrics will correlate with CNN 
performance may be best done empirically. We chose the size, 
complexity, and diversity metadata measures used in this study 
based on intuition gathered from the experience of training 
thousands of 3D CNNs in prior work. Ultimately, only some of 
our intuitively chosen metadata metrics were empirically found 
to predict CNN performance accurately based on statistical 
analyses. Some, such as size (𝑠), median part volume ratio 
complexity (𝐶𝑃 ,𝑚), and median squared Euclidean distance 
(𝐷𝑚) were significantly linear and contributed nonzero explained 
variance in multiple metamodels. Others, specifically 
interquartile range of part volume ratio complexity (𝐶𝑃 , ) and 
interquartile range of part area ratio complexity (𝐶𝐴 , ) were not 
significantly linear in any attempted metamodels. These results 
further illustrate the motivation for this type of study, in which 
quantitative metamodels are used to predict ML performance. 
Intuitive experience alone is not likely sufficient to make 
accurate projections about whether design repositories are 
effective for use in deep ML training. Further study of the utility 
of summative design repository attributes may reveal that these 
complexity metrics are more useful for different predictive 
models. Similarly, entirely different complexity metrics may be 
found that improve predictive performance. 

6. CLOSING REMARKS 
In this study we introduced and demonstrated a novel 

metamodeling approach to predict CNN performance of AM 
build metric estimation given a design repository. We created an 
artificial design repository and split it into sub-repositories with 
varying size, complexity, and diversity of constituent designs. 
The sub-repository attributes were then used as independent 
variables to predict CNN performance using a linear metamodel. 
We then produced a refined metamodel using only 5 of the 
original 7 independent variables that was selected as the most 
capable. 

Our first research question investigated the extent to which 
design repository attributes influence CNN performance.  CNN-
COD predictors were more frequently significant than ETC. 
ETC may have more subtle or nonlinear relationships with the 
independent variables. Also, part mass and build time CNNs 
were able to explain more variability than support material mass 
CNNs. However, support material CNNs converged faster. This 
result indicates that the suitability of particular AM response 
variables for ML prediction may be dependent on the most 
important ML performance metric for specific problems. We 
found that size, median part volume ratio, and squared Euclidean 
distance interquartile range were positively correlated with 
CNN-COD. Therefore, design repositories that are larger, 
contain more complex designs, and are characterized by a higher 
spatial diversity spread are most effective at training CNNs. 

Regarding our second research question, which aimed to 
determine the extent to which the design repository metadata 
variables predicted CNN performance, we found that repository 
size was the dominant predictor. Squared Euclidean distance 
interquartile range was the second most explanatory independent 
variable. Although size certainly dominated, the metamodel 
refinement process showed that including other variables, such 
as median complexity and diversity values, was worthwhile in 
making incremental metamodel improvements. Furthermore, 
metamodels tended to be more accurate at predicting CNN 
performances if those performances were relatively high. This 
trend suggests that modeling nonlinear relationships may 
increase accuracy for low CNN performance cases. 

Although the refined metamodel and the metamodel 
development method serve their purpose in responding to our 
specific research questions, future work could overcome the 
limitations of this study and seek to provide a stronger causative 
pathway for the present results. Investigating real-world design 
repositories such as design challenge datasets [6] or FabWave 
[43], a dataset specifically curated for digital design, instead of 
an artificial design repository may provide additional insight 
regarding the applicability of our metamodel to such data. These 
new datasets could also be analyzed for different and more 
numerous summative metadata attributes, such as metrics that 
describe the complexity of individual parametric features. 
Additionally, the current work could be expanded to study 
different build metrics, AM processes, or AM fabrication 
performance criteria, such as dimensional distortion due to 
thermal effects in small features, bridged features, or other 
challenging geometric attributes. Finally, the design of the 
metamodel itself could be expanded to explore nonlinear 
relationships between design repository metadata and ML 
performance metrics and the choice of particular metadata 
attributes studied as independent variables could be further 
investigated.  
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