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Abstract: A class of nonlinear, stochastic staticization control problems (including minimiza-
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diffusion coefficient is considered. A fundamental solution form is obtained where the same
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1. INTRODUCTION

We consider nonlinear optimal stochastic control prob-
lems where the finite-dimensional dynamics are driven by
Brownian motion processes, taking the form of stochastic
differential equations (SDEs). These problems are typi-
cally converted into Hamilton-Jacobi partial differential
equation (HJ PDE) problems. In the case of determin-
istic optimal control problems, the HJ PDEs are first-
order equations, while in the stochastic case, these are
second-order HJ PDEs. The dimension of the space over
which these PDEs are defined is that of the state pro-
cess of the control problem. Of course, realistic control
problems typically have relatively high dimensional state
processes (i.e., greater than dimension three), leading to
PDEs over high dimensional spaces. The solution of such
HJ PDE problems has long been hampered by the curse-
of-dimensionality, which refers to the fact that with clas-
sical algorithms, the computational cost grows exponen-
tially fast as a function of space dimension, and we note
that this has limited the solvability of such problems by
classical methods to state-space dimensions on the order
of three to five. More recently, max-plus based curse-
of-dimensionality-free methods have demonstrated com-
putational tractability for certain classes of problems in
significantly higher space dimension, and this approach
have been quite effective in the case of first-order HJ PDEs
Gaubert et al (2011); McEneaney (2006, 2009); Qu (2014);
Sridharan et al (2014), with the caveat being a curse-of-
complexity that grows rapidly with propagation.

Extensions of the max-plus based curse-of-dimensionality-
free methods to second-order HJ PDEs and stochastic
? This work was supported by AFOSR Grants FA9550-18-1-0268
and FA2386-16-1-4066 and NSF Grant DMS-1908918.

control problems has been less computationally successful,
where this effectiveness reduction is due to the requirement
that one employ a max-plus distributive property at each
time step McEneaney and Kaise (2016); see also Akian
and Fodjo (2016).

Here, we demonstrate that for certain classes of prob-
lems, one may convert the second-order (in space) HJ
PDEs associated to stochastic control problems driven
by Brownian motion into first-order HJ PDEs, thereby
admitting the potential application of the rapid curse-
of-dimensionality-free methods. Further, in this transition
to first-order HJ PDEs, the solutions may be obtained
as fundamental solutions, which implies that the same
solution may be applied to varying terminal costs (within
a certain class) without complete re-solution of the HJ
PDE problems. In the most general case, one requires
approximation of a series, but there are particular cases
where this reduces to a closed-form solution.

2. DEFINITION OF THE PROBLEM CLASS

We consider a nonlinear stochastic control problem where
the SDE dynamics and initial state are given by

dξt = f(ξt, ut) dt+ µdBt, ξs = x ∈ Rn, (1)

where the underlying probability space is denoted as
(Ω,F∞, P ) with Ω denoting the sample space, F∞ denot-
ing the σ-algebra and P denoting the probability mea-
sure. Also, Bt denotes an n-dimensional Brownian mo-
tion adapted to filtration Ft. Assumptions on f will be
indicated further below. We let U ⊆ Rk, and suppose
the controls take values in U . Fix T ∈ (0,∞), and for
s ∈ [0, T ], let

Us
.
= {u : [s, T ]× Ω → Rn |u is F·-adapted, right-contin.
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and such that E
∫ T

s
|ut|m dt <∞ ∀m ∈ IN }. (2)

We also define the state-process space

Xs
.
= {ξ : [s, T ]× Ω → Rn | ξ is F·-adapted, right-contin.

and such that E sup
t∈[s,T ]

|ξt|m <∞ ∀m ∈ IN }. (3)

The payoff will be given by

J(s, x, u; z)
.
= E

{ T

∫
s
L(ξt, ut) dt+ ψ(ξT ; z)

}
, (4)

ψ(x; z)
.
= 1

2 (x− z)T M̄(x− z) + γ̄, (5)

where M̄ is positive-definite and symmetric, γ̄ ∈ R and
z ∈ Rn. In the more general case, one takes a terminal
cost form

Ψ(x)
.
= stat

z∈Rn

{
1
2 (x− z)T M̄(x− z) + γ̂(z)

}
, (6)

with some specified function, γ̂(·), where the definition
of operator stat follows in Section 3. The terminal cost
in (6) is a “stat-quad” representation, McEneaney and
Dower (2018), of a general class of terminal costs that may
be represented as such. Because of the already technical
nature of the sequel, we will mainly not include the general
form (6) in the analysis below, but see McEneaney and
Dower (2015) for a deeper discussion of the usage of such
a form. For (s, x) ∈ [0, T ]× Rn, the value function is

W̄ (s, x; z) = W̄ (s, x; z, M̄ , γ̄)
.
= stat

u∈Us

J(s, x, u; z). (7)

We remark that in the case of a convex, coercive, C1 payoff,
stat is equivalent to minimization; that is

W̄ (s, x; z) = W̄ (s, x; z, M̄ , γ̄) = min
u∈Us

J(s, x, u; z). (8)

Hence, in such cases, all results obtained for staticization
problems hold for minimization problems.

Lastly, in the case of the more general terminal payoff of
(6), the value becomes

W(s, x)
.
= stat

z∈Rn
stat
u∈Us

J(s, x, u; z) = stat
z∈Rn

W̄ (s, x; z), (9)

with terminal cost (6) replacing (5).

3. STATICIZATION DEFINITIONS

“Staticization” has recently proven to be quite useful.
Specifically, the principle of stationary action can be used
to generate fundamental solutions of conservative dynam-
ical systems and to obtain stochastic control represen-
tations for solutions of Schrödinger initial value prob-
lems (IVPs) Dower and McEneaney (2017); McEneaney
and Dower (2015); McEneaney and Zhao (2019); Zhao
and McEneaney (2019); McEneaney and Dower (2019);
McEneaney (2019) (also cf. Doss (2011); Fleming (1983)
among others). In analogy with the language for mini-
mization and maximization, we will refer to the search
for stationary points as “staticization”, with these points
being statica, in analogy with minima/maxima. We make
the following definitions. Let F denote either the real or
complex field. Suppose U is a normed vector space (over
F) with A ⊆ U , and suppose G : A → F . We say
ū ∈ argstatu∈AG(u)

.
= argstat{G(u) |u ∈ A} if ū ∈ A and

either lim supu→ū,u∈A\{ū}
|G(u)−G(ū)|

|u−ū| = 0, or there exists

δ > 0 such that A∩Bδ(ū) = {ū} (where Bδ(ū) denotes the
ball of radius δ around ū). If argstat{G(u) |u ∈ A} 6= ∅,
we define the possibly set-valued stats operation by

stats
u∈A

G(u)
.
=

{
G(ū)

∣∣ ū ∈ argstat{G(u) |u ∈ A}
}
. (10)

If argstat{G(u) |u ∈ A} = ∅, then statsu∈AG(u) is
undefined. We are mainly interested in a single-valued stat
operation. In particular, if there exists a ∈ F such that
statsu∈AG(u) = {a}, then statu∈AG(u)

.
= a; otherwise,

statu∈AG(u) is undefined.

In the case where U is a Banach space and A ⊆ U is an
open set, G : A → F is Fréchet differentiable at ū ∈ A
with derivative DG(ū) ∈ L(U ;F) if

lim
w→0, ū+w∈A\{ū}

|G(ū+w)−G(ū)−[DG(ū)]w|
|w| = 0. (11)

The following is immediate from the above definitions.

Lemma 1. Suppose U is a Banach space, with open set
A ⊆ U , and that G is Fréchet differentiable at ū ∈ A.
Then, ū ∈ argstat{G(y) | y ∈ A} if and only if DG(ū) = 0.

4. RECOLLECTION OF RESULTS

We will proceed through several steps that will eventually
lead to formulation as a deterministic control problem.
The first step is to obtain the equivalence between the
value function and the solution of the associated HJ PDE
problem. This equivalence is standard in the optimization
and game cases (i.e., minimization, maximization and/or
minimax), and less so in staticization cases that do not
correspond to these. Hence, we only recall some results
here, so as to ground the sequel. In particular, in this
first presentation of the approach, we work under strong
conditions so as to avoid excessively technical proofs, and
more clearly indicate the structure of the approach. Let
Z .

= (0, T ) × Rn × Rn and Z̄ .
= (0, T ] × Rn × Rn, and

consider

0 =Wt + stat
v∈U

{
f(x, v)TWx + L(x, v)

}
+ 1

2 tr[AWxx]

.
=Wt +H0(x,Wx) +Q0(x,Wx) +

1
2 tr[AWxx],

.
=Wt + H̃0(x,Wx) +

1
2 tr[AWxx], (t, x, z) ∈ Z, (12)

W (T, x; z) = ψ(x; z), (x, z) ∈ Rn × Rn, (13)

where Q0 is a quadratic function of its arguments, and the
non-quadratic components of the Hamiltonian are isolated
within H0 (where we note that the diffusion coefficient in
(1) is constant). The second set of assumptions, which are
for the more general staticization case, are as follows.

Assume that for z ∈ Rn, there exists W =
W (·, ·; z) ∈ C1,4(Y) ∩ Cp(Ȳ) satisfying (12)–
(13), and that there exists C̄0 < ∞ and q ∈
IN such that |Wx(s, x)| ≤ C̄0(1 + |x|2q) and
|Wxx(s, x)| ≤ C̄0(1 + |x|2q) for all (s, x) ∈
Ȳ. Assume U = Rk; f, L ∈ C3(Rn × U);
∃C̄1 < ∞ such that |fx(x, v)|, |fv(x, v)| ≤
C̄1, |fxx(x, v)|, |fxv(x, v)|, |fvv(x, v)| ≤ C̄1 and
|Lxx(x, v)|, |Lxv(x, v)|, |Lvv(x, v)|,≤ C̄1. Assume
that for each z ∈ Rn, there exists ū ∈
C(Ȳ) such that f(x, ū(t, x)) is globally Lip-
schitz in x on Y and such that ū(t, x) ∈
argstatv∈U{f(x, v)TWx(t, x) + L(x, v)} for all
(t, x) ∈ Y.

(A.1)

Theorem 2. Assume (A.1). Then W = W̄ on Z̄, and ū is
a stationary control yielding payoff W̄ .

The proof of Theorem 2 appears in McEneaney and Dower
(2020), and is quite similar to that of (McEneaney, 2019,
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Th 4.1), but with a real-valued (rather than complex-
valued) system and less specific dynamics and cost.

5. FUNDAMENTAL-SOLUTION FORM

We now proceed through several steps that will lead
to a fundamental solution form, and then further, to
a deterministic-control, fundamental solution form. We
remark that the term “fundamental solution form” is
being employed here to indicate that modifications of the
terminal cost, within a certain class, will not require re-
solution of the problem. For x, p, α, β ∈ Rn, let

Q(x, p, α, β)
.
= c1

2 |x− α|2 + c2
2 |p− β|2,

where c1, c2 ∈ R. Analogous to semiconvex duality in the
convex-duality framework, we have the following variant in
the stationarity framework, which is referred to as “stat-
quad” duality (McEneaney and Dower, 2018, Th. 4).

Lemma 3. Suppose C is nonsingular, and φ ∈ C1(Rn;R).
Letting η(w)

.
= Dφ(w) − Cw for all w ∈ Rn, suppose

η−1 ∈ C1(Rn;Rn). Then,

φ(w) = stat
y∈Rn

[
a(y) + 1

2 (y − w)TC(y − w)
]

∀w ∈ Rn,

a(y) = stat
w∈Rn

[
φ(w)− 1

2 (y − w)TC(y − w)
]

∀ y ∈ Rn.

We will say that a generic function, G : M → R with
M being an open subset of a Hilbert space is uniformly
Morse in η ∈ M if there exists K̃ < ∞ such that for all
η̂ ∈ M such that Gη(η̂) = 0, Gηη(η̂) is invertible with∣∣[Gηη(η̂)]

−1
∣∣ ≤ K̃. Further, we will say that a generic

function, G : M×N → R with M,N being open subsets
of their respective Hilbert spaces is uniformly Morse in
η ∈ M over ζ ∈ N if there exists K̃ < ∞ such that

for all (η̂, ζ̂) ∈ M×N such that Gη(η̂, ζ̂) = 0, Gηη(η̂, ζ̂) is

invertible with
∣∣[Gηη(η̂, ζ̂)]

−1
∣∣ ≤ K̃. We make the following

assumption, which will be sufficient to guarantee existence
of all the relevant duality objects to follow.

We assume that H0 ∈ C3(R2n), that the first,
second and third derivatives of H0 are uniformly
bounded, and that H0 is uniformly Morse in
(x, p) ∈ R2n.

(A.2)

By Lemma 3, Assumption (A.2) and straightforward cal-
culations, one obtains the following.

Lemma 4. Let |c1|, |c2| be sufficiently large. Then,

H0(x, p) = stat
(α,β)∈R2n

[
G0(α, β)+Q(x, p, α, β)

]
∀(x, p) ∈ R2n,

G0(α, β) = stat
(x,p)∈R2n

[
H0(x, p)−Q(x, p, α, β)

]
∀(α, β) ∈ R2n,

where argstat(α,β)∈R2n

[
G0(α, β) +Q(x, p, α, β)

]
is single-

valued for all (x, p) ∈ R2n, and argstat(x,p)∈R2n

[
H0(x, p)−

Q(x, p, α, β)
]
is single-valued for all (α, β) ∈ R2n. Further,

G0 ∈ C3(R2n), with bounded second and third derivatives.

Lastly, denoting the consitutent argstat functions as α̃, β̃,
x̃ and p̃, one has α̃, β̃, x̃, p̃ ∈ C1(R2n), with α̃, β̃ globally
Lipschitz.

Combining Theorem 2 and Lemma 4, one obtains the
following.

Lemma 5. Let |c1|, |c2| be sufficiently large. Then, for each
z ∈ Rn, the value function given by (1)–(7) is the unique,
classical solution of

0 =Wt + stat
(α,β)∈R2n

{
G0(α, β) +Q(x,Wx, α, β)

}
+Q0(x,Wx) +

1
2 tr[AWxx], (t, x) ∈ Y, (14)

W (T, x; z) = ψ(x; z), x ∈ Rn. (15)

Now, we let Q0 take the specific form

Q0(x, p)=
1
2

[
xTD1,1x+ 2xTD1,2p+ pTD2,2p

]
+ dT1 x+ dT2 p

(16)
where D1,1, D2,2 are symmetric. Note that with Im gener-
ically denoting the m×m identity matrix throughout,

G0(α, β) +Q0(x, p) +Q(x, p, α, β) = G0(α, β)

+ 1
2x

TD1,1x+ c1
2 |x− α|2 + c2

2 |β|
2 + dT1 x,

+ [DT
1,2x+ d2 − c2β]

T p+ 1
2p

T (c2In +D2,2)p, (17)

which, with |c2| sufficiently large being a sufficient condi-

tion, is equivalently given by,

= stat
v∈Rn

{
[DT

1,2x+ d2 − c2β + v]T p+H1(x, α, β, v)
}
, (18)

H1(x, α, β, v)
.
= G0(α, β) +

1
2x

TD1,1x+ c1
2 |x− α|2

+ c2
2 |β|

2 + dT1 x+ 1
2v

TΓv,

Γ
.
= −(c2In +D2,2)

−1.

6. PREPARATORY ITEMS

Prior to the main development, we need some minor results
and objects.

6.1 Iterated Staticization

One may note that by (12), Lemma 4 and (18),

H̃0(x, p) = stat
(α,β)∈R2n

{
G0(α, β) +Q0(x, p) +Q(x, p, α, β)

}
= stat

(α,β)∈R2n

{
H1(x, α, β, v)

+ stat
v∈Rn

[
(DT

1,2x+ d2 − c2β + v)T p
]}
. (19)

Lemma 6. Let |c2| be sufficiently large. Then, for all
(x, p) ∈ R2n,

H̃0(x, p) = stat
(α,β)∈R2n

stat
v∈Rn

{
H1(x, α, β, v)

+ [DT
1,2x+ d2 − c2β + v]T p

}
= stat

(α,β,v)∈R3n

{
H1(x, α, β, v)

+ [DT
1,2x+ d2 − c2β + v]T p

}
.

By (18) and Lemma 5, one easily obtains the following.

Lemma 7. Let |c1|, |c2| be sufficiently large. Then, for each
z ∈ Rn, the value function given by (1)–(7) is the unique,
classical solution of

0 =Wt + stat
(α,β)∈R2n

stat
v∈Rn

{
H1(x, α, β, v)

+ [DT
1,2x+ d2 − c2β + v]TWx + 1

2 tr[AWxx]
}
, (20)

=Wt + stat
(α,β,v)∈R3n

{
H1(x, α, β, v)

+ [DT
1,2x+ d2 − c2β + v]TWx

}
+ 1

2 tr[AWxx], (21)
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for (t, x) ∈ Y, with terminal condition (15).

Consider the following stationarity control problem. Let
the dynamics be given by

dξt = f ′(ξt, β̄t, ut) dt+ µdBt
.
= (DT

1,2ξt + d2 − c2β̄t + ut) dt+ µdBt, ξs = x.

(22)

where u· ∈ Us,T and β̄· ∈ Os,T , with

Os,T
.
= {ν : [s, T ]× Ω → Rn | ν is F·-adapted,

right-contin., and s.t. E
∫ T

s
|νt|2 dt <∞}.

Let the payoff and stationary value be given by

J ′(s, x, u, ᾱ, β̄; z)

.
= E

{∫ T

s

H1(ξt, ᾱt, β̄t, ut) dt+ ψ(ξT ; z)
}
, (23)

W ′(s, x; z)
.
= stat

(u·,ᾱ·,β̄·)∈Us,T×[Os,T ]2
J ′(s, x, u, ᾱ, β̄; z),

(24)

Using Theorem 2 and Lemmas 4 and 7, one obtains the
following.

Lemma 8. Let |c1|, |c2| be sufficiently large. Then, for each
z ∈ Rn, the value function, W̄ , given by (1)–(7) is identical
to the value function, W ′, given by (22)–(24). Further,

there exists unique (ũ, α̃, β̃) : Y → R3n such that

[ũ, α̃, β̃](t, x) ∈ argstat
(α,β,u)∈R3n

{
[f ′(x, β, u)]T W̄x(t, x)

+H1(x, α, β, u)
}
, (25)

and [α̃, β̃, ũ](t, ξt) is a staticizing control.

Consider the iterated form of (24) given by

Ŵ ′(s, x; z)
.
= stat

ᾱ,β̄∈[Os,T ]2
stat

u·∈Us,T

J ′(s, x, u, ᾱ, β̄; z). (26)

Note that the inner staticization of (26) is a set of linear-
quadratic Gaussian control problems, indexed by the ᾱ, β̄
that motivates the following.

6.2 Relevant Differential Riccati Equations

Consider the dynamics, driven by stochastic processes
ᾱt, β̄t, given by

Π̇t =−F̄1(Πt)
.
=−

{
ΠtK2Πt +K

T
3 Πt +ΠtK3 +K1

}
(27)

π̇t = −F̄2(Πt, πt, ᾱt, β̄t)
.
= −

{
ΠtK2πt +ΠtÎ1,1V 2

t +K3πt

+ V 1
t

}
, (28)

γ̇t = −F̄3(Πt, πt, ᾱt, β̄t)
.
= −

{
G0(ᾱt, β̄t) +

c1
2 |ᾱt|2 (29)

+ c2
2 |β̄t|

2 + 1
2π

T
t K2πt+ (V 2

t )
Tπt +

1
2 tr(K4ΠtK5)

}
,

with terminal conditions, following from (5), given by

ΠT = Π̄
.
=

(
M̄ −M̄
−M̄ M̄

)
, πT = π̄

.
= 0, γT = γ̄, (30)

where

K1
.
=

(
(c1In +D1,1) 0

0 0

)
, K2

.
=

(
(c2In +D2,2) 0

0 0

)
,

K3
.
=

(
DT

1,2 0
0 0

)
, K4

.
= (A 0) , V 1

t
.
=

(
d1 − c1ᾱt

0

)
,

Î1,1 .
=

(
In 0
0 0

)
, K5

.
=

(
In
0

)
, V 2

t
.
=

(
d2 − c2β̄t

0

)
.

(31)

One should note that F̄1 is independent of ᾱ, β̄.

7. THE FIRST-ORDER HJ PDE

We define notation that will be used throughout the
section. Let −∞ < s < T <∞. Recall the dynamics

Π̇t = F̄1(Πt), t ∈ (s, T ), Π0 = Π̄, (32)

where Π̄ is given in (30).

Assume there exists Π ∈ C1
(
(0, T );R2n×2n

)
∩

C
(
[0, T ];R2n×2n

)
satisfying (32), (30). (A.4)

Let Ns
.
= L2

(
(s, T );Rn

)
, and let α̃, β̃ ∈ N0. Let π ∈

C1
(
(0, T );R2n

)
∩ C

(
[0, T ];R2n

)
satisfy

π̇t = F̄2(Πt, πt, α̃t, β̃t), t ∈ (0, T ), π0 = π̄
.
= 0. (33)

Note that we may write (33) as

π̇t = B(t)πt + b(t, α̃t, β̃t), k2 = c2In +D2,2,

B(t)
.
= ΠtK2 +K3 =

(
Ptk2 +DT

1,2 0

QT
t k2 0

)
, (34)

b(t, α̃t, β̃t) =

(
Pt(d2 − c2β̃t) + (d1 − c1α̃t)

QT
t (d2 − c2β̃t)

)
. (35)

Let the state-transition matrix associated to B(·) be
denoted by Φ(t, s) = ψ̄tψ̄

−1
s where we recall fundamental

matrix ψ̄· satisfies
˙̄ψt = B(t)ψ̄t for all t ∈ (s, T ). One has

the following standard result.

Lemma 9. Let (α̃, β̃) ∈ N 2
0 . For all t ∈ [0, T ], πt =

Φ(t, 0)π̄ +
∫ t

0
Φ(t, r)b(r, α̃r, β̃r) dr.

Let γ ∈ C1
(
(0, T );R

)
∩ C

(
[0, T ];R

)
satisfy

γ̇t = F̄3(Πt, πt, α̃t, β̃t) + C(t, πt, α̃t, β̃t), γ0 = γ̄, (36)

where C ∈ C([0, T ]×R2n×Rn×Rn) will be specified further
below. It should be noted that DRE (32) is independent of
the control processes, and that existence and uniqueness
for (33) and (36) is immediate.

7.1 The first representation

For compactness of notation, we hereafter let y denote(
x
z

)
. For t ∈ [0, T ], let Ḡ(t, x, z; Π̄)

.
= 1

2y
TΠty. Also let

W̃ (t, x; z, Π̄, π̄, γ̄)
.
= stat

(α̃,β̃)∈N0

{
yTπt + γt

}
. (37)

Let X .
= (s, T ) × R2n. Let |c1|, |c2| < ∞ be sufficiently

large. For (t, π) ∈ X , let

(α∗(t, π), β∗(t, π)) = argstat
(α,β)∈R2n

{
yT F̄2(Πt, π, α, β)

+ F̄3(Πt, π, α, β) + C(t, π, α, β)
}

(38)

where Lemma 4 implies existence and that α∗, β∗ are
globally Lipschitz in π. Then, for t ∈ [0, T ), let π∗, (α̃∗

t , β̃
∗
t )

and γ∗ be given by

π̇∗
t = F̄2(Πt, π

∗
t , α

∗(t, π∗
t ), β

∗(t, π∗
t )); π∗

0 = π̄, (39)
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(α̃∗
t , β̃

∗
t )

.
= (α∗(t, π∗

t ), β
∗(t, π∗

t )) ∀ t ∈ [0, T ], (40)

γ∗t
.
= γ̄ +

∫ t

0

F̄3(Πt, π
∗
t , α̃

∗
t , β̃

∗
t ) + C(t, π∗

t , α̃
∗
t , β̃

∗
t ) dt. (41)

Lemma 10. Letting α̃∗
[0,t], β̃

∗
[0,t] denote the restrictions of

α̃∗, β̃∗ to domain [0, t], (α̃∗
[0,t], β̃

∗
[0,t]) ∈ argstat(α̃,β̃)

{
yTπt+

γt
}
and W̃ (t, x; z, Π̄, π̄, γ̄) =

{
yTπ∗

t +γ
∗
t

}
for all t ∈ [0, T ].

For (t, x, z) ∈ X , let

W f (t, x; z, Π̄, π̄, γ̄)
.
= Ḡ(t, x, z; Π̄) + W̃ (t, x; z, Π̄, π̄, γ̄).

Theorem 11. Let 0 ≤ s ≤ T < ∞, x, z ∈ Rn and π̄ = 0.
Let |c1|, |c2| <∞ be sufficiently large. Assume

stat
(α,β)∈R2n

{
πT F̄2(Πt, π

∗
t , α, β) + F̄3(Πt, π

∗
t , α, β)

+ C(t, π∗
t , α, β)

}
= stat

(α,β)∈R2n

{
G0(α, β) +

c1
2 |α− x|2

+ c2
2 |β − (Ptx+Qtz + ρ∗t )|2

}
+ 1

2 tr[AW̃xx(t, π
∗
t )] (42)

for all t ∈ (0, T ). Then

W f (T − s, x; z, Π̄, π̄, γ̄) = W̄ (s, x; z, M̄ , γ̄, T ).

We also obtain a first-order HJ PDE problem representa-
tion for W̃ . Fix any π̄ ∈ R2n, and let (α∗, β∗), π∗, (α̃∗, β̃∗)
be given by (38)–(40). Note that Lemma 9 and the glob-
ally Lipschitz aspect of (α∗, β∗) as a function of π (from
Lemma 4) imply that, for each t ∈ [0, T ], there exists a
globally Lipschitz bijection from π̄ ∈ R2n to π∗

t ∈ R2n,
say π∗

t = F1(π̄; t), or alternatively, π̄ = F−1
1 (π∗

t ; t). For

t ∈ [0, T ], let ˜̃W (t, π∗
t ;x, z, Π̄, γ̄)

.
= W̃ (t, x; z, Π̄, π̄, γ̄),

where π∗
t = F1(π̄; t). Equivalently,

˜̃W (t, π;x, z, Π̄, γ̄)
.
= W̃

(
t, x; z, Π̄,F−1

1 (π; t), γ̄
)
. (43)

Theorem 12. Let x, z ∈ Rn and |c1|, |c2| > 0. Suppose (42)

holds for all t ∈ (0, T ). Then, ˜̃W (·, ·;x, z, Π̄, γ̄) satisfies

0 = − ˜̃Wt + stat
(α,β)∈R2n

{ ˜̃Wπ · F̄2(Πt, π, α, β) + F̄3(Πt, π, α, β)

+ 1
2 tr[A

˜̃Wxx(t, π
∗
t )]

}
, (t, π) ∈ X , (44)

˜̃W (0, π) = yTπ + γ̄, π ∈ R2n. (45)

Consider the control problem with payoff and value
¯̃J(s, π̄, α̃, β̃; Π̄, x, z, T )

.
= yTπT + γ̄

+

∫ T

T−s

F̄3(ΠT−t, πt, α̃t, β̃t) + C(t, πt, α̃t, β̃t) dt, (46)

¯̃W (s, π̄; Π̄, x, z, T )
.
= stat
(α̃,β̃)∈[Ns]2

¯̃J(s, π̄, α̃, β̃; Π̄, x, z, T ), (47)

where π satisfies π̇ = −F̄2(ΠT−t, πt, α̃t, β̃t) with πT−s = π̄,
and we suppose C ∈ C3(X ) with bounded second and third
derivatives. Note also that

Ḡ(s, x, z; Π̄) + ¯̃J(s, π̄, α̃, β̃; Π̄, x, z, T ) = 1
2y

TΠT−sy + yTπT

+ γT +

∫ T

T−s

C(t, πt, α̃t, β̃t) dt. (48)

The HJ PDE problem associated to value ¯̃W is (44)–(45)

with 1
2 tr[A

˜̃Wxx(t, π
∗
t )] replaced by C(t, π∗

t , α̃
∗
t , β̃

∗
t ), that is

0 = −Wt + stat
(α,β)∈R2n

{
Wπ · F̄2(Πt, π, α, β)

+ F̄3(Πt, π, α, β) + C(t, π, α, β)
}
, (49)

W (0, π; Π̄, x, z, T ) = yTπ + γ̄, π ∈ R2n. (50)

Note that the HJ PDE is first-order and over X .

Theorem 13. Fix x, z. Let |c1|, |c2| be sufficiently large,
and suppose there exists a solution to (32) on [s, T ].
Suppose W (·, · ; Π̄, x, z, T ) ∈ C1,4(X ) ∩ Cp(X̄ ) satisfies
(49)–(50). Suppose Wππ and the second derivatives of
C with respect to α, β are uniformly bounded. Then,

W (·, · ; Π̄, x, z, T ) = ¯̃W (·, · ; Π̄, x, z, T ) for all (t, π) ∈ X̄ ),
and there exist unique feedback controls α∗(t, π), β∗(t, π)
satisfying (49) such that there exists a unique solution to
(33), and that yield the stationary value.

7.2 Obtaining the correction term

Consider (49)–(50). Reversing time, differentiating twice
with respect to x, and taking the linear combination
corresponding to 1

2

∑n
j=1[AWxx]j,j to obtain the HJ PDE

for 1
2 tr[A

˜̃Wxx(t, π
∗
t )], yields

0 = Jn+1
t + Jn+1

π · F̄2(Πt, π, α
∗(t, π), β∗(t, π))

+ 1
2

n∑
j,k=1

2n∑
`,m=1

Aj,kJ
k
π`

[
MT

t Ĉ[Ĉ +G′′
0(α

∗(t, π), β∗(t, π))

+ C′′(t, π, α∗(t, π), β∗(t, π))]−1ĈMt

]
`,m

Jj
πm
, (51)

Jn+1(T, π;α∗, β∗, Π̄, x, z, T ) = 0, π ∈ R2n. (52)

where Jj
πk

generically corresponds to Wxj ,πk
, and we note

that one similarly generates, but do not include, the HJ
PDEs for Wxj for j ∈ ]1, n[ .

Using the method of characteristics, one eventually obtains

Jn+1(t; α̃∗, β̃∗) =

∫ T

t

G1(r, α̃
∗
r , β̃

∗
r ) dr, (53)

G1(t, α̃
∗
t , β̃

∗
t ) =

1
2 tr

{
A
[
(Φ−(T, t))TMT

t Ĉ[Ĉ +G′′
0 + C′′]−1

ĈMtΦ
−(T, t)

]}
,

where Φ−(·, ·) denotes the state-transition matrix associ-
ated to −BT (·).

Lemma 14. Fix Π̄, x, z, T . Suppose W̃ (t, π; Π̄, x, z, T ) is
twice differentiable in x for all (t, π, x) ∈ X̄ × Rn. Let

Jn+1(·, ·; α̃∗, β̃∗) be the solution of HJ PDE problem (51)–

(52) with (α̃, β̃) = (α̃∗, β̃∗). Then,

Jn+1(t; α̃∗, β̃∗) = 1
2 tr[AW̃xx(t, π); Π̄, x, z, T )] ∀(t, π) ∈ X̄ .

By (53) and Lemma 14, we see that in order for the
assumption of Theorems 11 and 12 to hold, we must have

C(t, π∗
t , α̃

∗
t , β̃

∗
t ) =

∫ T

t

G1(r, α̃
∗
r , β̃

∗
r ) dr ∀ t ∈ [s, T ]. (54)

Differentiating this, we have the requirement that

0 = Ct(t, π∗
t , α̃

∗
t , β̃

∗
t ) +G1(t, α̃

∗
t , β̃

∗
t )

= Ct+ 1
2 tr

{
ΛtAΛ

T
t

[
Ĉ + [G0](α,β),(α,β)+ C(α,β),(α,β)

]−1
}
.

Assuming existence and using a standard expansion, this
is equivalently given as

0 =Ct + 1
2 tr

{
(Ĉ + [G0](α,β),(α,β))

−1ΛtAΛ
T
t
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·
∞∑
k=0

[−(Ĉ + [G0](α,β),(α,β))
−1C(α,β),(α,β)]k

}
.

Employing only the first term in the series, and integrat-
ing, generates the approximation

C(t, π∗
t , α̃

∗
t , β̃

∗
t ) =

T

∫
t

1
2 tr

[
AΛT

t (Ĉ +[G0](α,β),(α,β))
−1Λt

]
dt.

Employing the first two terms in the series yields an
approximation in the form of a linear, second-order PDE.

A closed-form solution case In some cases, one can ex-
plicitly compute C, and this is true in the class of problems
with linear dynamics and nonlinear payoff of a gravita-
tional/Coulomb potential form. Consider the second-order
HJ PDE

0 =Wt − 1
2m |Wx|2 − V (x) + k̄

2 tr[Wxx], −V (x)
.
= µ

|x| .

There are multiple useful stat-dual forms for such po-
tentials. In addition to stat-dual forms such as those
used above, there is a scalar-α form given by −V (x) =

(3/2)3/2µ statα>0[α− α3|x|
2 ] McEneaney and Dower (2019,

2015). Here, we use a simple stat-dual analogous to the
Legendre-Fenchel transform. Specifically, one has

− V (x) = stat
α∈Rn

[G0(α) + αTx],

G0(α) = stat
x∈Rn

[−V (x)− αTx],

yielding G0(α) = 2
√
c|α|, and in particular,

α∗ = α∗(x)
.
= argstat

α∈Rn

[G0(α) + αTx] = −µ
|x|3x. (55)

One obtains

0 = Jn+1
t + Jn+1

π · F̄2(Πt, π, α
∗(t, π), β∗(t, π))

+ k̄

n∑
j,k=1

Jj
πk

µ

|x|5
[
3|x|2In − xxT

]
j,k

(t, π) ∈ X , (56)

still with terminal condition (52). Also, suppose we take
M̄ = m̄In yielding ψ(x; z, M̄ , γ̄) = m̄

2 |x−z|
2, one has Qt =

−Pt =
λt

2 In for all t where λ̇ = −1
m λ2, λT = m̄. Employing

apply the characteristics approach, one eventually finds

C(t, π∗
t , α̃

∗
t , β̃

∗
t ) =

1
2 tr[A

˜̃Wxx(t, π
∗
t )] = Jn+1(t; α̃∗, β̃∗)

=
k̄µ

|x|5
tr[3|x|2In − xxT ]

∫ T

t

exp[−1
m

∫ T

t

λr dr] dt. (57)
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